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Abstract: In this paper we study the inverse problem of identifying the diffusion matrix in an elliptic

PDE from measurements. The convex energy functional method with Tikhonov regularization is applied to

tackle this problem. For the discretization we use the variational discretization concept, where the PDE is

discretized with piecewise linear, continuous finite elements. We show the convergence of approximations.

Using a suitable source condition, we prove an error bound for discrete solutions. For the numerical solution

we propose a gradient-projection algorithm and prove the strong convergence of its iterates to a solution

of the identification problem. Finally, we present a numerical experiment which illustrates our theoretical

results.
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1 Introduction

Let Ω be an open bounded connected domain of Rd, d ≤ 3 with boundary ∂Ω. We investigate
the problem of identifying the spatially varying diffusion matrix Q in the Dirichlet problem for the
elliptic equation

−div(Q∇u) = f in Ω, (1.1)

u = 0 on ∂Ω (1.2)

from the observation zδ of the solution u in the domain Ω. Here, the function f ∈ L2(Ω) is given.

In this paper we assume that zδ ∈ H1
0 (Ω). For related research we refer the reader to [5, 6, 8, 21,

24, 31, 35, 47].

Our identification problem can be considered as a generalization of identifying the scalar diffusion
coefficient q in the elliptic equation

− div(q∇u) = f in Ω and u = 0 on ∂Ω. (1.3)

The problem has been studied extensively in the last 30 years or so. The identification results can
be found in [9, 34, 41, 46]. Error estimates for finite element approximation solutions have been
obtained, for example, in [18, 25, 35, 47]. A survey of numerical methods for the identification
problem can be found in [7, 32, 38].

Compared to the identification q in (1.3), the problem of identifying the matrix Q in (1.1) has
received less attention. However, there are some contributions treating this problem. Hoffmann
and Sprekels in [27] proposed a dynamical system approach to reconstruct the matrix Q in equation
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(1.1). In [40] Rannacher and Vexler employed the finite element method and showed error estimates
for a matrix identification problem from pointwise measurements of the state variable, provided
that the sought matrix is constant and the exact data is smooth enough.

In the present paper we adopt the convex energy functional approach of Kohn and Vogelius in
[36, 37] to the matrix case. In fact, for estimating the matrix Q in (1.1)–(1.2) from the observation
zδ of the solution u, we use the non-negative convex functional (see §2.4)

J δ(Q) :=

∫
Ω
Q∇

(
U(Q)− zδ

)
· ∇
(
U(Q)− zδ

)
dx

together with Tikhonov regularization and consider the strictly convex minimization problem

min
Q∈Qad

J δ(Q) + ρ‖Q‖2
L2(Ω)d×d

over the admissible set Qad (see §2.2), and consider its unique global solution Qρ,δ as reconstruction.
Here ρ > 0 is the regularization parameter and U the non-linear coefficient-to-solution operator.

For the discretization we use the variational discretization method introduced in [26] and show the
convergence of approximations. Under a source condition, which is weaker than that of the existing
theories in [14, 15], we prove an error bound for discrete regularized solutions. Finally, we employ
a gradient-projection algorithm for the numerical solution of the regularized problems. The strong
convergence of iterates to a solution of the identification problem is ensured without smoothness
requirements on the sought matrix. Numerical results show an efficiency of our theoretical findings.

In [14, 15] the authors investigated the convergence of Tikhonov regularized solutions via the
standard output least squares method for the general non-linear ill-posed equation in Hilbert spaces.
They proved some rates of convergence for this approach under a source condition and the so-called
small enough condition on source elements. In the present paper, by working with a convex energy
functional for our concrete identification problem, we in the proof of Theorem 5.1 are not faced with
a smallness condition. Furthermore, our source condition does not require additional smoothness
assumption of the sought matrix and the exact data (see §5). We also remark that such a source
condition without the smallness condition was proposed in [21, 22, 23, 24] for the scalar coefficient
identification problem in elliptic PDEs and in some concrete cases the source condition was proved
to satisfy if sought coefficients belong to certain smooth function spaces.

We mention that in [16], by utilizing a modified kind of adjoint, the authors for the inverse heat
conduction problem introduced a source condition in the form of a variational identity without the
smallness condition on source elements. The advantage of this source condition is that it does not
involve the Fréchet derivative of the coefficient-to-solution operator. However, the source condition
requires some smoothness assumptions on the sought coefficient.

Starting with [28], the authors in [20, 30, 48] have proposed new source conditions in the form
of variational inequalities. They proved some convergence rates for Tikhonov-type regularized
solutions via the misfit functional method of the discrepancy for the general non-linear ill-posed
equation in Banach spaces. The novelty of this theory is that the source conditions do not involve
the Fréchet derivative of forward operators and so avoid differentiability assumptions. Furthermore,
the theory is applied to inverse problems with PDEs (see, for example, [29]).

Recently, by using several sets of observations and a suitable projected source condition motivated
by [19] as well as certain smoothness requirements on the sought coefficient and the exact solution,
the authors of [13] derived an error bound for the finite element solutions of a standard output
least squares approach to identify the diffusion matrix in (1.1). Due to the non-linearity of the
identification problem the method presented in [13] solves a non-convex minimization problem. Our
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approach in the present paper is different. We utilize a convex cost functional and a different source
condition without smoothness assumptions. Therefore, the theory in [13] and its proof techniques
are not directly comparable with our approach. Furthermore, taking the advantage of the convexity
to account, we here are able to prove that iterates via a gradient-projection algorithm converge to
the identified diffusion matrix.

The remaining part of this paper is organized as follows. In Section 2 and Section 3 we describe
the direct and inverse problems and the finite element method which is applied to the identification
problem, respectively. Convergence analysis of the finite element method is presented in Section
4. In Section 5 we show convergence rates obtained with this technique. Section 6 is devoted to
a gradient-projection algorithm. Finally, in Section 7 we present a numerical experiment which
illustrates our theoretical results.

Throughout the paper we use the standard notion of Sobolev spaces H1(Ω), H1
0 (Ω), W k,p(Ω), etc

from, for example, [45]. If not stated otherwise we write
∫

Ω · · · instead of
∫

Ω · · · dx.

2 Problem setting and preliminaries

2.1 Notations

Let Sd denote the set of all symmetric d × d-matrices equipped with the inner product M · N :=
trace(MN) and the norm

‖M‖Sd = (M ·M)1/2 =

 d∑
i,j=1

m2
ij

1/2

,

where M = (mij)1≤i,j≤d. Let M and N be in Sd, then

M � N

if and only if
Mξ · ξ ≤ Nξ · ξ for all ξ ∈ Rd.

We note that if 0 �M ∈ Sd the root M1/2 is well defined.

In Sd we introduce the convex subset

K := {M ∈ Sd | qId �M � qId},

where q and q are given positive constants and Id is the unit d × d-matrix. Furthermore, let

ξ := (ξ1, · · ·, ξd) and η := (η1, · · ·, ηd) be two arbitrary vectors in Rd, we use the notation

(ξ ⊗ η)1≤i,j≤d ∈ Sd with (ξ ⊗ η)ij :=
1

2
(ξiηj + ξjηi) for all i, j = 1, · · · , d.

Finally, in the space L∞(Ω)d×d we use the norm

‖H‖L∞(Ω)d×d := max
1≤i,j≤d

‖hij‖L∞(Ω),

where H = (hij)1≤i,j≤d ∈ L∞(Ω)d×d.
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2.2 Direct and inverse problems

We recall that a function u in H1
0 (Ω) is said to be a weak solution of the Dirichlet problem (1.1)–

(1.2) if the identity ∫
Ω
Q∇u · ∇v =

∫
Ω
fv (2.1)

holds for all v ∈ H1
0 (Ω). Assume that the matrix Q belongs to the set

Qad :=
{
Q ∈ L∞(Ω)d×d | Q(x) ∈ K a.e. in Ω

}
. (2.2)

Then, by the aid of the Poincaré-Friedrichs inequality in H1
0 (Ω), there exists a positive constant κ

depending only on q and the domain Ω such that the coercivity condition∫
Ω
Q∇u · ∇u ≥ κ‖u‖2H1(Ω) (2.3)

holds for all u in H1
0 (Ω) and Q ∈ Qad. Hence, by the Lax-Milgram lemma, we conclude that there

exists a unique solution u of (1.1)–(1.2) satisfying the following estimate

‖u‖H1(Ω) ≤
1

κ
‖f‖L2(Ω) . (2.4)

Therefore, we can define the non-linear coefficient-to-solution operator

U : Qad ⊂ L∞(Ω)d×d → H1
0 (Ω)

which maps the matrix Q ∈ Qad to the unique solution U(Q) := u of the problem (1.1)–(1.2).
Then, the inverse problem is stated as follows:

Given u := U(Q) ∈ H1
0 (Ω), find a matrix Q ∈ Qad such that (2.1) is satisfied with u and Q.

2.3 Tikhonov regularization

According to our problem setting u is the exact solution of (1.1)–(1.2), so there exists some Q ∈ Qad
such that u = U(Q). We assume that instead of the exact u we have only measurements zδ ∈ H1

0 (Ω)
with

‖zδ − u‖H1(Ω) ≤ δ for some δ > 0. (2.5)

Our problem is to reconstruct the matrix Q from zδ. For solving this problem we consider the
non-negative convex functional (see §2.4)

J δ(Q) :=

∫
Ω
Q∇

(
U(Q)− zδ

)
· ∇
(
U(Q)− zδ

)
. (2.6)

Furthermore, since the problem is ill-posed, in this paper we shall use Tikhonov regularization to
solve it in a stable way. Namely, we consider

min
Q∈Qad

Υρ,δ,
(
Pρ,δ

)
where

Υρ,δ := J δ(Q) + ρ‖Q‖2
L2(Ω)d×d
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and ρ > 0 is the regularization parameter.

In the present paper we assume that the gradient-type observation is available. Concerning this
assumption, we refer the reader to [24, 8, 31, 6, 5, 35] and the references therein, where discus-
sions about the interpolation of discrete measurements of the solution u which results the data zδ

satisfying (2.5) are given.

2.4 Auxiliary results

Now we summarize some properties of the coefficient-to-solution operator. The proofs of the fol-
lowing results are based on standard arguments and therefore omitted.

Lemma 2.1. The coefficient-to-solution operator U : Qad ⊂ L∞(Ω)d×d → H1
0 (Ω) is infinitely

Fréchet differentiable on Qad. For each Q ∈ Qad and m ≥ 1 the action of the Fréchet derivative
U (m)(Q) in direction (H1, H2, · · ·, Hm) ∈

(
L∞(Ω)d×d

)m
denoted by η := U (m)(Q)(H1, H2, · · ·, Hm)

is the unique weak solution in H1
0 (Ω) to the equation∫

Ω
Q∇η · ∇v = −

m∑
i=1

∫
Ω
Hi∇U (m−1)(Q)ξi · ∇v (2.7)

for all v ∈ H1
0 (Ω) with ξi := (H1, · · ·, Hi−1, Hi+1, · · ·, Hm). Furthermore, the following estimate is

fulfilled

‖η‖H1(Ω) ≤
md

κm+1
‖f‖L2(Ω)

m∏
i=1

‖Hi‖L∞(Ω)d×d .

Now we prove the following useful results.

Lemma 2.2. The functional J δ defined by (2.6) is convex on the convex set Qad.

Proof. From Lemma 2.1 we have that J δ is infinitely differentiable. A short calculation with
η := U ′(Q)H gives

J δ ′′(Q)(H,H) = 2

∫
Ω
Q∇η · ∇η ≥ 0

for all Q ∈ Qad and H ∈ L∞(Ω)d×d, which proves the lemma.

Lemma 2.3 ([39, 44]). Let (Qn)n be a sequence in Qad. Then, there exists a subsequence, again
denoted (Qn)n, and an element Q ∈ Qad such that

U(Qn) weakly converges to U(Q) in H1
0 (Ω) and

Qn∇U(Qn) weakly converges to Q∇U(Q) in L2(Ω)
d
.

The sequence (Qn)n is then said to be H-convergent to Q.

The concept of H-convergence generalizes that of G-convergence introduced by Spagnolo in [43].
Furthermore, the H-limit of a sequence is unique.

A relationship between the H-convergence and the weak∗ convergence in L∞(Ω)d×d is given by the
following lemma.
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Lemma 2.4 ([39]). Let (Qn)n be a sequence in Qad. Assume that (Qn)n is H-convergent to Q and
(Qn)n weak∗ converges to Q̂ in L∞(Ω)d×d. Then, Q(x) � Q̂(x) a.e. in Ω and

‖Q‖2
L2(Ω)d×d ≤ ‖Q̂‖2L2(Ω)d×d ≤ lim inf

n
‖Qn‖2L2(Ω)d×d .

Theorem 2.5. There exists a unique minimizer Qρ,δ of the problem
(
Pρ,δ

)
, which is called the

regularized solution of the identification problem.

Proof. Let (Qn)n be a minimizing sequence of the problem (Pρ,δ), i.e.,

lim
n

Υρ,δ(Qn) = inf
Q∈Qad

Υρ,δ(Q).

By Lemma 2.3 and Lemma 2.4, it follows that there exists a subsequence which is not relabelled
and elements Q ∈ Qad and Q̂ ∈ L∞(Ω)d×d such that

(Qn)n is H-convergent to Q,
(Qn)n weak∗ converges to Q̂ in L∞(Ω)d×d,
Q(x) � Q̂(x) a.e. in Ω and
‖Q‖2

L2(Ω)d×d ≤ ‖Q̂‖2L2(Ω)d×d ≤ lim infn ‖Qn‖2L2(Ω)d×d .

We have that

J δ(Qn) =

∫
Ω
Qn∇U(Qn) · ∇(U(Qn)− zδ)−

∫
Ω
Qn∇(U(Qn)− zδ) · ∇zδ

=

∫
Ω
f(U(Qn)− zδ)−

∫
Ω
Qn∇U(Qn) · ∇zδ +

∫
Ω
Qn∇zδ · ∇zδ.

And so that

lim
n
J δ(Qn) =

∫
Ω
f(U(Q)− zδ)−

∫
Ω
Q∇U(Q) · ∇zδ +

∫
Ω
Q̂∇zδ · ∇zδ

= J δ(Q) +

∫
Ω

(Q̂−Q)∇zδ · ∇zδ

≥ J δ(Q).

We therefore get

Υρ,δ(Q) ≤ lim
n
J δ(Qn) + lim inf

n
ρ‖Qn‖2L2(Ω)d×d

= lim inf
n

(
J δ(Qn) + ρ‖Qn‖2L2(Ω)d×d

)
= inf

Q∈Qad

J δ(Q) + ρ‖Q‖2
L2(Ω)d×d .

Since Υρ,δ is strictly convex, the minimizer is unique.

3 Discretization

Let (Th)0<h<1 be a family of regular and quasi-uniform triangulations of the domain Ω with the
mesh size h. For the definition of the discretization space of the state functions let us denote

V1
h :=

{
vh ∈ C(Ω) ∩H1

0 (Ω) | vh|T ∈ P1(T ), ∀T ∈ Th
}

with P1 consisting all polynomial functions of degree less than or equal to 1. Similar to the
continuous case we have the following result.
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Proposition 3.1. Let Q be in Qad. Then the variational equation∫
Ω
Q∇uh · ∇vh =

∫
Ω
fvh, ∀vh ∈ V1

h (3.1)

admits a unique solution uh = uh(Q) ∈ V1
h. Further, the prior estimate

‖uh‖H1(Ω) ≤
1

κ
‖f‖L2(Ω) , (3.2)

is satisfied.

Definition 3.2. The map Uh : Qad → V1
h from each Q ∈ Qad to the unique solution uh of

variational equation (3.1) is called the discrete coefficient-to-solution operator.

We note that the operator Uh is Fréchet differentiable on the set Qad. For each Q ∈ Qad and
H ∈ L∞(Ω)d×d the Fréchet differential ηh := Uh′(Q)H is an element of V1

h and satisfies the equation∫
Ω
Q∇ηh · ∇vh = −

∫
Ω
H∇Uh(Q) · ∇vh (3.3)

for all vh in V1
h.

Before presenting our results we need some facts on data interpolation.

3.1 Data interpolation

It is well known that there is a usual nodal value interpolation operator

I1
h : C(Ω)→

{
vh ∈ C(Ω) | vh|T ∈ P1(T ), ∀T ∈ Th

}
such that

I1
h

(
H1

0 (Ω) ∩ C(Ω)
)
⊂ V1

h.

Since H2(Ω) is continuously embedded in C(Ω) as d ≤ 3 (see, for example, [1]), the following result
is standard in the theory of the finite element method, the proof of which can be found, for example,
in [4, 10].

Lemma 3.3. Let ψ be in H1
0 (Ω) ∩H2(Ω). Then, we have∥∥ψ − I1

hψ
∥∥
Hk(Ω)

≤ Chm−k ‖ψ‖Hm(Ω) ,

where 0 ≤ k < m ≤ 2.

3.2 Data mollification

Since the data zδ is not smooth enough, in general we cannot define I1
h for them, when d ≥ 2.

Instead, we use Clément’s interpolation operator

Πh : L2(Ω)→
{
vh ∈ C(Ω) | vh|T ∈ P1(T ), ∀T ∈ Th

}
with

Πh

(
H1

0 (Ω)
)
⊂ V1

h

and satisfying the following convergence properties and estimates

lim
h→0
‖ϑ−Πhϑ‖Hk(Ω) = 0 for all k ∈ {0, 1} (3.4)

and
‖ϑ−Πhϑ‖Hk(Ω) ≤ Ch

m−k‖ϑ‖Hm(Ω) (3.5)

for 0 ≤ k < m ≤ 2 (see [11], and some generalizations of which [2, 3, 42]).
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3.3 Finite element method

Using the operator Πh in §3.2, we introduce the discrete cost functional

J δh (Q) :=

∫
Ω
Q∇

(
Uh(Q)−Πhz

δ
)
· ∇
(
Uh(Q)−Πhz

δ
)

(3.6)

with Q ∈ Qad.

We note that the cost functional J δh contains the interpolation Πhz
δ of the measurement zδ. This

is different from the approaches in [13, 18, 35, 47]. However, it is unavoidable for a numerical
experiment since in general we cannot define the pointwise values of zδ at the nodes of Th.

The following results are exactly obtained as in the continuous case.

Lemma 3.4. For each h > 0 the functional J δh defined by (3.6) is convex on the convex set Qad.

We adapt a finite element version of Lemma 2.3 and Lemma 2.4.

Lemma 3.5 ([12]). Let (Thn)n be a sequence of triangulations with limn hn = 0 and (Qn)n be a
sequence in Qad. Then there exists a subsequence which is not relabelled and an element Q ∈ Qad
such that

Uhn(Qn) weakly converges to U(Q) in H1
0 (Ω) and

Qn∇Uhn(Qn) weakly converges to Q∇U(Q) in L2(Ω)
d
.

The sequence (Qn)n is then said to be Hd-convergent to Q.

Lemma 3.6 ([12]). Let (Qn)n be a sequence in Qad. Assume that (Qn)n is Hd-convergent to Q
and (Qn)n weak∗ converges to Q̂ in L∞(Ω)d×d. Then, Q(x) � Q̂(x) a.e. in Ω and

‖Q‖2
L2(Ω)d×d ≤ ‖Q̂‖2L2(Ω)d×d ≤ lim inf

n
‖Qn‖2L2(Ω)d×d .

Lemma 3.7. Let
Υρ,δ
h (Q) := J δh (Q) + ρ ‖Q‖2

L2(Ω)d×d .

There exists a unique minimizer Qρ,δh of the strictly convex minimization problem

min
Q∈Qad

Υρ,δ
h (Q).

(
Pρ,δh

)
Now we consider the orthogonal projection PK : Sd → K characterised by

(A− PK(A))(B − PK(A)) ≤ 0

for all A ∈ Sd and B ∈ K.

Lemma 3.8. Let Qρ,δh ∈ Qad. Then Qρ,δh is the unique solution of the problem
(
Pρ,δh

)
if and only

if the equation

Qρ,δh (x) = PK

(
1

2ρ

(
∇Uh(Qρ,δh )(x)⊗∇Uh(Qρ,δh )(x)−∇Πhz

δ(x)⊗∇Πhz
δ(x)

))
holds for a.e. in Ω.
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Proof. Since the problem
(
Pρ,δh

)
is strictly convex, an element Qρ,δh ∈ Qad is the unique solution

of
(
Pρ,δh

)
if and only if the inequality

J δh
′(
Qρ,δh

)(
Q−Qρ,δh

)
+ 2ρ

∫
Ω
Qρ,δh ·

(
Q−Qρ,δh

)
≥ 0 (3.7)

is satisfied for all Q ∈ Qad.

By (3.6) and (3.3), we have that

J δh
′(
Qρ,δh

)(
Q−Qρ,δh

)
=

∫
Ω

(
Q−Qρ,δh

)
∇
(
Uh
(
Qρ,δh

)
−Πhz

δ
)
· ∇
(
Uh
(
Qρ,δh

)
−Πhz

δ
)

+ 2

∫
Ω
Qρ,δh ∇Uh

′(Qρ,δh )(Q−Qρ,δh ) · ∇(Uh(Qρ,δh )−Πhz
δ
)

=

∫
Ω

(
Q−Qρ,δh

)
∇
(
Uh
(
Qρ,δh

)
−Πhz

δ
)
· ∇
(
Uh
(
Qρ,δh

)
−Πhz

δ
)

− 2

∫
Ω

(
Q−Qρ,δh

)
∇Uh

(
Qρ,δh

)
· ∇
(
Uh
(
Qρ,δh

)
−Πhz

δ
)

= −
∫

Ω

(
Q−Qρ,δh

) (
∇Uh

(
Qρ,δh

)
· ∇Uh

(
Qρ,δh

)
−∇Πhz

δ · ∇Πhz
δ
)

= −
∫

Ω

(
∇Uh(Qρ,δh )⊗∇Uh(Qρ,δh )−∇Πhz

δ ⊗∇Πhz
δ
)
·
(
Q−Qρ,δh

)
. (3.8)

It follows from (3.7) and (3.8) that∫
Ω

(
1

2ρ

(
∇Uh

(
Qρ,δh

)
⊗∇Uh

(
Qρ,δh

)
−∇Πhz

δ ⊗∇Πhz
δ
)
−Qρ,δh

)
·
(
Q−Qρ,δh

)
≤ 0

for all Q ∈ Qad. Then a localization argument infers(
1

2ρ

(
∇Uh

(
Qρ,δh

)
(x)⊗∇Uh

(
Qρ,δh

)
(x)−∇Πhz

δ(x)⊗∇Πhz
δ(x)

)
−Qρ,δh (x)

)
·

·
(
M −Qρ,δh (x)

)
≤ 0

for all M ∈ K. The proof is completed.

Remark. Since Uh
(
Qρ,δh

)
and Πhz

δ are both in V1
h, the assertion of Lemma 3.8 shows that the

solution of
(
Pρ,δh

)
is a piecewise constant matrix over Th, so that it belongs to the set Qad ∩ Vh,

where

Vh :=
{
M := (mij)1≤i,j≤d ∈L∞(Ω)d×d

∣∣∣ M(x) ∈ Sd a.e. in Ω and

mij |T = const for all i, j with 1 ≤ i, j ≤ d and T ∈ Th
}
. (3.9)

Taking this into account, a discretization of the admissible set Qad can be avoided. Furthermore,

we note that Qad ∩ Vh is a non-empty, convex, bounded and closed set in the L2(Ω)
d×d

-norm in
the finite dimensional space Vh.

In what follows C is a generic positive constant which is independent of the mesh size h of Th, the
noise level δ and the regularization parameter ρ.
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4 Convergence

In this section we analyze the convergence of Tikhonov regularization. To this end, we introduce

σh(Q) := ‖U(Q)− Uh(Q)‖H1(Ω) (4.1)

and

γh(ϕ) := ‖ϕ−Πhϕ‖H1(Ω), (4.2)

where Q ∈ Qad and ϕ ∈ H1
0 (Ω). We note that

lim
h→0

σh(Q) = 0 and lim
h→0

γh(ϕ) = 0.

Theorem 4.1. Let (Thn)n be a sequence of triangulations with limn hn = 0. Assume that
(
Qρ,δhn

)
n

is the sequence of unique minimizers of
(
Pρ,δhn

)
. Then

(
Qρ,δhn

)
n

converges to minimizer Qρ,δ of
(
Pρ,δ

)
in the L2(Ω)

d×d
-norm.

Proof. For the sake of the notation we denote by

Qn := Qρ,δhn .

In view of Lemma 3.5 and Lemma 3.6 there exists a subsequence, again denoted (Qn)n and elements
Qρ,δ ∈ Qad, Q̂ ∈ L∞(Ω)d×d such that (Qn)n is Hd-convergent to Qρ,δ, (Qn)n weak∗ converges to Q̂
in L∞(Ω)d×d, Qρ,δ(x) � Q̂(x) a.e. in Ω and ‖Qρ,δ‖2

L2(Ω)d×d ≤ ‖Q̂‖2L2(Ω)d×d ≤ lim infn ‖Qn‖2L2(Ω)d×d .

First we show that

lim
n
J δhn

(
Qn
)
≥ J δ

(
Qρ,δ

)
. (4.3)

Indeed, we write

J δhn
(
Qn
)

=

∫
Ω
Qn∇Uhn(Qn) · ∇Uhn(Qn)− 2

∫
Ω
Qn∇Uhn(Qn) · ∇Πhnz

δ +

∫
Ω
Qn∇Πhnz

δ · ∇Πhnz
δ.

(4.4)

We have that ∫
Ω
Qn∇Uhn(Qn) · ∇Uhn(Qn) =

∫
Ω
fUhn(Qn)

→
∫

Ω
fU(Qρ,δ) (4.5)

and, by (3.4),∫
Ω
Qn∇Uhn(Qn) · ∇Πhnz

δ =

∫
Ω
Qn∇Uhn(Qn) · ∇zδ +

∫
Ω
Qn∇Uhn(Qn) · ∇

(
Πhnz

δ − zδ
)

→
∫

Ω
Qρ,δ∇U(Qρ,δ) · ∇zδ (4.6)
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and ∫
Ω
Qn∇Πhnz

δ · ∇Πhnz
δ =

∫
Ω
Qn∇zδ · ∇zδ +

∫
Ω
Qn∇(Πhnz

δ − zδ) · ∇Πhnz
δ

+

∫
Ω
Qn∇(Πhnz

δ − zδ) · ∇zδ

→
∫

Ω
Q̂∇zδ · ∇zδ

=

∫
Ω
Qρ,δ∇zδ · ∇zδ +

∫
Ω

(Q̂−Qρ,δ)∇zδ · ∇zδ

≥
∫

Ω
Qρ,δ∇zδ · ∇zδ. (4.7)

By (4.4)–(4.7), we arrive at (4.3). Furthermore, in view of (4.1) and (3.4), for all Q ∈ Qad we also
get

lim
n
J δhn(Q) = J δ(Q).

Hence it follows that for all Q ∈ Qad

J δ
(
Qρ,δ

)
+ ρ
∥∥Qρ,δ∥∥2

L2(Ω)d×d ≤ lim
n
J δhn(Qn) + lim inf

n
ρ
∥∥Qn∥∥2

L2(Ω)d×d

= lim inf
n

(
J δhn(Qn) + ρ

∥∥Qn∥∥2

L2(Ω)d×d

)
≤ lim sup

n

(
J δhn(Qn) + ρ

∥∥Qn∥∥2

L2(Ω)d×d

)
≤ lim sup

n

(
J δhn(Q) + ρ

∥∥Q∥∥2

L2(Ω)d×d

)
= lim

n

(
J δhn(Q) + ρ

∥∥Q∥∥2

L2(Ω)d×d

)
= J δ(Q) + ρ

∥∥Q∥∥2

L2(Ω)d×d . (4.8)

Thus, Qρ,δ is a unique solution to
(
Pρ,δ

)
. It remains to show that (Qn)n converges to Qρ,δ in the

L2(Ω)
d×d

-norm. To this end, we rewrite

ρ
∥∥Qρ,δ −Qn∥∥2

L2(Ω)d×d = ρ
∥∥Qρ,δ‖2

L2(Ω)d×d + ρ
∥∥Qn∥∥2

L2(Ω)d×d − 2ρ
〈
Qρ,δ, Qn

〉
L2(Ω)d×d

= ρ
∥∥Qρ,δ‖2

L2(Ω)d×d +
(
J δhn(Qn) + ρ

∥∥Qn∥∥2

L2(Ω)d×d

)
− 2ρ

〈
Qρ,δ, Qn

〉
L2(Ω)d×d − J δhn(Qn).

By (4.8), we have that

lim sup
n

(
J δhn(Qn) + ρ

∥∥Qn∥∥2

L2(Ω)d×d

)
= J δ

(
Qρ,δ

)
+ ρ
∥∥Qρ,δ∥∥2

L2(Ω)d×d .

Therefore, by (4.3) and the fact that (Qn)n weak∗ converges to Q̂ in L∞(Ω)d×d with Qρ,δ(x) � Q̂(x)
a.e. in Ω, we deduce that

ρ lim
n

∥∥Qρ,δ −Qn∥∥2

L2(Ω)d×d ≤ ρ
∥∥Qρ,δ‖2

L2(Ω)d×d +
(
J δ
(
Qρ,δ

)
+ ρ
∥∥Qρ,δ∥∥2

L2(Ω)d×d

)
− 2ρ

〈
Qρ,δ, Q̂

〉
L2(Ω)d×d − J δ

(
Qρ,δ

)
≤ 2ρ

∥∥Qρ,δ‖2
L2(Ω)d×d − 2ρ

〈
Qρ,δ, Qρ,δ

〉
L2(Ω)d×d

= 0.

The proof is completed.

11



Next we show convergence of discrete regularized solutions to identification problem. Before pre-
senting our result we introduce the notion of the minimum norm solution of the identification
problem.

Lemma 4.2. The set
IQad

(u) := {Q ∈ Qad | U(Q) = u}

is non-empty, convex, bounded and closed in the L2(Ω)
d×d

-norm. Hence there is a unique minimizer
Q† of the problem

min
Q∈IQad

(u)
‖Q‖2

L2(Ω)d×d

which is called by the minimum norm solution of the identification problem.

Theorem 4.3. Let (Thn)n be a sequence of triangulations with mesh sizes (hn)n. Let (δn)n and
(ρn)n be any positive sequences such that

ρn → 0,
δ2
n

ρn
→ 0,

σ2
hn

(Q†)

ρn
→ 0 and

γ2
hn

(
U(Q†)

)
ρn

→ 0

as n → ∞. Moreover, assume that
(
zδn
)
n

is a sequence satisfying
∥∥U(Q†)− zδn

∥∥
H1

0 (Ω)
≤ δn and(

Qρn,δnhn

)
n

is the sequence of unique minimizers of
(
Pρn,δnhn

)
. Then

(
Qρn,δnhn

)
n

converges to Q† in the

L2(Ω)
d×d

-norm as n→∞.

Proof. Denoting
Qn := Qρn,δnhn

and due to the definition of Qn, we get

J δnhn
(
Qn
)

+ ρn
∥∥Qn∥∥2

L2(Ω)d×d ≤ J δnhn (Q†) + ρn
∥∥Q†∥∥2

L2(Ω)d×d .

We have that

J δnhn (Q†)

=

∫
Ω
Q†∇

(
Uhn(Q†)−Πhnz

δn
)
·
(
Uhn(Q†)−Πhnz

δn
)

≤ q
∥∥Uhn(Q†)−Πhnz

δn
∥∥2

H1(Ω)

= q
∥∥Uhn(Q†)− U(Q†) + Πhn

(
U(Q†)− zδn

)
+ U(Q†)−ΠhnU(Q†)

∥∥2

H1(Ω)

≤ 3q
(∥∥Uhn(Q†)− U(Q†)

∥∥2

H1(Ω)
+
∥∥Πhn

(
U(Q†)− zδn

)∥∥2

H1(Ω)
+
∥∥U(Q†)−ΠhnU(Q†)

∥∥2

H1(Ω)

)
≤ 3Cq

(
σ2
hn(Q†) + δ2

n + γ2
hn

(
U(Q†)

))
,

where C is the positive constant defined by

C := max
(
1, ‖Πhn‖L(H1(Ω),H1(Ω))

)
.

So that

J δnhn
(
Qn
)

+ ρn
∥∥Qn∥∥2

L2(Ω)d×d ≤ 3Cq
(
σ2
hn(Q†) + δ2

n + γ2
hn

(
U(Q†)

)
+ ρn

∥∥Q†∥∥2

L2(Ω)d×d . (4.9)
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This implies

lim sup
n

∥∥Qn∥∥2

L2(Ω)d×d ≤ lim sup
n

(
3Cq

σ2
hn

(Q†) + δ2
n + γ2

hn

(
U(Q†)

)
ρn

+
∥∥Q†∥∥2

L2(Ω)d×d

)
=
∥∥Q†∥∥2

L2(Ω)d×d . (4.10)

By Lemma 3.5 and Lemma 3.6 there exists a subsequence which is not relabelled and elements
Θ ∈ Qad, Q̂ ∈ L∞(Ω)d×d such that (Qn)n is Hd-convergent to Θ, (Qn)n weak∗ converges to Q̂ in
L∞(Ω)d×d, Θ(x) � Q̂(x) a.e. in Ω and

‖Θ‖2
L2(Ω)d×d ≤ ‖Q̂‖2L2(Ω)d×d ≤ lim inf

n
‖Qn‖2L2(Ω)d×d . (4.11)

Moreover, the proof of Theorem 4.1 includes an argument which can be used to show that

lim
n
J δnhn

(
Qn
)
≥
∫

Ω
Θ∇

(
U(Θ)− U(Q†)

)
· ∇
(
U(Θ)− U(Q†)

)
.

Then by (2.3) and (4.9), we arrive at

κ
∥∥U(Θ)− U(Q†)

∥∥2

H1(Ω)
≤ lim

n
J δnhn

(
Qn
)

= 0.

Therefore, Θ ∈ IQad
(u). Furthermore, by (4.11) and (4.10) and the uniqueness of the minimum

norm solution, we obtain that Θ = Q†. Finally, by (4.10), the fact that (Qn)n weak∗ converges to
Q̂ in L∞(Ω)d×d and Q†(x) � Q̂(x) a.e. in Ω, we infer that

lim sup
n

∥∥Qn −Q†∥∥2

L2(Ω)d×d = lim sup
n

(∥∥Qn∥∥2

L2(Ω)d×d +
∥∥Q†∥∥2

L2(Ω)d×d − 2
〈
Qn, Q

†〉
L2(Ω)d×d

)
≤ 2
∥∥Q†∥∥2

L2(Ω)d×d − 2
〈
Q̂,Q†

〉
L2(Ω)d×d

≤ 2
∥∥Q†∥∥2

L2(Ω)d×d − 2
〈
Q†, Q†

〉
L2(Ω)d×d

= 0.

The proof is completed.

5 Convergence rates

Now we state the result on convergence rates for Tikhonov regularization of our identification
problem. Before presenting the result we recall some notions.

Any Ψ ∈ L∞(Ω) can be considered as an element in L∞(Ω)∗ by

〈Ψ, ψ〉(L∞(Ω)∗,L∞(Ω)) :=

∫
Ω

Ψψ (5.1)

for all ψ in L∞(Ω) with ‖Ψ‖L∞(Ω)∗ ≤ |Ω|‖Ψ‖L∞(Ω).

According to Lemma 2.1, for each Q ∈ Qad the mapping

U ′(Q) : L∞(Ω)d×d → H1
0 (Ω)

is a continuous operator with the dual

U ′(Q)
∗

: H1
0 (Ω)

∗ →
(
L∞(Ω)d×d

)∗
.
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Let w∗ ∈ H1
0 (Ω)

∗
be arbitrary but fixed. We consider the Dirichlet problem

−div(Q†∇w) = w∗ in Ω and w = 0 on ∂Ω (5.2)

which has a unique weak solution w ∈ H1
0 (Ω). Then for all H ∈ L∞(Ω)d×d we have〈

U ′(Q†)∗w∗, H
〉(
L∞(Ω)d×d∗,L∞(Ω)d×d

) = 〈w∗,U ′(Q†)H〉(
H1

0 (Ω)
∗
,H1

0 (Ω)
)

=

∫
Ω
Q†∇w · ∇U ′(Q†)H. (5.3)

Theorem 5.1. Assume that there is a functional w∗ ∈ H1
0 (Ω)

∗
such that

U ′(Q†)∗w∗ = Q†. (5.4)

Then

κ

4

∥∥Uh(Qh)− U(Q†)
∥∥2

H1(Ω)
+ ρ
∥∥Qh −Q†∥∥2

L2(Ω)d×d = O
(
δ2 + σ2

h(Q†) + γ2
h

(
U(Q†)

)
+ γ2

h(w) + ρ2
)
,

(5.5)

where Qh := Qρ,δh is the unique solution of
(
Pρ,δh

)
.

We remark that in case u,w ∈ H2(Ω) with w from (5.2), by the Céa’s lemma and (3.5), we infer
that σh(Q†) ≤ Ch, γh

(
U(Q†)

)
≤ Ch and γh(w) ≤ Ch. Therefore, the convergence rate

κ

4

∥∥Uh(Qh)− U(Q†)
∥∥2

H1(Ω)
+ ρ
∥∥Qh −Q†∥∥2

L2(Ω)d×d = O
(
δ2 + h2 + ρ2

)
is obtained.

By (2.7), (5.1) and (5.3), the source condition (5.4) is satisfied if there exists a functional w ∈ H1
0 (Ω)

such that for all H ∈ L∞(Ω)d×d the equation∫
Ω
H ·Q† = −

∫
Ω
H∇U(Q†) · ∇w

holds. However, as we can see in (5.10) below, the convergence rate (5.5) is obtained under the
weaker condition that there exists a functional w ∈ H1

0 (Ω) such that∫
Ω

(Q† −Qh) ·Q† ≤
∣∣∣∣∫

Ω
(Q† −Qh)∇U(Q†) · ∇w

∣∣∣∣ . (5.6)

Lemma 5.2. If there exists a functional w ∈ H1
0 (Ω) such that

Q†(x) = PK

(
∇U(Q†)(x)⊗∇w(x)

)
a.e in Ω, (5.7)

then the condition (5.6) holds. Thus the convergence rate (5.5) is obtained.

We note that (5.7) is the projected source condition introduced in [13]. However, we here do not
require any of the smoothness of the sought matrix and the exact data.
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Proof. We have∫
Ω

(Q† −Qh) ·Q† = −
∫

Ω
PK

(
∇U(Q†)⊗∇w

)
·
(
Qh − PK

(
∇U(Q†)⊗∇w

))
=

∫
Ω

(
∇U(Q†)⊗∇w − PK

(
∇U(Q†)⊗∇w

))
·
(
Qh − PK

(
∇U(Q†)⊗∇w

))
−
∫

Ω
∇U(Q†)⊗∇w ·

(
Qh − PK

(
∇U(Q†)⊗∇w

))
≤ −

∫
Ω
∇U(Q†)⊗∇w ·

(
Qh − PK

(
∇U(Q†)⊗∇w

))
≤
∣∣∣∣∫

Ω
∇U(Q†)⊗∇w · (Q† −Qh)

∣∣∣∣
=

∣∣∣∣∫
Ω

(Q† −Qh)∇U(Q†) · ∇w
∣∣∣∣ ,

which finishes the proof.

To prove Theorem 5.1 we need the following auxiliary result.

Lemma 5.3. The estimate

J δh (Q†) ≤ C
(
δ2 + σ2

h(Q†) + γ2
h

(
U(Q†)

))
holds.

Proof. The stated inequality follows from an argument which has included in the proof in Theorem
4.3 and therefore omitted.

Proof of Theorem 5.1. Since Qh is the solution of the problem
(
Pρ,δh

)
, we have that

J δh
(
Qh
)

+ ρ
∥∥Qh∥∥2

L2(Ω)d×d ≤ J δh
(
Q†
)

+ ρ
∥∥Q†∥∥2

L2(Ω)d×d

≤ C
(
δ2 + σ2

h(Q†) + γ2
h

(
U(Q†)

))
+ ρ
∥∥Q†∥∥2

L2(Ω)d×d , (5.8)

by Lemma 5.3. Thus, we get

J δh
(
Qh
)

+ ρ
∥∥Qh −Q†∥∥2

L2(Ω)d×d

≤ C
(
δ2 + σ2

h(Q†) + γ2
h

(
U(Q†)

))
+ ρ

(∥∥Q†∥∥2

L2(Ω)d×d −
∥∥Qh∥∥2

L2(Ω)d×d +
∥∥Qh −Q†∥∥2

L2(Ω)d×d

)
= C

(
δ2 + σ2

h(Q†) + γ2
h

(
U(Q†)

))
+ 2ρ

〈
Q†, Q† −Qh

〉
L2(Ω)d×d . (5.9)

By (5.1), (5.4) and (5.3), we have with w from (5.2)〈
Q†, Q† −Qh

〉
L2(Ω)d×d =

〈
Q†, Q† −Qh

〉(
L∞(Ω)d×d∗,L∞(Ω)d×d

)
=
〈
U ′(Q†)∗w∗, Q† −Qh

〉(
L∞(Ω)d×d∗,L∞(Ω)d×d

)
= 〈w∗,U ′(Q†)(Q† −Qh)〉(

H1
0 (Ω)

∗
,H1

0 (Ω)
)

=

∫
Ω
Q†∇U ′(Q†)(Q† −Qh) · ∇w

= −
∫

Ω
(Q† −Qh)∇U(Q†) · ∇w, (5.10)
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here we used the equation (2.7). Hence by (2.1), we get〈
Q†, Q† −Qh

〉
L2(Ω)d×d =

∫
Ω
Qh∇U(Q†) · ∇w −

∫
Ω
fw

=

∫
Ω
Qh∇U(Q†) · ∇w −

∫
Ω
Qh∇U(Qh) · ∇w

=

∫
Ω
Qh∇

(
U(Q†)− U(Qh)

)
· ∇w

=

∫
Ω
Qh∇

(
U(Q†)−Πhz

δ
)
· ∇w

+

∫
Ω
Qh∇

(
Uh(Qh)− U(Qh)

)
· ∇w

+

∫
Ω
Qh∇

(
Πhz

δ − Uh(Qh)
)
· ∇w

:= S1 + S2 + S3.

We have that∥∥U(Q†)−Πhz
δ
∥∥
H1(Ω)

≤
∥∥Πh

(
U(Q†)− zδ

)∥∥
H1(Ω)

+
∥∥U(Q†)−ΠhU(Q†)

∥∥
H1(Ω)

≤
∥∥Πh

∥∥
L(H1(Ω),H1(Ω))

∥∥U(Q†)− zδ
∥∥
H1(Ω)

+
∥∥U(Q†)−ΠhU(Q†)

∥∥
H1(Ω)

≤ max
(
1, ‖Πh‖L(H1(Ω),H1(Ω))

) (
δ + γh

(
U(Q†)

))
= C

(
δ + γh

(
U(Q†)

))
. (5.11)

Thus we obtain

S1 :=

∫
Ω
Qh∇

(
U(Q†)−Πhz

δ
)
· ∇w

≤ C
∥∥U(Q†)−Πhz

δ
∥∥
H1(Ω)

≤ C
(
δ + γh

(
U(Q†)

))
.

We deduce from (2.1) and (3.1) that∫
Ω
Qh∇

(
Uh(Qh)− U(Qh)

)
· ∇vh = 0

for all vh ∈ V1
h. Therefore, we obtain

S2 :=

∫
Ω
Qh∇

(
Uh(Qh)− U(Qh)

)
· ∇w

=

∫
Ω
Qh∇

(
Uh(Qh)− U(Qh)

)
· ∇(w −Πhw)

≤
∥∥Qh∇(Uh(Qh)− U(Qh)

)∥∥
L2(Ω)

∥∥∇(w −Πhw)
∥∥
L2(Ω)

≤ C
∥∥w −Πhw

∥∥
H1(Ω)

≤ Cγh(w).

Since 0 � Qh(x) ∈ Sd for a.e. x ∈ Ω, the root Qh(x)1/2 is well defined. Furthermore,

Qh(x)∇
(
Πhz

δ(x)− Uh(Qh)(x)
)
· ∇w(x)

= Qh
1/2(x)∇

(
Πhz

δ(x)− Uh(Qh)(x)
)
·Qh1/2(x)∇w(x).
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Then applying the Cauchy-Schwarz inequality, we have

S3 :=

∫
Ω
Qh∇

(
Πhz

δ − Uh(Qh)
)
· ∇w

≤
(∫

Ω
Qh∇

(
Uh(Qh)−Πhz

δ
)
· ∇
(
Uh(Qh)−Πhz

δ
))1/2(∫

Ω
Qh∇w · ∇w

)1/2

≤ C
(∫

Ω
Qh∇

(
Uh(Qh)−Πhz

δ
)
· ∇
(
Uh(Qh)−Πhz

δ
))1/2

.

Using Young’s inequality, we obtain

S3 ≤ Cρ+
1

4ρ

∫
Ω
Qh∇

(
Uh(Qh)−Πhz

δ
)
· ∇
(
Uh(Qh)−Πhz

δ
)
.

Therefore, we arrive at

2ρ
〈
Q†, Q† −Qh

〉
L2(Ω)d×d ≤ C

(
δ2 + γ2

h

(
U(Q†)

)
+ γ2

h(w) + ρ2
)

+
1

2
J δh
(
Qh
)
.

Combining this with (5.9), we infer that

1

2
J δh
(
Qh
)

+ ρ
∥∥Qh −Q†∥∥2

L2(Ω)d×d ≤ C
(
δ2 + σ2

h(Q†) + γ2
h

(
U(Q†)

)
+ γ2

h(w) + ρ2
)
.

Now we have

κ

4

∥∥Uh(Qh)− U(Q†)
∥∥2

H1(Ω)
≤ κ

2

∥∥Uh(Qh)−Πhz
δ
∥∥2

H1(Ω)
+
κ

2

∥∥Πhz
δ − U(Q†)

∥∥2

H1(Ω)

≤ 1

2
J δh
(
Qh
)

+ κC2
(
δ2 + γ2

h

(
U(Q†)

))
,

by (2.3) and (5.11). Thus, we arrive at (5.5), which finishes the proof.

6 Gradient-projection algorithm

For the numerical solution we here use the gradient-projection algorithm of [17]. We note that
many other efficient solution methods are available, see for example [33].

We consider the finite dimensional space Vh defined by (3.9). Let Ch and Ch be positive constants
such that

Ch‖H‖L2(Ω)d×d ≤ ‖H‖L∞(Ω)d×d ≤ Ch‖H‖L2(Ω)d×d (6.1)

for all H ∈ Vh.

The following results are useful.

Lemma 6.1. The discrete coefficient-to-solution operator Uh is Lipschitz continuous on Qad ∩ Vh
in the L2(Ω)

d×d
-norm with a Lipschitz constant

Chd

κ2

∥∥f∥∥
L2(Ω)

.
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Proof. For all M,N ∈ Qad ∩ Vh it follows from (3.1) that∫
Ω
M∇Uh(M) · ∇vh =

∫
Ω
fvh

=

∫
Ω
N∇Uh(N) · ∇vh

for all vh ∈ V1
h. Thus∫

Ω
M∇(Uh(M)− Uh(N)) · ∇vh =

∫
Ω

(N −M)∇Uh(N) · ∇vh.

Choosing vh = Uh(M)− Uh(N), by (2.3), we have

κ
∥∥Uh(M)− Uh(N)

∥∥2

H1(Ω)
≤ d‖M −N‖L∞(Ω)d×d‖Uh(N)‖H1(Ω)‖Uh(M)− Uh(N)‖H1(Ω).

Therefore, from (3.2) and (6.1) we arrive at

‖Uh(M)− Uh(N)‖H1(Ω) ≤
Chd

κ2

∥∥f∥∥
L2(Ω)

‖M −N‖
L2(Ω)d×d . (6.2)

This finishes the proof.

Lemma 6.2. The objective functional Υρ,δ
h of

(
Pρ,δh

)
has the property that the gradient is Lipschitz

continuous on Qad ∩ Vh in the L2(Ω)
d×d

-norm with a Lipschitz constant

Lh := 2Chd

(
Chd

κ3

∥∥f∥∥2

L2(Ω)
+ ρ|Ω|1/2

)
.

In other word, the estimate

‖Υρ,δ
h

′
(M)−Υρ,δ

h

′
(N)‖L(L2(Ω)d×d,R)

≤ Lh‖M −N‖L2(Ω)d×d

is satisfied for all M,N ∈ Qad ∩ Vh.

Proof. Since any norm on Vh is equivalent, Uh is Fréchet differentiable on the set Qad ∩ Vh in the

L∞(Ω)d×d-norm and thus in the L2(Ω)
d×d

-norm. For all M,N ∈ Qad ∩ Vh and H ∈ Vh, in view of
(3.8), we get∣∣∣Υρ,δ

h

′
(M)H −Υρ,δ

h

′
(N)H

∣∣∣ =
∣∣∣ ∫

Ω
H∇Uh(N) · ∇Uh(N)−

∫
Ω
H∇Uh(M) · ∇Uh(M)

+ 2ρ

∫
Ω
H ·M − 2ρ

∫
Ω
H ·N

∣∣∣.
Thus ∣∣∣Υρ,δ

h

′
(M)H −Υρ,δ

h

′
(N)H

∣∣∣
=
∣∣∣ ∫

Ω
H∇(Uh(N)− Uh(M)) · ∇(Uh(N) + Uh(M)) + 2ρ

∫
Ω
H · (M −N)

∣∣∣
≤
(∫

Ω
|H∇(Uh(N)− Uh(M))|2

)1/2(∫
Ω
|∇(Uh(N) + Uh(M))|2

)1/2

+ 2ρ

(∫
Ω
H ·H

)1/2(∫
Ω

(M −N) · (M −N)

)1/2

≤ d‖H‖L∞(Ω)d×d‖Uh(N)− Uh(M)‖H1(Ω)‖Uh(N) + Uh(M)‖H1(Ω)

+ 2ρd‖H‖L∞(Ω)d×d |Ω|1/2‖M −N‖L2(Ω)d×d .
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From the estimates (3.2), (6.1) and (6.2) we now get∣∣∣Υρ,δ
h

′
(M)H −Υρ,δ

h

′
(N)H

∣∣∣
≤ d‖H‖L∞(Ω)d×d‖Uh(N)− Uh(M)‖H1(Ω)

(
‖Uh(N)‖H1(Ω) + ‖Uh(M)‖H1(Ω)

)
+ 2ρd‖H‖L∞(Ω)d×d |Ω|1/2‖M −N‖L2(Ω)d×d

≤ 2Chd

(
Chd

κ3

∥∥f∥∥2

L2(Ω)
+ ρ|Ω|1/2

)
‖H‖

L2(Ω)d×d‖M −N‖L2(Ω)d×d .

The lemma is proved.

Lemma 6.3 ([17]). Let X be a non-empty, closed and convex subset of a Hilbert space X and
F : X → R be a convex Fréchet differentiable functional with the gradient ∇F being L-Lipschitzian.
Assume that the problem

min
x∈X

F(x) (6.3)

is consistent and let S denote its solution set. Let (αm)m, (βm)m and (γm)m be real sequences

satisfying (αm)m ⊂ (0, 1), (βm)m ⊂ (0, 1), (γm)m ⊂ (0, L/2) and the following additional condition

lim
m
αm = 0,

∞∑
m=1

αm =∞ and 0 < lim inf
m

γm ≤ lim sup
m

γm < L/2.

Then, for any given x∗ ∈ X the iterative sequence (xm)m is generated by x1 ∈ X,

xm+1 := (1− βm)xm + βmPX (xm − γm∇F(xm)) + αm(x∗ − xm) (6.4)

converges strongly to the minimizer x† = PSx
∗ of the problem (6.3).

To identify a stopping criterion for the iteration (6.4) we adopt the following result.

Lemma 6.4. Let X be a non-empty, closed and convex subset of a Hilbert space X and F : X → R
be a convex Fréchet differentiable functional with the gradient ∇F. Assume that the problem

min
x∈X

F(x) (6.5)

is consistent. Then x† is a solution to (6.5) if and only if the equation

x† = PX

(
x† − γ∇F(x†)

)
holds, where γ is an arbitrary positive constant.

Proof. Since F is convex differentiable, we have for all γ > 0 that

x†solves (6.5)⇔
〈
γ∇F(x†), x− x†

〉
X
≥ 0 for all x ∈ X

⇔
〈(
x† − γ∇F(x†)

)
− x†, x− x†

〉
X
≤ 0 for all x ∈ X

⇔ x† = PX

(
x† − γ∇F(x†)

)
,

which finishes the proof.
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Now we state the main result of this section on the strong convergence of iterative solutions to that
of our identification problem.

Theorem 6.5. Let (Thn)n be a sequence of triangulations with mesh sizes (hn)n. For any positive
sequence (δn)n, let ρn := ρ (δn) be such that

ρn → 0,
δ2
n

ρn
→ 0,

σ2
hn

(Q†)

ρn
→ 0 and

γ2
hn

(Q†)

ρn
→ 0

and
(
zδn
)
n

be observations satisfying
∥∥u− zδn∥∥

H1
0 (Ω)
≤ δn.

Moreover, for any fixed n let (αnm)m, (β
n
m)m and (γnm)m be real sequences satisfying

(αnm)m ⊂ (0, 1), (βnm)m ⊂ (0, 1), (γnm)m ⊂ (0, Lhn/2),

limm α
n
m = 0,

∑∞
m=1 α

n
m =∞ and

0 < lim infm γ
n
m ≤ lim supm γ

n
m < Lhn/2

with

Lhn := 2Chnd

(
Chnd

κ3

∥∥f∥∥2

L2(Ω)
+ ρn|Ω|1/2

)
. (6.6)

Let Q∗ be a prior estimate of the sought matrix Q† and let (Qnm)m be the sequence of iterates
generated by

Qn0 ∈ Qad ∩ Vhn
Qnm := (1− βnm−1)Qnm−1 + αnm−1(Q∗ −Qnm−1)

+ βnm−1PQad∩Vhn
(
Qnm−1 − γnm−1

(
∇Πhnz

δn ⊗∇Πhnz
δn −∇Uhn(Qnm−1)⊗∇Uhn(Qnm−1)

+ 2ρnQ
n
m−1

))
.

(6.7)

Then (Qnm)m converges strongly to the unique minimizer Qρn,δnhn
of
(
Pρn,δnhn

)
,

lim
m
‖Qnm −Q

ρn,δn
hn
‖
L2(Ω)d×d = 0.

Furthermore, (Qnm)nm converges strongly to the minimum norm solution Q† of the identification
problem,

lim
n

(
lim
m
‖Qnm −Q†‖L2(Ω)d×d

)
= 0.

Proof. Since
∇Υρ,δ

h (Q) = ∇Πhz
δ ⊗∇Πhz

δ −∇Uh(Q)⊗∇Uh(Q) + 2ρQ

for all Q ∈ Qad ∩ Vh, the conclusion of the theorem follows directly from Theorem 4.3, Lemma 6.2
and Lemma 6.3.

7 Numerical tests

In this section we illustrate the theoretical result with two numerical examples. The first one is
provided to compare with the numerical results obtained in [13], while the second one aims to
illustrate the discontinuous coefficient identification problem.
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For this purpose we consider the Dirichlet problem

−div(Q†∇u) = f in Ω, (7.1)

u = 0 on ∂Ω (7.2)

with Ω = {x = (x1, x2) ∈ R2 | − 1 < x1, x2 < 1} and

u(x) = (1− x2
1)(1− x2

2). (7.3)

Now we divide the interval (−1, 1) into ` equal segments and so that the domain Ω = (−1, 1)2 is

divided into 2`2 triangles, where the diameter of each triangle is h` =
√

8
` . In the minimization

problem
(
Pρ,δh

)
we take h = h` and ρ = ρ` = 0.001h`. For observations with noise we assume that

zδ` = u+
x1

`
+
x2

`
and Πh`z

δ` = I1
h`

(
u+

x1

`
+
x2

`

)
so that

δ` =
∥∥∥zδ` − u∥∥∥

H1(Ω)
=
∥∥∥x1

`
+
x2

`

∥∥∥
H1(Ω)

=

√
32

3

1

`
=

2√
3
h`.

The constants q and q in the definition of the set K are respectively chosen as 0.05 and 10. We use
the gradient-projection algorithm which is described in Theorem 6.5 for computing the solution of

the problem
(
Pρ,δh

)
.

Note that in (6.6) d = 2 and Ch` = √̀
2
, where for all Q ∈ Qad and v ∈ H1

0 (Ω)

‖v‖2H1(Ω) =

∫
Ω
|∇v|2 +

∫
Ω
|v|2

≤
∫

Ω
|∇v|2 +

(√
3

2

)(d+2)/2

|Ω|1/d
∫

Ω
|∇v|2

≤ 1

q

1 +

(√
3

2

)(d+2)/2

|Ω|1/d
∫

Ω
Q∇v · ∇v.

So we can choose

κ =
q

1 +
(√

3
2

)(d+2)/2

|Ω|1/d
.

As the initial matrix Q0 in (6.7) we choose

Q0 :=

(
2 0
0 2

)
.

The prior estimate is chosen with Q∗ := I1
h`
Q†. Furthermore, The sequences (αm)m, (βm)m and

(γm)m are chosen with

αm =
1

100m
, βm =

100mρ`
3m+ 1

, and γm =
100mρ`
2m+ 1

.

Let Qρ`,δ`h`
denote the computed numerical matrix with respect to ` and the iteration (6.7). Ac-

cording to the lemma 6.4, the iteration was stopped if

Tolerance :=
∥∥∥Qρ`,δ`h`

− PQad∩Vh`

(
Qρ`,δ`h`

− γm∇Υρ`,δ`
h`

(
Qρ`,δ`h`

))∥∥∥
L2(Ω)d×d

< 10−6

with

∇Υρ`,δ`
h`

(
Qρ`,δ`h`

)
= ∇Πh`z

δ` ⊗∇Πh`z
δ` −∇Uh`

(
Qρ`,δ`h`

)
⊗∇Uh`

(
Qρ`,δ`h`

)
+ 2ρ`Q

ρ`,δ`
h`

or the number of iterations was reached 500.
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7.1 Example 1

We now assume that

Q†(x) = PK (∇u(x)⊗∇u(x)) .

Let us denote η(x) = 4(x2
1(1 − x2

2)2 + x2
2(1 − x2

1)2) and P[q,q](η(x)) = max
(
q,min(η(x), q)

)
. A

calculation shows

Q†(x) =

{
qI2 if η(x) = 0,

qI2 +
P[q,q](η(x))−q

η(x) ∇u(x)⊗∇u(x) if η(x) 6= 0.

Then along with u given in the equation (7.3) one can compute the right hand side f in the equation
(7.1).

The numerical results are summarized in Table 1, where we present the refinement level `, regular-
ization parameter ρ`, mesh size h` of the triangulation, noise level δ`, number of iterations, value
of tolerances, the final L2 and L∞-error in the coefficients, the final L2 and H1-error in the states.
Their experimental order of convergence (EOC) is presented in Table 2, where

EOCΦ :=
ln Φ(h1)− ln Φ(h2)

lnh1 − lnh2

and Φ(h) is an error functional with respect to the mesh size h.

In Table 3 we present the numerical result for ` = 96, where the value of tolerances, the final L2

and L∞-error in the coefficients, the final L2 and H1-error in the states are displayed for each one
hundred iteration. The convergence history given in Table 1, Table 2 and Table 3 shows that the
gradient-projection algorithm performs well for our identification problem.

All figures are presented here corresponding to ` = 96. Figure 1 from left to right shows the graphs
of the interpolation I1

h`
u, computed numerical state of the algorithm at the 500th iteration, and the

difference to I1
h`
u. We write

Q† =

(
q†11 q†12

q†12 q†22

)
and Qρ`,δ`h`

=

(
qρ`,δ`h` 11

qρ`,δ`h` 12

qρ`,δ`h` 12
qρ`,δ`h` 22

)
.

Figure 2 from left to right we display I1
h`
q†11, I

1
h`
q†12 and I1

h`
q†22. Figures 3 shows qρ`,δ`h` 11

, qρ`,δ`h` 12

and qρ`,δ`h` 22
. Figure 4 from left to right we display differences qρ`,δ`h` 11

− I1
h`
q†11, qρ`,δ`h` 12

− I1
h`
q†12 and

qρ`,δ`h` 22
− I1

h`
q†22.

For the simplicity of the notation we denote by

Γ := ‖Qρ`,δ`h`
− I1

h`
Q†‖

L2(Ω)d×d , ∆ := ‖Qρ`,δ`h`
− I1

h`
Q†‖L∞(Ω)d×d , (7.4)

Σ := ‖Uh`
(
Qρ`,δ`h`

)
− I1

h`
u‖L2(Ω) and Ξ := ‖Uh`

(
Qρ`,δ`h`

)
− I1

h`
u‖H1(Ω). (7.5)
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Convergence history

` ρ` h` δ` Ite. Tol. Γ ∆ Σ Ξ

6 4.7140e-4 0.4714 0.5443 500 0.0165 1.0481e-3 1.0381e-3 0.041001 0.20961

12 2.3570e-4 0.2357 0.2722 500 0.0057 1.3471e-4 1.0825e-4 0.012848 0.070352

24 1.1785e-4 0.1179 0.1361 500 0.0014 1.6826e-5 1.2084e-5 4.1855e-3 0.023265

48 5.8926e-5 0.0589 0.0680 500 3.5653e-4 2.0962e-6 1.4577e-6 9.8725e-4 6.3264e-3

96 2.9463e-5 0.0295 0.0340 500 8.9059e-5 2.6177e-7 1.8007e-7 2.6475e-4 1.8936e-3

Table 1: Refinement level `, regularization parameter ρ`, mesh size h` of the triangulation, noise
level δ`, number of iterations, value of tolerances, errors Γ, ∆, Σ and Ξ.

Experimental order of convergence

` EOCΓ EOC∆ EOCΣ EOCΞ

6 – – – –

12 2.9598 3.2615 1.6741 1.5750

24 3.0011 3.1632 1.6181 1.5964

48 3.0048 3.0513 2.0839 1.8787

96 3.0014 3.0171 1.8988 1.7403

Mean of EOC 2.9918 3.1233 1.8187 1.6976

Table 2: Experimental order of convergence between finest and coarsest level for Γ, ∆, Σ and Ξ.

Numerical result for ` = 96

Iterations Tolerances Γ ∆ Σ Ξ

100 0.1875 5.0541 4.5433 4.6756 27.2404

200 9.8522e-3 0.01224 0.58589 6.6362e-3 0.021169

300 8.9476e-5 5.8712e-7 6.0808e-7 2.6475e-4 1.8936e-3

400 8.9386e-5 3.0944e-7 2.4408e-7 2.6475e-4 1.8936e-3

500 8.9059e-5 2.6177e-7 1.8007e-7 2.6475e-4 1.8936e-3

Table 3: Errors Γ, ∆, Σ and Ξ for ` = 96.

Figure 1: Interpolation I1
h`
u, computed numerical state of the algorithm at the 500th iteration, and

the difference to I1
h`
u.
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Figure 2: Graphs of I1
h`
q†11, I

1
h`
q†12 and I1

h`
q†22.

Figure 3: Graphs of qρ`,δ`h` 11
, qρ`,δ`h` 12

and qρ`,δ`h` 22
.

Figure 4: Differences qρ`,δ`h` 11
− I1

h`
q†11, qρ`,δ`h` 12

− I1
h`
q†12 and qρ`,δ`h` 22

− I1
h`
q†22.

7.2 Example 2

We next assume that entries of the symmetric matrix Q† ∈ Qad are discontinuous which are defined
as

q†11(x) =

{
3 if x ∈ Ω11

1 if x ∈ Ω \ Ω11

, q†12(x) =

{
1 if x ∈ Ω12

0 if x ∈ Ω \ Ω12

and q†22(x) =

{
4 if x ∈ Ω22

2 if x ∈ Ω \ Ω22

24



with

Ω11 :=

{
(x1, x2) ∈ Ω

∣∣∣ |x1| ≤
1

2
and |x2| ≤

1

2

}
,

Ω12 :=

{
(x1, x2) ∈ Ω

∣∣∣ |x1|+ |x2| ≤
1

2

}
and

Ω22 :=

{
(x1, x2) ∈ Ω

∣∣∣ x2
1 + x2

2 ≤
(

1

2

)2
}
.

Since the entries of the matrix Q† are discontinuous, the right hand side f in the equation (7.1) is
now given in the form of a load vector

F = KU,

where K = (kij)1≤i,j≤N`
with

kij :=

∫
Ω
Q†∇φi · ∇φj

and {φ1, · · · , φN`
} being the basis for the approximating subspace V1

h`
, while the vector U is the

nodal values of the functional u.

With the notation on errors Γ, ∆, Σ and Ξ as in the equations (7.4)-(7.5) the numerical results of
Example 7.2 are summarized in Table 4. For clarity we also present additionally the H1(Ω)-semi-
norm error

Λ := ‖∇Uh`
(
Qρ`,δ`h`

)
−∇I1

h`
u‖L2(Ω).

For simplicity in Table 4 we do not restate the regularization parameter ρ`, mesh size h` of the
triangulation and noise level δ` again, since they have been given in Table 1 of Example 7.1.

The experimental order of convergence for Γ, ∆, Σ, Ξ and Λ is presented in Table 5.

All figures are presented corresponding to ` = 96. Figure 5 from left to right contains graphs
of the entries qρ`,δ`h` 11

, qρ`,δ`h` 12
, qρ`,δ`h` 22

of the computed numerical matrix Qρ`,δ`h`
and the computed

numerical state Uh`
(
Qρ`,δ`h`

)
of the algorithm at the 500th iteration, while Figure 6 from left to right

we display differences qρ`,δ`h` 11
− I1

h`
q†11, qρ`,δ`h` 12

− I1
h`
q†12, qρ`,δ`h` 22

− I1
h`
q†22 and Uh`

(
Qρ`,δ`h`

)
− I1

h`
u.

Convergence history

` Ite. Tol. Γ ∆ Σ Ξ Λ

6 500 0.020795 9.7270e-4 6.4331e-4 0.058024 0.058024 2.1247e-4

12 500 0.005585 1.3063e-4 8.6203e-5 0.014679 0.014679 3.7208e-5

24 500 0.001423 1.6639e-5 1.1138e-5 3.6807e-3 3.6807e-3 5.4592e-6

48 500 3.5555e-4 2.0900e-6 1.4148e-6 9.2086e-4 9.2086e-4 7.2313e-7

96 500 8.9001e-5 2.6157e-7 1.7825e-7 2.3026e-4 2.3026e-4 9.2168e-8

Table 4: Refinement level `, number of iterations, value of tolerances, errors Γ,∆,Σ, Ξ and Λ.
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Experimental order of convergence

` EOCΓ EOC∆ EOCΣ = EOCΞ EOCΛ

6 – – – –

12 2.8965 2.8997 1.9829 2.5136

24 2.9728 2.9522 1.9957 2.7689

48 2.9930 2.9768 1.9989 2.9164

96 2.9982 2.9886 1.9997 2.9719

Mean of EOC 2.9651 2.9543 1.9943 2.7927

Table 5: Experimental order of convergence for Γ, ∆, Σ, Ξ and Λ.

Figure 5: Graphs of qρ`,δ`h` 11
, qρ`,δ`h` 12

, qρ`,δ`h` 22
and Uh`

(
Qρ`,δ`h`

)
at the 500th iteration.

Figure 6: Graphs of qρ`,δ`h` 11
− I1

h`
q†11, qρ`,δ`h` 12

− I1
h`
q†12, qρ`,δ`h` 22

− I1
h`
q†22 and Uh`

(
Qρ`,δ`h`

)
− I1

h`
u at the

500th iteration.

Finally, Figure 7 from left to right we perform graphs of qρ`,δ`h` 11
, qρ`,δ`h` 12

, qρ`,δ`h` 22
and Uh`

(
Qρ`,δ`h`

)
at

the 50th iteration. At this iteration the value of tolerance is 4.1052, while errors Γ,∆,Σ,Ξ and Λ
are 6.9093, 3.9500, 9.9183, 46.2302 and 45.1537, respectively.

Figure 7: Graphs of qρ`,δ`h` 11
, qρ`,δ`h` 12

, qρ`,δ`h` 22
and Uh`

(
Qρ`,δ`h`

)
at the 50th iteration.

We close this section by noting that the proposed method may be extended to the case where the
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observation zδ is only available in a compact subset Ωobs of the domain Ω, i.e. Ωobs b Ω. We then
use a suitable H1

0 (Ω)-extension ẑδ of zδ as measurement in our cost functional. We then consider
the following strictly convex minimization problem:

min
Q∈Qad

∫
Ω
Q∇

(
U(Q)− ẑδ

)
· ∇
(
U(Q)− ẑδ

)
+ ρ‖Q‖2

L2(Ω)d×d

(
P̂ρ,δ

)
instead of

(
Pρ,δ

)
. This problem then attains a unique solution Q̂ρ,δ, as in the case with full

observations.
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