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OPTIMAL CONTROL OF ELLIPTIC SURFACE PDES WITH

POINTWISE BOUNDS ON THE STATE

AHMAD AHMAD ALI ∗, MICHAEL HINZE † , AND HEIKO KRÖNER ‡

Abstract. We consider a linear-quadratic optimization problem with pointwise bounds on the
state for which the constraint is given by the Laplace-Beltrami equation (to have uniqueness we add
an lower order term) on a two-dimensional surface . By using finite elements we approximate the
optimization problem by a family of discrete problems and prove convergence rates for the discrete
controls and the discrete states. Furthermore, assuming (roughly spoken) a higher regularity for the
control the order of convergence improves. This extends a result known in an Euclidean setting to
the surface case.

Key words. Linear-quadratic optimal control problem; Laplace-Beltrami equation; finite ele-
ments

1. Introduction. In applications the situation of a (moving) hypersurface seper-
ating two (moving) regions is a widespread setting to model various phenomena. In
this general setting one may think of biological processes happening in these regions
or on the interface between these regions. Examples for this scenario are cell mem-
branes seperating the environment from the cell interior, or the interface between the
two phases of a two-phase flow where soluble surfactants in the bulk regions affect
a certain interfacial surfactant concentration, see [6] and the references therein for a
two-phase flow example.

It is a natural to consider optimization problems where the surfactant density
on the surface plays the role of the state variable and to assume certain pointwise
bounds for the state. To address control of the general setting above we consider
in our paper a linear-quadratic PDE-constrained optimization problem on a fixed
hypersurface (and not phenomena or interactions in or with the regions outside the
hypersurface).

The corresponding optimization problem in an Euclidean setting is treated in [7]
and we will follow the argumentation therein closely.

There are only few papers which deal with the numerics of linear-quadratic, pde
constrained optimization problems on surfaces. In [9] an optimal control problem
for the Lapace-Beltrami on surfaces is considered and a linear-quadratic parabolic
control problem on moving surfaces is considered in [13] in the case of pointwise box
constraints and in [8] in the case of pointwise bounds on the state.

Our paper is organized as follows. In Section 2 we introduce the optimization
problem under consideration. Section 3 contains general material about finite elements
on surfaces. Section 4 states known L∞-estimates which are the key ingredient in our
error estimates. In Section 5 we discretize the state equation and in Section 6 the
control problem. Our error estimates are formulated and proved in Section 7.

2. The optimization problem. Let S be a two-dimensional, closed, orientable,
embedded surface in R3 and (U, (·, ·)U ) a Hilbert space. We consider the optimization
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problem

(2.1)





min(y,u)∈Y×Uad
J(y, u) = 1

2

∫
S
|y − y0|

2 + α
2 ‖u− u0‖

2
U

s.t.

Ay = Bu

y ∈ Yad = {y ∈ L∞(S) : y ≤ b}.

Here,

(2.2) A : H2(S) → L2(S), Ay := −∆Sy + y,

α > 0, y0 ∈ H1(S), u0 ∈ U , b ∈ L∞(S), R : U∗ → U denotes the inverse of the
Frechet-Riesz isomorphism and

(2.3) B : U → L2(S) ⊂ H1(S)∗

is a linear, continuous operator. We make the assumption that

(2.4) ∃u∈Uad
G(Bu) < b

where G = A−1, Uad ⊆ U closed and convex and Y := H1(S). We have the following
theorem.

Theorem 2.1. Let u ∈ Uad denote the unique solution to (2.1). Then there
exists µ ∈ M(S) (M(S) denotes the set of Radon measures on S) and p ∈ L2(S) so
that with y = G(Bu) there holds

(2.5)

∫

S

pAv =

∫

S

(y − y0)v +

∫

S

vdµ ∀v ∈ H2(Ω),

(2.6) (RB∗p+ α(u − u0), v − u)U ≥ 0 ∀v ∈ Uad,

and

(2.7) µ ≥ 0, y ≤ b,

∫

S

(b− y)dµ = 0.

Proof. The proof of this theorem is along the lines of the the proof of [3, Theorem
5.2] in the Euclidean setting.

3. Finite Elements on Surfaces. We triangulate S by a family Th of flat
triangles with corners (i.e. nodes) lying on S. We denote the surface of class C0,1

given by the union of the triangles τ ∈ Th by Sh; the union of the corresponding nodes
is denoted by Nh. Here, h > 0 denotes a discretization parameter which is related to
the triangulation in the following way. For τ ∈ T we define the diameter ρ(τ) of the
smallest disc containing τ , the diameter σ(τ) of the largest disc contained in τ and

(3.1) h = max
τ∈Th

ρ(τ), γh = min
τ∈Th

σ(τ)

h
.

We assume that the family (Th)h>0 is quasi-uniform, i.e. γh ≥ γ0 > 0. We let

(3.2) Xh = {v ∈ C0(Sh) : v|τ linear for all τ ∈ Th}
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be the space of continuous piecewise linear finite elements. Let N be a tubular neigh-
borhood of S in which the Euclidean metric of N can be written in the coordinates
(x0, x) = (x0, xi) of the tubular neighborhood as

(3.3) ḡαβ = (dx0)2 + σij(x)dx
idxj .

Here, x0 denotes the globally (in N) defined signed distance to S and x = (xi)i=1,2

local coordinates for S.
For small h we can write Sh as graph (with respect to the coordinates of the

tubular neighborhood) over S, i.e.

(3.4) Sh = graphψ = {(x0, x) : x0 = ψ(x), x ∈ S}

where ψ = ψh ∈ C0,1(S) suitable. Note, that

(3.5) |Dψ|σ ≤ ch, |ψ| ≤ ch2.

The induced metric of Sh is given by

(3.6) gij(ψ(x), x) =
∂ψ

∂xi
(x)

∂ψ

∂xj
(x) + σij(x).

Hence we have for the metrics, their inverses and their determinants

(3.7) gij = σij +O(h2), gij = σij +O(h2) and g = σ +O(h2)|σijσ
ij |

1

2

where we use summation convention.
For a function f : S → R we define its lift f̂ : Sh → R to Sh by f(x) = f̂(ψ(x), x),

x ∈ S. For a function f : Sh → R we define its lift f̃ : S → R to S by f = ˆ̃
f .

This terminus can be obviously extended to subsets. Let f ∈W 1,p(S), g ∈ W 1,p∗

(S),
1 ≤ p ≤ ∞ and p∗ Hölder conjugate of p. In local coordinates x = (xi) of S hold

(3.8)

∫

S

〈Df,Dg〉 =

∫

S

∂f

∂xi
∂g

∂xj
σij(x)

√
σ(x)dxidxj ,

(3.9)

∫

Sh

〈
Df̂,Dĝ

〉
=

∫

S

∂f

∂xi
∂g

∂xj
gij(ψ(x), x)

√
g(ψ(x), x)dxidxj ,

(3.10)

∫

S

〈Df,Dg〉 =

∫

Sh

〈
Df̂,Dĝ

〉
+O(h2)‖f‖W 1,p(S)‖g‖W 1,p∗(S),

and similarly,

(3.11)

∫

S

f =

∫

Sh

f̂ +O(h2)‖f‖L1(S)

where now f ∈ L1(S) is sufficient.
The bracket 〈u, v〉 denotes here the scalar product of two tangent vectors u, v (or

their covariant counterparts). ‖ · ‖Wk,p denotes the usual Sobolev norm, | · |Wk,p =∑
|α|=k ‖D

α · ‖Lp and Hk =W k,2.

3



4. Some L∞-estimates for FE approximations. We define

(4.1) a :W 1,p(S)×W 1,p∗

(S) → R, a(u, v) =

∫

S

〈Du,Dv〉+ uvdx,

(4.2) ah :W 1,p(Sh)×W 1,p∗

(Sh) → R, a(uh, vh) =

∫

Sh

〈Duh, Dvh〉+ uhvhdx,

a discrete operator Gh : L2(S) → Xh, v 7→ Ghv = zh via

(4.3) ah(zh, ϕh) =

∫

Sh

v̂ϕh ∀ϕh ∈ Xh

and have the following Lemma.
Lemma 4.1. Let v ∈ L2(S) and z = Gv, zh = Ghv.
(i) There holds

(4.4) ‖z − z̃h‖L∞(S) ≤ ch‖v‖.

(ii) If v ∈W 1,s(S) for some 1 < s < 2 then

(4.5) ‖z − z̃h‖L∞(S) ≤ ch3−
2

s | log h|‖v‖W 1,s(S).

(iii) If v ∈ L∞(S) then

(4.6) ‖z − z̃h‖L∞(S) ≤ ch2| log h|2‖v‖L∞(S).

Proof. The proof of (i) is as in the Euclidean case and uses [5].
For ϕh ∈ Xh we define

(4.7) F (ϕ̃h) := a(z̃h − z, ϕ̃h)

and estimate

(4.8)
F (ϕ̃h)ah(zh, ϕh) +O(h2)‖z − z̃h‖W 1,2(S)‖ϕ̃h‖W 1,2(S)

≤ah(zh, ϕh) +O(h)‖z − z̃h‖W 1,2(S)‖ϕ̃h‖W 1,1(S)

where we used an inverse estimate. Hence F extends by Hahn-Banach theorem to
an element in W−1,1(S) with norm of order O(h2)‖f‖L2(S) and then by a further
application of the Hahn-Banach Theorem to an element in W−2,1(S) with norm of
orderO(h2)‖f‖L2(S). A careful view shows that we are in the situation of [11, Theorem
1.2] if u ∈W 1,∞(S). Hence in this case we have

(4.9) ‖z−z̃h‖L∞(S) ≤ c

(
h| log h| inf

χ∈Xh

‖∇Γ(z − χ̃)‖W 1,∞(S) + h2‖v‖L2(S)

)
.

We remark that estimate (4.9) is proved in [4, Theorem 3.2].
Elliptic regularity theory and standard embedding theorems imply z ∈ W 3,s(S) ⊂

W 2,q(S), q = 2s
2−s

, and hence

(4.10) ‖z‖W 2,q(S) ≤ c‖z‖W 3,s(S) ≤ c‖v‖W 1,s(S).
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From (4.9) and a well-known interpolation estimate we conclude

(4.11) ‖z − z̃h‖L∞(S) ≤ ch2−
2

q | log h|‖z‖W 2,q(S) + ch2‖v‖ ≤ ch3−
2

s | log h|‖v‖W 1,s(S)

in view of the relation between s and q. This proves (ii).
From elliptic regularity theory we know that z ∈ W 2,q(S) for all 1 ≤ q <∞ with

(4.12) ‖z‖W 2,q(S) ≤ Cq‖v‖Lq(S) ≤ cq‖v‖L∞(S)

where the constant C is independent from q. Combining this with the first inequality
in (4.11) gives

(4.13) ‖z − z̃h‖L∞(S) ≤ cqh2−
2

q | log h|‖v‖L∞(S)

so that choosing q = | log h| proves (iii).

5. Finite Element Discretization of A. In this section we adapt the argu-
mentation from [2] to the surface case. Let µ be a regular Borel measure in S we
consider the following problem

(5.1) Au = −∆Su+ u = µ.

Here, u ∈ L2(S) is a solution of (5.1) if

(5.2)

∫

S

uAvdx =

∫

S

vdµ ∀v ∈ H2(S).

Note, that A is self-adjoint.
Theorem 5.1. Let s ∈ (1, 2) and µ ∈M(S). Then there exists a unique solution

u ∈W 1,s(S) of (5.1) and there holds

(5.3) ‖u‖W 1,s(S) ≤ c(s)‖µ‖M(S).

Proof. Let T : L2(S) → C0(S) be defined by

(5.4) A(Tf) = f, f ∈ L2(S).

T is well defined in view of H2(S) ⊂ C0(S), linear and continuous. We denote its
adjoint operator by T ∗ ∈ L(M(S), L2(S)). Then we have for all f ∈ L2(S) that

(5.5)

∫

S

f(T ∗µ)dx =

∫

S

Tfdµ

which implies

(5.6)

∫

S

(T ∗µ)Avdx =

∫

S

vdµ ∀v ∈ H2(S)

by inserting f = Av in (5.5). Hence u = T ∗µ solves (5.1). The uniqueness of the
solution is obvious. To prove the regularity of u we let ψ ∈ C0(S) and v ∈ H2(S) be
the solution of

(5.7) Av = ψ.

5



From (5.6) we get

(5.8)

∣∣∣∣
∫

S

uψdx

∣∣∣∣ =
∣∣∣∣
∫

S

uAvdx

∣∣∣∣ =
∣∣∣∣
∫

S

vdµ

∣∣∣∣ ≤ ‖µ‖M(S)‖v‖C0(S).

By using [10, Theorem 1.4, p. 319] we deduce the existence of c > 0 so that

(5.9) ‖v‖C0(S) ≤ c‖ψ‖W−1,t(S)

where t > 2 is arbitrary and c depends only on t, S.
From (5.8) and (5.9) we derive

(5.10)

∣∣∣∣
∫

S

ψudx

∣∣∣∣ ≤ c‖µ‖M(S)‖ψ‖W−1,t(S).

Since C0(S) is dense inW−1,t(S), 1
s
+ 1

t
= 1, we conclude that u ∈ W 1,s(S) and (5.3).

Let s ∈ (1, 2), s∗ its Hölder conjugate and consider the bilinear form a in case
p = s. We consider the following variational problem.

(5.11) Find u ∈ W 1,s(S) so that a(u, v) =

∫

S

vdµ ∀v ∈W 1.s∗(S).

Note, that in view of s < 2 we have s∗ > 2 so that W 1,s∗(S) ⊂ C0(S).
Theorem 5.2. Problem (5.11) has a unique solution u and u solves (5.1).
Proof. Let u be the solution of (5.1). We show that u is a solution of (5.11). From

Theorem 5.1 we know u ∈ W
1,s
0 (S) and from (5.2) we deduce that

(5.12)

∫

S

vdµ = a(u, v) ∀v ∈ H2(S).

Hence u solves (5.1) since H2(S) is dense in W 1,s∗(S).
If u solves (5.11) then (5.12) holds and implies (5.1).
Let µ ∈M(S) then

(5.13) C0(Sh) ∋ u 7→

∫

S

ũdµ

is in (C0(Sh))
∗, positive and via Riesz representation theorem equal to a µ̂ ∈M(Sh).

The discretization of (5.2) is given by the following problem.

(5.14) Find uh ∈ Xh so that ah(uh, vh) =

∫

Sh

vhdµh ∀vh ∈ Xh

where µh ∈ Bch(µ̂) ⊂ M(Sh) arbitrary but now fixed. Existence of a solution of
(5.14) follows from uniqueness.

Remark 5.3. If µ ∈ L2(S) then the discretizations (5.14) and (4.3) agree for
suitable µh ∈ Bch(µ̂) ⊂M(Sh).

Proof. Let µ = f ∈ L2(Ω). The map

(5.15) L2(Sh) ∋ v 7→

∫

Sh

f̂vdx−

∫

Sh

vdµ̂ =

∫

Sh

f̂ vdx−

∫

S

ṽfdx

6



is in L2(Sh) with norm less or equal ch2 in view of Section 3.
Lemma 5.4. Let v ∈ H2(S) and vh ∈ Xh the unique solution of

(5.16) ah(wh, vh) = a(w̃h, v) ∀wh ∈ Xh

then

(5.17) ‖v − ṽh‖L∞(S) ≤ ch‖v‖H2(S).

Proof. Let f = Av then we have in view of Section 3 that

(5.18) a(w̃h, v) =

∫

S

w̃hfdx =

∫

Sh

whf̂dx +O(h2)‖wh‖L2‖f‖L2(S) =

∫

Sh

whF

where F ∈ L2(Sh) suitable and ‖F̃ − f‖L2(S) ≤ O(h2)‖f‖L2(S). The claim follows as
in the Euclidean setting by using the L2-estimate from [5].

Theorem 5.5. Let u be the solution of (5.1) and uh the solution of (5.14). Then

(5.19) ‖u− ũh‖L2(S) ≤ c(h‖µ‖M(S) + ‖µ̂− µh‖M(Sh)).

Proof. Let p ∈ L2(S) arbitrary and v ∈ H2(S) with

(5.20) Av = p.

There holds

(5.21)

∫

S

(u− ũh)pdx =

∫

S

(u− ũh)Avdx

=a(u− ũh, v)

=

∫

S

vdµ− a(ũh, v)

=

∫

S

vdµ− ah(uh, vh)

≤

∫

S

vdµ−

∫

Sh

vhdµ̂+ ‖µ̂− µh‖M(Sh)‖vh‖C0(Sh)

=

∫

S

vdµ−

∫

S

ṽhdµ+ ‖µ̂− µh‖M(Sh)‖vh‖C0(Sh)

≤‖v − ṽh‖C0(S)‖µ‖M(S) + ‖µ̂− µh‖M(Sh)‖vh‖C0(Sh)

≤c(h‖µ‖M(S) + ‖µ̂− µh‖M(Sh))‖p‖L2(S)

where vh as in Lemma 5.4 and we used (5.17).

6. Finite Element Discretization of the optimization problem. In order
to approximate problem (2.1) we consider the following family of control problems
depending on the mesh parameter h > 0

(6.1) min
u∈Uad

Jh(u) :=
1

2

∫

Sh

|yh − ŷ0|
2 +

α

2
‖u− u0,h‖

2
U

7



subject to

(6.2) yh = Gh(Bu) ∧ yh(xj) ≤ b(xj), j = 1, ...,m.

Here, u0,h denotes an approximation to u0 with

(6.3) ‖u0 − u0,h‖U ≤ ch.

For every h > 0 the optimization problem (6.1),(6.2) agrees with the problem which
is stated in [7, (3.59)] apart from the fact that our problem is defined on Sh and
the problem stated in [7, (3.59)] is defined in an open and bounded subset Ω ⊂ R2.
This difference does not effect the procedure how existence of an optimal solution and
necessary optimality conditions are derived. Hence we get using [7, Lemma 3.2] and
the definition

(6.4) B̂u = B̂u ∈ L2(Sh), u ∈ U,

that the following Lemma holds.
Lemma 6.1. Problem (6.1) has a unique solution uh ∈ Uad. There exist µ1, ..., µm ∈

R and ph ∈ Xh so that with yh = Gh(Buh) we have

(6.5)

ah(vh, ph) =

∫

Sh

(yh − ŷ0)vh +

m∑

j=1

µjvh(xj) ∀vh ∈ Xh

(RB̂∗ph + α(uh − u0,h), v − uh)U ≥ 0 ∀v ∈ Uad,

µj ≥ 0, yh(xj) ≤ b(xj), j = 1, ...,m, and
m∑

j=1

µj(b(xj)− yh(xj)) = 0.

We prove the following a priori bounds which are uniform in h.
Lemma 6.2. Let uh, µj, ph and yh as in the previous Lemma 6.1. Setting

µh =
∑m

j=1 µjδxj
by abusing notation there exists h̄ > 0 so that

(6.6) ‖yh‖+ ‖uh‖U + ‖µh‖M(Sh) ≤ C for all 0 < h ≤ h̄.

Proof. Let ũ denote an element satisfying (2.4). Since G(Bũ) is continuous there
exists δ > 0 so that

(6.7) G(Bũ) ≤ b− δ in S.

From (4.4) we deduce that there is h0 > 0 so that for all 0 < h ≤ h0

(6.8) Gh(Bũ) ≤ b̂ ∀ 0 < h ≤ h0

so that

(6.9) Jh(uh) ≤ Jh(ũ) ∀ 0 < h ≤ h0

and hence

(6.10) ‖uh‖U , ‖yh‖ ≤ c ∀ 0 < h ≤ h0.

8



Let u denote the unique solution of (2.1), cf. Theorem 2.1. From (6.8) and (4.4) we
infer that v := 1

2u+
1
2 ũ satisfies

(6.11)

G̃h(Bv) ≤
1

2
G(Bu) +

1

2
G(Bũ) + ch(‖Bu‖+ ‖Bũ‖)

≤b−
δ

2
+ ch(‖u‖U + ‖ũ‖U )

≤b−
δ

4

for 0 < h ≤ h̄ with 0 < h̄ ≤ h0 suitable.
Since v ∈ Uad properties (6.5), (6.10) and (6.11) imply

(6.12)

0 ≤(RB̂∗ph + α(uh − u0,h), v − uh)U

=

∫

Sh

B̂(v − uh)ph + α(uh − u0,h, v − uh)U

=ah(Gh(Bv) − yh, ph) + α(uh − u0,h, v − uh)U

=

∫

Sh

(Gh(Bv)− yh)(yh − ŷ0) +

m∑

j=1

µj(Gh(Bv)− yh)(xj)

+ α(uh − u0,h, v − uh)U

≤C +

m∑

j=1

µj

(
b(xj)−

δ

4
− yh(xj)

)

=C −
δ

4

m∑

j=1

µj

where the last equality follows from (6.5). We conclude

(6.13) ‖µh‖M(S) ≤ c

and the lemma is proved.

7. Error estimates. In the following we assume that µh ∈ Bch2(µ̂) ⊂ M(Sh)
and state the following theorem.

Theorem 7.1. Let u and uh be the solutions of (2.1) and (6.1) respectively.
Then

(7.1) ‖u− uh‖U + ‖y − ỹh‖H1(S) ≤ ch
1

2 .

If in addition Bu ∈ W 1,s(S) for some s ∈ (1, 2) then

(7.2) ‖u− uh‖U + ‖y − ỹh‖H1(S) ≤ ch
3

2
− 1

s

√
| log h|.

Proof. We test (6.5) with uh and (2.1) with u. Adding the resulting inequalities
gives

(7.3) (R(B∗p− B̂∗ph)− α(u0 − u0,h) + α(u− uh), uh − u)U ≥ 0.

We recall the lift operator

(7.4) L2(S) → L2(Sh), u 7→ û

9



and introduce its adjoint

(7.5) L2(Sh) → L2(S), u 7→ ǔ

which is O(h2) close to

(7.6) L2(Sh) → L2(S), u 7→ ũ.

There holds B̂∗ph = B∗p̌h so that we conclude

(7.7) α‖u− uh‖
2
U ≤

∫

S

B(uh − u)(p− p̌h)− α(u0 − u0,h, uh − u)U .

Let yh = Gh(Bu) ∈ Xh and denote by ph ∈ Xh the unique solution of

(7.8) ah(wh, p
h) =

∫

Sh

(ŷ − ŷ0)wh +

∫

Sh

whdµh ∀wh ∈ Xh.

Applying Theorem 5.5 with µ̃ = (y − y0) + µ we infer

(7.9) ‖p− p̃h‖L2(S) ≤ ch(‖y − y0‖L2(S) + ‖µ‖M(S) + ‖µ̂− µh‖M(S)).

We rewrite the first term on the right-hand side of (7.7)

(7.10)

∫

S

B(uh − u)(p− p̌h)

=

∫

S

B(uh − u)(p− p̃h) +

∫

S

B(uh − u)(p̃h − p̌h)

=

∫

S

B(uh − u)(p− p̃h) +

∫

Sh

̂B(uh − u)(ph − ph)

+O(h2)‖u− uh‖U‖p̃h − p̌h‖L2(S) + I1

=

∫

S

B(uh − u)(p− p̃h) + ah(yh − yh, ph − ph)

+O(h2)‖u− uh‖U‖p̃h − p̌h‖L2(S) + I1

=

∫

S

B(uh − u)(p− p̃h) +

∫

Sh

(ŷ − yh)(yh − yh)

+

∫

Sh

yh − yhdµh −
m∑

j=1

µj(yh − yh)(xj) + I1

=

∫

S

B(uh − u)(p− p̃h)− ‖ŷ − yh‖
2
L2(Sh)

+

∫

Sh

(ŷ − yh)(ŷ − yh) +

∫

Sh

yh − yhdµh +

m∑

j=1

µj(y
h − yh)(xj)

+ I1

where

(7.11) I1 =

∫

Sh

̂B(uh − u)(ph − ˆ̌ph)
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and

(7.12) |I1| ≤ O(h2)‖ph‖L2(Sh)‖u− uh‖U

After inserting (7.10) into (7.7) and using Young’s inequality we obtain in view of
(3.71), (3.55) and (3.60)

(7.13)

α

2
‖u− uh‖

2
U +

1

2
‖ŷ − yh‖

2

≤ c(‖p− p̃h‖2L2(S) + ‖ŷ − yh‖2L2(Sh)
+ ‖u0 − u0,h‖

2
U ) +

∫

Sh

(yh − yh)dµh

+
m∑

j=1

µj(y
h − yh)(xj) + |I1|.

We have

(7.14) yh − yh ≤ Ihb− b̂ + b̂− ŷ + ŷ − yh

and hence

(7.15)

∫

Sh

yh − yhdµh ≤‖µh‖M(Sh)(‖Ihb− b̂‖L∞(Sh) + ‖ŷ − yh‖L∞(Sh))

+O(h2)‖b̂− ŷ‖L∞(Sh) +

∫

S

b− ydµ

where the integral on the right-hand side is less or equal zero. Furthermore, we have

(7.16)

m∑

j=1

µj(y
h − yh)(xj) =

m∑

j=1

µj(y
h − y + y − b + b− yh)(xj)

≤‖yh − ŷ‖L∞(Sh)

m∑

j=1

µj

where we used y ≤ b and
∑m

j=1 µj(b − yh)(xj) = 0.
Using these estimates we can bound the right-hand side of (7.13) from above by

(7.17)
ch2(1 + ‖y − y0‖

2
L2(S) + ‖µ‖2M(S) + ‖u‖2L2(S))

+O(h2)‖ph‖L2(Sh)‖u− uh‖U + ‖yh − y‖L∞(Sh).

Testing (6.5) with ph yields

(7.18) ‖ph‖
2
L2(Sh)

≤ c‖ph‖L2(Sh) + ‖ph‖L∞(Sh) ≤ ch−1‖ph‖L2(Sh)

where we used for the last inequality an inverse inequality. We conclude

(7.19) ‖ph‖L2(Sh) ≤ ch−1.

Putting facts together shows that the right-hand side of (7.13) can be bounded from
above by

(7.20) ch2 + ‖yh − ŷ‖L∞(Sh).
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The norm in (7.20) can be estimated by ch‖u‖L2(S) by using (4.4) or by

(7.21) ch3−
2

s | log h|‖u‖L2(S)

by using Lemma 4.1 depending on the assumption on Bu.

Corollary 7.2. Let u and uh be as in Theorem 7.1 (i) and assume that
Bu,Buh ∈ L∞(S) are uniformly bounded in the L∞-norm. Then, for h small enough

(7.22) ‖u− uh‖U + ‖y − yh‖H1 ≤ ch| log h|.

Proof. We set ȳ = GBuh and rewrite the first summand on the right-hand side
of (7.7) as follows
(7.23)∫

S

B(uh − u)(p− p̌h) =

∫

S

pA(ȳ − y)−

∫

Sh

̂B(uh − u)ˆ̌ph +O(h2)‖uh − u‖U‖p̌h‖L2(S)

=

∫

S

pA(ȳ − y)− ah(yh − yh, ph) +O(h2)‖uh − u‖U‖p̌h‖L2(S)

(2.5),(6.5)
=

∫

S

(y − y0)(ȳ − y) +

∫

S

ȳ − ydµ

−

∫

Sh

(yh − ŷ0)(yh − yh)−

m∑

j=1

µj(yh − yh)(xj)

+O(h2)‖uh − u‖U‖p̌h‖L2(S).

We rewrite the sum of the first and the third summand on the right-hand side as

(7.24)

∫

S

(y−ỹh + ỹh − y0)(ȳ − y)−

∫

Sh

(yh − ŷ0)(yh − yh)

=

∫

S

(y − ỹh)(ȳ − ỹh + ỹh − y) +O(h2)‖ỹh − y0‖L2(S)‖ȳ − y‖L2(S)

+

∫

Sh

(yh − ŷ0)(ˆ̄y − yh + yh − ŷ)

≤− ‖y − ỹh‖L2(S) + ‖yh − ŷ0‖L2(Sh)(‖ ˆ̄y − yh‖L2(Sh) + ‖yh − ŷ‖L2(Sh))

+O(h2)‖ỹh − y0‖L2(S)‖u− uh‖U .

We use

(7.25) ȳ − y ≤ ȳ − ỹh + ỹh − Ĩhb+ Ĩhb− b+ b− y

and

(7.26) yh ≤ Ihb ∧

∫

S

b− ydµ = 0

so that

(7.27)

∫

S

ȳ − ydµ ≤ c‖µ‖M(S)

{
‖ȳ − ỹh‖L∞(S) + ‖Ĩhb− b‖L∞(S)

}
.
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Using (7.16) and putting facts together leads to

(7.28)

‖u− uh‖
2
U+‖y − ỹh‖

2
L2(S) ≤ ‖u0 − u0,h‖

2
U

+ ‖ỹh − y0‖L2(S)(‖ ˆ̄y − yh‖L2(Sh) + ‖yh − ŷ‖L2(Sh)

+O(h2)‖u− uh‖U )

+ c(‖ȳ − ỹh‖L∞(S) + ‖Ĩhb− b‖L∞(S) + ‖yh − ŷ‖L∞(Sh))

+ +O(h2)‖uh − u‖U‖p̌h‖L2(S)

Using Lemma 6.2, Lemma 3.1 (iii) and (7.18) then yields

(7.29) ‖u− uh‖
2
U + ‖y − ỹh‖

2
L2(S) ≤ c(h2 + h2| log h|2)

so that the claim follows.
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