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VARIATIONAL DISCRETIZATION OF PARABOLIC CONTROL

PROBLEMS ON EVOLVING SURFACES WITH POINTWISE STATE

CONSTRAINTS

MICHAEL HINZE ∗ AND HEIKO KRÖNER†

Abstract. We consider a linear-quadratic pde constrained optimal control problem on an evolv-
ing surface with pointwise state constraints. We reformulate the optimization problem on a fixed
surface and approximate the reformulated problem by a discrete control problem based on a dis-
cretization of the state equation by linear finite elements in space and a discontinuous Galerkin
scheme in time. We prove error bounds for control and state.

Key words. linear-quadratic optimization problem; linear parabolic pde; two-dimensional sur-
face; finite elements

1. Introduction. In applications the situation of a moving hypersurface seper-
ating two moving regions is a widespread setting to model various phenomena. In
this general setting one may think of biological processes happening in these regions
or on the interface between these regions. Examples for this scenario are cell mem-
branes seperating the environment from the cell interior, or the interface between the
two phases of a two-phase flow where soluble surfactants in the bulk regions affect a
certain interfacial surfactant concentration, see [11] and the references therein for a
two-phase flow example.

It is a natural to consider optimization problems where the surfactant density
on the surface plays the role of the state variable and to assume certain pointwise
bounds for the state. To address control of the general setting above we consider in
our paper a linear-quadratic PDE-constrained optimization problem on the moving
hypersurface (and not phenomena or interactions in or with the regions outside the
moving hypersurface). By using the variational discretization from [12] with linear
finite elements in space and a discontinuous Galerkin scheme in time we discretize the
optimization problem and prove error estimates for the control and the state.

The corresponding optimization problem in an Euclidean setting is treated in [4]
and we will follow the argumentation therein closely. We reformulate our constraint
which is a linear advection-diffusion equation on the moving surface treated numeri-
cally in [8, 9, 15, 10] as a linear parabolic pde on the initial surface. We refer to [1]
for details concerning the reformulation and to [16] for an error estimate for a finite
element approximation of the reformulated equation.

There are only few papers which deal with the numerics of linear-quadratic, pde
constrained optimization problems on surfaces. In [14] an optimal control problem for
the Lapace-Beltrami on surfaces is considered and in [18] a linear-quadratic parabolic
control problem on evolving surfaces with pointwise box constraints is considered.

Our paper is organized as follows. In Section 2 we present the linear parabolic
state equation which serves as a constraint in our optimization problem. In Section
3 we formulate the optimization problem. Section 4 contains general material about
finite elements on surfaces, in Section 5 the state equation is discretized, in Section 6
the optimization problem is discretized and in Section 7 we prove an estimate for the
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discretization error of the optimal control problem.

2. State equation. Let Γ0 be a smooth two-dimensional, embedded, orientable,
closed hypersurface in R3. We let Ψ = Ψ(x, t) : ΩT → R3, ΩT = Γ0 × (0, T ), be a
smooth ’motion’, i.e. a smooth mapping so that Ψ(·, t) is an embedding. We assume
Ψ(·, 0) = id (this is our convention and has no serious reason). We define

(2.1) GT =
⋃

t∈[0,T ]

Γ(t)× {t}

where T > 0,

(2.2) H1(GT ) = {u : GT → R|(x, t) 7→ u(ψ(x, t), t) is of class H1(ΩT )}

and L2(GT ) etc. similarly. For given f ∈ L2(GT ), y0 ∈ H1(GT ) we consider the
initial value problem

(2.3) ẏ + y∇Γ · v −∆Γy = f, y(·, 0) = y0,

where ∆Γ is the Laplace-Beltrami operator on Γ(t) = Ψ(·, t)(Γ0), v(x, t) =
d
dt
Ψ(x, t) is

the speed of the surface and the dot stands for the material derivative. The variational
formulation of (2.3) is given by

(2.4)
d

dt

∫

Γ(t)

yϕ+

∫

Γ(t)

〈Dy,Dϕ〉 =
∫

Γ(t)

yϕ̇ ∀ϕ ∈ C∞(GT ).

Initial value problem (2.3) has been studied numerically intensively, see e.g. [8] where
the evolving surface finite element method (ESFEM) is introduced and the sequential
papers [9, 10, 15]. We reformulate (2.3) on a fixed surface and will thereafter consider
the state equation always in this reformulated form.

Therefore we introduce the quantity

(2.5) ŷ(x, t) = y(Ψ(x, t), t)

and let gij = gij(x, t) be the induced metric of Γ(t) in Ψ(x, t), gij = gij(x, t) its inverse,
g(x, t) = det(gij(x, t)) and Γk

ij(t) the Christoffel symbols of Γ(t). We stipulate that
the local coordinates of Γ(t) are related with the local coordinates of Γ(0) via the
diffeomorphism Ψ(·, t).

Denoting the Levi-Civita connection of Γ(t) by ∇Γ(t) (and omitting the super-
script in case t = 0) and setting

(2.6) ĉ = ∇Γ(t) · v

the initial value problem (2.3) transforms into the following initial value problem for
ŷ

(2.7)

d

dt
ŷ −∇i(g

ij(t)∇j ŷ)

+ (gij(t)(Γ(t)kij − Γ(0)kij) +∇jg
kj(t))∇iŷ + ĉŷ = f̂ ,

ŷ(·, 0) = ŷ0

where we use summation convention. In the following we will always work with
this reformulated form of the state equation, omit the hat in the notation for the
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transformed quantities and abbreviate the coefficients in an obvious way so that we
can rewrite (2.7) as

(2.8) Ay =
d

dt
y −∇i

(
aij∇jy

)
+ bi∇iy + cy = f, y(·, 0) = y0.

We will use a backward equation for which we formally introduce the following dif-
ferential operator

(2.9) Ãw := − d

dt
w − aij∇i∇jw − (∇ja

ij + bi)∇iw + (c−∇ib
i)w.

It is well-known that for given f ∈ L2(0, T ;L2(Γ0)) and y0 ∈ H1(Γ0) problem (2.8)
has a unique solution y ∈ C0([0, T ];H1(Γ0)) ∩ L2(0, T ;H2(Γ0)) which we denote by
G(f) = y. The solution of (2.8) with f replaced by zero is denoted by y0. The solution
of (2.8) with y0 replaced by zero is denoted by G0(f). There holds

(2.10) G(f) = y0 +G0(f).

If f ∈ L2(0, T ;H1(Γ0)) and y0 ∈ H2(Γ0) then

(2.11) y ∈W :=

{
w ∈ C0([0, T ];H2(Γ0)) :

d

dt
w ∈ L2(0, T ;H1(Γ0))

}
⊂ C0(ΩT ),

and

(2.12) max
0≤t≤T

‖y(t)‖2H2(Γ0)
+

∫ T

0

‖yt(t)‖2H1(Γ0)
dt ≤ c(‖y0‖2H2(Γ0)

+

∫ T

0

‖f(t)‖2H1(Γ0)
).

Suppose that the functions f1, ..., fm ∈ H1(Γ0) ∩ L∞(Γ0) are given and define U =
L2(0, T ;Rm) as well as B : U → L2(0, T ;H1(Γ0)) by

(2.13) (Bu)(x, t) :=

m∑

i=1

ui(t)fi(x), (x, t) ∈ ΩT

then (2.12) implies that for u ∈ U , y = G(Bu) ∈ W , there holds

(2.14) max
0≤t≤T

‖y(t)‖2H2(Γ0)
+

∫ T

0

‖yt(t)‖2H1(Γ0)
dt ≤ c(‖y0‖2H2(Γ0)

+

∫ T

0

|u(t)|2)

where the constant c depends in addition on the H1-norms of f1, ..., fm. Let M(ΩT )
denote the space of Borel regular measures on ΩT . Given µ ∈M(ΩT ) we consider the
following backward parabolic problem

(2.15)
Ãϕ =µΩT

in ΩT

ϕ(·, T ) =µT in Ω.

Here, µΩT
:= µ|ΩT

, µT := µ|Γ0×{T}.
Theorem 2.1. There exists a unique function ϕ ∈ Ls(0, T ;W 1,σ(Γ0)) for all

s, σ ∈ [1, 2) with 2
s
+ 2

σ
> 3 which solves (2.15) in the sense that

(2.16)

∫ T

0

(Aw,ϕ)dt =

∫

ΩT

wdµ ∀w ∈W∞
0

3



where

(2.17) W∞
0 = {w ∈ W : w(·, 0) = 0 in Γ0, Aw ∈ L∞(ΩT )}

and (·, ·) denotes the inner product in L2(Γ0).
Proof. The proof is along the lines of the Euclidean setting for the heat equation,

cf. [5, Theorem 6.3].
Note, that ϕ ∈ L1(0, T ;W 1,1(Γ0)) so that the integral in (2.16) exists.

3. Optimization problem. We remark that we can transform Bu in (2.13) via
Ψ into a function Bu which is defined on GT and which will act as the right-hand side
of our optimization problem in its (original) formulation on the moving surface. The
solution operator corresponding to (2.3) is denoted by G̃, so that G̃(Bu) is defined.
We consider the following optimization problem on the moving surface

(3.1)





minu∈U J(u) :=
1
2

∫ T

0
‖ȳ(·, t)− yg(Ψ(·, t)−1, t)‖2

L2(Γ(t))dt

+α
2

∫ T

0 |u(t)|2dt
s.t. ȳ = G̃(Bu) and ȳ ≥ 0

where yg ∈ H1(0, T ;L2(Γ0)) is given. Optimization problem (3.1) can be written
equivalently as

(3.2)





minu∈U J(u) :=
1
2

∫ T

0
‖(y(·, t)− yg(·, t))

(
g(·,t)
g(·,0)

) 1

4 ‖2
L2(Γ0)

dt

+α
2

∫ T

0
|u(t)|2dt

s.t. y = G(Bu) and y ≥ 0.

From now on we shall assume y0 ∈ H2(Γ0) and that minx∈Γ0
y0(x) > 0 and hence

(3.3) y0 > 0

in view of the maximum principle.
Since the state constraints form a convex set and the set of admissible controls

is closed and convex one obtains the existence of a unique solution u ∈ U to problem
(3.2) by standard arguments. We characterize the property of being a solution in the
following theorem.

Theorem 3.1. A function u ∈ U is the solution of (3.2) if and only if there exist
µ ∈M(ΩT ) and a function p ∈ Ls(0, T ;W 1,σ(Γ0)), s, σ ∈ [1, 2), 2

s
+ 3

σ
> 3, such that

with y = G(Bu) there holds

(3.4)

∫ T

0

(Aw, p)dt =

∫ T

0

((
g(·, t)
g(·, 0)

) 1

4

(y − yg), w

)
dt+

∫

ΩT

wdµ ∀w ∈W∞
0 ,

(3.5)

αu(t) + (p(·, t), fi)i=1,...,m = 0, a.e. in (0, T )

µ ≤ 0, y ≥ 0 and

∫

ΩT

ydµ = 0.

Proof. See [4, Theorem 2.2] and note, that the same argumentation as in the
Euclidean case can be used and that our operators A and Ã, respectively replace the
heat operator and the corresponding backward operator there.
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4. Finite Elements on Surfaces. In this section we introduce the space of
continuous and piecewise linear finite element functions on a polyhedral approximation
of Γ0(= S). Throughout the paper we assume that S is covered by a fixed finite atlas.
We triangulate S by a family Th of flat triangles with corners (i.e. nodes) lying on
S. We denote the surface of class C0,1 given by the union of the triangles τ ∈ Th by
Γh = Sh; the union of the corresponding nodes is denoted by Nh. Here, h > 0 denotes
a discretization parameter which is related to the triangulation in the following way.
For τ ∈ T we define the diameter ρ(τ) of the smallest disc containing τ , the diameter
σ(τ) of the largest disc contained in τ and

(4.1) h = max
τ∈Th

ρ(τ), γh = min
τ∈Th

σ(τ)

h
.

We assume that the family (Th)h>0 is quasi-uniform, i.e. γh ≥ γ0 > 0. We let

(4.2) Vh = Xh = {v ∈ C0(Sh) : v|τ linear for all τ ∈ Th}

be the space of continuous piecewise linear finite elements. Let N be a tubular neigh-
borhood of S in which the Euclidean metric of N can be written in the coordinates
(x0, x) = (x0, xi) of the tubular neighborhood as

(4.3) ḡαβ = (dx0)2 + σij(x)dx
idxj .

Here, x0 denotes the globally (in N) defined signed distance to S and x = (xi)i=1,2

local coordinates for S.
For small h we can write Sh as graph (with respect to the coordinates of the

tubular neighborhood) over S, i.e.

(4.4) Sh = graphψ = {(x0, x) : x0 = ψ(x), x ∈ S}

where ψ = ψh ∈ C0,1(S) suitable. Note, that

(4.5) |Dψ|σ ≤ ch, |ψ| ≤ ch2.

The induced metric of Sh is given by

(4.6) gij(ψ(x), x) =
∂ψ

∂xi
(x)

∂ψ

∂xj
(x) + σij(x).

Hence we have for the metrics, their inverses and their determinants

(4.7) gij = σij +O(h2), gij = σij +O(h2) and g = σ +O(h2)|σijσij | 12

where we use summation convention.
For a function f : S → R we define its lift f̂ : Sh → R to Sh by f(x) = f̂(ψ(x), x),

x ∈ S. For a function f : Sh → R we define its lift f̃ : S → R to S by f =
ˆ̃
f .

This terminus can be obviously extended to subsets. Let f ∈W 1,p(S), g ∈ W 1,p∗

(S),
1 ≤ p ≤ ∞ and p∗ Hölder conjugate of p. In local coordinates x = (xi) of S hold

(4.8)

∫

S

〈Df,Dg〉 =
∫

S

∂f

∂xi
∂g

∂xj
σij(x)

√
σ(x)dxidxj ,

(4.9)

∫

Sh

〈
Df̂,Dĝ

〉
=

∫

S

∂f

∂xi
∂g

∂xj
gij(ψ(x), x)

√
g(ψ(x), x)dxidxj ,

5



(4.10)

∫

S

〈Df,Dg〉 =
∫

Sh

〈
Df̂,Dĝ

〉
+O(h2)‖f‖W 1,p(S)‖g‖W 1,p∗(S),

and similarly,

(4.11)

∫

S

f =

∫

Sh

f̂ +O(h2)‖f‖L1(S)

where now f ∈ L1(S) is sufficient.
The bracket 〈u, v〉 denotes here the scalar product of two tangent vectors u, v (or

their covariant counterparts). ‖ · ‖Wk,p denotes the usual Sobolev norm, | · |Wk,p =∑
|α|=k ‖Dα · ‖Lp and Hk =W k,2.

5. Discretization of the state equation. Let 0 = t0 < t1 < ... < tN−1 <

tN = T be a time grid with τn = tn − tn−1, n = 1, ..., N , and τ = max1≤n≤N τn. We
set

(5.1)
Wh,τ = {Φ :Γh × [0, T ] → R :

Φ(·, t) ∈ Xh and Φ(x, ·) constant in (tn−1, tn), 1 ≤ n ≤ N}

and define the bilinear forms

(5.2) a :W 1,p(S)×W 1,p∗

(S) → R, a(u, v) =

∫

S

〈Du,Dv〉+ uvdx,

(5.3) ah :W 1,p(Sh)×W 1,p∗

(Sh) → R, ah(uh, vh) =

∫

Sh

〈Duh, Dvh〉+ uhvhdx,

(5.4) anh :W 1,p(Sh)×W 1,p∗

(Sh) → R, anh(uh, vh) =

∫

Sh

〈Duh, Dvh〉g̃(tn)+uhvhdx,

(5.5) (Duh, Dvh)g̃(tn) =

∫

Sh

〈Duh, Dvh〉g̃(tn) .

The last but one equation needs a further definition. Let p1, p2, p3 be the midpoints
of the three edges of τ , τ ∈ Th, and v, w ∈ C0(τ, T 0,1(τ)) sections then we define

(5.6)

∫

τ

〈v, w〉g̃(tn) =
1

3
|τ |

3∑

k=1

aij(p̃k)vi(pk)wj(pk)

where (aij(p̃k)) is a contravariant representation with respect to local coordinates (xi)
(belonging to our fixed atlas) in a neighbourhood of p̃k in S and (vi)(pk), (wj)(pk) are
covariant representations with respect to the orthogonal projections of ∂

∂x1 (p̃k) and
∂

∂x2 (p̃k) on τ . (Despite similar notation g̃ does not refer to a metric.) Furthermore, the
brackets (·, ·) and (·, ·)h denote the inner products of L2(S) and L2(Sh), respectively,
and ‖ · ‖ and ‖ · ‖h the corresponding norms. The semi-norm associated with the
bilinear on the left-hand side of (5.5) is denoted by ‖ · ‖g̃(tn).

We define a discrete operator Gh : L2(S) → Xh, v 7→ Ghv = zh via

(5.7) ah(zh, ϕh) =

∫

Sh

v̂ϕh ∀ϕh ∈ Xh.

6



We denote the interpolation operator by Ih, define Ph : L2(Γ0) → Xh by

(5.8) (ẑ, φh)h = (Phz, φh)h ∀φh ∈ Xh, z ∈ L2(Γ0),

let Rh : H1(S) → Xh be defined by

(5.9) ah(Rhz, φh) = ah(ẑ, φh) ∀φh ∈ Xh, z ∈ H1(Γ0),

and Rn
h : H1(S) → Xh by

(5.10) anh(R
n
hz, φh) = anh(ẑ, φh) ∀φh ∈ Xh, z ∈ H1(S).

It is well-known that

(5.11) ‖ẑ −Rhz‖L2(Sh) + h‖D(ẑ −Rhz)‖L2(Sh) ≤ chm‖z‖Hm(S)

and

(5.12) ‖ẑ −Rn
hz‖L2(Sh) + h‖D(ẑ −Rn

hz)‖L2(Sh) ≤ chm‖z‖Hm(S)

hold for all z ∈ Hm(S), m = 1, 2. We conclude for z ∈ H2(S) that

(5.13)
‖ẑ −Rhz‖L∞(Sh) ≤ ‖ẑ − Ihz‖L∞(Sh) + ‖Ihz −Rhz‖L∞(Sh)

≤ ch‖z‖H2(S) + ch−1‖Iz −Rhz‖L2(Sh) ≤ ch‖z‖H2(Sh).

There holds

(5.14) ‖φh‖L∞(Sh) ≤ ρ(h)‖φh‖H1(Sh)

for all φh ∈ Xh where ρ(h) =
√
| log h|.

For Y,Φ ∈Wh,τ we let

(5.15)

A(Y,Φ) :=

N∑

n=1

τn(∇Y n,∇Φn)g̃(tn) +

N∑

n=2

(Y n − Y n−1,Φn)h + (Y 0
+,Φ

0
+)h

+

N∑

n=1

τn(b
i(tn)∇iY

n,Φn)h +

N∑

n=1

τn(c(tn)Y
n,Φn)h

where Φn := Φn
−, Φ

n
± = lims→0± Φ(tn + s).

Note, that the integrals (bi(tn)∇iY
n,Φn)h and (c(tn)Y

n,Φn)h are defined analo-
gously to (5.6) by using a quadrature rule of order ≥ 2.

Given u ∈ U our approximation Y ∈ Wh,τ of the solution y of the state equation
in (3.2) is obtained by the following discontinuous Galerkin scheme

(5.16) A(Y,Φ) =

N∑

n=1

∫ tn

tn−1

(B̂u(t),Φn)h + (ŷ0,Φ
0
+)h ∀φ ∈Wh,τ

and will be denoted by Gh,τ (Bu) = Y .
We have the following uniform error estimate.
Theorem 5.1. Let u ∈ U , y = G(Bu), Y = Gh,τ (Bu). Then

(5.17) max
1≤n≤N

‖ŷ(·, tn)− Y n‖L∞(Sh) ≤ cρ(h)(h+
√
τ )(‖y0‖H2(S) + ‖u‖U).

Proof. See [16, Theorem 4.1].
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6. Discretization of the optimal control problem. In the following we as-
sume that

(6.1) τ = o(ρ(h)−2)

as h→ 0 which implies that the right-hand side of (5.17) converges to zero as h→ 0.
We abbreviate

(6.2) β(x, t) =

(
g(x, t)

g(x, 0)

) 1

4

, (x, t) ∈ ΩT ,

yg(tn) = yg(·, tn) and with ambiguous notation β(t) = β(·, t), β(tn) = β̂(·, tn). We
discretize our optimal control problem as follows:

(6.3)

{
minu∈U Jh,τ (u) :=

1
2

∫ T

0

∑N

n=1 τn‖β(tn)(Y n − ŷg(tn))‖2h + α
2

∫ T

0 |u(t)|2dt
s.t. Y = Gh,τ (Bu) and Y n(xj) ≥ 0, 1 ≤ j ≤ J, 1 ≤ n ≤ N.

Remark 6.1. The control problem (6.3) has a unique solution uh ∈ U and [3,
Theorem 5.3] implies the existence of µn

j ∈ R, 1 ≤ j ≤ J , 1 ≤ n ≤ N and P ∈ Wh,τ

so that

(6.4)

A(Φ, P ) =

N∑

n=1

τn(Y
n − ŷg(tn),Φ

nβ(tn)
2)h +

N∑

n=1

J∑

j=1

Φn(xj)µ
n
j ∀Φ ∈Wh,τ

αuh(t) + ((Pn, f̂i)h)i=1,...,m = 0 a.e. in (tn−1, tn)

µn
j ≤ 0, Y n(xj) ≥ 0, and

N∑

n=1

J∑

j=1

Y n(xj)µ
n
j = 0.

We define a measure µh,τ ∈M(ΩT ) by

(6.5)

∫

ΩT

fdµh,τ :=

N∑

n=1

J∑

j=1

f(xj , tn)µ
n
j , f ∈ C0(ΩT )

and its lift µ̂h,τ by

(6.6) 〈µ̂h,τ , ·〉 = 〈µh,τ , ·̃〉

on C0(Ωh
T ), Ω

h
T := Sh × [0, T ]. Note, that the lift operator ·̃ for functions f = f(x, t)

being defined on Ωh
T is considered with respect to the spatial part, i.e. f̃(x̃, t) =

(f̃(·, t))(x̃) for (x, t) ∈ Ωh
T , and correspondingly for ·̂.

Lemma 6.2. Let uh, µ
n
j , P and Y be as in Remark 6.1 and µ̂h,τ as in (6.6).

Then there is h0 > 0 so that

(6.7)

N∑

n=1

τn‖Y n‖2h +

∫ T

0

|uh(t)|2dt+
N∑

n=1

J∑

j=1

|µn
j | ≤ c for all 0 < h ≤ h0.

Proof. From (3.3) we know that there is δ > 0 so that y0 ≥ δ in ΩT . Setting
Y̌ := Gh,τ (0) ∈Wh,τ we conclude from Theorem 5.1 that

(6.8) Y̌ n(xj) ≥
δ

2
, 1 ≤ j ≤ J, 1 ≤ n ≤ N, 0 < h ≤ h0.

8



From (6.1) we conclude

(6.9)

N∑

n=1

J∑

j=1

Y̌ n(xj)|µn
j | =

N∑

n=1

J∑

j=1

(Y n(xj)− Y̌ n(xj))µ
n
j

=A(Y n − Y̌ n, P )−
N∑

n=1

τn(Y
n − ŷg, (Y

n − Y̌ n)β(tn)
2)h

=

N∑

n=1

τn

∫

Sh

(−(Y n)2 + ŷgY
n + Y nY̌ n − ŷgY̌

n)β(tn)
2

+

N∑

n=1

m∑

i=1

τnuh,i|(tn−1,tn)(f̂i, P
n)h

≤− c0

N∑

n=1

τn‖Y n‖2h − α

∫ T

0

|uh(t)|2dt+ C

with a constant c0 > 0. This implies the claim together with (3.4).

7. Discretization error estimate of the optimization problem. The dis-
cretization error of the optimization problem is estimated in the following Theorem.

Theorem 7.1. Let u be the solution of (3.2) and uh the solution of (6.3) with
corresponding states y = G(Bu) and Y = Gh,τ (Buh). Then there holds

(7.1)
N∑

n=1

τn‖ŷ(·, tn)− Y n‖2h +

∫ T

0

|u(t)− uh(t)|2dt ≤ cρ(h)(h+
√
τ).

Proof. We write

(7.2)

α

∫ T

0

|u(t)− uh(t)|2dt

=

∫ T

0

u(t)(u(t)− uh(t))dt− α

∫ T

0

uh(t)(u(t) − uh(t))dt

=I1 + I2.

The first goal is to estimate I1. Let

(7.3) C∞
0 (0, T ;Rm) ∋ vk → u− uh

in L2(0, T ;Rm), yh := G(Buh) and zk := G0(Bvk). Since vk is smooth and fi ∈
L∞(Γ0), i = 1, ...,m, we have zk ∈W∞

0 and in view of (2.14) there holds

(7.4)

‖(y − yh)− zk‖C0(ΩT ) ≤c max
0≤t≤T

‖(y − yh)(·, t)− zk(·, t)‖H2(Γ0)

≤c
(∫ T

0

|(u− uh)(t)− vk(t)|2dt
) 1

2

→0, k → ∞.
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Hence using (3.4) we conclude that

(7.5)

I1 =α lim
k→∞

∫ T

0

u(t) · vk(t)dt

=− lim
k→∞

∫ T

0

m∑

i=1

vk,i(t)(p(·, t), fi)dt

=− lim
k→∞

∫ T

0

(Bvk, p)dt

=− lim
k→∞

∫ T

0

(Azk, p)dt

=− lim
k→∞

{∫ T

0

(
β(t)2(y − yg), zk

)
dt+

∫

ΩT

zkdµ

}

=

∫ T

0

(
β(t)2(y − yg), y

h − y
)
dt+

∫

ΩT

yh − ydµ

=

N∑

n=1

τn(ŷn − ŷg(tn), (ŷh,n − ŷn)β(tn)
2)h +

∫

ΩT

(yh)−dµ

+

N∑

n=1

∫ tn

tn−1

{
(
β(t)2(y − yg), y

h − y
)

− τn(ŷn − ŷg(tn), (ŷh,n − ŷn)β(tn)
2)h}

=I1,1 + I1,2 + I1,3.

where we used (3.5) for the last but one equation and set w− = min(w, 0).

We estimate I1,2. For (x, t) ∈ Γ0 × (tn−1, tn) we have

(7.6)

|yh(x, t)| ≤|(yh)−(x, t)− (yh)−(x, tn)|+ |(yh)−(x, tn)− (Y n)−(x̂)|
≤|(yh)(x, t) − (yh)(x, tn)|+ |(yh)(x, tn)− (Y n)(x̂)|

≤2 max
0≤s≤T

‖yh(·, s)− ˜Rhyh(·, s)‖L∞(Γ0)

+ ‖ ˜Rhyh(·, t)− ˜Rhyh(·, tn)‖L∞(Γ0) + ‖yh,n − Ỹ n‖L∞(Γ0)

≤ch max
0≤s≤T

‖yh(·, s)‖H2(Γ0)

+ ρ(h)‖ ˜Rhyh(·, t)− ˜Rhyh(·, tn)‖H1(Γ0)

+ ρ(h)(h+
√
τ )(‖y0‖H2(Γ0) + ‖uh‖U )

≤ρ(h)(h+
√
τ )(‖y0‖H2(Γ0) + ‖uh‖U )

+ ρ(h)
√
τn

(∫ tn

tn−1

‖R̂hy
h
t ‖2H1(Γ0)

dt

) 1

2

≤ρ(h)(h+
√
τ )(‖y0‖H2(Γ0) + ‖uh‖U )

≤ρ(h)(h+
√
τ )

where we used Lemma 6.2. By continuity this estimate holds also at the points t = tn,
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n = 0, ..., N . From main theorem of calculus we get |I1,3| ≤ cτ . So we have

(7.7) I1 ≤
N∑

n=1

τn(ŷn − ŷg(tn), (ŷh,n − ŷn)β(tn)
2)h + ρ(h)(h+

√
τ ) + cτ.

We set Y̌ = Gh,τ (Bu). Then (6.4) implies that

(7.8)

I2 =
N∑

n=1

m∑

i=1

(Pn, f̂i)h

∫ tn

tn−1

(ui − uh,i)(t)dt

=

N∑

n=1

m∑

i=1

(P̃n, fi) + ((Pn, f̂i)h − (P̃n, fi))

∫ tn

tn−1

(ui − uh,i)(t)dt

=

N∑

n=1

∫ tn

tn−1

(B(u − uh), P̃n)dt

+

N∑

n=1

m∑

i=1

((Pn, f̂i)h − (P̃n, fi))

∫ tn

tn−1

(ui − uh,i)(t)dt

=A(Y̌ − Y, P )

+

N∑

n=1

∫ tn

tn−1

(B(u− uh), P̃n)dt−
N∑

n=1

∫ tn

tn−1

( ̂B(u − uh), P
n)hdt

+

N∑

n=1

m∑

i=1

((Pn, f̂i)h − (P̃n, fi))

∫ tn

tn−1

(ui − uh,i)(t)dt

=A(Y̌ − Y, P ) +N1 +N2

=
N∑

n=1

τn(Y
n − ŷg(tn), (Y̌

n − Y n)β(tn)
2)h

+

N∑

n=1

J∑

j=1

(Y̌ n(xj)− Y n(xj))µ
n
j +N1 +N2

≤
N∑

n=1

τn(Y
n − ŷg(tn), (Y̌

n − Y n)β(tn)
2)h

+ max
1≤n≤N,1≤j≤J

|(Y̌ n)−(xj)|
N∑

n=1

J∑

j=1

|µn
j |+N1 +N2.

Recalling that y ≥ 0 in ΩT we have for 1 ≤ j ≤ J , 1 ≤ n ≤ N

(7.9)

|(Y̌ n)−(xj)| =|(Y̌ n)−(xj)− y−(xj , tn)|
≤|Y̌ n(xj)− y(xj , tn)|
≤‖Y n − y(·, tn)‖L∞(Γ0)

≤cρ(h)(h+
√
τ )(‖y0‖H2(Γ0) + ‖u‖U)

≤cρ(h)(h+
√
τ )

11



where we used Theorem 5.1. We conclude that

(7.10) I2 ≤
N∑

n=1

τn(Y
n − ŷg(tn), (Y̌

n − Y n)β(tn)
2)h + cρ(h)(h+

√
τ ) +N1 +N2

so that together with (7.7) we deduce from (7.2) that

(7.11)

α

∫ T

0

|u(t)− uh(t)|2dt ≤

N∑

n=1

τn(ŷn − ŷg(tn), (ŷh,n − ŷn)β(tn)
2)h + cρ(h)(h+

√
τ) + cτ

+

N∑

n=1

τn(Y
n − ŷg(tn), (Y̌

n − Y n)β(tn)
2)h +N1 +N2

=
N∑

n=1

τn

∫

Sh

β(tn)
2

{
−(ŷn − Y n)2 + (Y n − ŷg(tn))(Y̌

n − ŷn) + (ŷn − ŷg(tn))(ŷh,n − Y n)
}

+ cρ(h)(h+
√
τ) + cτ +N1 +N2

≤ −
N∑

n=1

τn‖β(tn)(ŷn − Y n)‖2h + cρ(h)(h+
√
τ ) + cτ +N1 +N2.

It remains to estimate N1, N2 for which we show that O(h2)‖Pn‖h is small. Therefore
we test (6.4) with

(7.12) Φn =

{
Pn, 1 ≤ n ≤ l,

0, n > l

where 1 ≤ l ≤ N is fixed, have

(7.13)

A(Φ, P ) ≥
l∑

n=1

τn

2
‖∇Pn‖g̃(tn) +

l∑

n=2

‖Pn‖2h −
l∑

n=2

(Pn−1, Pn)h + ‖P 1‖2h

− c

l∑

n=1

τn‖Pn‖h

≥
l∑

n=1

τn

2
‖∇Pn‖g̃(tn) +

1

2

l∑

n=2

‖Pn‖2h

− 1

2

l∑

n=2

‖Pn−1‖2h + ‖P 1‖2h − c

l∑

n=1

τn‖Pn‖h

≥
l∑

n=1

τn

2
‖∇Pn‖g̃(tn) +

1

2
‖P l‖2h

+
1

2
‖P 1‖2h − c

l∑

n=1

τn‖Pn‖h
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and obtain

(7.14)

A(Φ, P ) ≤c max
1≤n≤l

‖Pn‖L∞(Sh) + c

l∑

n=1

τn‖Pn‖h

≤ c

h
max
1≤n≤l

‖Pn‖h + c

l∑

n=1

τn‖Pn‖h.

from which we conclude recursively for l = 1, ..., N that

(7.15) ‖Pn‖h ≤ c

h

for n = 1, ..., N .
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