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1 Introduction

Let Ω be an open bounded connected domain in Rd, d ∈ {2, 3} with polygonal boundary ∂Ω and f ∈
H1(Ω)

∗
:= H−1(Ω) be given. We consider the following elliptic boundary value problem

−∇ ·
(
q∇Φ

)
= f in Ω, (1.1)

q∇Φ · ~n = j† on ∂Ω and (1.2)

Φ = g† on ∂Ω, (1.3)

where ~n is the unit outward normal on ∂Ω.

The system (1.1)–(1.3) is overdetermined, i.e. if the Neumann and Dirichlet boundary conditions j† ∈
H−1/2(∂Ω) := H1/2(∂Ω)

∗
, g† ∈ H1/2(∂Ω) and the conductivity

q ∈ Q :=
{
q ∈ L∞(Ω)

∣∣ q ≤ q(x) ≤ q a.e. in Ω
}

(1.4)

are given, then there may be no Φ satisfying this system. Here q and q are some given positive constants.

In this paper we assume that the system is consistent and our aim is to identify the conductivity q† ∈ Q
and the electric potential Φ† ∈ H1(Ω) in the system (1.1)–(1.3) from current and voltage i.e., Neumann and
Dirichlet measurements at the boundary (jδ, gδ) ∈ H−1/2(∂Ω)×H1/2(∂Ω) of the exact

(
j†, g†

)
satisfying∥∥jδ − j†∥∥H−1/2(∂Ω)

+
∥∥gδ − g†∥∥H1/2(∂Ω)

≤ δ with δ > 0.

Note that using the H−1/2(∂Ω)×H1/2(∂Ω) topology for the data is natural from the point of view of solution
theory for elliptic PDEs but unrealistic with regard to practical measurements. We will comment in this
issue in Remark 2.2 below.

For the purpose of conductivity identification — a problem which is very well known in literature and practice
as electrical impedance tomography EIT, see below for some references — we simultaneously consider the
Neumann problem

−∇ · (q∇u) = f in Ω and q∇u · ~n = jδ on ∂Ω (1.5)
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and the Dirichlet problem

−∇ · (q∇v) = f in Ω and v = gδ on ∂Ω (1.6)

and respectively denote by Nqjδ, Dqgδ the unique weak solutions of the problems (1.5), (1.6), which depend
nonlinearly on q, where Nqjδ is normalized with vanishing mean on the boundary. We adopt the variational
approach of Kohn and Vogelius in [30, 31, 32] to the identification problem. In fact, for estimating the
conductivity q from the observation (jδ, gδ) of the exact data

(
j†, g†

)
, we use the functional

Jδ(q) :=

∫
Ω

q∇ (Nqjδ −Dqgδ) · ∇ (Nqjδ −Dqgδ) dx.

For simplicity of exposition we restrict ourselves to the case of just one Neumann-Dirichlet pair, while the
approach described here can be easily extended to multiple measurements

(
jiδ, g

i
δ

)
i=1,...,I

, see also Example

5.3 below. It is well-known that such a finite number of boundary data in general only allows to identify
conductivities taking finitely many different values in the domain Ω, see, e.g., [2].

Indeed, we are interested in estimating such piecewise constant conductivities and therefore use total variation
regularization, i.e., we consider the minimization problem

min
q∈Qad

Jδ(q) + ρ

∫
Ω

|∇q| , (1.7)

where Qad := Q ∩ BV (Ω) is the admissible set of the sought conductivities, BV (Ω) is the space of all
functions with bounded total variation (see §2.1 for its definition) and ρ > 0 is the regularization parameter,
and consider a minimizer qρ,δ of (1.7) as reconstruction.

For each q ∈ Q let N h
q jδ and Dhq gδ be corresponding approximations of Nqjδ and Dqgδ in the finite dimen-

sional space Vh1 of piecewise linear, continuous finite elements and qhρ,δ denote a minimizer of the discrete
regularized problem corresponding to (1.7), i.e. of the following minimization problem

min
q∈Qhad

∫
Ω

q∇
(
N h
q jδ −Dhq gδ

)
· ∇
(
N h
q jδ −Dhq gδ

)
dx+ ρ

∫
Ω

√
|∇q|2 + εh (1.8)

with Qhad := Qad ∩ Vh1 and εh being a positive functional of the mesh size h satisfying limh→0 ε
h = 0.

In Section 4 we will show the stability of approximations for fixed positive ρ. Furthermore as h, δ → 0 and
with an appropriate a priori regularization parameter choice ρ = ρ(h, δ), there exists a subsequence of

(
qhρ,δ
)

converging in the L1(Ω)-norm to a total variation-minimizing solution q† defined by

q† ∈ arg min{
q∈Qad | Nqj†=Dqg†

}∫
Ω

|∇q|.

In particular, if q† is uniquely defined, then this convergence holds for the whole sequence
(
qhρ,δ
)
. The

corresponding state sequences
(
N h
qhρ,δ

jδ

)
and

(
Dh
qhρ,δ

gδ

)
converge in the H1(Ω)-norm to Φ† = Φ†(q†, j†, g†)

solving the system (1.1)-(1.3). Finally, for the numerical solution of the discrete regularized problem (1.8),
in Section 5 we employ a projected Armijo algorithm. Numerical results show the efficiency of the proposed
method and illustrate our theoretical findings.

We conclude this introduction with a selection of references from the vast literature on EIT, which has
evolved to a highly relevant imaging and diagnostics tool in industrial and medical applications and has
attracted great attention of many scientists in the last few decades.

To this end, for any fixed q ∈ Q we define the Neumann-to-Dirichlet map Λq : H−1/2(∂Ω)→ H1/2(∂Ω), by

j 7→ Λqj := γNqj,

where γ : H1(Ω)→ H1/2(∂Ω) is the Dirichlet trace operator. Calderón in 1980 posed the question whether an
unknown conductivity distribution inside a domain can be determined from an infinite number of boundary
observations, i.e. from the Neumann-to-Dirichlet map Λq:

p, q ∈ Q ⊂ L∞(Ω) with Λp = Λq ⇒ p = q ? (1.9)

2



Calderón did not answer his question (1.9); however, in [15] he proved that the problem linearized at constant
conductivities has a unique solution. In dimensions three and higher Sylvester and Uhlmann [41] proved
the unique identifiability of a C∞-smooth conductivity. Päivärinta el al. [37] and Brown and Torres [12]
established uniqueness in the inverse conductivity problem for W 3/2,p-smooth conductivities with p = ∞
and p > 2d, respectively. In the two dimensional setting, Nachman [34] and Brown and Uhlmann [13] proved
uniqueness results for conductivities which are in W 2,p with p > 1 and W 1,p with p > 2, respectively. Finally,
in 2006 the question (1.9) has been answered to be positive by Astala and Päivärinta [3] in dimension two.
For surveys on the subject, we refer the reader to [10, 17, 20, 33, 43] and the references therein.

Although there exists a large number of papers on the numerical solution of the inverse problems of EIT,
among these also papers considering the Kohn-Vogelius functional (see, e.g., [28, 29]) and total variation
regularization (see, e.g., [21, 36]), we have not yet found investigations on the discretization error in a
combination of both functionals for the fully nonlinear setting, a fact which motivated the research presented
in this paper.

Throughout the paper we use the standard notion of Sobolev spaces H1(Ω), H1
0 (Ω), W k,p(Ω), etc from, for

example, [1]. If not stated otherwise we write
∫

Ω
· · · instead of

∫
Ω
· · · dx.

2 Problem setting and preliminaries

2.1 Notations

Let us denote by
γ : H1(Ω)→ H1/2(∂Ω)

the continuous Dirichlet trace operator while

γ−1 : H1/2(∂Ω)→ H1(Ω)

is the continuous right inverse operator of γ, i.e. (γ ◦ γ−1)g = g for all g ∈ H1/2(∂Ω). With f ∈ H−1(Ω)
(with a slight abuse of notation) in (1.1) being given, let us denote

cf := (f, 1),

where the expression (f, ϕ) denotes the value of the functional f ∈ H−1(Ω) at ϕ ∈ H1(Ω). We also denote

H
−1/2
−cf (∂Ω) :=

{
j ∈ H−1/2(∂Ω)

∣∣ 〈j, 1〉 = −cf
}
,

where the notation 〈j, g〉 stands for the value of the functional j ∈ H−1/2(∂Ω) at g ∈ H1/2(∂Ω). Similarly,
we denote

H
1/2
� (∂Ω) :=

{
g ∈ H1/2(∂Ω)

∣∣∣ ∫
∂Ω

g(s) = 0

}
while H1

� (Ω) is the closed subspace of H1(Ω) consisting of all functions with zero mean on the boundary, i.e.

H1
� (Ω) :=

{
u ∈ H1(Ω)

∣∣∣ ∫
∂Ω

γu = 0

}
.

Let us denote by CΩ
� the positive constant appearing in the Poincaré-Friedrichs inequality (see, for example,

[38])

CΩ
�

∫
Ω

ϕ2 ≤
∫

Ω

|∇ϕ|2 for all ϕ ∈ H1
� (Ω). (2.1)

Then for all q ∈ Q defined by (1.4), the coercivity condition

‖ϕ‖2H1(Ω) ≤
1 + CΩ

�
CΩ
�

∫
Ω

|∇ϕ|2 ≤ 1 + CΩ
�

CΩ
� q

∫
Ω

q∇ϕ · ∇ϕ (2.2)
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holds for all ϕ ∈ H1
� (Ω). Furthermore, since H1

0 (Ω) :=
{
u ∈ H1(Ω)

∣∣ γu = 0
}
⊂ H1

� (Ω), the inequality (2.2)
remains valid for all ϕ ∈ H1

0 (Ω).

Finally, for the sake of completeness we briefly introduce the space of functions with bounded total variation;
for more details one may consult [4, 24]. A scalar function q ∈ L1(Ω) is said to be of bounded total variation
if

TV (q) :=

∫
Ω

|∇q| := sup

{∫
Ω

qdiv Ξ
∣∣ Ξ ∈ C1

c (Ω)d, |Ξ(x)|∞ ≤ 1, x ∈ Ω

}
<∞.

Here |·|∞ denotes the `∞-norm on Rd defined by |x|∞ = max
1≤i≤d

|xi| and C1
c (Ω) the space of continuously

differentiable functions with compact support in Ω. The space of all functions in L1(Ω) with bounded total
variation is denoted by

BV (Ω) =

{
q ∈ L1(Ω)

∣∣∣ ∫
Ω

|∇q| <∞
}

which is a Banach space with the norm

‖q‖BV (Ω) := ‖q‖L1(Ω) +

∫
Ω

|∇q|.

Furthermore, if Ω is an open bounded set with Lipschitz boundary, then W 1,1(Ω)  BV (Ω).

2.2 Neumann operator, Dirichlet operator and Neumann-to-Dirichlet map

2.2.1 Neumann operator

We consider the following Neumann problem

−∇ · (q∇u) = f in Ω and q∇u · ~n = j on ∂Ω. (2.3)

By the coercivity condition (2.2) and the Riesz representation theorem, we conclude that for each q ∈ Q and

j ∈ H−1/2
−cf (∂Ω) there exists a unique weak solution u of the problem (2.3) in the sense that u ∈ H1

� (Ω) and
satisfies the identity ∫

Ω

q∇u · ∇ϕ = 〈j, γϕ〉+ (f, ϕ) (2.4)

for all ϕ ∈ H1
� (Ω). By the imposed compatibility condition 〈j, 1〉 = −cf , i.e.

〈j, 1〉+ (f, 1) = 0, (2.5)

and the fact that H1(Ω) = H1
� (Ω) + span{1}, equation (2.4) is satisfied for all ϕ ∈ H1(Ω). Furthermore,

this solution satisfies the following estimate

‖u‖H1(Ω) ≤
1 + CΩ

�
CΩ
� q

(
‖γ‖
L
(
H1(Ω),H1/2(∂Ω)

) ‖j‖H−1/2(∂Ω) + ‖f‖H−1(Ω)

)
≤ CN

(
‖j‖H−1/2(∂Ω) + ‖f‖H−1(Ω)

)
, (2.6)

where

CN :=
1 + CΩ

�
CΩ
� q

max

(
1, ‖γ‖

L
(
H1(Ω),H1/2(∂Ω)

)) .
Then for any fixed j ∈ H−1/2

−cf (∂Ω) we can define the Neumann operator

N : Q → H1
� (Ω) with q 7→ Nqj

which maps each q ∈ Q to the unique weak solution Nqj := u of the problem (2.3).

Remark 2.1. We note that the restriction j ∈ H−1/2
−cf (∂Ω) instead of j ∈ H−1/2(∂Ω) preserves the com-

patibility condition (2.5) for the pure Neumann problem. In case this condition fails, the strong form of the

problem (2.3) has no solution. This is the reason why we require j ∈ H−1/2
−cf (∂Ω). However, its weak form,

i.e. the variational equation (2.4), attains a unique solution independently of the compatibility condition.
By working with the weak form only, all results in the present paper remain valid for j ∈ H−1/2(∂Ω).
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2.2.2 Dirichlet operator

We now consider the following Dirichlet problem

−∇ · (q∇v) = f in Ω and v = g on ∂Ω. (2.7)

For each q ∈ Q and g ∈ H1/2(∂Ω), by the coercivity condition (2.2), the problem (2.7) attains a unique
weak solution v in the sense that v ∈ H1(Ω), γv = g and satisfies the identity∫

Ω

q∇v · ∇ψ = (f, ψ) (2.8)

for all ψ ∈ H1
0 (Ω). We can rewrite

v = v0 +G, (2.9)

where G = γ−1g and v0 ∈ H1
0 (Ω) is the unique solution to the following variational problem∫

Ω

q∇v0 · ∇ψ = (f, ψ)−
∫

Ω

q∇G · ∇ψ

for all ψ ∈ H1
0 (Ω). Since

‖G‖H1(Ω) ≤
∥∥γ−1

∥∥
L
(
H1/2(∂Ω),H1(Ω)

) ‖g‖H1/2(∂Ω) ,

we thus obtain the priori estimate

‖v‖H1(Ω) ≤ ‖v0‖H1(Ω) + ‖G‖H1(Ω)

≤ 1 + CΩ
�

CΩ
� q
‖f‖H−1(Ω) +

1 + CΩ
�

CΩ
� q

q ‖G‖H1(Ω) + ‖G‖H1(Ω)

≤ CD
(
‖g‖H1/2(∂Ω) + ‖f‖H−1(Ω)

)
, (2.10)

where

CD := max

(
1 + CΩ

�
CΩ
� q

,

(
1 + CΩ

�
CΩ
� q

q + 1

)∥∥γ−1
∥∥
L
(
H1/2(∂Ω),H1(Ω)

)) .
The Dirichlet operator is for any fixed g ∈ H1/2(∂Ω) defined as

D : Q → H1(Ω) with q 7→ Dqg

which maps each q ∈ Q to the unique weak solution Dqg := v of the problem (2.7).

2.2.3 Neumann-to-Dirichlet map

For any fixed q ∈ Q we can define the Neumann-to-Dirichlet map

Λq : H
−1/2
−cf (∂Ω)→ H

1/2
� (∂Ω)

j 7→ Λqj := γNqj.

Since ∫
Ω

q∇Nqj · ∇ψ = (f, ψ)

for all ψ ∈ H1
0 (Ω), in view of (2.8) we conclude that

Λqj = g if and only if Nqj = Dqg.
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2.3 Identification problem

The inverse problem is stated as follows.

Given f ∈ H−1(Ω),
(
j†, g†

)
∈ H−1/2

−cf (∂Ω)×H1/2
� (∂Ω) with Λq†j

† = g†, find q† ∈ Q.

In other words, the problem of interest is, given f ∈ H−1(Ω), and a single Neumann-Dirichlet pair
(
j†, g†

)
∈

H
−1/2
−cf (∂Ω)×H1/2

� (∂Ω), to find q† ∈ Q and Φ† ∈ H1
� (Ω) such that the system (1.1)–(1.3) is satisfied in the

weak sense.

2.4 Total variation regularization

Assume that (jδ, gδ) ∈ H−1/2
−cf (∂Ω) × H1/2

� (∂Ω) is the measured data of the exact boundary values (j†, g†)
with ∥∥jδ − j†∥∥H−1/2(∂Ω)

+
∥∥gδ − g†∥∥H1/2(∂Ω)

≤ δ (2.11)

for some measurement error δ > 0. Our problem is now to reconstruct the conductivity q† ∈ Q from this
perturbed data (jδ, gδ). For this purpose we consider the cost functional

Jδ(q) :=

∫
Ω

q∇ (Nqjδ −Dqgδ) · ∇ (Nqjδ −Dqgδ) , (2.12)

where Nqjδ and Dqgδ is the unique weak solutions of the problems (2.3) and (2.7), respectively, with j
in (2.3) and g in (2.7) being replaced by jδ and gδ. Furthermore, to estimate the possibly discontinuous
conductivity, we here use the total variation regularization (cf., e.g., [14, 21, 22]), i.e., we consider the
minimization problem

min
q∈Qad

Υρ,δ(q) := min
q∈Qad

(
Jδ(q) + ρ

∫
Ω

|∇q|
)
, (Pρ,δ)

where
Qad := Q∩BV (Ω)

is the admissible set of the sought conductivities.

Remark 2.2. The noise model (2.11) is to some extent an idealized one, since in practice, measurement
precision might be different for the current j and the voltage g, and, more importantly, it will be first of
all be given with respect to some Lp norm (e.g., p = 2 corresponding to normally and p = ∞ to uniformly
distributed noise) rather than in H−1/2(∂Ω)×H1/2(∂Ω). While the Neumann data part is unproblematic,
by continuity of the embedding of Lp(∂Ω) in H−1/2(∂Ω) for p ≥ 2d−1

d , we can obtain an H1/2(∂Ω) version
of the originally Lp(∂Ω) Dirichlet data e.g. by Tikhonov regularization (cf. [22] and the references therein)
as follows. For simplicity, we restrict ourselves to the Hilbert space case p = 2 and assume that we have
measurements g̃δg ∈ L2(∂Ω) such that

‖g̃δg − g†‖L2(∂Ω) ≤ δg

Tikhonov regularization applied to the embedding operator K : H1/2(∂Ω) → L2(∂Ω) amounts to finding a

minimizer g
δg
α of

min
g∈H1/2(∂Ω)

‖Kg − g̃δg‖2L2(∂Ω) + α‖g‖2H1/2(∂Ω)

where we use

‖g‖H1/2(∂Ω) := ‖γ−1g‖H1(Ω) =

(∫
Ω

(|∇γ−1g|2 + |γ−1g|2) dx

)1/2

as a norm on H1/2(∂Ω). The first order optimality conditions for this quadratic minimization problem yield∫
∂Ω

φ(gδgα − g̃δg ) ds+ α

∫
Ω

(∇γ−1gδgα · ∇γ−1φ+ γ−1gδgα γ
−1φ) dx = 0 for all φ ∈ H1/2(∂Ω),
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which is equivalent to∫
∂Ω

γϕ(γw − g̃δg ) ds+ α

∫
Ω

(∇w · ∇ϕ+ wϕ) dx = 0 for all ϕ ∈ H1(Ω),

for w = γ−1g
δg
α , i.e., the weak form of the Robin problem{

−∆w + w = 0 in Ω,

α∇w · ~n+ w = g̃δg on ∂Ω.
(2.13)

Thus, according to well-known results from regularization theory (cf., e.g. [22]), the smoothed version gδ :=

g
δg
α = γw (where w weakly solves (2.13)) of g̃δg converges to g† as δg tends to zero, provided the regularization

parameter α = α(δg, g̃δg ) is chosen appropriately. The latter can, e.g., be done by the discrepancy principle,
where α is chosen such that

‖Kgδgα − g̃δg‖2L2(∂Ω) =

∫
∂Ω

|gδgα − g̃δg |2 dx ∼ δ2
g .

We also wish to mention the complete electrode model cf., e.g., [40], which fully takes into account the fact
that current and voltage are typically not measured pointwise on the whole boundary, but via a set of finitely
many electrodes with finite geometric extensions as well as contact impedances.

2.5 Auxiliary results

Now we summarize some useful properties of the Neumann and Dirichlet operators. The proof of the following
result is based on standard arguments and therefore omitted.

Lemma 2.3. Let (j, g) ∈ H−1/2
−cf (∂Ω)×H1/2

� (∂Ω) be fixed.

(i) The Neumann operator N : Q ⊂ L∞(Ω)→ H1
� (Ω) is continuously Fréchet differentiable on the set Q. For

each q ∈ Q the action of the Fréchet derivative in direction ξ ∈ L∞(Ω) denoted by ηN := N ′qj(ξ) := N ′(q)ξ
is the unique weak solution in H1

� (Ω) to the Neumann problem

−∇ · (q∇ηN ) = ∇ · (ξ∇Nqj) in Ω and q∇ηN · ~n = −ξ∇Nqj · ~n on ∂Ω

in the sense that the identity ∫
Ω

q∇ηN · ∇ϕ = −
∫

Ω

ξ∇Nqj · ∇ϕ (2.14)

holds for all ϕ ∈ H1
� (Ω). Furthermore, the following estimate is fulfilled

‖ηN ‖H1(Ω) ≤
(
1 + CΩ

�
)
CN

CΩ
� q

(
‖j‖H−1/2(∂Ω) + ‖f‖H−1(Ω)

)
‖ξ‖L∞(Ω). (2.15)

(ii) The Dirichlet operator D : Q ⊂ L∞(Ω)→ H1
� (Ω) is continuously Fréchet differentiable on the set Q. For

each q ∈ Q the action of the Fréchet derivative in direction ξ ∈ L∞(Ω) denoted by ηD := D′qg(ξ) =: D′(q)ξ
is the unique weak solution in H1

0 (Ω) to the Dirichlet problem

−∇ · (q∇ηD) = ∇ · (ξ∇Dqg) in Ω and ηD = 0 on ∂Ω

in the sense that it satisfies the equation∫
Ω

q∇ηD · ∇ψ = −
∫

Ω

ξ∇Dqg · ∇ψ

for all ψ ∈ H1
0 (Ω). Furthermore, the following estimate is fulfilled

‖ηD‖H1(Ω) ≤
(
1 + CΩ

�
)
CD

CΩ
� q

(
‖g‖H1/2(∂Ω) + ‖f‖H−1(Ω)

)
‖ξ‖L∞(Ω).
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Lemma 2.4. If the sequence (qn) ⊂ Q converges to q in the L1(Ω)-norm, then q ∈ Q and for any fixed

(jδ, gδ) ∈ H
−1/2
−cf (∂Ω) × H

1/2
� (∂Ω) the sequence (Nqnjδ,Dqngδ) converges to (Nqjδ,Dqgδ) in the H1(Ω) ×

H1(Ω)-norm. Furthermore, there holds

lim
n→∞

Jδ (qn) = Jδ
(
q
)
,

where the functional Jδ is defined in (2.12).

Proof. Since (qn) ⊂ Q converges to q in the L1(Ω)-norm, up to a subsequence we assume that it converges
to q a.e. in Ω, which implies that q ∈ Q. For all ϕ ∈ H1

� (Ω) we infer from (2.4) that∫
Ω

qn∇Nqnjδ · ∇ϕ = 〈jδ, γϕ〉+ (f, ϕ) =

∫
Ω

q∇Nqjδ · ∇ϕ

and so that ∫
Ω

qn∇ (Nqnjδ −Nqjδ) · ∇ϕ =

∫
Ω

(q − qn)∇Nqjδ · ∇ϕ. (2.16)

Taking ϕ = Nqnjδ −Nqjδ, by (2.2), we get

CΩ
� q

1 + CΩ
�
‖Nqnjδ −Nqjδ‖

2
H1(Ω) ≤

∫
Ω

qn∇ (Nqnjδ −Nqjδ) · ∇ (Nqnjδ −Nqjδ)

=

∫
Ω

(q − qn)∇Nqjδ · ∇ (Nqnjδ −Nqjδ)

≤
(∫

Ω

|q − qn|2 |∇Nqjδ|2
)1/2(∫

Ω

|∇ (Nqnjδ −Nqjδ)|
2

)1/2

and so that

‖Nqnjδ −Nqjδ‖H1(Ω) ≤
1 + CΩ

�
CΩ
� q

(∫
Ω

|q − qn|2 |∇Nqjδ|2
)1/2

.

Hence, by the Lebesgue dominated convergence theorem, we deduce from the last inequality that

lim
n→∞

‖Nqnjδ −Nqjδ‖H1(Ω) = 0. (2.17)

Similarly to (2.16), we also get∫
Ω

qn∇ (Dqngδ −Dqgδ) · ∇ψ =

∫
Ω

(q − qn)∇Dqgδ · ∇ψ

for all ψ ∈ H1
0 (Ω). Since γDqngδ = γDqgδ = gδ, taking ψ = Dqngδ −Dqgδ ∈ H1

0 (Ω) in the last equation, we
also obtain the limit

lim
n→∞

‖Dqngδ −Dqgδ‖H1(Ω) = 0. (2.18)

Next, we rewrite the functional Jδ as follows

Jδ (qn) =

∫
Ω

qn∇Nqnjδ · ∇Nqnjδ − 2

∫
Ω

qn∇Nqnjδ · ∇Dqngδ +

∫
Ω

qn∇Dqngδ · ∇Dqngδ

= 〈jδ, γNqnjδ〉+ (f,Nqnjδ)− 2 (〈jδ, gδ〉+ (f,Dqngδ)) +

∫
Ω

qn∇Dqngδ · ∇Dqngδ (2.19)

and, by (2.17)–(2.18), have that

〈jδ, γNqnjδ〉+ (f,Nqnjδ − 2Dqngδ)→ 〈jδ, γNqjδ〉+ (f,Nqjδ − 2Dqgδ) (2.20)
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as n tends to ∞. We now consider the difference∫
Ω

qn∇Dqngδ · ∇Dqngδ −
∫

Ω

q∇Dqgδ · ∇Dqgδ

=

∫
Ω

qn∇ (Dqngδ −Dqgδ) · ∇ (Dqngδ +Dqgδ)−
∫

Ω

(q − qn)∇Dqgδ · ∇Dqgδ

and note that ∫
Ω

(q − qn)∇Dqgδ · ∇Dqgδ → 0

as n goes to ∞, by the Lebesgue dominated convergence theorem. Furthermore, then applying the Cauchy-
Schwarz inequality, we also get that∣∣∣∣ ∫

Ω

qn∇ (Dqngδ −Dqgδ) · ∇ (Dqngδ +Dqgδ)
∣∣∣∣

≤ q
(∫

Ω

|∇ (Dqngδ −Dqgδ)|
2

)1/2(∫
Ω

|∇ (Dqngδ +Dqgδ)|2
)1/2

≤ q ‖Dqngδ −Dqgδ‖H1(Ω)

(
‖Dqngδ‖H1(Ω) + ‖Dqgδ‖H1(Ω)

)
→ 0

as n approaches ∞, here we used (2.10) and (2.18). We thus obtain that∫
Ω

qn∇Dqngδ · ∇Dqngδ →
∫

Ω

q∇Dqgδ · ∇Dqgδ (2.21)

as n tends to ∞. Then we deduce from (2.19)–(2.21) that

lim
n→∞

Jδ (qn) = 〈jδ, γNqjδ〉+ (f,Nqjδ)− 2 〈jδ, gδ〉 − 2 (f,Dqgδ) +

∫
Ω

q∇Dqgδ · ∇Dqgδ

=

∫
Ω

q∇Nqjδ · ∇Nqjδ − 2

∫
Ω

q∇Nqjδ · ∇Dqgδ +

∫
Ω

q∇Dqgδ · ∇Dqgδ

= Jδ
(
q
)
,

which finishes the proof.

Lemma 2.5 ([24]). (i) Let (qn) be a bounded sequence in the BV (Ω)-norm. Then a subsequence which is
denoted by the same symbol and an element q ∈ BV (Ω) exist such that (qn) converges to q in the L1(Ω)-norm.

(ii) Let (qn) be a sequence in BV (Ω) converging to q in the L1(Ω)-norm. Then q ∈ BV (Ω) and∫
Ω

|∇q| ≤ lim inf
n→∞

∫
Ω

|∇qn|. (2.22)

We mention that equality need not be achieved in (2.22). Here is a counterexample from [24]. Let Ω = (0, 2π)
and qn(x) = 1

n sinnx for x ∈ Ω and n ∈ N. Then ‖qn‖L1(Ω) → 0 as n→∞, but
∫

Ω
|∇qn| = 4 for each n ∈ N.

Let us quote the following useful result on approximation of BV -functions by smooth functions.

Lemma 2.6 ([5, 16]). Assume that w ∈ BV (Ω). Then for all α > 0 an element wα ∈ C∞(Ω) exists such
that ∫

Ω

|w − wα| ≤ α
∫

Ω

|∇w|,
∫

Ω

|∇wα| ≤ (1 + Cα)

∫
Ω

|∇w| and

∫
Ω

|D2wα| ≤ Cα−1

∫
Ω

|∇w|,

where the positive constant C is independent of α.

Now, we are in a position to prove the main result of this section

Theorem 2.7. The problem (Pρ,δ) attains a solution qρ,δ, which is called the regularized solution of the
identification problem.
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Proof. Let (qn) ⊂ Qad be a minimizing sequence of the problem (Pρ,δ), i.e.,

lim
n→∞

(
Jδ (qn) + ρ

∫
Ω

|∇qn|
)

= inf
q∈Qad

(
Jδ(q) + ρ

∫
Ω

|∇q|
)
. (2.23)

Then, due to Lemma 2.5, a subsequence which is not relabelled and an element q ∈ Qad exist such that (qn)
converges to q in the L1(Ω)-norm and ∫

Ω

|∇q| ≤ lim inf
n→∞

∫
Ω

|∇qn|. (2.24)

Using Lemma 2.4 and by (2.23)–(2.24), we obtain that

Jδ(q) + ρ

∫
Ω

|∇q| ≤ lim
n→∞

Jδ (qn) + lim inf
n→∞

ρ

∫
Ω

|∇qn|

= lim inf
n→∞

(
Jδ (qn) + ρ

∫
Ω

|∇qn|
)

= inf
q∈Qad

(
Jδ(q) + ρ

∫
Ω

|∇q|
)
.

This means that q is a solution of the problem (Pρ,δ), which finishes the proof.

3 Finite element method for the identification problem

Let
(
T h
)

0<h<1
be a family of regular and quasi-uniform triangulations of the domain Ω with the mesh size h

such that each vertex of the polygonal boundary ∂Ω is a node of T h. For the definition of the discretization
space of the state functions let us denote

Vh1 :=
{
vh ∈ C(Ω)

∣∣ vh|T ∈ P1(T ), ∀T ∈ T h
}

and
Vh1,� := Vh1 ∩H1

� (Ω) and Vh1,0 := Vh1 ∩H1
0 (Ω) ⊂ Vh1,�,

where P1 consists of all polynomial functions of degree less than or equal to 1.

To go further, we introduce the following modified Clément’s interpolation operator, see [19].

Lemma 3.1. An interpolation operator Πh
� : L1(Ω)→ Vh1,� exists such that

Πh
�ϕ

h = ϕh for all ϕh ∈ Vh1,� and Πh
�
(
H1

0 (Ω)
)
⊂ Vh1,0 ⊂ Vh1,�.

Furthermore, it satisfies the properties

lim
h→0

∥∥ϑ−Πh
�ϑ
∥∥
H1(Ω)

= 0 for all ϑ ∈ H1
� (Ω) (3.1)

and ∥∥ϑ−Πh
�ϑ
∥∥
H1(Ω)

≤ Ch‖ϑ‖H2(Ω) for all ϑ ∈ H1
� (Ω) ∩H2(Ω) (3.2)

with the positive constant C being independent of h and ϑ.

Proof. It is well known (see [19] and some generalizations [6, 7, 39]) that there is an interpolation operator

Πh : L1(Ω)→ Vh1 with Πhϕh = ϕh for all ϕh ∈ Vh1 and Πh
(
H1

0 (Ω)
)
⊂ Vh1,0

which satisfies the following properties

lim
h→0

∥∥ϑ−Πhϑ
∥∥
H1(Ω)

= 0 for all ϑ ∈ H1(Ω) (3.3)
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and ∥∥ϑ−Πhϑ
∥∥
H1(Ω)

≤ Ch‖ϑ‖H2(Ω) for all ϑ ∈ H2(Ω). (3.4)

We then define for each ϑ ∈ L1(Ω)

Πh
�ϑ := Πhϑ− 1

|∂Ω|

∫
∂Ω

γΠhϑ ∈ Vh1,�.

Then Πh
�
(
L1(Ω)

)
⊂ Vh1,�, Πh

�ϕ
h = ϕh for all ϕh ∈ Vh1,� and Πh

�
(
H1

0 (Ω)
)
⊂ Vh1,0. Furthermore, since ∇Πh

�ϑ =

∇Πhϑ for all ϑ ∈ L1(Ω), the properties (3.1), (3.2) are deduced from (3.3), (3.4), respectively. The proof is
completed.

We remark that the operator Πh in the above proof satisfies the estimate ‖ϑ−Πhϑ‖Hk(Ω) ≤ Chl−k‖ϑ‖Hl(Ω)

for 0 ≤ k ≤ l ≤ 2 and ϑ ∈ H l(Ω) (see [19]) which implies that∥∥Πh
�ϑ
∥∥
H1(Ω)

≤ C ‖ϑ‖H1(Ω) for all ϑ ∈ H1(Ω), (3.5)

an estimate that is required for the proof of part (ii) of the following proposition.

Similarly to the continuous case we have the following result.

Proposition 3.2. (i) Let q be in Q and j be in H
−1/2
−cf (∂Ω). Then the variational equation∫

Ω

q∇uh · ∇ϕh =
〈
j, γϕh

〉
+
(
f, ϕh

)
for all ϕh ∈ Vh1,� (3.6)

admits a unique solution uh ∈ Vh1,�. Furthermore, there holds∥∥uh∥∥
H1(Ω)

≤ CN
(
‖j‖H−1/2(∂Ω) + ‖f‖H−1(Ω)

)
. (3.7)

(ii) Let q be in Q and g be in H
1/2
� (∂Ω). Then the equation∫

Ω

q∇vh · ∇ψh =
(
f, ψh

)
for all ψh ∈ Vh1,0 (3.8)

with γvh = γ
(
Πh
�(γ
−1g)

)
has a unique solution vh ∈ Vh1,�. Furthermore, the stability estimate∥∥vh∥∥

H1(Ω)
≤ C̄D

(
‖g‖H1/2(∂Ω) + ‖f‖H−1(Ω)

)
(3.9)

is satisfied, where C̄D := max

(
1+CΩ

�
CΩ
� q

,
(

1+CΩ
�

CΩ
� q

q + 1
)∥∥Πh

�
∥∥
L
(
H1(Ω),H1(Ω)

) ∥∥γ−1
∥∥
L
(
H1/2(∂Ω),H1(Ω)

)).

Let u and uh be solutions to (2.4) and (3.6), respectively. Due to the standard theory of the finite element
method (see, for example, [11, 18]), the estimate

‖u− uh‖H1(Ω) ≤ Ch‖u‖H2(Ω) (3.10)

holds in case u ∈ H2(Ω), where the positive constant C is independent of h and u.

Assume that v and vh are the solutions to (2.8) and (3.8), where v ∈ H2(Ω), we then have (see, for example,
[11, Section 5.4]) that

‖v − vh‖H1(Ω) ≤ inf
ψh∈Vh1,0

‖v − γ−1g − ψh‖H1(Ω) + 2‖γ−1g −Πh
�(γ
−1g)‖H1(Ω).

Since v ∈ H2(Ω), it follows that g = γv ∈ H3/2(Ω) and so γ−1g ∈ H2(Ω). Due to the approximation property
of the finite dimensional spaces Vh1,0 ⊂ H1

0 (Ω) (which states that infψh∈Vh1,0 ‖ψ − ψ
h‖H1(Ω) ≤ Ch‖ψ‖H2(Ω)

for each ψ ∈ H2(Ω) ∩H1
0 (Ω), where the constant C is independent of h and ψ) and (3.4), we deduce

‖v − vh‖H1(Ω) ≤ Ch
(
‖v‖H2(Ω) + ‖γ−1g‖H2(Ω)

)
. (3.11)

We also mention that above we approximate the Dirichlet boundary condition g by gh := γ
(
Πh
�(γ
−1g).

There exist some different choices for the approximation gh; for example, the L2-projection of g on the set
Sh∂Ω := {γϕh | ϕh ∈ Vh1 }, or the Lagrange interpolation of g in Sh∂Ω in case g being smooth enough (see [23]
for more details).
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Definition 3.3. (i) For any fixed j ∈ H−1/2
−cf (∂Ω) the operator N h : Q → Vh1,� mapping each q ∈ Q to the

unique solution uh =: N h
q j of the variational equation (3.6) is called the discrete Neumann operator.

(ii) For any fixed g ∈ H1/2
� (∂Ω) the operator Dh : Q → Vh1,� mapping each q ∈ Q to the unique solution

vh =: Dhq g of the variational equation (3.8) is called the discrete Dirichlet operator.

Next, the discretization space for the sought conductivity is defined by

Qhad := Q∩ Vh1 ⊂ Q ∩BV (Ω) = Qad.

Then, using the discrete operators N h and Dh in Definition 3.3, we introduce the discrete cost functional

Υh
ρ,δ(q) := J hδ (q) + ρ

∫
Ω

√
|∇q|2 + εh, (3.12)

where q ∈ Qhad, εh is a positive function of the mesh size h satisfying limh→0 ε
h = 0 and

J hδ (q) :=

∫
Ω

q∇
(
N h
q jδ −Dhq gδ

)
· ∇
(
N h
q jδ −Dhq gδ

)
with q ∈ Q. (3.13)

The positive function εh above acts as a smoothing parameter for the total variation.

Theorem 3.4. For any fixed h, ρ and δ the minimization problem

min
q∈Qhad

Υh
ρ,δ(q)

(
Phρ,δ

)
attains a solution qhρ,δ, which is called the discrete regularized solution of the identication problem.

Proof. We first note that Qhad is a compact subset of the finite dimensional space Vh1 . Let (qn) ⊂ Qhad be a

minimizing sequence of the problem
(
Phρ,δ

)
, i.e.,

lim
n→∞

Υh
ρ,δ (qn) = inf

q∈Qhad
Υh
ρ,δ(q). (3.14)

Then a subsequence of (qn) which is denoted by the same symbol and an element q ∈ Qhad exist such that
(qn) converges to q in the H1(Ω)-norm. We have that

∣∣∣∣ ∫
Ω

√
|∇qn|2 + εh −

∫
Ω

√
|∇q|2 + εh

∣∣∣∣ ≤ ∫
Ω

∣∣∣|∇qn|2 − |∇q|2∣∣∣√
|∇qn|2 + εh +

√
|∇q|2 + εh

≤ 1

2
√
εh

∫
Ω

|∇qn −∇q| |∇qn +∇q| ≤ 1

2
√
εh

(∫
Ω

|∇qn −∇q|2
)1/2(∫

Ω

|∇qn +∇q|2
)1/2

≤ 1

2
√
εh
‖qn − q‖H1(Ω)

(
‖qn − q‖H1(Ω) + 2 ‖q‖H1(Ω)

)
→ 0 as n→∞. (3.15)

On the other hand, similarly to Lemma 2.4, we can prove that the sequence
(
N h
qnjδ,D

h
qngδ

)
converges to(

N h
q jδ,Dhq gδ

)
in the H1(Ω)×H1(Ω)-norm as n goes to ∞ and then obtain

lim
n→∞

J hδ (qn) = J hδ (q). (3.16)

Thus, it follows from (3.14)–(3.16) that

Υh
ρ,δ(q) = lim

n→∞
Υh
ρ,δ (qn) = inf

q∈Qhad
Υh
ρ,δ(q),

which finishes the proof.
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4 Convergence

From now on C is a generic positive constant which is independent of the mesh size h of T h, the noise level
δ and the regularization parameter ρ. The following result shows the stability of the finite element method
for the regularized identification problem.

Theorem 4.1. Let (hn)n be a sequence with limn→∞ hn = 0 and (jδn , gδn) be a sequence in H
−1/2
−cf (∂Ω) ×

H
1/2
� (∂Ω) converging to (jδ, gδ) in the H−1/2(∂Ω) ×H1/2(∂Ω)-norm. For a fixed regularization parameter

ρ > 0 let qhnρ,δn ∈ Q
hn
ad be a minimizer of

(
Phnρ,δn

)
for each n ∈ N. Then a subsequence of

(
qhnρ,δn

)
not relabelled

and an element qρ,δ ∈ Qad exist such that

lim
n→∞

∥∥qhnρ,δn − qρ,δ∥∥L1(Ω)
= 0 and lim

n→∞

∫
Ω

∣∣∇qhnρ,δn ∣∣ =

∫
Ω

|∇qρ,δ| .

Furthermore, qρ,δ is a solution to (Pρ,δ).

To prove the theorem, we need the auxiliary results, starting with the following estimates.

Lemma 4.2. Let (j1, g1) and (j2, g2) be arbitrary in H
−1/2
−cf (∂Ω)×H1/2

� (∂Ω). Then the estimates

∥∥N h
q j1 −N h

q j2
∥∥
H1(Ω)

≤ 1 + CΩ
�

CΩ
� q

‖γ‖
L
(
H1(Ω),H1/2(∂Ω)

) ‖j1 − j2‖H−1/2(∂Ω) (4.1)

and∥∥Dhq g1 −Dhq g2

∥∥
H1(Ω)

≤
(

1 + CΩ
�

CΩ
� q

q + 1

)∥∥Πh
�
∥∥
L
(
H1(Ω),H1(Ω)

) ∥∥γ−1
∥∥
L
(
H1/2(∂Ω),H1(Ω)

) ‖g1 − g2‖H1/2(∂Ω)

(4.2)

hold for all q ∈ Q and h > 0.

Proof. According to the definition of the discrete Neumann operator, we have for all ϕh ∈ Vh1,� that∫
Ω

q∇N h
q ji · ∇ϕh =

〈
ji, γϕ

h
〉

+
(
f, ϕh

)
with i = 1, 2.

Thus, ΦhN := N h
q j1 −N h

q j2 is the unique solution to the variational problem∫
Ω

q∇ΦhN · ∇ϕh =
〈
j1 − j2, γϕh

〉
for all ϕh ∈ Vh1,� and so that (4.1) follows. Similarly, we also obtain (4.2), which finishes the proof.

Lemma 4.3. Let (hn)n be a sequence with limn→∞ hn = 0 and (jδn , gδn) ⊂ H
−1/2
−cf (∂Ω) × H1/2

� (∂Ω) be a

sequence converging to (jδ, gδ) in the H−1/2(∂Ω)×H1/2(∂Ω)-norm. Then for any fixed q ∈ Q the limit

lim
n→∞

J hnδn (q) = Jδ(q) (4.3)

holds. Furthermore, if (qn) is a sequence in Q which converges to q in the L1(Ω)-norm, then the sequence(
N hn
qn jδn ,D

hn
qn gδn

)
converges to (Nqjδ,Dqgδ) in the H1(Ω)×H1(Ω)-norm and the limit

lim
n→∞

J hnδn (qn) = Jδ(q) (4.4)

also holds.
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Proof. We get for any fixed q ∈ Q that

N hn
q jδn −Dhnq gδn = (Nqjδ −Dqgδ) +

(
N hn
q jδn −Nqjδ +Dqgδ −Dhnq gδn

)
.

Thus, with Φn := N hn
q jδn −Nqjδ +Dqgδ −Dhnq gδn we have

J hnδn (q) =

∫
Ω

q∇
(
N hn
q jδn −Dhnq gδn

)
· ∇
(
N hn
q jδn −Dhnq gδn

)
= Jδ(q) +

∫
Ω

q∇Φn · ∇Φn + 2

∫
Ω

q∇ (Nqjδ −Dqgδ) · ∇Φn.

Applying Lemma 4.2, we infer that∥∥N hn
q jδn −Nqjδ

∥∥
H1(Ω)

≤
∥∥N hn

q jδ −Nqjδ
∥∥
H1(Ω)

+
∥∥N hn

q jδn −N hn
q jδ

∥∥
H1(Ω)

≤
∥∥N hn

q jδ −Nqjδ
∥∥
H1(Ω)

+ C ‖jδn − jδ‖H−1/2(∂Ω) → 0 as n→∞,

where we used the limit
lim
n→∞

∥∥N hn
q jδ −Nqjδ

∥∥
H1(Ω)

= 0,

due to the standard theory (see, for example, [11, 18]). Similarly, we also have∥∥Dhnq gδn −Dqgδ
∥∥
H1(Ω)

→ 0 as n→∞.

We thus get that

‖Φn‖H1(Ω) ≤
∥∥N hn

q jδn −Nqjδ
∥∥
H1(Ω)

+
∥∥Dqgδ −Dhnq gδn

∥∥
H1(Ω)

→ 0 as n→∞.

Therefore, we obtain that

lim
n→∞

∣∣∣∣∫
Ω

q∇Φn · ∇Φn + 2

∫
Ω

q∇ (Nqjδ −Dqgδ) · ∇Φn

∣∣∣∣ ≤ C lim
n→∞

(
‖Φn‖2H1(Ω) + ‖Φn‖H1(Ω)

)
= 0

and (4.3) then follows.

Next, for qn converging to q in L1(Ω), hence, along a subsequence again denoted by (qn)n, pointwise almost
everywhere, by (3.6) and (2.4), we have∫

Ω

qn∇N hn
qn jδn · ∇ϕ

hn =
〈
jδn , γϕ

hn
〉

+
(
f, ϕhn

)
=
〈
jδ, γϕ

hn
〉

+
(
f, ϕhn

)
+
〈
jδn − jδ, γϕhn

〉
=

∫
Ω

q∇Nqjδ · ∇ϕhn +
〈
jδn − jδ, γϕhn

〉
for all ϕhn ∈ Vhn1,� which implies that∫

Ω

qn∇
(
N hn
qn jδn −Πhn

� Nqjδ
)
· ∇ϕhn

=

∫
Ω

q∇Nqjδ · ∇ϕhn −
∫

Ω

qn∇Πhn
� Nqjδ · ∇ϕhn +

〈
jδn − jδ, γϕhn

〉
=

∫
Ω

(
q − qn

)
∇Nqjδ · ∇ϕhn +

∫
Ω

qn∇
(
Nqjδ −Πhn

� Nqjδ
)
· ∇ϕhn +

〈
jδn − jδ, γϕhn

〉
, (4.5)

where the operator Πhn
� is defined according to Lemma 3.1. Taking ϕhn = N hn

qn jδn − Πhn
� Nqjδ ∈ Vh1,�, by

(2.2) and using the Cauchy-Schwarz inequality, we get

CΩ
� q

1 + CΩ
�

∥∥N hn
qn jδn −Πhn

� Nqjδ
∥∥2

H1(Ω)

≤
(∫

Ω

|q − qn|2 |∇Nqjδ|2
)1/2 ∥∥N hn

qn jδn −Πhn
� Nqjδ

∥∥
H1(Ω)

+ q
∥∥Nqjδ −Πhn

� Nqjδ
∥∥
H1(Ω)

∥∥N hn
qn jδn −Πhn

� Nqjδ
∥∥
H1(Ω)

+ ‖γ‖
L
(
H1(Ω),H1/2(∂Ω)

) ‖jδn − jδ‖H−1/2(∂Ω)

∥∥N hn
qn jδn −Πhn

� Nqjδ
∥∥
H1(Ω)
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and so that

CΩ
� q

1 + CΩ
�

∥∥∥N hn
qn jδn −Πhn

� Nqjδ
∥∥∥
H1(Ω)

≤
(∫

Ω

|q − qn|2 |∇Nqjδ|2
)1/2

+ q
∥∥Nqjδ −Πhn

� Nqjδ
∥∥
H1(Ω)

+ ‖γ‖
L
(
H1(Ω),H1/2(∂Ω)

) ‖jδn − jδ‖H−1/2(∂Ω) → 0 as n→∞,

by the Lebesgue dominated convergence theorem and (3.1). Thus, we infer from the triangle inequality that∥∥N hn
qn jδn −Nqjδ

∥∥
H1(Ω)

≤
∥∥N hn

qn jδn −Πhn
� Nqjδ

∥∥
H1(Ω)

+
∥∥Πhn
� Nqjδ −Nqjδ

∥∥
H1(Ω)

→ 0 as n→∞.

Similarly, using (2.8) and (3.8), for all ψhn ∈ Vhn1,0 we arrive at∫
Ω

qn∇
(
Dhnqn gδ −Πhn

� Dqgδ
)
· ∇ψhn =

∫
Ω

(
q − qn

)
∇Dqgδ · ∇ψhn +

∫
Ω

qn∇
(
Dqgδ −Πhn

� Dqgδ
)
· ∇ψhn .

(4.6)

We have

γDhnqn gδ = γ
(
Πhn
� (γ−1gδ)

)
, (4.7)

by Proposition 3.2 (ii). On the other hand, in view of (2.9), we get Dqgδ = v0 + γ−1gδ with v0 ∈ H1
0 (Ω),

and therefore

γ
(
Πhn
� Dqgδ

)
= γ

(
Πhn
� (v0 + γ−1gδ)

)
= γ

(
Πhn
� v0

)
+ γ
(
Πhn
� (γ−1gδ)

)
= γ

(
Πhn
� (γ−1gδ)

)
, (4.8)

since γ
(
Πhn
� v0

)
= 0. It follows from (4.7)–(4.8) that

ψhn∗ := Dhnqn gδ −Πhn
� Dqgδ ∈ V

hn
1,0

Taking ψhn := ψhn∗ in the above equation (4.6), it is deduced that

lim
n→∞

∥∥Dhnqn gδ −Πhn
� Dqgδ

∥∥
H1(Ω)

= 0.

Using Lemma 4.2, we therefore obtain that∥∥∥Dhnqn gδn −Dqgδ∥∥∥
H1(Ω)

≤
∥∥Dhnqn gδn −Dhnqn gδ∥∥H1(Ω)

+
∥∥Dhnqn gδ −Πhn

� Dqgδ
∥∥
H1(Ω)

+
∥∥Πhn
� Dqgδ −Dqgδ

∥∥
H1(Ω)

≤ C ‖gδn − gδ‖H1/2(∂Ω) +
∥∥Dhnqn gδ −Πhn

� Dqgδ
∥∥
H1(Ω)

+
∥∥Πhn
� Dqgδ −Dqgδ

∥∥
H1(Ω)

→ 0 as n→∞.

Since
(
qn
)

converges to q in the L1(Ω)-norm while the sequence
(
N hn
qn jδn ,D

hn
qn gδn

)
converges to (Nqjδ,Dqgδ)

in the H1(Ω)×H1(Ω)-norm, we conclude, similarly to the proof of Lemma 2.4 that

lim
n→∞

J hnδn
(
qn
)

= Jδ(q),

which finishes the proof.

Proof of Theorem 4.1. To simplify notation we write qn := qhnρ,δn . Let q ∈ Qad be arbitrary. Using Lemma
2.6, for any fixed α ∈ (0, 1) an element qα ∈ C∞(Ω) exists such that

‖q − qα‖L1(Ω) ≤ Cα and

∫
Ω

|∇qα| ≤ Cα+

∫
Ω

|∇q| , (4.9)

where the positive constant C is independent of α. Setting

qαP := max
(
q,min (qα, q)

)
∈W 1,∞(Ω) ∩Q ⊂ Qad and qαn := Ihn1 qαP ∈ Q

hn
ad ,
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where
Ih1 : W 1,p(Ω) ↪→ C(Ω)→ Vh1 with p > d

is the usual nodal value interpolation operator. Since the sequence
(
qαn
)

converges to qαP in the H1(Ω)-norm
as n tends to ∞ (see, for example, [11, 18]), we get the equation

lim
n→∞

∫
Ω

√
|∇qαn |

2
+ εhn =

∫
Ω

|∇qαP |. (4.10)

Indeed, we have that∣∣∣∣∫
Ω

√
|∇qαn |

2
+ εhn −

∫
Ω

|∇qαn |
∣∣∣∣ ≤ ∫

Ω

εhn√
|∇qαn |

2
+ εhn + |∇qαn |

≤ |Ω|
√
εhn → 0 as n→∞

and by the reverse triangle as well as the Cauchy Schwarz inequality∣∣∣∣∫
Ω

|∇qαn | −
∫

Ω

|∇qαP |
∣∣∣∣ ≤ ‖∇qαn −∇qαP ‖L1(Ω) ≤ |Ω|

1/2 ‖∇qαn −∇qαP ‖L2(Ω) → 0 as n→∞

so that (4.10) follows from the triangle inequality. By (4.9) and the fact that qαP is constant on {x ∈
Ω | qαP (x) 6= qα(x)}, we have that∫

Ω

|∇qαP | =
∫
{x∈Ω | qαP (x)=qα(x)}

|∇qαP | ≤
∫

Ω

|∇qα| ≤ Cα+

∫
Ω

|∇q|. (4.11)

By the optimality of qn, we get for all n ∈ N that

J hnδn (qn) + ρ

∫
Ω

√
|∇qn|2 + εhn ≤ J hnδn (qαn) + ρ

∫
Ω

√
|∇qαn |2 + εhn , (4.12)

where, by (3.7) and (3.9),

J hnδn (qαn) ≤ C

holds for some C independent of n and α. We then deduce from (4.10)–(4.12) that∫
Ω

|∇qn| ≤
∫

Ω

√
|∇qn|2 + εhn ≤ C(ρ)

for another constant C(ρ) independent of n and α, but depending on ρ, so the sequence (qn) is bounded in
the BV (Ω)-norm. Thus, by Lemma 2.5, a subsequence which is denoted by the same symbol and an element
q̂ ∈ Qad exist such that (qn) converges to q̂ in the L1(Ω)-norm and∫

Ω

|∇q̂| ≤ lim inf
n→∞

∫
Ω

|∇qn| ≤ lim inf
n→∞

∫
Ω

√
|∇qn|2 + εhn . (4.13)

Furthermore, due to Lemma 4.3 we get that

Jδ(q̂) = lim
n→∞

J hnδn (qn) (4.14)

and

Jδ (qαP ) = lim
n→∞

J hnδn (qαn) . (4.15)

Therefore, by (4.10)–(4.15), we have that

Jδ(q̂) + ρ

∫
Ω

|∇q̂| ≤ lim
n→∞

J hnδn (qn) + lim inf
n→∞

ρ

∫
Ω

√
|∇qn|2 + εhn , by (4.14) and (4.13)

= lim inf
n→∞

(
J hnδn (qn) + ρ

∫
Ω

√
|∇qn|2 + εhn

)
≤ lim inf

n→∞

(
J hnδn (qαn) + ρ

∫
Ω

√
|∇qαn |2 + εhn

)
, by (4.12)

= Jδ (qαP ) + ρ

∫
Ω

|∇qαP |, by (4.15) and (4.10)

≤ Jδ (qαP ) + ρ

∫
Ω

|∇q|+ Cαρ, by (4.11). (4.16)
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Now, by the definition of qαP , we get |qαP − q| ≤ |qα − q| a.e. in Ω and therefore

‖qαP − q‖L1(Ω) ≤ ‖q
α − q‖L1(Ω) ≤ Cα.

Sending α to zero in the last inequality and applying Lemma 2.4, we arrive at

Jδ(q̂) + ρ

∫
Ω

|∇q̂| ≤ Jδ(q) + ρ

∫
Ω

|∇q| ,

where q̂ ∈ Qad and q ∈ Qad is arbitrary. This means that q̂ is a solution to (Pρ,δ) and (qn) converges to q̂
in the L1(Ω)-norm.

Next, as above, from q̂ we can obtain q̂α, q̂αP , q̂αn and note that
(
q̂αn
)

converges to q̂αP in the H1(Ω)-norm,

so also in the L1(Ω)-norm, as n tends to ∞ while
(
q̂αP
)

converges to q̂ in the L1(Ω)-norm as α tends to 0.
Then, by the optimality of qn, we have that

J hnδn (qn) + ρ

∫
Ω

√
|∇qn|2 + εhn ≤ J hnδn (q̂αn) + ρ

∫
Ω

√
|∇q̂αn |2 + εhn . (4.17)

By (4.14), we then obtain that

ρ lim sup
n→∞

∫
Ω

|∇qn| = lim
n→∞

J hnδn (qn) + ρ lim sup
n→∞

∫
Ω

|∇qn| − Jδ(q̂)

≤ lim sup
n→∞

(
J hnδn (qn) + ρ

∫
Ω

√
|∇qn|2 + εhn

)
− Jδ(q̂)

≤ lim sup
n→∞

(
J hnδn (q̂αn) + ρ

∫
Ω

√
|∇q̂αn |2 + εhn

)
− Jδ(q̂), by (4.17)

= Jδ(q̂αP ) + ρ

∫
Ω

|∇q̂αP | − Jδ(q̂), by Lemma 4.3

≤ Jδ(q̂αP ) + ρ

∫
Ω

|∇q̂|+ Cαρ− Jδ(q̂).

Sending α to zero, we obtain from the last inequality that lim supn→∞
∫

Ω
|∇qn| ≤

∫
Ω
|∇q̂|. Combining this

with (4.13), we conclude limn→∞
∫

Ω
|∇qn| =

∫
Ω
|∇q̂|, which finishes the proof.

Next we show convergence of the regularized finite element approximations to a solution of the identification
problem. Before doing so, we introduce the notion of the total variation-minimizing solution.

Lemma 4.4. The problem

min
q∈IQad (j†,g†)

∫
Ω

|∇q| (IP)

attains a solution, which is called the total variation-minimizing solution of the identification problem, where

IQad
(
j†, g†

)
:=
{
q ∈ Qad

∣∣ Λqj
† = g†

}
=
{
q ∈ Qad

∣∣ Nqj† = Dqg†
}
. (4.18)

Proof. By our assumption on consistency of the exact boundary data, the set IQad
(
j†, g†

)
is non-empty.

Let (qn) ⊂ IQad
(
j†, g†

)
be a minimizing sequence of the problem (IP), i.e.,

lim
n→∞

∫
Ω

|∇qn| = inf
q∈IQad (j†,g†)

∫
Ω

|∇q| . (4.19)

Then due to Lemma 2.5, a subsequence which is denoted by the same symbol and an element q̃ ∈ Qad exist
such that (qn) converges to q̃ in the L1(Ω)-norm and∫

Ω

|∇q̃| ≤ lim
n→∞

∫
Ω

|∇qn|. (4.20)

On the other hand, by Lemma 2.4, we have that(
Nqnj†,Dqng†

)
→
(
Nq̃j†,Dq̃g†

)
in the H1(Ω)×H1(Ω)-norm.
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By the definition of the set IQad
(
j†, g†

)
, we get that Nqnj† = Dqng† which implies Nq̃j† = Dq̃g†. Combining

this with (4.19) and (4.20), we conclude that∫
Ω

|∇q̃| ≤ inf
q∈IQad (j†,g†)

∫
Ω

|∇q| ,

where q̃ ∈ IQad
(
j†, g†

)
, which finishes the proof.

Remark 4.5. Note that due to the lack of strict convexity of the cost functional and the admissible set, a
solution of (IP) may be nonunique.

Lemma 4.6. For any fixed q ∈ Qad an element q̂h ∈ Qhad exists such that∥∥q̂h − q∥∥
L1(Ω)

≤ Ch| log h| (4.21)

and

lim
h→0

∫
Ω

∣∣∇q̂h∣∣ =

∫
Ω

|∇q|. (4.22)

In case q ∈W 1,p(Ω) ↪→ C(Ω) with p > d the above element q̂h can be taken as Ih1 q.

Proof. According to Lemma 2.6, for any fixed α ∈ (0, 1) an element qα ∈ C∞(Ω) exists such that

‖q − qα‖L1(Ω) ≤ Cα,
∫

Ω

|∇qα| ≤ Cα+

∫
Ω

|∇q| and

∫
Ω

|D2qα| ≤ Cα−1

∫
Ω

|∇q|,

where the positive constant C is independent of α. Setting

qαP := max
(
q,min (qα, q)

)
∈W 1,∞(Ω) ∩Q ⊂ Qad and q̂h := Ih1 q

α
P ∈ Qhad,

we then have ∣∣q̂h(x)− q(x)
∣∣ =

∣∣Ih1 qα(x)− q(x)
∣∣ a.e. in Ω1 := {x ∈ Ω | q ≤ qα ≤ q}

and ∣∣q̂h(x)− q(x)
∣∣ ≤ |qα(x)− q(x)| a.e. in Ω \ Ω1.

We thus have, using for example [11, Theorem 4.4.20], with an another positive constant C independent of
α that ∥∥q̂h − q∥∥

L1(Ω)
≤
∥∥Ih1 qα − q∥∥L1(Ω1)

+ ‖qα − q‖L1(Ω\Ω1)

≤
∥∥Ih1 qα − qα∥∥L1(Ω)

+ ‖q − qα‖L1(Ω1) + ‖qα − q‖L1(Ω\Ω1)

≤ Ch
∫

Ω

|∇qα|+ ‖q − qα‖L1(Ω)

≤ Ch
(
Cα+

∫
Ω

|∇q|
)

+ Cα ≤ C(h+ α)

≤ Ch| log h|

for α ∼ h| log h|. To establish the limit (4.22) we first note that∫
Ω

∣∣∇Ih1 qαP ∣∣ ≤ ∫
Ω

∣∣∇Ih1 qα∣∣. (4.23)

Indeed, we rewrite∫
Ω

∣∣∇Ih1 qαP ∣∣ =
∑
T∈T h1

∫
T

∣∣∇Ih1 qαP ∣∣+
∑
T∈T h2

∫
T

∣∣∇Ih1 qαP ∣∣+
∑

T∈T h\
(
T h1 ∪T h2

)
∫
T

∣∣∇Ih1 qαP ∣∣, (4.24)

where T h1 includes all triangles T ∈ T h with its vertices x1, . . . , xd, xd+1 at which

either qα(x1), . . . , qα(xd+1) < q or qα(x1), . . . , qα(xd+1) > q
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while T h2 consists all triangles T ∈ T h with its vertices x1, . . . , xd, xd+1 at which

qα(x1), . . . , qα(xd+1) ∈ [q, q].

We then have that ∑
T∈T h1

∫
T

∣∣∇Ih1 qαP ∣∣ = 0 and
∑
T∈T h2

∫
T

∣∣∇Ih1 qαP ∣∣ =
∑
T∈T h2

∫
T

∣∣∇Ih1 qα∣∣. (4.25)

Now let T ∈ T h \
(
T h1 ∪ T h2

)
be arbitrary. In Cartesian coordinate system Oxz with x ∈ Rd we consider

plane surfaces z = Ih1 q
α
P (x) and z = Ih1 q

α(x) with x ∈ T and denote by ~mP and ~m the constant unit normal
on these surfaces in the upward z direction, respectively. By the definition of the projection qαP , we get

0 < ̂(Oz, ~mP ) ≤ ̂(Oz, ~m) < π/2 and so that 0 < cos ̂(Oz, ~m) ≤ cos ̂(Oz, ~mP ) < 1. Since

cos ̂(Oz, ~m) =
1√∣∣∇Ih1 qα∣∣2 + 1

and cos ̂(Oz, ~mP ) =
1√∣∣∇Ih1 qαP ∣∣2 + 1

,

it follows that
∣∣∇Ih1 qα(x)

∣∣ ≥ ∣∣∇Ih1 qαP (x)
∣∣ for all x ∈ T . We thus have that∑

T∈T h\
(
T h1 ∪T h2

)
∫
T

∣∣∇Ih1 qαP ∣∣ ≤ ∑
T∈T h\

(
T h1 ∪T h2

)
∫
T

∣∣∇Ih1 qα∣∣. (4.26)

The inequality (4.23) is then directly deduced from (4.24)–(4.26). We therefore have with a constant C
independent of α that∫

Ω

∣∣∇q̂h∣∣− ∫
Ω

∣∣∇q∣∣ =

∫
Ω

∣∣∇Ih1 qαP ∣∣− ∫
Ω

∣∣∇q∣∣ ≤ ∫
Ω

∣∣∇Ih1 qα∣∣− ∫
Ω

∣∣∇q∣∣
≤
∫

Ω

∣∣∇(Ih1 qα − qα)∣∣+

∫
Ω

∣∣∇qα∣∣− ∫
Ω

∣∣∇q∣∣
≤ Ch

∫
Ω

∣∣D2qα
∣∣+ Cα

≤ CChα−1

∫
Ω

|∇q|+ Cα

≤ C
(
| log h|−1 + h| log h|

)
→ 0 as h→ 0 and for α ∼ h| log h|.

Combining this with (4.21) and Lemma 2.5, we obtain that∫
Ω

|∇q| ≤ lim inf
h→0

∫
Ω

∣∣∇q̂h∣∣ ≤ lim sup
h→0

∫
Ω

∣∣∇q̂h∣∣ ≤ ∫
Ω

|∇q|,

which finishes the proof.

Lemma 4.7. Let (q, j, g) ∈ Qad ×H−1/2
−cf (∂Ω)×H1/2

� (∂Ω) be arbitrary. Then the convergence

%̂hq (j, g) :=
∥∥∥N h

q̂hj −Nqj
∥∥∥
H1(Ω)

+
∥∥∥Dhq̂hg −Dqg∥∥∥

H1(Ω)
→ 0 as h→ 0

holds, where q̂h is generated from q according to Lemma 4.6.

Proof. The assertion follows directly from Lemma 4.3 and Lemma 4.6.

Additional smoothness assumptions enable an error estimate of %̂hq (j, g).

Lemma 4.8. Let (q, j, g) ∈ Qad × H−1/2
−cf (∂Ω) × H1/2

� (∂Ω) be arbitrary. Assume that Nqj,Dqg ∈ H2(Ω).
Then

%̂hq (j, g) ≤ Cr
(
h| log h|

)r
with

{
r < 1/2 if d = 2 and

r = 1/3 if d = 3.
(4.27)
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Proof. Due to Lemma 3.1, since Nqj ∈ H2(Ω), we get that∥∥Nqj −Πh
�Nqj

∥∥
H1(Ω)

≤ Ch. (4.28)

Furthermore, it follows from Lemma 4.6 that

∥∥q − q̂h∥∥
Lp(Ω)

=

(∫
Ω

|q − q̂h| |q − q̂h|p−1

)1/p

≤
(
(2q)p−1 Ch| log h|

)1/p ≤ C(h| log h|
)1/p

(4.29)

for p ∈ [1,∞). Like in (4.5), using (3.6) and (2.4), we infer that∫
Ω

q̂h∇N h
q̂hj · ∇ϕ

h =
〈
j, γϕh

〉
+
(
f, ϕh

)
=

∫
Ω

q∇Nqj · ∇ϕh

for all ϕh ∈ Vh1,� and obtain that∫
Ω

q̂h∇
(
N h
q̂hj −Πh

�Nqj
)
· ∇ϕh =

∫
Ω

(
q − q̂h

)
∇Nqj · ∇ϕh +

∫
Ω

q̂h∇
(
Nqj −Πh

�Nqj
)
· ∇ϕh. (4.30)

Since H2(Ω) is embedded in W 1,s(Ω) with

s

{
<∞ if d = 2

= 6 if d = 3
(4.31)

(see, for example, [1, Theorem 5.4]), it follows from Cauchy-Schwarz and Hölder’s inequality that∫
Ω

(
q − q̂h

)
∇Nqj · ∇ϕh ≤

(∫
Ω

(
q − q̂h

)2|∇Nqj|2)1/2(∫
Ω

∣∣∇ϕh∣∣2)1/2

≤
∥∥q − q̂h∥∥

L2s/(s−2)(Ω)

∥∥∇Nqj∥∥Ls(Ω)

∥∥ϕh∥∥
H1(Ω)

≤ C
∥∥q − q̂h∥∥

L2s/(s−2)(Ω)

∥∥ϕh∥∥
H1(Ω)

.

Then taking ϕh = N h
q̂hj −Πh

�Nqj ∈ Vh1,� and using (2.2), we infer from (4.30) that∥∥∥N h
q̂hj −Πh

�Nqj
∥∥∥
H1(Ω)

≤ C
(∥∥q − q̂h∥∥

L2s/(s−2)(Ω)
+
∥∥Nqj −Πh

�Nqj
∥∥
H1(Ω)

)
≤ C

(
h| log h|

)(s−2)/(2s)
+ Ch ≤ C

(
h| log h|

)(s−2)/(2s)
,

by (4.28)–(4.29). Thus, applying the triangle inequality and (4.28) again, we infer that∥∥∥Nqj −N h
q̂hj
∥∥∥
H1(Ω)

≤
∥∥Nqj −Πh

�Nqj
∥∥
H1(Ω)

+
∥∥∥Πh
�Nqj −N h

q̂hj
∥∥∥
H1(Ω)

≤ C
(
h| log h|

)(s−2)/(2s)
.

Similarly, we also get
∥∥∥Dqg −Dhq̂hg∥∥∥

H1(Ω)
≤ C

(
h| log h|

)(s−2)/(2s)
and so that

%̂hq (j, g) ≤ C
(
h| log h|

)(s−2)/(2s)

for s as in (4.31), which yields the assertion.

With an appropriate a priori choice of the regularization parameter we get convergence under conditions
similar to those stated, e.g., in [35] in the Hilbert space setting.

Theorem 4.9. Let (hn)n, (δn)n and (ρn)n be any positive sequences such that

ρn → 0,
δn√
ρn
→ 0 and

%̂hnq
(
j†, g†

)
√
ρn

→ 0 as n→∞, (4.32)

where q is any solution to Nqj† = Dqg†. Moreover, assume that
(
jδn , gδn

)
is a sequence satisfying∥∥jδn − j†∥∥H−1/2(∂Ω)

+
∥∥gδn − g†∥∥H1/2(∂Ω)

≤ δn
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and that qn := qhnρn,δn is an arbitrary minimizer of
(
Phnρn,δn

)
for each n ∈ N. Then a subsequence of (qn)

which is not relabelled and a solution q† to (IP) exist such that

lim
n→∞

∥∥qn − q†∥∥L1(Ω)
= 0 and lim

n→∞

∫
Ω

|∇qn| =
∫

Ω

∣∣∇q†∣∣. (4.33)

Furthermore,
(
N hn
qn jδn

)
and

(
Dhnqn gδn

)
converge to the unique weak solution Φ† = Φ†(q†, j†, g†) of the bound-

ary value problem (1.1)–(1.3) in the H1(Ω)-norm. If q† is unique, then convergence (4.33) holds for the
whole sequence.

Uniform L∞ boundedness of (qn) together with interpolation implies that convergence actually takes place
in any Lp space with p ∈ [1,∞].

Remark 4.10. In case Nqj†,Dqg† ∈ H2(Ω) Lemma 4.8 shows that %̂hq
(
j†, g†

)
≤ C

(
h| log h|

)r
with r as in

(4.27). Therefore, in view of (4.32), convergence is obtained if the sequence (ρn) is chosen such that

ρn → 0,
δn√
ρn
→ 0 and

(
hn| log hn|

)r
√
ρn

→ 0 as n→∞.

By regularity theory for elliptic boundary value problems (see, for example, [26, 42]), if j† ∈ H1/2(Ω),
g† ∈ H3/2(Ω), q ∈ C0,1(Ω), f ∈ L2(Ω) and either ∂Ω is C1,1-smooth or the domain Ω is convex, then
Nqj†,Dqg† ∈ H2(Ω).

Proof of Theorem 4.9. We have from the optimality of qn that

J hnδn (qn) + ρn

∫
Ω

√
|∇qn|2 + εhn ≤ J hnδn

(
q̂hn
)

+ ρn

∫
Ω

√∣∣∇q̂hn ∣∣2 + εhn , (4.34)

where q̂hn is generated from q according to Lemma 4.6, and

J hnδn
(
q̂hn
)

=

∫
Ω

q̂hn∇
(
N hn
q̂hn

jδn −D
hn
q̂hn

gδn

)
· ∇
(
N hn
q̂hn

jδn −D
hn
q̂hn

gδn

)
≤ q

∥∥∥N hn
q̂hn

jδn −D
hn
q̂hn

gδn

∥∥∥2

H1(Ω)

= q
∥∥∥N hn

q̂hn
jδn −N

hn
q̂hn

j† +N hn
q̂hn

j† −Dhn
q̂hn

g† −Nqj† +Dqg† +Dhn
q̂hn

g† −Dhn
q̂hn

gδn

∥∥∥2

H1(Ω)

≤ 4q
(∥∥∥N hn

q̂hn
jδn −N

hn
q̂hn

j†
∥∥∥2

H1(Ω)
+
∥∥∥Dhnq̂hn g† −Dhnq̂hn gδn∥∥∥2

H1(Ω)

+
∥∥∥N hn

q̂hn
j† −Nqj†

∥∥∥2

H1(Ω)
+
∥∥∥Dhnq̂hn g† −Dqg†∥∥∥2

H1(Ω)

)
≤ C

(∥∥jδn − j†∥∥2

H−1/2(∂Ω)
+
∥∥gδn − g†∥∥2

H−1/2(∂Ω)

)
+ C%̂hnq

(
j†, g†

)2
≤ C

(
δ2
n + %̂hnq

(
j†, g†

)2)
,

where we have used Lemma 4.2 and the fact Nqj† = Dqg†. Moreover, by Lemma 4.6, we have that

lim
n→∞

∫
Ω

√∣∣∇q̂hn ∣∣2 + εhn = lim
n→∞

∫
Ω

∣∣∇q̂hn ∣∣ =

∫
Ω

|∇q|. (4.35)

We therefore conclude from (4.34) and (4.32) that

lim
n→∞

J hnδn
(
q̂hn
)

ρn
= 0, lim

n→∞
J hnδn (qn) = 0 (4.36)

and

lim sup
n→∞

∫
Ω

|∇qn| ≤ lim sup
n→∞

∫
Ω

√∣∣∇qn∣∣2 + εhn ≤ lim sup
n→∞

∫
Ω

√∣∣∇q̂hn ∣∣2 + εhn =

∫
Ω

|∇q|. (4.37)

21



Thus, (qn) is bounded in the BV (Ω)-norm. A subsequence which is denoted by the same symbol and an
element q† ∈ Qad exist such that (qn) converges to q† in the L1(Ω)-norm and∫

Ω

∣∣∇q†∣∣ ≤ lim inf
n→∞

∫
Ω

|∇qn|. (4.38)

Using Lemma 4.2 again, we infer that∥∥∥N hn
qn j

† −Dhnqn g
†
∥∥∥2

H1(Ω)

≤ 3
(∥∥N hn

qn j
† −N hn

qn jδn
∥∥2

H1(Ω)
+
∥∥Dhnqn g† −Dhnqn gδn∥∥2

H1(Ω)
+
∥∥N hn

qn jδn −D
hn
qn gδn

∥∥2

H1(Ω)

)
≤ Cδ2

n + 3
∥∥N hn

qn jδn −D
hn
qn gδn

∥∥2

H1(Ω)

≤ C
(
δ2
n + J hnδn (qn)

)
.

Thus, using Lemma 4.3, we obtain from the last inequality and (4.36) that∥∥Nq†j† −Dq†g†∥∥2

H1(Ω)
= lim
n→∞

∥∥N hn
qn j

† −Dhnqn g
†∥∥2

H1(Ω)
= 0

and so that

Nq†j† = Dq†g†, i.e., q† ∈ IQad
(
j†, g†

)
. (4.39)

Furthermore, it follows from (4.37)–(4.38) that∫
Ω

∣∣∇q†∣∣ ≤ lim inf
n→∞

∫
Ω

|∇qn| ≤ lim sup
n→∞

∫
Ω

|∇qn| ≤
∫

Ω

|∇q|,

for any solution q to Nqj† = Dqg†, hence, in view of (4.39), q† is a total variation minimizing solution of the
identification problem, i.e., a solution to (IP). Moreover, by setting q = q†, we get∫

Ω

∣∣∇q†∣∣ = lim
n→∞

∫
Ω

|∇qn|.

Finally, Lemma 4.3 shows that the sequence
(
N hn
qn jδn ,D

hn
qn gδn

)
converges in the H1(Ω) × H1(Ω)-norm to(

Nq†j†,Dq†g†
)
, where Φ† := Nq†j† = Dq†g† is the unique weak solution of the elliptic system (1.1)–(1.3),

which finishes the proof.

5 Projected Armijo algorithm and numerical test

In this section we present the projected Armijo algorithm (see [27, Chapter 5]) for numerically solving the

minimization problem
(
Phρ,δ

)
. We note that many other efficient solution methods are available, see for

example [8].

5.1 Projected Armijo algorithm

5.1.1 Differentiability of the cost functional

Similarly to Lemma 2.3 one also sees that the discrete Neumann and Dirichlet operators N h, Dh are Fréchet
differentiable on the set Q. For given jδ ∈ H−1/2(∂Ω) and each q ∈ Q the Fréchet derivative N h′(q)ξ =:

N h
q
′
jδ(ξ) in the direction ξ ∈ L∞(Ω) is an element of Vh1,� and satisfies the equation∫

Ω

q∇N h
q

′
jδ(ξ) · ∇ϕh = −

∫
Ω

ξ∇N h
q jδ · ∇ϕh (5.1)
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for all ϕh ∈ Vh1,�. Likewise, for fixed gδ ∈ H1/2(∂Ω) and each q ∈ Q the Fréchet derivative Dh′(q)ξ =:

Dhq
′
gδ(ξ) in the direction ξ ∈ L∞(Ω) is an element of Vh1,0 and satisfies the equation∫

Ω

q∇Dhq
′
gδ(ξ) · ∇ψh = −

∫
Ω

ξ∇Dhq gδ · ∇ψh (5.2)

for all ψh ∈ Vh1,0.

The functional J hδ is therefore Fréchet differentiable on the set Q. For each q ∈ Q the action of the Fréchet
derivative in the direction ξ ∈ L∞(Ω) is given by

J hδ
′
(q)(ξ) =

∫
Ω

ξ∇
(
N h
q jδ −Dhq gδ

)
· ∇
(
N h
q jδ −Dhq gδ

)
+ 2

∫
Ω

q∇
(
N h
q

′
jδ(ξ)−Dhq

′
gδ(ξ)

)
· ∇
(
N h
q jδ −Dhq gδ

)
=

∫
Ω

ξ∇
(
N h
q jδ −Dhq gδ

)
· ∇
(
N h
q jδ −Dhq gδ

)
+ 2

∫
Ω

q∇N h
q

′
jδ(ξ) · ∇

(
N h
q jδ −Dhq gδ

)
− 2

∫
Ω

q∇N h
q jδ · ∇Dhq

′
gδ(ξ)

+ 2

∫
Ω

q∇Dhq gδ · ∇Dhq
′
gδ(ξ).

Since N h
q jδ,Dhq gδ ∈ Vh1,� and Dhq

′
gδ(ξ) ∈ Vh1,0 ⊂ Vh1,�, it follows from (5.1), (3.6) and (3.8) that∫

Ω

q∇N h
q

′
jδ(ξ) · ∇

(
N h
q jδ −Dhq gδ

)
−
∫

Ω

q∇N h
q jδ · ∇Dhq

′
gδ(ξ) +

∫
Ω

q∇Dhq gδ · ∇Dhq
′
gδ(ξ)

= −
∫

Ω

ξ∇N h
q jδ · ∇

(
N h
q jδ −Dhq gδ

)
−
〈
jδ, γDhq

′
gδ(ξ)

〉
−
(
f,Dhq

′
gδ(ξ)

)
+
(
f,Dhq

′
gδ(ξ)

)
= −

∫
Ω

ξ∇N h
q jδ · ∇

(
N h
q jδ −Dhq gδ

)
and so that

J hδ
′
(q)(ξ) =

∫
Ω

ξ∇
(
N h
q jδ −Dhq gδ

)
· ∇
(
N h
q jδ −Dhq gδ

)
− 2

∫
Ω

ξ∇N h
q jδ · ∇

(
N h
q jδ −Dhq gδ

)
=

∫
Ω

ξ
(
∇Dhq gδ · ∇Dhq gδ −∇N h

q jδ · ∇N h
q jδ
)
.

Therefore, the derivative of the cost functional Υh
ρ,δ of

(
Phρ,δ

)
at q ∈ Qhad in the direction ξ ∈ Vh1 is given by

Υh
ρ,δ

′
(q)(ξ) =

∫
Ω

ξ
(
∇Dhq gδ · ∇Dhq gδ −∇N h

q jδ · ∇N h
q jδ
)

+ ρ

∫
Ω

∇q · ∇ξ√
|∇q|2 + εh

. (5.3)

Let {Nj : j = 1, . . . ,Mh} be the set of nodes of the triangulation T h, then Vh1 is a finite dimensional vector
space with dimension Mh. Let {φ1, . . . , φMh} be the basis of Vh1 consisting hat functions, i.e. φi(Nj) = δij
for all 1 ≤ i, j ≤Mh, where δij is the Kronecker symbol. Each functional u ∈ Vh1 then can be identified with

a vector (u1, . . . , uMh) ∈ RMh

consisting of the nodal values of u, i.e.

u =

Mh∑
j=1

ujφj with uj = u(Nj).

In Vh1 we use the Euclidean inner product 〈·, ·〉E . For each u = (u1, . . . , uMh) and v = (v1, . . . , vMh), we

have 〈u, v〉E =
∑Mh

j=1 ujvj . Let us denote the gradient of Υh
ρ,δ at q ∈ Qhad by ∇Υh

ρ,δ(q) = (Υ1, . . . ,ΥMh). We

then have from (5.3) with ξ = (ξ1, . . . , ξMh) ∈ Vh1 that

Mh∑
j=1

ξj

∫
Ω

(
φj
(
∇Dhq gδ · ∇Dhq gδ −∇N h

q jδ · ∇N h
q jδ
)

+
ρ∇q · ∇φj√
|∇q|2 + εh

)
=

Mh∑
j=1

ξjΥj
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which yields

Υj =

∫
Ω

φj
(
∇Dhq gδ · ∇Dhq gδ −∇N h

q jδ · ∇N h
q jδ
)

+ ρ

∫
Ω

∇q · ∇φj√
|∇q|2 + εh

(5.4)

for all j = 1, . . . ,Mh.

5.1.2 Algorithm

The projected Armijo algorithm is then read as: given a step size control β ∈ (0, 1), an initial approximation
qh0 ∈ Qhad, a smoothing parameter εh, number of iteration N and setting k = 0.

1. Compute N h
qhk
jδ and Dh

qhk
gδ from the variational equations∫

Ω

qhk∇N h
qhk
jδ · ∇ϕh =

〈
jδ, γϕ

h
〉

+
(
f, ϕh

)
for all ϕh ∈ Vh1,� (5.5)

and ∫
Ω

qhk∇Dhqhk gδ · ∇ψ
h =

(
f, ψh

)
for all ψh ∈ Vh1,0, (5.6)

respectively, as well as Υh
ρ,δ(q

h
k ) according to (3.12), (3.13).

2. Compute the gradient ∇Υh
ρ,δ(q

h
k ) with the jth-component given by

Υj =

∫
Ω

φj

(
∇Dhqhk gδ · ∇D

h
qhk
gδ −∇N h

qhk
jδ · ∇N h

qhk
jδ

)
+ ρ

∫
Ω

∇qhk · ∇φj√
|∇qhk |2 + εh

,

due to (5.4).

3. Set Ghk :=
∑Mh

j=1 Υjφj .

(a) Compute
q̃hk := max

(
q,min

(
qhk − βGhk , q

))
,

N h
q̃hk
jδ, Dhq̃hk gδ, according to (5.5), (5.6), Υh

ρ,δ(q̃
h
k ), according to (3.12), (3.13), and

L := Υh
ρ,δ(q̃

h
k )−Υh

ρ,δ(q
h
k ) + τβ

∥∥q̃hk − qhk∥∥2

L2(Ω)
with τ = 10−4.

(b) If L ≤ 0

go to the next step (c) below

else

set β := β
2 and then go back (a)

(c) Update qhk = q̃hk , set k = k + 1.

4. Compute

Tolerance :=
∥∥∇Υh

ρ,δ(q
h
k )
∥∥
L2(Ω)

− τ1 − τ2
∥∥∇Υh

ρ,δ(q
h
0 )
∥∥
L2(Ω)

(5.7)

with τ1 := 10−3h1/2 and τ2 := 10−2h1/2. If Tolerance ≤ 0 or k > N , then stop; otherwise go back Step
1.
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5.2 Numerical tests

We now illustrate the theoretical result with numerical examples. For this purpose we consider the the
boundary value problem

−∇ ·
(
q†∇Φ

)
= f in Ω, (5.8)

q†∇Φ · ~n = j† on ∂Ω and (5.9)

Φ = g† on ∂Ω (5.10)

with Ω = {x = (x1, x2) ∈ R2 | − 1 < x1, x2 < 1}. The special constants q and q in the definition of the set
Q according to (1.4) are respectively chosen as 0.05 and 10.

We assume that the known source f is discontinuous and given by

f =
3

2
χD −

1

2
χΩ\D,

where χD is the characteristic function of D :=
{

(x1, x2) ∈ Ω
∣∣ |x1| ≤ 1/2 and |x2| ≤ 1/2

}
. Note that

(f, 1) = 0, so that cf = 0. The sought conductivity q† in the equation (5.8)–(5.9) is assumed to be
discontinuous and given by

q† = 3χΩ1 + 2χΩ2 + χΩ\(Ω1∪Ω2),

where

Ω1 :=

{
(x1, x2) ∈ Ω

∣∣ 9
(
x1 + 1/2

)2

+ 16
(
x2 − 1/2

)2

≤ 1

}
and

Ω2 :=

{
(x1, x2) ∈ Ω

∣∣ (x1 − 1/2
)2

+
(
x2 + 1/2

)2

≤ 1/16

}
.

For the discretization we divide the interval (−1, 1) into ` equal segments and so that the domain Ω = (−1, 1)2

is divided into 2`2 triangles, where the diameter of each triangle is h` =
√

8
` . In the minimization problem(

Phρ,δ
)

we take h = h` and ρ = ρ` = 0.01
√
h`. We use the projected Armijo algorithm which is described in

Subsection 5.1 for computing the numerical solution of the problem
(
Ph`ρ`,δ`

)
. The step size control is chosen

with β = 0.75 while the smoothing parameter εh` = ρ`. The initial approximation is the constant function
defined by qh`0 = 1.5.

Example 5.1. In this example the Neumann boundary condition j† ∈ H−1/2
−cf (∂Ω) in the equation (5.9) is

chosen to be the piecewise constant function defined by

j† = χ(0,1]×{−1} − χ[−1,0]×{1} + 2χ(0,1]×{1} − 2χ[−1,0]×{−1}

+ 3χ{−1}×(−1,0] − 3χ{1}×(0,1) + 4χ{1}×(−1,0] − 4χ{−1}×(0,1).
(5.11)

so that
〈
j†, 1

〉
= 0. The Dirichlet boundary condition g† ∈ H1/2

� (∂Ω) in the equation (5.10) is then defined
as g† = γNq†j†, where Nq†j† is the unique weak solution to the Neumann problem (5.8)–(5.9). For the
numerical solution of the pure Neumann problem (5.8)–(5.9) we use the penalty technique, see e.g. [9, 25]
for more details. Furthermore, to avoid a so-called inverse crime, we generate the data on a finer grid than
those used in the computations. To do so, we first solve the Neumann problem (5.8)–(5.9) on the very fine
grid ` = 128, and then handle (j†, g†) on this grid for our computational process below.

We assume that noisy observations are available in the form

(jδ` , gδ`) =
(
j† + θ` ·Rj† , g† + θ` ·Rg†

)
for some θ` > 0 depending on `, (5.12)

where Rj† and Rg† are ∂Mh` × 1-matrices of random numbers on the interval (−1, 1) which are generated
by the MATLAB function “rand” and ∂Mh` is the number of boundary nodes of the triangulation T h` . The
measurement error is then computed as δ` =

∥∥jδ` − j†∥∥L2(∂Ω)
+
∥∥gδ` − g†∥∥L2(∂Ω)

. To satisfy the condition

δ` · ρ−1/2
` → 0 as ` → ∞ in Theorem 4.9 we below take θ` = h`

√
ρ`. In doing so, we reversely mimic the
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situation of a given sequence of noise levels δ` tending to zero and of choosing the discretization level as well
as the regularization parameter in dependence of the noise level.

Our computational process will be started with the coarsest level ` = 4. In each iteration k we compute
Tolerance defined by (5.7). Then the iteration is stopped if Tolerance ≤ 0 or the number of iterations reaches
the maximum iteration count of 1000. After obtaining the numerical solution of the first iteration process
with respect to the coarsest level ` = 4, we use its interpolation on the next finer mesh ` = 8 as an initial
approximation qh`0 for the algorithm on this finer mesh, and so on for ` = 16, 32, 64.

Let q` denote the conductivity obtained at the final iterate of the algorithm corresponding to the refinement
level `. Furthermore, letN h`

q`
jδ` and Dh`q` gδ` denote the computed numerical solution to the Neumann problem

−∇ · (q`∇u) = f in Ω and q`∇u · ~n = jδ` on ∂Ω

and the Dirichlet problem

−∇ · (q`∇v) = f in Ω and v = g` on ∂Ω,

respectively. The notations N h`
q†
j† and Dh`

q†
g† of the exact numerical solutions are to be understood similarly.

We use the following abbreviations for the errors

L2
q =

∥∥q` − q†∥∥L2(Ω)
, L2

N =
∥∥N h`

q`
jδ` −N

h`
q†
j†
∥∥
L2(Ω)

and L2
D =

∥∥Dh`q` gδ` −Dh`q† g†∥∥L2(Ω)
.

The numerical results are summarized in Table 1 and Table 2, where we present the refinement level `, the
mesh size h` of the triangulation, the regularization parameter ρ`, the measurement noise δ`, the number
of iterations, the value of Tolerance, the errors L2

q, L
2
N , L2

D, and their experimental order of convergence
(EOC) defined by

EOCΞ :=
ln Ξ(h1)− ln Ξ(h2)

lnh1 − lnh2

with Ξ(h) being an error functional with respect to the mesh size h. The convergence history given in Table
1 and Table 2 shows that the projected Armijo algorithm performs well for our identification problem.

All figures presented hereafter correspond to the finest level ` = 64. Figure 1 from left to right shows the
interpolation Ih`1 q†, the numerical solution q` computed by the algorithm at the 953th iteration, and the

differences N h`
q`
jδ` −N

h`
q†
j† and Dh`q` gδ` −D

h`
q†
g†.

Convergence history
` h` ρ` δ` Iterate Tolerance

4 0.7071 8.4091e-3 0.1733 1000 0.2459
8 0.3536 5.9460e-3 8.4273e-2 1000 3.2771e-2
16 0.1766 4.2045e-3 3.4320e-2 1000 5.8479e-3
32 8.8388e-2 2.9730e-3 1.5877e-2 1000 9.4359e-5
64 4.4194e-2 2.1022e-3 6.7743e-3 953 -7.6116e-5

Table 1: Refinement level `, mesh size h` of the triangulation, regularization parameter ρ`, measurement
noise δ`, number of iterates and value of Tolerance.

Convergence history and EOC
` L2

q L2
N L2

D EOCL2
q

EOC
L2
N

EOC
L2
D

4 0.7906 0.3016 0.1371 — — —
8 0.4768 0.1546 6.2771e-2 0.7296 0.9637 1.1271
16 0.2306 6.9702e-2 2.1228e-2 1.0480 1.1497 1.5641
32 0.1271 3.0668e-2 9.9234e-3 0.8594 1.1845 1.0971
64 6.7791e-2 1.2116e-2 5.1055e-3 0.9068 1.3398 0.9588

Mean of EOC 0.8859 1.1594 1.1868

Table 2: Errors L2
q, L

2
N , L2

D, and their EOC between finest and coarsest level.
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Figure 1: Interpolation Ih`1 q†, computed numerical solution q` of the algorithm at the 953th iteration, and

the differences N h`
q`
jδ` −N

h`
q†
j† and Dh`q` gδ` −D

h`
q†
g†, for ` = 64, δ` = 6.7743e− 3.

We observe a decrease of all errors as the noise level gets smaller, as expected from our convergence result,
however, with respect to different norms. In particular, in our computations we use an L2 noise level, as
realistic in applications.

Example 5.2. In this example we consider noisy observations in the form

(jδ` , gδ`) =
(
j† + θ ·Rj† , g† + θ ·Rg†

)
,

where j† is defined by (5.11). This is different from (5.12), since here θ > 0 is independent of `.

Using the computational process which was described as in Example 5.1 starting with ` = 4, in Table 3 we
perform the numerical results for the finest grid ` = 64 and with different values of θ.

Numerical results for the finest grid ` = 64
θ δ` Iterate Tolerance L2

q L2
N L2

D

0.005 0.0167 991 -9.7239e-5 7.7012e-2 1.3085e-2 7.5847e-3
0.01 0.0316 1000 3.4160e-4 9.7971e-2 1.7896e-2 9.3278e-3
0.05 0.1567 1000 7.2599e-3 0.2467 0.1071 3.8046e-2
0.1 0.3308 1000 2.2546e-2 0.4059 0.2067 0.1077

Table 3: Numerical results for the finest grid ` = 64 and with different values of θ.

In Figure 2 from left to right we show the computed numerical solution q` of the algorithm at the final
iteration, and the differences q` − Ih`1 q†, N h`

q`
jδ` −N

h`
q†
j† and Dh`q` gδ` −D

h`
q†
g† for ` = 64 and θ = 0.005, i.e.,

δ` = 0.0167. Finally, Figure 3 performs the analog differences, but with θ = 0.1, i.e., δ` = 0.3308.

Figure 2: Computed numerical solution q` of the algorithm at the 991th iteration, and the differences
q` − Ih`1 q†, N h`

q`
jδ` −N

h`
q†
j† and Dh`q` gδ` −D

h`
q†
g† for ` = 64 and θ = 0.005, i.e., δ` = 0.0167.
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Figure 3: Computed numerical solution q` of the algorithm at the 1000th iteration, and the differences
q` − Ih`1 q†, N h`

q`
jδ` −N

h`
q†
j† and Dh`q` gδ` −D

h`
q†
g† for ` = 64 and θ = 0.1, i.e., δ` = 0.3308.

Example 5.3. In this example we assume that multiple measurements are available, say
(
jiδ, g

i
δ

)
i=1,...,I

.

Then, the cost functional Υh
ρ,δ and the problem

(
Phρ,δ

)
can be rewritten as

min
q∈Qhad

Ῡh
ρ,δ(q) := min

q∈Qhad


1

I

I∑
i=1

∫
Ω

q∇
(
N h
q j

i
δ −Dhq giδ

)
· ∇
(
N h
q j

i
δ −Dhq giδ

)
︸ ︷︷ ︸

:=J̄ hδ (q)

+ρ

∫
Ω

√
|∇q|2 + εh

 ,
(
P̄hρ,δ

)

which also attains a solution q̄hρ,δ. The Neumann boundary condition in the equation (5.9) is chosen in the
same form of (5.11), i.e.

j†(A,B,C,D) = A · χ(0,1]×{−1} −A · χ[−1,0]×{1} +B · χ(0,1]×{1} −B · χ[−1,0]×{−1}

+ C · χ{−1}×(−1,0] − C · χ{1}×(0,1) +D · χ{1}×(−1,0] −D · χ{−1}×(0,1),
(5.13)

that depends on the constants A,B,C and D. Let g†(A,B,C,D) := γNq†j
†
(A,B,C,D) and assume that noisy

observations are given by(
j

(A,B,C,D)
δ`

, g
(A,B,C,D)
δ`

)
=
(
j†(A,B,C,D) + θ ·Rj†

(A,B,C,D)
, g†(A,B,C,D) + θ ·Rg†

(A,B,C,D)

)
with θ > 0, (5.14)

where Rj†
(A,B,C,D)

and Rg†
(A,B,C,D)

denote ∂Mh` × 1-matrices of random numbers on the interval (−1, 1).

With θ = 0.1 and ` = 64 the last line of Table 3 displays the numerical results for the case (A,B,C,D) =
(1, 2, 3, 4) and I = 1, which is repeated in the first line of Table 4 for comparison.

We now fix D = 4. Let (A,B,C) be equal to all permutations of the set {1, 2, 3}. Then, the equations
(5.13)–(5.14) generate I = 6 measurements. Similarly, let (A,B,C,D) be all permutations of {1, 2, 3, 4} we
get I = 16 measurements. The numerical results for these two cases are presented in the two last lines of
Table 4, respectively.

Finally, in Figure 4 from left to right we show the computed numerical solution q` of the algorithm at the
final iteration for ` = 64, θ = 0.1, i.e., δ` = 0.3308, and I = 1, 6, 16, respectively.

Numerical results for ` = 64, θ = 0.1
Number of observations I Iterate Tolerance L2

q L2
N L2

D

1 1000 2.2546e-2 0.4059 0.2067 0.1077
6 1000 8.5684e-3 0.3159 7.4901e-2 4.4704e-2
16 1000 4.0133e-3 0.2547 5.6985e-2 3.2211e-2

Table 4: Numerical results for ` = 64, θ = 0.1, i.e., δ` = 0.3308, and with multiple measurements I = 1, 6, 16.
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Figure 4: Computed numerical solution q` of the algorithm at the final iteration for ` = 64, θ = 0.1, i.e.,
δ` = 0.3308, and with multiple measurements I = 1, 6, 16, respectively.

We observe that the use of multiple measurements improves the solution to yield an acceptable result even
in the presence of relatively large noise.
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