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Abstract

In this article we demonstrate a way to extend the AbC (approximation by conjugation)
method invented by Anosov and Katok from the smooth category to the category of real-
analytic diffeomorphisms on the torus. We present a general framework for such constructions
and prove several results. In particular, we construct minimal but not uniquely ergodic diffeo-
morphisms and nonstandard real-analytic realizations of toral translations.
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1 Introduction
An important question in Smooth Ergodic Theory asks if there are smooth versions to the objects
and concepts of abstract ergodic theory. One of the most powerful tools of constructing volume
preserving C∞-diffeomorphisms with prescribed ergodic or topological properties on any compact
connected manifold M of dimension m ≥ 2 admitting a non-trivial circle action S = {φt}t∈S1 is
the so called approximation by conjugation-method developed by D.V. Anosov and A. Katok in
their fundamental paper [AK70]. These diffeomorphisms are constructed as limits of conjugates
Tn = H−1

n ◦ φαn ◦ Hn, where αn = pn
qn

= αn−1 + 1
sn−1·kn−1·ln−1·q2

n−1
∈ Q, Hn = hn ◦ Hn−1 and

hn is a measure-preserving diffeomorphism satisfying φαn−1 ◦ hn = hn ◦ φαn−1 . In each step the
conjugation map hn and the parameters kn−1, ln−1 are chosen such that the diffeomorphism fn
imitates the desired property with a certain precision. Then the parameter sn−1 is chosen large
enough to guarantee closeness of fn to fn−1 in the C∞-topology and so the convergence of the
sequence (fn)n∈N to a limit diffeomorphism is provided. This method enables the construction of
smooth diffeomorphisms with specific ergodic properties (e. g. weak mixing ones in [AK70, section
5]) or non-standard smooth realizations of measure-preserving systems (e. g. [AK70, section 6] and
[FSW07]). See also the very interesting survey article [FK04] for more details and other results of
this method.

Unfortunately, there are great challenging differences in the real-analytic category as discussed
in [FK04, section 7.1]: Since maps with very large derivatives in the real domain or its inverses
are expected to have singularities in a small complex neighbourhood, for a real analytic family St,
0 ≤ t ≤ t0, S0 = id, the family h−1 ◦ St ◦ h is expected to have singularities very close to the real
domain for any t > 0. So, the domain of analycity for maps of our form fn = H−1

n ◦ φαn ◦ Hn

will shrink at any step of the construction and the limit diffeomorphism will not be analytic.
Thus, it is necessary to find conjugation maps of a special form which may be inverted more or
less explicitly in such a way that one can guarantee analycity of the map and its inverse in a large
complex domain. Using very explicit conjugation maps Saprykina was able to construct examples of
volume-preserving uniquely ergodic real-analytic diffeomorphims on T2 ([Sa03]). Fayad and Katok
designed such examples on any odd-dimensional sphere in [FK14].

The goal of this article is to reproduce some examples of smooth dynamical systems obtained by
the AbC (approximation by conjugation) scheme in the category of real-analytic diffeomorphisms on
the torus Td, d ≥ 2. For this purpose, we introduce the concept of block-slide type maps on the torus
and demonstrate that these maps in a certain sense can be approximated well enough by measure
preserving real-analytic diffeomorphisms. This allows us to carry out many AbC constructions in
the real-analytic category. We briefly summarise certain previously past results and prove several
new ones using real-analytic approximation of block-slide type maps. Note that all constructions
in this article are done on the torus. Real-analytic AbC constructions on arbitrary real-analytic
manifolds continue to remain an intractable problem.
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Throughout this article Td will denote the d dimensional torus and µ will stand for the usual
Lebesgue measure on Td. We will use Diff ω

ρ (Td µ) to denote the set of real-analytic µ-measure
preserving diffeomorphisms of the d dimensional torus whose lift can be extended holomorphically
to a complex neighbourhood of diameter at least ρ.

First we tackle the problem of non-standard realizations (i.e. to find a diffeomorphism which is
metrically but not smoothly isomorphic to a given measure-preserving transformation). The first
author used the AbC method and the concept of real-analytic approximation of block-slide type
maps to find examples of measure preserving real-analytic, ergodic diffeomorphisms on the torus
that are metrically isomorphic to some irrational rotation of the circle. The precise theorem can be
stated as follows:

Theorem 1.1 ([Ba15]). For any ρ > 0 and any integer d ≥ 1, there exist real-analytic diffeo-
morphisms T ∈ Diff ω

ρ (Td µ) which are metrically isomorphic to some irrational rotations of the
circle.

The diffeomorphisms constructed by Anosov and Katok in [AK70, section 4] realized circle rota-
tions smoothly with Liouvillean rotation numbers. However, it was not clear from this construction
which Liouvillean rotations were realized. Later, Fayad, Saprykina and Windsor extended this
result in [FSW07] and proved that any Liouvillean rotation of the circle can be realized. In the
analytic category, we can not expect realization of every Liouvillean rotation of the circle but we can
give a precise description of a subset of some of the Liouvillean rotations we realize. We introduce
the set L∗ of numbers contained in the set of Non-Brjuno numbers: α ∈ R is in L∗ if for every
k ∈ N there is (p, q) ∈ Z× N with p, q relatively prime satisfying∣∣∣α− p

q

∣∣∣ < 1

eek
q . (1.2)

In a later section we will examine this set of numbers. In particular, we will show that L∗ is a dense
Gδ-subset of R. We will prove,

Theorem A. For any ρ > 0 and every α ∈ L∗ there exists a real-analytic diffeomorphism T ∈
Diff ω

ρ (T2 µ) which is metrically isomorphic to the rotation Sα of the circle.

In the realm of non-standard realizations, there is another set of questions dedicated to the
realization of ergodic translations of a torus on another manifold. In the original paper Anosov and
Katok showed that certain ergodic translations on a d dimensional torus can be realized as measure
preserving smooth diffeomorphisms on any smooth manifold admitting an effective T1 action (see
[AK70, section 6]). We should note that this result was further improved by Benhenda and it was
shown that one can realize any ergodic translation on Td with one arbitrary Liouvillean coordinate
(see [Be13]).

It appears that the block-slide type maps allow enough flexibility for us to realize some of these
ergodic translations analytically on another torus of arbitrary dimension. We prove,

Theorem B. For any ρ > 0 and any two integers, h ≥ 1 and d ≥ 2, there exists an ergodic real-
analytic diffeomorphism T ∈ Diff ω

ρ (Td) which is metrically isomorphic to an ergodic translation of
Th.

And the obvious corollary follows:
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Theorem C. For any ρ > 0 and any two integers, h ≥ 1 and d ≥ 2, there exists an ergodic
real-analytic diffeomorphism T ∈ Diff ω

ρ (Td) such that T has a discrete spectrum generated (over
Z) by h linearly independent eigenvalues.

There is a conjecture of Kolmogorov in [Ko57] stating that on a d dimensional real-analytic man-
ifold an ergodic real-analytic diffeomorphism preserving an analytic measure may have a discrete
spectrum with only d distinct eigenvalues. Our result falsifies this conjecture.

Another aspect of the approximation by conjugation scheme deals with the problem of finding
diffeomorphisms with a prescribed dynamical property. Originally Anosov and Katok produced
examples of measure preserving smooth diffeomorpshims that are weakly mixing on any manifold
admitting an effective T1 action. Later Fayad and Saprykina constructed weakly mixing diffeomor-
phisms in the restricted space Aα (M) = {h ◦Rα ◦ h−1 : h ∈ Diff∞ (M,µ)}

C∞

for every Liouvillean
number α ([FS05]) in case of dimension 2. In case of the disc D2 and the annulus A this gives the
dichotomy that a number is Diophantine if and only if there is not ergodic C∞-diffeomorphism with
that rotation number. In that paper [FS05], the authors were even able to construct examples of
weakly mixing real analytic diffeomorphims of the two dimensional torus for rotation numbers α
that satisfy a condition of similar type as our above one (namely that for some δ > 0 the equation∣∣∣α− p

q

∣∣∣ < exp(−q1+δ) has an infinite number of relatively prime integer solution p, q). We should
note that the method of reparametrization of linear flows as in [Fa02] is more appropriate to get
weakly mixing analytic diffeomorphisms on Td.

Using the AbC method and the concept of real-analytic approximation of block-slide type maps,
the second author showed that on a torus of any dimension greater than one there are examples of
weakly mixing real-analytic diffeomorphims preserving a measurable Riemannian metric.

Theorem 1.3 ([Ku15]). For any ρ > 0 and any integer d ≥ 2, there are weakly mixing real-analytic
diffeomorphisms T ∈ Diff ω

ρ (Td, µ) preserving a measurable Riemannian metric.

This result solved [GK00], Problem 3.9., about the existence of real-analytic volume-preserving
IM-diffeomorphisms (i. e. diffeomorphisms preserving an absolutely continuous probability measure
and a measurable Riemannian metric) in the case of tori. In this before-mentioned paper [GK00],
Gunesch and Katok constructed volume-preserving weakly mixing C∞-diffeomorphisms preserving a
measurable Riemannian metric (see also [GKu] for the same result in the restricted spacesAα(M) for
arbitrary Liouville number α) and gave a comprehensive consideration of IM-diffeomorphisms and
IM-group actions. In particular, the existence of a measurable invariant metric for a diffeomorphism
is equivalent to the existence of an invariant measure for the projectivized derivative extension which
is absolutely continuous in the fibers. Recently, the second author examined the ergodic behaviour
of the derivative extension with respect to such a measure ([Ku1]). It provides the only known
examples of measure-preserving diffeomorphisms whose differential is ergodic with respect to a
smooth measure in the projectivization of the tangent bundle. It is an interesting open problem to
exhibit such an examination in the real-analytic case.

In another version (called “toplogical version” in [FK04]) of the AbC-method one tries to exercise
control over every orbit of the initial T1 action, while the original construction by Anosov and
Katok was only able to exercise control over almost every orbit of the T1 action. Such topological
constructions deal with minimality and the number of ergodic invariant measures (e. g. unique
ergodicity) for intance (see e. g. [FH77], [FSW07], [Wi01]). We can use such techniques and
prove that the limiting diffeomorphims obtained in Theorem 1.1 are in fact uniquely ergodic with
respect to the Lebesgue measure ([Ba15, Theorem 1.1.]): For any ρ > 0 , there exist uniquely
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ergodic real-analytic diffeomorphisms T ∈ Diff ω
ρ (T2, µ) which are metrically isomorphic to some

irrational rotations of the circle. We note that minor modifications will extend the above result
to the d dimensional torus but we do not do so in this article. Instead we can produce more
exotic examples. We show that there are minimal but not uniquely ergodic measure preserving
real-analytic diffeomorphisms.

Theorem D. For any ρ > 0, and any natural number r, there exists a real-analytic diffeomorphism
T ∈ Diff ω

ρ (T2, µ) which is minimal and has exactly r ergodic invariant measures each of which are
absolutely continuous with respect to the Lebesgue measure.

This result parallels a result of Windsor in the smooth category ([Wi01]). While conversely a
uniquely ergodic transformation on a compact metric space preserving a Borel measure is minimal
on the support of the measure (e.g. [HK95], Proposition 4.1.18), the first example that minimality
does not imply unique ergodicity is due to Markov (see [NS60], section 9.35.). In the analytic
category Furstenberg constructed skew-products admitting uncountably many ergodic measures
([Fu61] or see [HK95], Corollary 12.6.4.). In fact, these counterexamples bear a great meaning in
the history of Ergodic Theory: They showed that the so-called quasi-ergodic hypothesis (i. e. each
orbit is dense in each surface of constant energy) does not imply the equality of space means and
time means and so helped to find the right notion of ergodicity.

In a forthcoming paper the authors use the AbC-method with the real-analytic approximation of
block-slide type maps to construct T ∈ Diffωρ

(
Td, µ

)
with disjoint convolutions and a homogeneous

spectrum of multiplicity 2 for its Cartesian square T×T . In [Ku16], C∞-diffeomorphisms in Aα(M)
with these properties were constructed.

2 Preliminaries
Here we introduce the basic concepts and establish notations that we will use for the rest of this
article.

For a natural number d, we will denote the d dimensional torus by Td := Rd/Zd. The standard
Lebesgue measure on Td will be denoted by µ. We define φ, a measure preserving T1 action on the
torus Td as follows:

φt(x1, . . . , xd) = (x1 + t, x2, . . . , xd) (2.1)

2.1 The topology of real-analytic diffeomorphisms on the torus
We give a description of the space of diffeomorphisms that are interesting to us. Any real-analytic
diffeomorphism on Td homotopic to the identity admits a lift to a map from Rd to Rd and has the
following form

F (x1, . . . , xd) = (x1 + f1(x1, . . . , xd), . . . , xd + fd(x1, . . . , xd)) (2.2)

where fi : Rd → R are Zd-periodic real-analytic functions. Any real-analytic Zd-periodic function
defined on Rd can be extended to some complex neighbourhood 1 of Rd as a holomorphic (complex
analytic) function. For a fixed ρ > 0, let

Ωρ := {(z1, . . . , zd) ∈ Cd : |Im(z1)| < ρ, . . . , |Im(zd)| < ρ} (2.3)

1we identify Rd inside Cd via the natural inclusion (x1, . . . , xd) 7→ (x1 + i0, . . . , xd + i0).
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and for a function f defined on this set, put

‖f‖ρ := sup
(z1,...,zd)∈Ωρ

|f(z1, . . . , zd)| (2.4)

We define Cωρ (Td) to be the space of all Zd-periodic real-analytic functions on Rd that extends to
a holomorphic function on Ωρ and ‖f‖ρ <∞.

We define, Diff ω
ρ (Td, µ) to be the set of all measure preserving real-analytic diffeomorphisms

of Td homotopic to the identity, whose lift F (x) = (x1 + f1(x), . . . , xd + fd(x)) to Rd satisfies
fi ∈ Cωρ (Td) and we also require the lift F̃ (x) = (x1 + f̃1(x), . . . , xd + f̃d(x)) of its inverse to Rd to
satisfies f̃i ∈ Cωρ (Td). The metric d in Diff ω

ρ (Td, µ) is defined by

dρ(f, g) = max{d̃ρ(f, g), d̃ρ(f
−1, g−1)} where d̃ρ(f, g) = max

i=1,...,d
{ inf
n∈Z
‖fi − gi + n‖ρ}

Let F = (F1, . . . , Fd) be the lift of a diffeomorphism in Diff ω
ρ (Td, µ), we define the norm of the

total derivative

‖DF‖ρ := max
i=1,...,d
j=1,...,d

∥∥∥∂Fi
∂xj

∥∥∥
ρ

Next, with some abuse of notation, we define the following two spaces

Cω∞(Td) := ∩∞n=1 C
ω
n (Td) (2.5)

Diff ω
∞(Td, µ) := ∩∞n=1 Diff ω

n(Td, µ) (2.6)

Note that the functions in 2.5 can be extended to Cn as entire functions. We also note that
Diff ω

∞(Td, µ) is closed under composition. To see this, let f, g ∈ Diff ω
∞(Td, µ) and F and G

be their corresponding lifts. Then note that F ◦ G is the lift of f ◦ g (with π : R2 → T2 as
the natural projection, π ◦ F ◦ G = f ◦ π ◦ G = f ◦ g ◦ π). Now for the complexification of F
and G note that the composition F ◦ G(z) = (z1 + g1(z) + f1(G(z)), . . . , zd + gd(z) + fd(G(z))).
Since gi ∈ Cω∞(Td), we have for any ρ, supz∈Ωρ |Im(G(z))| ≤ maxi(supz∈Ωρ |Im(zi) + Im(gi(z))|) ≤
maxi(supz∈Ωρ |Im(zi)|+ supz∈Ωρ |Im(gi(z))|) ≤ ρ+ maxi(supz∈Ωρ |gi(z)|) < ρ+ const < ρ′ <∞ for
some ρ′. So, supz∈Ωρ |zi+gi(z)+fi(G(z))| ≤ |zi|+|gi(z)|+|fi(G(z))| <∞ since z ∈ Ωρ, gi ∈ Cω∞(Td)
and G(z) ∈ Ωρ′ . An identical treatment gives the result for the inverse.

All intermediate diffeomorphisms constructed during the AbC method in this paper will belong
to this category. 2

This completes the description of the analytic topology necessary for our construction. Also
throughout this paper, the word “diffeomorphism" will refer to a real-analytic diffeomorphism.
Also, the word “analytic topology" will refer to the topology of Diff ω

ρ (Td, µ) described above. See
[Sa03] for a more extensive treatment of these spaces.

2We note that the existence of such real-analytic functions whose complexification is entire or as in this case, the
complexification of their lift is entire is central to a real-analytic AbC method. As of now we only know how to
construct such functions on the torus, odd dimensional spheres and certain homogeneous spaces.
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2.2 Some partitions of the torus
First we recall a few definitions. A sequence of partitions {Pn}n of a Lebesgue space3 (M,µ) is called
generating if there exists a measurable subset M ′ of full measure such that {x} = ∩∞n=1Pn(x) ∀x ∈
M ′. We say that the sequence {Pn}n is monotonic if Pn+1 is a refinement of Pn.

There are some partitions of Td that are of special interest to us. They appear repeatedly in
this article and we summarize them here.

Assume that we are given three natural numbers l, k, q and a function a : {0, 1, . . . , k − 1} →
{0, 1, . . . , q − 1}. We define the following three partitions of Td:

Tq :=
{

∆i,q :=
[ i
q
,
i+ 1

q

)
× Td−1 : i = 0, 1, . . . , q − 1

}
(2.7)

Gl,q :=
{[ i1
lq
,
i1 + 1

lq

)
×
[ i2
l
,
i2 + 1

l

)
× . . .×

[ id
l
,
id + 1

l

)
: i1 = 0, 1, . . . , lq − 1,

(i2, . . . , id) ∈ {0, 1, . . . , l − 1}d−1
}

(2.8)

Gj,l,q :=
{[ i1
ljq

,
i1 + 1

ljq

)
×
[ i2
l
,
i2 + 1

l

)
× . . .×

[ id−j+1

l
,
id−j+1 + 1

l

)
× Tj−1 : i1 = 0, 1, . . . , ljq − 1,

(i2, . . . , id−j+1) ∈ {0, 1, . . . , l − 1}d−j+1
}

(2.9)

Ra,k,q :=
{
Rj,q := φj/q

( k−1⋃
i=0

∆a(i)k+i,kq

)
, j = 0, . . . , q − 1

}
(2.10)

We note φα acts on the partitions 2.7, 2.8, 2.9 and 2.10 as a permutation for any choice of p when
α = p/q.

2.3 Block-slide type maps and their analytic approximations
We recall that a step function on the unit interval is a finite linear combination of indicator functions
on intervals. We define for 1 ≤ i, j ≤ d and i 6= j, the following piecewise continuous map on the d
dimensional torus,

h : Td → Td defined by h(x1, . . . , xd) := (x1, . . . , xi + s(xj) mod 1, . . . , xd) (2.11)

where s is a step function on the unit interval. We refer to any finite composition of maps of the
above kind as a block-slide type of map on the torus. The nomenclature is motivated from the fact
that a finite composition of maps of the above kind has the effect of sliding solid blocks on the torus
much like the game of nine.

Inspired by [Ka73] the purpose of the section is to demonstrate that a block-slide type of map
can be approximated extremely well by measure preserving real analytic diffeomorphisms outside a
set of arbitrarily small measure. This can be achieved because step function can be approximated
well by real analytic functions whose complexification is entire.

3Also known as a standard probability space or a Lebesgue-Rokhlin space. We consider those spaces which are
isomorphic mod 0 to the unit interval with the usual Lebesgue measure.
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Lemma 2.12. Let k and N be two positive integer and β = (β0, . . . , βk−1) ∈ [0, 1)k. Assume k is
even. Consider a step function of the form

s̃β,N : [0, 1)→ R defined by s̃β,N (x) =

kN−1∑
i=0

β̃iχ[ i
kN ,

i+1
kN )(x)

Here β̃i := βj where j := i mod k. Then, given any ε > 0 and δ > 0, there exists a periodic
real-analytic function sβ,N : R→ R satisfying the following properties:

1. Entirety: The complexification of sβ,N extends holomorphically to C.

2. Proximity criterion: sβ,N is L1 close to s̃β,N . We can say more,

sup
x∈[0,1)\F

|sβ,N (x)− s̃β,N (x)| < ε (2.13)

3. Periodicity: sβ,N is 1/N periodic. More precisely, the complexification will satisfy,

sβ,N (z + n/N) = sβ,N (z) ∀ z ∈ C and n ∈ Z (2.14)

4. Bounded derivative: The derivative is small outside a set of small measure,

sup
x∈[0,1)\F

|s′β,N (x)| < ε (2.15)

Where F = ∪kN−1
i=0 Ii ⊂ [0, 1) is a union of intervals centred around i

kN , i = 1, . . . , kN − 1 and
I0 = [0, δ

2kN ] ∪ [1− δ
2kN , 1) and λ(Ii) = δ

kN ∀ i.

Proof. See [Ba15, Lemma 4.7] and [Ku15, Lemma 3.6].

Note that the condition 2.14 in particular implies

sup
z:Im(z)<ρ

sβ,N (z) <∞ ∀ ρ > 0

Indeed, for any ρ > 0, put Ω′ρ = {z = x + iy : x ∈ [0, 1], |y| < ρ} and note that entirety of sβ,N
combined with compactness of Ω′ρ implies supz∈Ω′ρ

|sβ,N (z)| < C for some constant C. Periodicity of
sα,N in the real variable and the observation Ωρ = ∪n∈Z

(
Ω′ρ + n

)
implies that supz∈Ωρ |sβ,N (z)| <

C. We have essentially concluded that sβ,N ∈ Cω∞(T1).
We also make the observation that the condition k is even is not really a necessary one. One

can drop the condition after replacing F with a different error set.
In order to prove convergence with a prescribed rotation number we require the following re-

finement of the lemma:

Lemma 2.16. Let l, N ∈ N, l even, and β = (β0, ..., βl−1) ∈ [0, 1]
l. We consider a step function of

the form

s̃β,N : [0, 1)→ R defined by s̃β,N (x) =

lN−1∑
i=0

β̃i · χ[ i
lN ,

i+1
lN )(x),
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where β̃i := βj in case of j ≡ i mod l. Given any ε ∈
(
0, 1

8

)
and δ ∈ (0, 1) let the number A > 0

fulfil the conditions

A > − 2l

π · δ
· ln
(
− ln

(
1− ε

8

))
(A1)

and
A >

2l

π · δ
· ln
(
− ln

( ε
2l

))
. (A2)

Then the 1
N -periodic real entire function sβ,N,ε,δ given by

sβ,N,ε,δ(z) = l
2−1∑
i=0

βi ·
(

e−e
−A·sin(2π(Nz− il )) − e−e

−A·sin(2π(Nz− i+1
l ))

) · e−e−A·sin(2πNz)

+

 l−1∑
i= l

2

βi ·
(

e−e
−A·sin(2π(Nz− il )) − e−e

−A·sin(2π(Nz− i+1
l ))

) · e−eA·sin(2πNz)

.

satisfies
sup

x∈[0,1)\F
|sβ,N,ε,δ(x)− s̃β,N (x)| < ε, (2.17)

where F =
⋃lN−1
i=0 Ii ⊂ [0, 1) is a union of intervals centered around i

lN , i = 1, ..., lN − 1, I0 =[
0, δ

2lN

]
∪
[
1− δ

2lN , 1
)
and λ (Ii) = δ

lN for every i.

Proof. First of all, we point out that sβ,N,ε,δ is a 1
N -periodic real entire function. Let x ∈ [0, 1) \F ,

namely x ∈
[
j
lN + δ

2lN ,
j+1
lN −

δ
2lN

]
for some j ∈ Z, 0 ≤ j ≤ lN − 1. We write x = j

lN + ∆.
Exploiting the fact sin(x) > x

2 for 0 < x < π
2 we get

e−e−A·sin(2πN∆)

≥ e−e−A·πN∆

.

Using equation A1 this implies

e−e
−A·sin(2π(Nx− sl ))

> 1− ε

8
(2.18)

in case of 0 ≤ j − s < l
2 or −l < j − s < − l

2 . On the other hand, we use the fact sin(x) < x
2 for

−π2 < x < 0 and get
e−e−A·sin(−2πN∆)

≤ e−eA·πN∆

.

By applying condition A2 this yields

e−e
−A·sin(2π(Nx− sl ))

<
ε

2l
(2.19)

in case of l
2 ≤ j − s < l or − l

2 ≤ j − s < 0. By the above estimates in equation 2.18 and 2.19 we
get

sβ,N,ε,δ(x) ≥ βj ·
((

1− ε

8

)
·
(

1− ε

8

)
− ε

2l

)
− (l − 1) · ε

2l

and
sβ,N,ε,δ(x) ≤ βj + (l − 1) · ε

2l
.
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Altogether, we conclude
|sβ,N,ε,δ(x)− βj | < ε.

Finally we piece together everything and demonstrate how a block-slide type of map on the
torus can be approximated by a measure preserving real-analytic diffeomorphism.

Proposition 2.20. Let h : Td → Td be a block-slide type of map which commutes with φ1/q for
some natural number q. Then for any ε > 0 and δ > 0, there exists a real-analytic diffeomorphism
h ∈ Diff ω

∞(Td, µ) satisfying the following conditions:

1. Proximity property: There exists a set E ⊂ Td such that µ(E) < δ and supx∈Td\E ‖h(x) −
h(x)‖ < ε.

2. Commuting property: h ◦ φ1/q = φ1/q ◦ h

In this case we say the the diffeomorphism h is (ε, δ)-close to the block-slide type map h.

Proof. First we assume that for some step function s̃β,1 and any integer i with 1 < i ≤ d, the
block-slide map h is of the following type:

h : Td → Td defined by h(x) = (x1 + s̃β,1(xi), x2, . . . , xd) (2.21)

Then we define the following function using sβ,1 as in lemma 2.12:

h : Td → Td defined by h(x) = (x1 + sβ,1(xi), x2, . . . , xd) (2.22)

With F as lemma 2.12, we put E = Ti−1 ×F ×Td−i and observe that h satisfies all the conditions
of the proposition.

Similarly, if for some step function s̃β,q and any integer i with 1 < i ≤ d, we have a block-slide
map h of the following type:

h : Td → Td defined by h(x) = (x1, . . . , xi−1, xi + s̃β,q(x1), xi+1, . . . , xd) (2.23)

Then we define the following function using sβ,q as in lemma 2.12:

h : Td → Td defined by h(x) = (x1, . . . , xi−1, xi + sβ,q(x1), xi+1, . . . , xd) (2.24)

With F as lemma 2.12, we put E = F × Td−1 and observe that h satisfies all the conditions of the
proposition.

So for a general block-slide type map which is obtained by a composition of several maps of
the above type, we just take a composition of the individual approximations and a union of all the
component error sets.

2.4 Analytic AbC method
Our objective now is to recall the approximation by conjugation scheme developed by Anosov and
Katok in [AK70]. Though we modify this scheme slightly to be more suitable for our purpose and
fit the notations of our article we insist that the method presented here is almost identical to the
original construction. In more modern works, this method is often presented in a less formal way
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(see [FK04]) avoiding most technicalities but for our purpose we find the original scheme to be most
suitable and we stick close to it.

The AbC method is an inductive process where a sequence of diffeomorphisms Tn ∈ Diff ω
∞(Td, µ)

is constructed inductively. The diffeomorphisms Tn converge to some diffeomorphism T ∈Diff ω
ρ (Td, µ).

Additionally Tn s are chosen carefully so that they satisfy some finite version of the desired property
of T .

We now give an explicit description. At the beginning of the construction we fix a constant
ρ > 0 and note that all parameters chosen will depend on this ρ.

Assume that the construction has been carried out up to the n th stage and we have the following
information available to us:

1. We have sequences of natural numbers {pm}nm=1, {qm}nm=1, {km}n−1
m=1, {lm}

n−1
m=1, {sm}

n−1
m=1, a

sequence of functions {am : {0, . . . , km} → {0, . . . , qm − 1}}n−1
m=1 and a sequence of numbers

{εm}nm=1 . They satisfy the following condition:

pm = sm−1km−1lm−1qm−1pm−1 + 1 qm = sm−1km−1lm−1q
2
m−1 εm < 2−qm

(2.25)

2. The sequence of diffeomorphisms {Tm}nm=1 is constructed as conjugates of a periodic trans-
lation. More precisely,

Tm := H−1
m ◦ φαm ◦Hm Hm := hm ◦Hm−1 hm ∈ Diff ω

∞(Td, µ) (2.26)

The diffeomorphisms {hm}nm=1 satisfy the following commuting condition:

hm ◦ φαm−1 = φαm−1 ◦ hm (2.27)

3. For m = 1, . . . , n, the diffeomorphism Tm preserves and permutes two sequences of partitions,
namely, H−1

m Ram,km,qm and Fqm := H−1
m Tqm .

4. For m = 1, . . . , n, µ(h−1
m Ri,qm−14∆i,qm−1) < εm−1 for any Ri,qm−1 ∈ Ram−1,km−1,qm−1 and

∆i,qm−1 ∈ Tqm−1 with the same i.

5. For m = 1, . . . , n, diam(Fqm ∩ Em) < εm
4 for some measurable set Em satisfying µ(Em) >

1− εm. (Note that this means Fqm is a generating but not necessarily monotonic sequence of
partitions.)

6. For m = 1, . . . , n: dρ(Tm, Tm−1) < εm and d0

(
T im, T

i
m−1

)
< 1

2m−1 for 0 ≤ i < qm−1 − 1.

Now we show how to do the construction at the n + 1 th stage of this induction process. We
proceed in the following order:

1. We choose kn and our function an : {0, . . . , kn} → {0, . . . , qn − 1}. This choice will depend
on the construction we are doing and the specific properties we are targeting to prove.

2. We choose ln to be a large enough integer so that the following condition is satisfied:

ln > 2n‖DHn‖0 (2.28)

4 This means that the diameter of the intersection of any atom of Fqm and Em is less that εm.
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3. Find a block-slide type map han,kn,ln,qn which commutes with φαn , maps the partition Glnkn,qn
to Tldnkdn,qn and it maps the partition Tqn to the partition Ran,kn,qn .

4. Use proposition 2.20 to construct hn+1 which is (εn/2
lnknqn , εn/2

lnknqn) close to han,kn,ln,qn .
Put En to be the error set in proposition 2.20.

5. Ensure |αn+1 − αn| is small enough to guarantee dρ(Tn+1, Tn) < εm and d0

(
T in+1, T

i
n

)
< 1

2n

for 0 ≤ i < qn − 1. If either ln or kn above is chosen to be very large and this condition is
satisfied, we put sn = 1. If our choice of ln or kn is too restrictive then we choose sn to be
large enough so that convergence is guaranteed.

This completes the construction at the n + 1 th stage. Note that this way convergence of Tn to
some T ∈ Diff ω

ρ (Td, µ) is guaranteed.

Remark 1. By d0

(
T in+1, T

i
n

)
< 1

2n for 0 ≤ i < qn − 1 and every n ∈ N we get d0

(
T i, T in+1

)
< 1

2n

for 0 ≤ i < qn+1 − 1.
We need another important constructions which is very handy for some application. Note that

the partitions Fqn are not necessarily monotonic. However the following proposition shows that a
generating monotonic partition which is cyclically permuted by Tn can be constructed from Fqn .
This is identical to proposition 3.1 in [AK70].

Proposition 2.29. With notations as in the approximation by conjugation scheme, we can find a
sequence of partitionsMn of Td satisfying the following three properties:

1. Monotonicity condition: Mn+1 >Mn

2. Cyclic permutaion: The diffeomorphims Tn cyclically permutes the atoms ofMn.

3. Generating condition: Mn → ε as n→∞.

Proof. For any n we define a measurable map c
(1)
n+1,n : Td/Tqn → Td/Ran,kn,qn by c

(1)
n+1,n(∆i,qn) =

Ri,qn and another measurable map c
(2)
n+1,n : Td/Tqn+1

→ Td/Ran,kn,qn by c
(2)
n+1,n(∆i,qn+1

) = Rj,qn

where j is such that ∆i,qn+1 ⊂ Rj,qn . So at the level of Td the composition cn+1,n = (c
(2)
n+1,n)−1 ◦

c
(1)
n+1,n gives us a correspondence which associates each atom of Tqn with a union of atoms of
Tqn+1

. So we can define a new partition Tqn+1,qn := {cn+1,n(∆i,qn) : 0 ≤ i < qn}. Continuing this
procedure, we obtain for any m > n, a partition Tqm,qn := {cm,m−1 ◦ . . . ◦ cn+2,n+1 ◦ cn+1,n(∆i,qn) :
0 ≤ i < qn}. We note that this partition satisfies the following three conditions for any three
integers n, l and m with m > l > n:

1. Monotonicity condition: Tqm,qn+1
> Tqm,qn

2. Cyclic permutation: φ1/qn cyclically permutes the atoms of Tqm,qn .

3. cm,l ◦ cl,n = cm,n.

Now we define two new partitions as follows:

Fqm,qn := H−1
m Tqm,qn (2.30)

Fqn := H−1
n Tqn (2.31)

We define the correspondence pm,n : Fqn → Fqm,qn by pm,n(H−1
n (∆i,qn)) = H−1

m (cm,n(∆i,qn)). Now
note that for any three integers m > l > n we have the following three properties:
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1. Monotonicity: Fqm,qn+1 > Fqm,qn .

2. Cyclic permutation: Tn cyclically permutes the atoms of Fqm,qn (since φ1/qn commutes with
hj for j > n).

3. pm,l ◦ pl,n = pm,n. Indeed, for any ∆i,qn we observe,

pm,l ◦ pl,n(H−1
n (∆i,qn)) = pm,l(H

−1
l (cl,n(∆i,qn)))

= H−1
m (cm,l(cl,n(∆i,qn))))

= H−1
m (cm,n(∆i,qn))

= pm,n(H−1
n (∆i,qn))

Our next goal is to prove that the limit

p∞,n(H−1
n (∆i,qn))) := lim

m→∞
(pm,n(H−1

n (∆i,qn))) (2.32)

exists for any n and i. In order to see this we note at first that cm,n(∆i,qn) = ∪l∈σ∆l,qm where
σ is some indexing set of size qm/qn. This implies cm+1,n(∆i,qn) = ∪l∈σRl,qm . And hence
h−1
m+1(cm+1,n(∆i,qn)) = ∪l∈σh−1

m+1(Rl,qn). Now note the following estimates:

µ(h−1
m+1(Rl,qm)4∆l,qm) < εm

⇒ µ(
⋃
l∈σ

h−1
m+1(Rl,qm)4∆l,qm) <

qm
qn
εm

⇒ µ(
⋃
l∈σ

h−1
m+1(Rl,qm)4

⋃
l∈σ

∆l,qm) <
qm
qn
εm

⇒ µ(h−1
m+1(cm+1,n(∆i,qn))4cm,n(∆i,qn) <

qm
qn
εm

⇒ µ(H−1
m+1(cm+1,n(∆i,qn))4H−1

m (cm,n(∆i,qn)) <
qm
qn
εm

⇒ µ(pm+1,n(H−1
n (∆i,qn))4pm,n(H−1

n (∆i,qn)) <
qm
qn
εm

⇒
qn−1∑
i=0

µ(pm+1,n(H−1
n (∆i,qn))4pm,n(H−1

n (∆i,qn)) < qmεm

⇒
qn−1∑
i=0

µ(pm1,n(H−1
n (∆i,qn))4pm2,n(H−1

n (∆i,qn)) <

m2∑
m=m1

qmεm

This shows that the sequence Fqm,qn converges as m goes to infinity and shows the existence of
2.32. So we define the partition

Mn := {p∞,n(H−1
n (∆i,qn))) : 0 ≤ i < qn} (2.33)

And we note that this partition has the required properties.
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3 Non standard analytic realization of some ergodic rotations
of the circle

Non-standard realization problems demonstrate how a dynamical system can live on a non native
manifold. In particular we are interested in exploring when an ergodic rotation of the circle can be
measure theoretically isomorphic to a measure preserving real-analytic ergodic diffeomorphisms on
a torus.

3.1 Some measure theory
Our goal here is to prove an abstract lemma from measure theory which is a slight generalization of
Lemma 4.1 in [AK70]. Essentially we formulate a finite version of the conjugacy we will eventually
prove.

Lemma 4.1 from [AK70] gave us an easily checkable finite version of the conjugacy that one
can use to prove the existence of a metric isomorphism of the limiting diffeomorphisms. Since
the generating partitions used in the C∞ non-standard realization problem can easily made to be
monotonic, this Lemma was sufficient. But in the real-analytic case, our construction is not flexible
enough to guarantee monotonicity, so we need a modified version. Let us recall Lemma 4.1 from
[AK70] since we will need it for our version.

Lemma 3.1. Let {M (i), µ(i)}, i = 1, 2 be two Lebesgue spaces. Let P(i)
n be a monotonic sequences

of generating finite partitions of M (i). Let T (i)
n be a sequence of automorphisms of M (i) satisfying

T
(i)
n P(i)

n = P(i)
n and suppose limn→∞ T

(i)
n = T (i) weakly. Suppose that there are metric isomorphisms

Kn : M (1)/P(1)
n →M (2)/P(2)

n satisfying:

K−1
n T (2)

n |P(2)
n
Kn = T (1)

n |P(1)
n

(3.2)

Kn+1(P(1)
n ) = Kn(P(1)

n ) (3.3)

Then the automorphisms T (1) and T (2) are metrically isomorphic.

We would also like to point out at this point of time that the metric isomorphism K in the proof
was defined to be

K(x) := ∩∞n=1Kn(P (1)
n (x)) a.e. x ∈M (1) (3.4)

Now we prove the following variation which will allow us to accommodate a marginal “twist"
that will appear in our construction.

Lemma 3.5. Let {M (i), µ(i)}, i = 1, 2 be two Lebesgue spaces. Let P(i)
n be a sequence of generating

finite partitions of M (i). Let {εn} be a sequence of positive numbers satisfying
∑∞
n=1 εn < ∞. In

addition, assume that there exists a sequence of sets {E(i)
n } in M (i) satisfying:

µ(1)(E(1)
n ) = µ(2)(E(2)

n ) < εn (3.6)

P
(1)
n+1(x) \ E(1)

n+1 ⊂ P (1)
n (x) ∀ x ∈M (1) \ E(1)

n+1 (3.7)

P
(2)
n+1(y) ⊂ P (2)

n (y) ∀ y ∈M (2) (3.8)
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Let T (1)
n and T (2)

n be two sequences of automorphisms of the spaces M (1) and M (2) satisfying:

T (i)
n P(i)

n = P(i)
n i = 1, 2 (3.9)

lim
n→∞

T (i)
n = T (i) i = 1, 2 (3.10)

T (i)
n (∪∞m=nE

(i)
m ) = ∪∞m=nE

(i)
m i = 1, 2 (3.11)

Note that the limit in 3.10 is taken in the weak topology. Suppose additionally that there exists a
sequence of metric isomorphisms Kn : M (1)/P(1)

n →M (2)/P(2)
n satisfying:

K−1
n T (2)

n |P(2)
n
Kn = T (1)

n |P(1)
n

(3.12)

Kn+1(P(1)
n+1(x)) ⊂ Kn(P(1)

n (x)) ∀ x ∈M (1) \ E(1)
n+1 (3.13)

Then the automorphisms T (1) and T (2) are metrically isomorphic.

Proof. Put F (i)
N := ∪∞n=NE

(i)
n . Consider the sequence of Lebesgue spaces M (i)

N := M (i) \ F (i)
N .

Claim 1: ∃ a metric isomorphism K(N) : M
(1)
N →M

(2)
N , satisfying K−1

(N)T
(2)|

M
(2)
N

K(N) = T (1)|
M

(1)
N

.

We define P(i)
N,k, a finite measurable partition of M (i)

N by P(i)
N,k(x) := P(i)

N+k(x) \ F (i)
N . We note

that the sequence of partition {P(i)
N,k}k is generating because {P(i)

k }k is generating. Additionally,

condition 3.7 makes {P(i)
N,k}k a monotonic sequence of partition. We define KN,k(P(1)

N,k(x)) :=

KN+k(P(1)
N+k(x))\F (2)

N . With this definition we claim that KN,k+1(P(1)
N,k(x)) = KN,k(P(1)

N,k(x)) ∀x ∈
M

(1)
N . (Indeed, from 3.13 we get for a.e. x ∈ M (1)

N , KN,k+1(P(1)
N,k+1(x)) = KN+k+1(P(1)

N+k+1(x)) \
F

(2)
N ⊂ KN+k(P(1)

N+k(x)) \ F (2)
N = KN,k(P(1)

N,k(x)). This with the fact that KN,k+1(P(1)
N,k+1(x)) ∈

P(2)
N,k+1 and {P

(2)
N,k}k is a monotonic sequence of partitions helps us in concluding the claim). Observe

that 3.9, 3.11 and 3.12 guarantees that K−1
N,kT

(2)
N+k|P(2)

N,k

KN,k = T
(1)
N+k|P(1)

N,k

. So we can apply Lemma

3.1 to guarantee the existence of a metric isomorphism K(N) : M
(1)
N → M

(2)
N defined for a.e.

x ∈M (1)
N by K(N)(x) = ∩∞k=1KN,k(P(1)

N,k(x)). This finishes claim 1.

Claim 2: K(N+1)(x) = K(N)(x) for a.e. x ∈M (1)
N

Follows from the definition of K(N). Indeed, note that K(N+1)(x) = ∩∞k=1KN+1,k(P(1)
N+1,k(x)) =

∩∞k=1KN+k+1(P(1)
N+k+1(x)) \ F (2)

N+1 = ∩∞k=0KN+k+1(P(1)
N+k+1(x)) \ F (2)

N+1. The last equality follows
from 3.13.

Claim 3: There exists a metric isomorphism K : M (1) →M (2) satisfying K−1T (2)K = T (1)

Note that condition 3.6 implies that a.e. x ∈ E
(1)
n for at most finitely many n. Indeed, if

E = {x : x ∈ En for infinitely many n}, then E ⊂ ∩∞n=mEn ∀ m and limm→∞ µ(1)(∩∞n=mEn) = 0.
So we can define for a.e. x ∈M (1), K(x) := K(N)(x) if x ∈M (1)

N . Now claim 3 easily follows from
claim 2.

3.2 Construction of the conjugation map
Let α ∈ L∗. We construct successively a sequence of measure-preserving diffeomorphisms Tn =
H−1
n ◦ φαn ◦Hn, where the conjugation maps Hn = hn ◦Hn−1 and rational numbers αn = pn

qn
∈ Q
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are chosen in such a way that the functions Tn converge to a diffeomorphism in Diffωρ
(
T2, µ

)
with

the desired properties. We present step n + 1 of the construction, i. e. we assume that we have
already defined Hn and the numbers α1, ..., αn−1. Additionally, we choose an even integer ln ∈ N
satisfying the condition

ln > 2n+1 · ‖DHn‖ρn+1, (3.14)

where ρn = ‖Hn‖ρ. This condition on ln will be used to ensure that the sequence of partitions
we construct later is generating (see the proof of [Ba15], Proposition 6.3). In this step of the
construction we have to define the conjugation map hn+1 and to choose αn.

We start by describing the main combinatorial idea behind the proof of theorems 1.1 and A.
Given any two integers l and q, there exists a block-slide type map which allows us to break down
the partition Tldq and reform it into a partition Gl,q whose atoms have diameter less than d/l.

First we consider the following three step functions:

ψ
(1)
l,q : [0, 1)→ R defined by ψ

(1)
l,q (x) =

l−1∑
i=1

l − i
l2q

χ[ il ,
i+1
l ](x)

ψ
(2)
l,q : [0, 1)→ R defined by ψ

(2)
l,q (x) =

l2q−1∑
i=0

(
i

l
−
⌊ i
l

⌋)
χ[ i

l2q
, i+1

l2q
](x)

ψ
(3)
l,q : [0, 1)→ R defined by ψ

(3)
l,q (x) =

l−1∑
i=0

i

l2q
χ[ il ,

i+1
l ](x) (3.15)

Then we define the following three types of block slide map:

g
(1)
i,l,q : Td → Td defined by g

(1)
i,l,q

(
(x1, . . . , xd)

)
= (x1 + ψ

(1)
l,q (xi), x2, . . . , xd)

g
(2)
i,l,q : Td → Td defined by g

(2)
i,l,q

(
(x1, . . . , xd)

)
= (x1, . . . , xi−1, xi + ψ

(2)
l,q (x1), xi, . . . , xd)

g
(3)
i,l,q : Td → Td defined by g

(3)
i,l,q

(
(x1, . . . , xd)

)
= (x1 − ψ(3)

l,q (xi), x2, . . . , xd)

Note that the composition

gi,l,q : Td → Td defined by gi,l,q = g
(3)
i,l,q ◦ g

(2)
i,l,q ◦ g

(1)
i,l,q (3.16)

maps the partition Gli,q to Gli+1,q. Where

Glj ,q :=
{[ i1
ljq

,
i1 + 1

ljq

)
×
[ i2
l
,
i2 + 1

l

)
× . . .×

[ id−j+1

l
,
id−j+1 + 1

l

)
× Tj−1 : i = 0, 1, . . . , lq − 1,

(i2, . . . , id) ∈ {0, 1, . . . , l − 1}d−1
}

(3.17)

So the composition

gl,q : Td → Td defined by gl,q = g2,l,q ◦ . . . ◦ gd,l,q (3.18)

maps the partition Gl,q to Tldq.
Let 3εn = δn = 1

2n+1 . With the aid of Lemma 2.16 we construct the following entire functions

ψ1,n+1 = sβ(1),N(1),εn,δn , where β
(1)
0 = 0, β

(1)
i =

ln − i
l2n · qn

for i = 1, ..., ln − 1, N (1) = 1
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Figure 1: Illustration of the action of gi,l,q on T2 with i = 2, l = 3 and q = 3. We note how the

blocks are moved by the intermediate maps: A1
g

(1)
2,3,3−−−→ A2

g
(2)
2,3,3−−−→ A3

g
(3)
2,3,3−−−→ A4.
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ψ2,n+1 = sβ(2),N(2),εn,δn , where β
(2)
i =

i

ln
for i = 0, ..., ln − 1, N (2) = lnqn

ψ3,n+1 = sβ(3),N(3),εn,δn , where β
(3)
i =

i

l2n · qn
for i = 0, ..., ln − 1, N (3) = 1

Let Ai,n+1 denote the corresponding number in the construction of ψi,n+1 from Lemma 2.16. Using
these functions we define the conjugation maps

h1,n+1(x1, x2) = (x1 + ψ1,n+1(x2) mod 1, x2)

h2,n+1(x1, x2) = (x1, x2 + ψ2,n+1(x1) mod 1)

h3,n+1(x1, x2) = (x1 − ψ3,n+1(x2) mod 1, x2)

approximating the maps g(j)
2,ln,qn

form above. Finally, we put

hn+1 = h3,n+1 ◦ h2,n+1 ◦ h1,n+1.

We point out that φαn ◦ hn+1 = hn+1 ◦ φαn .

Lemma 3.19. Let ln ≥ 4. In the concrete situation of our constructions we can choose

Ai,n+1 = 22n+5 · l2n.

Proof. Using Taylor expansion and the notation x = εn
2ln

we calculate

− ln(− ln(1− x)) = − ln

(
x+

x2

2
+
x3

3
+O(x4)

)
≤ − ln(x) = ln(x−1).

By our explicit definition of the number εn we get

ln
(
2ln · ε−1

n

)
= ln

(
2ln · 3 · 2n+1

)
< ln

(
2n+4 · ln

)
.

Then condition A1 yields the requirement

Ai,n+1 ≥ 2n+1 · ln · ln
(
2n+4 · ln

)
.

We note that condition A2 is satisfied automatically.

3.3 Proof of Convergence
Let ρ > 0 be arbitrary. We want to prove convergence of (Tn)n∈N in Diffωρ (Tm). For this purpose,
we introduce the numbers

ρk = ‖Hk‖ρ for any k ∈ N.

Using the definitions of the conjugation maps we compute

h−1
n+1 ◦ φαn+1 ◦ hn+1 (x1, x2) =

(
x1 + αn+1 + ψ1,n+1(x2)−

ψ1,n+1

(
x2 + ψ2,n+1 (x1 + ψ1,n(x2))− ψ2,n+1

(
x1 + αn+1 + ψ1,n+1(x2)

))
,
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x2 + ψ2,n+1 (x1 + ψ1,n+1(x2))− ψ2,n+1

(
x1 + αn+1 + ψ1,n+1(x2)

))

We recall that ψ2,n is 1
qn
-periodic and get

h−1
n+1 ◦ φαn+1 ◦ hn+1 (x1, x2) =

(
x1 + αn+1 + ψ1,n+1(x2)−

ψ1,n+1

(
x2 + ψ2,n+1 (x1 + αn + ψ1,n+1(x2))− ψ2,n+1

(
x1 + αn+1 + ψ1,n+1(x2)

))
,

x2 + ψ2,n+1 (x1 + αn + ψ1,n+1(x2))− ψ2,n+1

(
x1 + αn+1 + ψ1,n+1(x2)

))
Hereby, we conclude

(
h−1
n+1 ◦ φαn+1 ◦ hn+1 − φαn

)
(x1, x2) =

(
αn+1 − αn + ψ1,n+1(x2)−

ψ1,n+1

(
x2 + ψ2,n+1 (x1 + αn + ψ1,n+1(x2))− ψ2,n+1

(
x1 + αn+1 + ψ1,n+1(x2)

))
,

ψ2,n+1 (x1 + αn + ψ1,n+1(x2))− ψ2,n+1

(
x1 + αn+1 + ψ1,n+1(x2)

))

In the next step, we exploit the closeness of h−1
n+1 ◦ φαn+1 ◦ hn+1 (x1, x2) to φαn and find

dρ (fn+1, fn) =dρ
(
H−1
n ◦ h−1

n+1 ◦ φαn+1 ◦ hn+1 ◦Hn, H
−1
n ◦ φαn ◦Hn

)
≤‖DHn‖ρn+1 · ‖h−1

n+1 ◦ φαn+1 ◦ hn+1 − φαn‖ρn .

In order to estimate ‖h−1
n+1 ◦ φαn+1 ◦ hn+1 − φαn‖ρn we will use the subsequent result:

Lemma 3.20. Let ρ > 0 and Bρ = {z ∈ C : |im (z)| < ρ}. Then we have

sup
z∈Bρ

|sβ,N,ε,δ(z)| ≤ 2π ·N ·A · e2eA·e
2πNρ

+A·e2πNρ+2πNρ

and
sup

z1,z2∈Bρ
|sβ,N,ε,δ(z1)− sβ,N,ε,δ(z2)| ≤ C ·A · l ·N · e4·eA·e

2πNρ

· |z1 − z2| ,

where C is a constant independent of n, l and N .

Proof. First of all, we observe

d

dz
e−e

−A·sin(2π(Nz− il ))
= e−e

−A·sin(2π(Nz− il ))−A·sin(2π(Nz− il )) · 2π ·A ·N · cos

(
2π

(
Nx− i

l

))
Using the mean value theorem this yields

sup
z∈Bρ

|sβ,N,ε,δ(z)| ≤ l · eeA·e
2πNρ

· 2π ·N ·A · eA·e
2πNρ

· e2πNρ · 1

l
· eeA·e

2πNρ
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≤ 2π ·N ·A · e2eA·e
2πNρ

+A·e2πNρ+2πNρ

Additionally, we get

‖Dsβ,N,ε,δ‖ρ

≤l · e2eA·e
2πNρ

· 4π ·A ·N · eA·e
2πNρ

· e2πρN + 2π ·A ·N · e2eA·e
2πNρ

· e2A·e2πNρ

· e4πρN

≤6π ·A · l ·N · e4·eA·e
2πNρ

.

By applying the mean value theorem we obtain the second statement of the Lemma.

In addition to the before mentioned conditions we require the number ln to satisfy

ln > e2π·(ρn+1). (3.21)

Finally, we are able to prove convergence of the sequence (fn)n∈N:

Lemma 3.22. Fix ρ > 0. Then there is a sequence (αn)n∈N of rational numbers converging to α
monotonically such that the sequence (Tn)n∈N converges to T in Diffωρ

(
T2
)
.

Proof. First of all, we introduce the number

ρ′n = ρn + 2π ·A1,n+1 · e2eA1,n+1·e
2πρn

+A1,n+1·e2πρn+2πρn

We recall that C as well as the requirements on ln in equations 3.14 and 3.21 are independent of
qn. Hence, we can state the subsequent condition on qn:

qn ≥ 2C2 · ln · e4·e22n+5l3n (3.23)

Under this restriction on the number qn we find αn = pn
qn

with pn, qn relatively prime such that

|α− αn| <
1

ee(22n+6·l3n·e
2π·ρ′n)

qn ,

because α ∈ L∗. By using ρ′n and by applying Lemma 3.20 twice we get

sup
(x1,x2)∈Aρn

∣∣∣ψ2,n+1 (x1 + αn + ψ1,n+1(x2))− ψ2,n

(
x1 + αn+1 + ψ1,n+1(x2)

)∣∣∣
≤ sup
y∈Bρ′n

|ψ2,n+1 (y + αn)− ψ2,n+1 (y + αn+1)|

≤C · eln(A2,n+1·ln·qn)+4·eA2,n+1·e
2π·qn·ρ′n

· |αn+1 − αn|

Under our conditions on the numbers αk its value is less than 1. Hereby, we conclude using equation
3.21

‖h−1
n+1 ◦ φαn+1 ◦ hn+1 − φαn‖ρn ≤ |αn+1 − αn|+

C · eln(A1,n+1·ln)+4·eA1,n+1·e
2π·(ρn+1)

· C · eln(A2,n+1·ln·qn)+4·eA2,n+1·e
2π·qn·ρ′n

· |αn+1 − αn|
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≤ 2C2 · 22n+5 · l3n · e4·e22n+5l3n · eln(22n+5·l3n·qn)+4·e22n+5·l2n·e
2π·qn·ρ′n

· |αn+1 − αn|

With the aid of condition 3.23 we can continue the former estimates in the following way:

2n+1 · ‖DHn‖ρn+1 · ‖h−1
n+1 ◦ φαn+1 ◦ hn+1 − φαn‖ρn

≤e2·ln(22n+5·l3n·qn)+4·e
22n+5·l2n·

(
e
2π·ρ′n

)qn
· |αn+1 − αn|

≤ee
22n+6·l3n·

(
e
2π·ρ′n

)qn
· |αn+1 − αn|

≤ee

(
22n+6·l3n·e

2π·ρ′n
)qn
· |αn+1 − αn|

Using the above estimates we conclude:

dρ (Tn+1, Tn) ≤ ‖DHn‖ρn+1 · ‖h−1
n+1 ◦ φαn+1 ◦ hn+1 − φαn‖ρn

≤ ee

(
22n+6·l3n·e

2π·ρ′n
)qn
· 1

2n+1
|αn+1 − αn|

≤ ee

(
22n+6·l3n·e

2π·ρ′n
)qn
· 1

2n+1
· 2 · |α− αn|

<
1

2n
.

Hence, (Tn)n∈N is a Cauchy sequence in Diffωρ
(
T2
)
. Since this is a complete space, we obtain

convergence of (Tn)n∈N to a real-analytic diffeomorphism T ∈ Diffωρ
(
T2
)
.

3.4 Proof of conjugacy of T to the rotation Rα of the circle
This section is identical to section 6 of [Ba15] and we omit very detailed proofs which are available
in that paper. We have a sequence of real-analytic diffeomorphisms Tn converging to a real-analytic
diffeomorphism T , a generating sequence of partitions Fqn of T2 (see subsection 2.4) and each Fqn
is cyclically permuted by Tn. We also know the convergence of (αn)n∈N to the prescribed number
α.

On the other hand we approximate an irrational rotation of the circle by rational rotations.
Let αn = pn

qn
be as in the approximation by conjugation scheme described above and consider a

sequence of partitions of the circle as follows:

Cqn :=
{

Γi,qn :=
[ i
qn
,
i+ 1

qn

)
: i = 0, 1, . . . qn − 1

}
Clearly this is a sequence of partitions are monotonic and generating. We also, define a sequence
of maps:

Rαn : S1 → S1, defined by x 7→ x+ αn

So, we have Rαn → Rα. We also define

Ẽn+1 :=

qn+1⋃
i=0

[ i

l2nqn
− µ(En+1)

2l2nqn
,

i

l2nqn
+
µ(En+1)

2l2nqn

]
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Following the notation of lemma 3.5 we let M (1) := T2, µ(1) := µ,P(1)
n := Fqn , E

(1)
n :=

En,M
(2) := T1, µ(2) := λ,P(2)

n := Cqn and E
(2)
n := Ẽn+1. Finally we define the conjugacy Kn

by Kn(H−1
n ∆i,qn) = Γi,qn . This gives us that P(i)

n is generating and conditions 3.6, 3.7, 3.9 and
3.10 in lemma 3.5. Conditions 3.12 and 3.13 follows from the definition. Now note that φαn pre-
serves E(v)

n+1 and E(d)
n+1 and hence Tn+1 preserves En+1. This gives us 3.11 and completes the proof

of Theorem A.

3.5 Set of numbers L∗
As announced in the introduction we examine the set of obtained rotation numbers. By well known
arguments for spaces like L∗ (e. g. [Br15], Appendix A.2) we prove

Lemma 3.24. L∗ is a dense Gδ-subset of R.

Proof. For each pair (p, q) ∈ Z×N with p, q relatively prime and every k ∈ N we define the following
open set

Ok(p, q) =

{
x ∈ R

∣∣∣∣ 0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1

eek
q

}
.

Then the countable union

Uk =
⋃

(p,q)∈Z×N with p,q relatively prime

Ok(p, q)

is also open in R for every k ∈ N. In the next step, we fix k ∈ N. Obviously, each rational number
ω ∈ Q written in its lowest form ω = p

q lies in the closure of Ok(p, q). Hence, each rational number
lies in the closure of Uk. Since the rational numbers are dense in R, Uk is dense in R. This applies
to all k ∈ N. Moreover, we observe

L∗ =
⋂
k∈N

Uk.

By the Baire category Theorem, L∗ as a countable intersection of open dense sets is dense in R.

4 Non standard analytic realization of some ergodic transla-
tions of the torus

Our goal in this section is to produce a proof of theorem B. The proof of this theorem in the
smooth category was done by Anosov and Katok in [AK70]. Later Benhenda in [Be13] produced
an estimated version of this result showing that every ergodic toral translation with one arbitrary
Liouvillian coordinate can be realized smoothly on any manifold admitting a circle action.

In our article we prove a real analytic version of this result. Unfortunately we do not have the
techniques to prove results like theorem 1.1 and theorem 1.2 in [AK70] for arbitrary real-analytic
manifolds. However the concept of block-slide type maps and their real-analytic approximations
allow us just about enough flexibility on the torus to produce pretty much any combinatorial
picture the approximation by conjugation scheme requires. So we prove that there exist real-
analytic diffeomorphisms on Td which are metrically conjugated to ergodic translations on Th for
arbitrary d ≥ 2 and h ≥ 1.
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As of now we do not know if this concept of block-slide type maps can be successfully generalized
to other types of real-analytic manifolds. It is possible that these maps can be generalized to odd
dimensional spheres using transitive flows like those described in [FK14]. The main obstruction to
this generalizations seems to be the fact that the analytic flows they use commutes with the Hopf
fibration but not with each other.

4.1 Description of the required combinatorics
Our objective here is to demonstrate that one can reproduce the approximation by conjugation
scheme as described in [AK70] in its full generality in the real-analytic category on Td, d ≥ 2. We
show three basic kind of rearrangement techniques in this section. Together, these three kind of
rearrangements will be sufficient to produce all constructions done in [AK70].

Periodic interchange of two consecutive atoms

Fix any two integers k and q. Our objective here is to show that one can interchance two consecutive
atoms of Tkq periodically inside each atom of Tq. More precisely we show that there exist a block-
slide type map fk,q that interchanges the atom ∆ik,kq with the atom ∆ik+1,kq for i = 0, . . . , q − 1
and leaves all other atoms of Tkq unchanged.

We begin by considering the following step functions (or more appropriately piecewise constant
functions):

σ
(1)
kq : (0, 1]→ R defined by σ

(1)
kq (t) =

{
0 if t ∈ (0, 1/2]

1/(kq) if t ∈ (1/2, 1]
(4.1)

σ
(2)
kq : (0, 1]→ R defined by σ

(2)
kq (t) =

{
1/(kq) if t ∈ (0, 1/2]

0 if t ∈ (1/2, 1]
(4.2)

σ
(3)
kq : (0, 1]→ R defined by σ

(3)
kq (t) =

{
0 if qt mod 1 ∈ (0, 1

k ]

1/2 if qt mod 1 ∈ ( 1
k , 1]

(4.3)

σ
(4)
kq : (0, 1]→ R defined by σ

(4)
kq (t) =

{
0 if qt mod 1 ∈ (0, 2

k ]

1/2 if qt mod 1 ∈ ( 2
k , 1]

(4.4)

Note that σ(3)
kq is 1/q periodic and we can define the following piecewise continuous functions on

Td:

f
(1)
kq : Td → Td defined by f

(1)
kq

(
(x1, . . . , xd)

)
= (x1 − σ(1)

kq (x2), x2, . . . , xd) (4.5)

f
(2)
kq : Td → Td defined by f

(2)
kq

(
(x1, . . . , xd)

)
= (x1, x2 + σ

(3)
kq (x1), . . . , xd) (4.6)

f
(3)
kq : Td → Td defined by f

(3)
kq

(
(x1, . . . , xd)

)
= (x1 + σ

(2)
kq (x2), x2, . . . , xd) (4.7)

f
(4)
kq : Td → Td defined by f

(4)
kq

(
(x1, . . . , xd)

)
= (x1, x2 + 1/2, . . . , xd) (4.8)

f
(5)
kq : Td → Td defined by f

(5)
kq

(
(x1, . . . , xd)

)
= (x1 − σ(2)

kq (x2), x2, . . . , xd) (4.9)

f
(6)
kq : Td → Td defined by f

(6)
kq

(
(x1, . . . , xd)

)
= (x1, x2 + σ

(3)
kq (x1), . . . , xd) (4.10)

f
(7)
kq : Td → Td defined by f

(7)
kq

(
(x1, . . . , xd)

)
= (x1 − σ(1)

kq (x2), x2, . . . , xd) (4.11)
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Figure 2: Illustration of the action of fkq on T2 with k = 4 and q = 3. We note how the blocks

are moved by the intermediate maps: B1
f
(1)
kq−−→ B2

f
(2)
kq−−→ B3

f
(3)
kq−−→ B4

f
(4)
kq−−→ B5

f
(5)
kq−−→ B6

f
(6)
kq−−→ B7

f
(7)
kq−−→

B8
f
(8)
kq−−→ B9. Note that at the end the first two columns are interchanged. fkq acts as an identity

on every other column. We also note that B8 and B9 appear to be identical but the unmarked
rectangles are flipped.
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f
(8)
kq : Td → Td defined by f

(8)
kq

(
(x1, . . . , xd)

)
= (x1, x2 + σ

(4)
kq (x2), . . . , xd) (4.12)

We compose all the functions above into the following function:

fk,q : Td → Td defined by fk,q := f
(8)
kq ◦ f

(7)
kq ◦ f

(6)
kq ◦ f

(5)
kq ◦ f

(4)
kq ◦ f

(3)
kq ◦ f

(2)
kq ◦ f

(1)
kq (4.13)

Periodic rearrangement of atoms

Now we show that for for any given l and i with 0 ≤ l < k and 0 ≤ i < q, there exists a map of the
block-slide kind which will allow us to rearrange the atoms of Tk,q so that for any i with 0 ≤ i < q,
the atom ∆l+kj,kq is moved to ∆l+k(j+i),kq while any atom that is not of the form ∆l+kj′,kq is left
invariant.

Now we describe this map. Consider the following block-slide type map,

wl,k,q : Td → Td defined by wl,k,q = φl/(kq) ◦ fk,q ◦ φ−l/(kq) (4.14)

and consider the following composition,

wi,l,k,q : Td → Td defined by wi,l,k,q = φ1/(kq) ◦wl+ki−2,k,q ◦ . . .wl+1,k,q ◦wl,k,q
(4.15)

Note that the above is the map we desired at the begining.

Recovering Tldq from a generating partition

We show that given any two integers l and q, there exists a block-slide type map which allows us
to break down the partition Tldq and reform it into a partition Gl,q whose atoms have diamter less
than d/l.

We consider the following three types of block slide map:

g
(1)
i,l,q : Td → Td defined by g

(1)
i,l,q

(
(x1, . . . , xd)

)
= (x1 + ψ

(1)
l,q (xi), x2, . . . , xd)

g
(2)
i,l,q : Td → Td defined by g

(2)
i,l,q

(
(x1, . . . , xd)

)
= (x1, . . . , xi−1, xi + ψ

(2)
l,q (x1), xi+1, . . . , xd)

g
(3)
i,l,q : Td → Td defined by g

(3)
i,l,q

(
(x1, . . . , xd)

)
= (x1 − ψ(3)

l,q (xi), x2, . . . , xd)

with the maps ψ(i)
l,q defined as above. Note that the composition

gi,l,q : Td → Td defined by gi,l,q = g
(3)
i,l,q ◦ g

(2)
i,l,q ◦ g

(1)
i,l,q (4.16)

maps the partition Gj,l,q to Gj+1,l,q, where

Gj,l,q :=
{[ i1
ljq

,
i1 + 1

ljq

)
×
[ i2
l
,
i2 + 1

l

)
× . . .×

[ id−j+1

l
,
id−j+1 + 1

l

)
× Tj−1 : i1 = 0, 1, . . . , lq − 1,

(i2, . . . , id−j+1) ∈ {0, 1, . . . , l − 1}d−j
}

(4.17)

So the composition

gl,q : Td → Td defined by gl,q = gd−1,l,q ◦ . . . ◦ g1,l,q (4.18)

maps the partition Gl,q to Tldq = Gldq.
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Figure 3: Illustration of the action of wi,l,k,q on T2 with l = 1, i = 1, k = 4 and q = 3. We note how

the blocks are moved by the intermediate maps: C1
w1,4,3−−−−→ C2

w2,4,3−−−−→ C3
w3,4,3−−−−→ C4

φ1/(12)

−−−−→ C5.
Note that every other columns are kept constant at the end.
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Piecing everything together

Our objective now is to demonstrate that there is a 1
q -periodic block-slide type of map which maps

the partition Gl,q to Ra,k,q. Such a map is obtained after taking a composition of some of the maps
defined above:

Consider the following composition:

h
(1)
a,k,q : Td → Td defined by h

(1)
a,k,q = wa(k−1),k−1,k,q ◦ . . . ◦wa(1),1,k,q ◦wa(0),0,k,q

(4.19)

and note that the above map maps the partition Ra,k,q to the decomposition Tq. Next we define:

h
(2)
a,k,q : Td → Td defined by h

(2)
l,q = gl,q (4.20)

and note that the above map maps the partition Gl,q to Tldq. So the composition:

ha,k,l,q : Td → Td defined by ha,k,l,q = (h
(1)
a,k,q)

−1 ◦ h(2)
kl,q (4.21)

and note that the above map satisfies the following properties:

1. h−1
a,k,l,q(Ra,k,q) = Tq.

2. h−1
a,k,l,q(Tldkdq) = Glk,q.

3. ha,k,l,q ◦ φα = φα ◦ ha,k,l,q for any p and α = p/q.

4.2 Periodic approximation of ergodic translations of the torus
This entire section is identical to section 6 in [AK70]. So we only recall the portions that we need.
For exact proofs, one may refer to the original article.

Lemma 4.22. There exists sequences αn = (α
(1)
n , . . . , α

(h)
n ) and γn = (γ

(1)
n , . . . , γ

(h)
n ) satisfying the

following properties:

1. gcd(γ
(1)
n , . . . , γ

(h)
n ) = 1

2. There exists integers pn, qn such that gcd(pn, qn) = 1 and αn = (pn/qn)γn.

3. There exists integers rn such that qn = rnγ
(h)
n−1.

4. There exists integers sn such that γ(h)
n+1 = snγ

(h)
n .

5. γ(i)
n+1 ≡ γ

(i)
n mod qn, for i = 1, . . . , h.

6. There exists integers mn such that

pn+1

qn+1
=
pn
qn

+
1

mnsnq2
n

(4.23)

7. Let Γ′n ⊂ Th−1 × {0} ⊂ Th be a fundamental domain of the flow T tγn . Let dn := diam(Γn),

σn = µh−1(∂(Γn)). Then dn+1 < 1/(2nγ
(h)
n σn).
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8. ∣∣∣γn+1

γ
(h)
n+1

− γn

γ
(h)
n

∣∣∣ < 1

2nσnqn
(4.24)

With αn, pn, qn, γn, rn, sn,mn and Γ′n as in lemma 4.22, we construct the following two sequences
of partitions of Th−1 × {0} ⊂ Th:

F̃ ′qn :=
{

Γ′i,qn : Γ′i,qn := T iγn/γ
(h)
n Γ′n, i = 0, . . . , qn − 1

}
(4.25)

F̃ ′qn,qn+1
:=
{

Γ′i,qn,qn+1
: Γ′i,qn,qn+1

:= T iγn/γ
(h)
n (∪{Γ′j,qn+1

: T jγn+1/γ
(h)
n+1(0) ∈ Γ′n,

j = 0, . . . , qn+1 − 1, i = 0, . . . , qn − 1})
}

(4.26)

Note that F ′qn > F
′
qn,qn+1

. and they are both generating sequence of partitions. We construct the
following two sequence of partitions of Th from the above two partitions:

F̃qn :=
{

Γi,qn : Γi,qn := T iγn/qn(∪{T tγnΓ′n : 0 ≤ t < 1/qn}), i = 0, . . . , qn − 1
}

(4.27)

F̃qn,qn+1
:=
{

Γi,qn,qn+1
: Γi,qn,qn+1

:= T iγn/qn(∪{T tγn+1Γ′0,qn,qn+1
: 0 ≤ t < 1/(rnγ

(h)
n+1)}),

i = 0, . . . , qn − 1
}

(4.28)

The following proposition summarizes certain properties of the above partitions. For a proof
one can refer to page 28-29 of [AK70].

Proposition 4.29. With αn, pn, qn, γn, rn, sn,mn as in lemma 4.22 we can conclude the following:

1. The sequence of partitions F̃qn,qn+1
and F̃qn are respectively preserved and permuted by Tαn .

2. µh(Γi,qn,qn+1
4Γi,qn) < 1/(2n−3qn) 5 for any Γi,qn,qn+1

∈ F̃qn,qn+1
and Γi,qn ∈ F̃qn with the

same i.

3. The sequence of periodic translations Tαn : Th → Th converges to an ergodic translation
Tα : Th → Th.

Next proposition is identical to lemma 6.2 in [AK70].

Proposition 4.30. Under the same hypothesis as proposition 4.29 we can find a sequence of par-
titions M̃n of Th satisfying the following three properties:

1. Monotonicity condition: M̃n+1 > M̃n

2. Cyclic permutaion: The diffeomorphims Tαn cyclically permutes the atoms of M̃n.

3. Generating condition: M̃n → ε as n→∞.

Proof. We use a method similar to the proof of 2.29. We define for any n, the following three maps

q
(1)
n+1,n : Th/F̃qn → Th/F̃qn,qn+1 defined by q

(1)
n+1,n(Γi,qn) := Γi,qn,qn+1 (4.31)

q
(2)
n+1,n : Th/F̃qn+1 → Th/F̃qn,qn+1 defined by

5Here µh denotes the standard Lebesgue measure on Th
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q
(2)
n+1,n(Γi,qn+1

) := Γj,qn,qn+1
if Γi,qn+1

⊂ Γj,qn,qn+1
(4.32)

qn+1,n : Th/F̃qn → Th/F̃qn+1
defined by qn+1,n := (q

(2)
n+1,n)−1 ◦ q(1)

n,n+1 (4.33)

and more generally we define the composition map for any m and n with m > n as follows:

qm,n : Th/F̃qn → Th/F̃qm defined by qn,m = qm,m−1 ◦ . . . ◦ qn+1,n (4.34)

We now define the partition M̃ = {limm→∞ qm,n(Γi,qn) : 0 ≤ i < qn} (see proposition 2.29) and
finally the correspondence:

q∞,n : Th/F̃qn → Th/M̃ defined by q∞,n = lim
m→∞

qm,n (4.35)

The rest of the proof involves proving that M̃ is indeed a partition satisfying the required conditions.
This part can be completed identical to proposition 2.29 and we do not repeat it again.

4.3 Analytic diffeomorphisms metrically isomorphic to a shift on a Torus
Our goal in this section is to prove theorem B:

Proof. First we introduce the following two correspondences

Kn : Th/F̃qn → Td/Fqn defined by Kn(Γi,qn) = H−1
n (∆i,qn) (4.36)

K̃n : Th/M̃n → Td/Mn defined by K̃n(q∞,n(Γi,qn)) = p∞,n(H−1
n (∆i,qn)) (4.37)

Clearly the above two maps satisfy K̃n = pn,∞◦Kn◦q−1
n,∞. We claim that we can choose parameters

carefully so that the following condition can be satisfied:

Kn+1|F̃qn,qn+1
= pn+1,n ◦Kn ◦ q−1

n+1,n (4.38)

Before we do that, we make some observation about Kn and K̃n. First note that we have the
following relationship:

K̃n ◦ Tαn = Tn ◦ K̃n (4.39)

Indeed, observe that using proposition 4.30, 4.37, proposition 2.29 we get

K̃n(Tαn(q∞,n(Γi,qn))) = K̃n(q∞,n(Γpn+i mod qn,qn))

= p∞,n(H−1
n (∆pn+i mod qn,qn))

= p∞,n(Tn(H−1
n (∆i,qn)))

= Tn(p∞,n(H−1
n (∆i,qn)))

= Tn(K̃n(qn,∞(Γi,qn)))

The next observation we need is

K̃n+1|Th/M̃n
= K̃n (4.40)
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Indeed observe that using 4.37,

K̃n+1(q∞,n(Γi,qn)) = K̃n+1(q∞,n+1 ◦ qn+1,n(Γi,qn))

= p∞,n+1(Kn+1(qn+1,n(Γi,qn)))

= p∞,n+1(pn,n+1(Kn(Γi,qn)))

= p∞,n(Kn(Γi,qn))

= K̃n(qn,∞(Γi,qn))

Our job now is to choose parameters correctly in proposition 4.29 and the analytic approximation
by conjugation scheme and simultaneously construct Kn s satisfying condition 4.38.

The construction is by induction and assume that we have selected parameters αj , pj , qj , γj , rj , sj
for j = 1, 2, . . . , n in proposition 4.29 so that these satisfy all the conditions in lemma 4.22. We
recall that the parameter mn in lemma 4.22 can be chosen to be arbitrarily large. We will use this
freedom to make the approximation by conjugation scheme work. Assume the approximation by
conjugation scheme has been successfully carried out up to the n th stage.

At the n+ 1 th stage, we choose parameters and proceed with our construction in the following
order:

1. Choose integer vector γhn+1 and integers rn, sn as in lemma 4.22.

2. Choose the parameter kn := snγ
(h)
n+1 for the approximation by conjugation scheme. Next we

define the partition:

F̃knqn := {Γi,knqn : Γi,knqn := T i/(knqn)(∪{T tγn+1Γn+1 : 0 ≤ t < 1/(knqn)}),
i = 0, . . . , knqn − 1} (4.41)

Note that with this choice of kn we have F̃knqn > F̃qn,qn+1 .

3. Choose the functions an in the approximation by conjugation scheme. In order to do so, we
define the following correspondence:

K̂n : Th/F̃knqn → Td/Tknqn defined by K̂n(Γi,knqn) = ∆i,knqn (4.42)

Now we choose a function an : {0, . . . , kn−1} → {0, . . . , qn−1} so that the following equality
holds:

R0,qn :=

kn−1⋃
i=0

∆an(i)kn+i,knqn = K̂n(Γ0,qn,knqn) (4.43)

This allows us to define the partition

Ran,kn,qn :=
{
Ri,qn : Ri,qn := φi/qnR0,qn

}
(4.44)

Note that K̂n(Γi,qn,qn+1) = Ri,qn and hence we conclude that K̂n ◦ T γn/qn = φ1/qn ◦ K̂n.

4. Choose the parameter ln large enough so that the analytic approximation by conjugation
scheme works.
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5. we choose the parameter mn in proposition 4.29. We require that mn = γ
(h)
n ln.

So, after having chosen all the parameters, we can define the partition F̃qn+1 of Th and note
that F̃qn+1 > F̃qn,knqn . Now we define the following correspondence:

K̄n : Th/F̃qn+1 → Td/Tqn+1 defined by K̄n(Γi,qn+1) = ∆i,qn+1 (4.45)

and observe that K̄n(Γi,knqn) = K̂n(Γi,knqn). All that remains is to verify that Kn+1 satisfy 4.38.
So we calculate using definitions and facts from proposition 2.29 and its proof:

pn+1,n ◦Kn

(
Γi,qn

)
= pn+1,n ◦H−1

n

(
∆i,qn

)
= H−1

n+1 ◦ cn+1,n

(
∆i,qn

)
= H−1

n+1

( ⋃
j:∆j,qn+1

⊂Ri,qn

∆j,qn+1

)

= H−1
n+1

(
K̂n(Γi,qn,qn+1

)

)
. . . (see item 3 above)

= H−1
n+1

(
K̂n(

⋃
j:Γj,knqn⊂Γi,qn,qn+1

Γj,knqn)

)

= H−1
n+1

( ⋃
j:Γj,knqn⊂Γi,qn,qn+1

K̂n(Γj,knqn)

)

= H−1
n+1

( ⋃
j:Γj,knqn⊂Γi,qn,qn+1

K̄n(Γj,knqn)

)

= H−1
n+1 ◦ K̄n

(
Γi,qn,qn+1

)
= H−1

n+1 ◦ K̄n ◦ qn,n+1

(
Γi,qn

)
= Kn+1 ◦ qn,n+1

(
Γi,qn

)
This completes the proof

5 Minimal diffeomorphisms with a prescribed number of er-
godic invariant measures.

Let ρ > 0 and r ∈ N. In order to prove Theorem D we aim at constructing a minimal T ∈
Diff ω

ρ (T2 µ) with exactly r ergodic invariant measures. We fix an arbitrary countable set Ξ =

{ρi}i∈N of Lipschitz functions that is dense in C
(
T2,R

)
. In addition to our usual assumptions we

require the number ln to satisfy

ln > n2 · ‖DH−1
n ‖0 · max

i=1,...,n
Lip(ρi), (5.1)
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where Lip(ρ) is the Lipschitz constant of ρ.
First of all, we show that a permutation Π of the partition Skq,l which commutes with φ1/q is a

block slide type of map. This property will be required in the construction of our conjugation map
in subsection 5.2: hn = h1,n ◦ h2,n. This time there are different parts of the torus T2 introduced
with distinct aims. On the one hand, we will divide it into r sets Nt by requirements on the x2-
coordinate. Each set naturally supports an absolutely continuous probability measure µt given by
the normalized restriction of the Lebesgue measure µ. These will enable us to build the ergodic
invariant measures as the limits ξt of the sequence ξnt := (Hn)

∗
µt.

On the other hand, we will use stripes corresponding to small parts of the x1-axis on which the
conjugation map h−1

2,n will intermingle the sets Ñt to prove minimality of the limit diffeomorphism T .
These parts are measure theoretically insignificant because the measure of these sets will converge
to zero as n→∞.
In order to achieve these aims we need the so-called trapping map h−1

1,n introduced in subsection
5.2. On the “minimality” - part, this map captures parts of every orbit {φαn ◦Hn (x)}k=0,...,qn−1

so that the conjugation map h−1
2,n can spread it over the almost whole manifold. Then we can

prove minimality in chapter 5.3 by arguing that every element in a family of sufficiently small cubes
covering the whole manifold is met by the orbit

{
h−1
n ◦ φkαn ◦Hn (x)

}
k=0,...,qn−1

and the image of
any cube underH−1

n−1 has a small diameter, which converges to 0 as n→∞. In addition the trapping
map is used to gain control of almost everything of every orbit

{
H−1
n ◦ φkαn (x)

}
k=0,...,qn−1

. This
allows us to prove a convergence result on Birkhoff sums (see Lemma 5.32), which in turn enables
us to exclude the existence of further ergodic invariant measures besides the previously mentioned
ξt.

5.1 Approximation of arbitrary permutations
Suppose we have three natural numbers l, k and q, and a permutation Π of the partition Skq,l which
commutes with φ1/q. Our objective here is to show that Π is a block slide type of map. This will
be achieved in two steps. In the first step we show that there exists a product of two 2-cycles and
then we will prove that all transpositions are block-slide type of maps:

Product of two 2-cycles

We now show that for any choice of natural numbers l, k and q there exists a block-slide type of map
which has the same effect as the product of two 2-cycles in the symmetric group of lkq elements.

In order to make this precise we need the following notation. For any i = 0, . . . , kq − 1 and
j = 0, . . . , s− 1 we define

Skq,l := {Skq,li,j := [i/(kq), (i+ 1)/(kq))× [j/l, (j + 1)/l), 0 ≤ i < kq, 0 ≤ j < l} (5.2)

First we define the following step function:

σ
(4)
kq : (0, 1]→ R defined by σ

(4)
kq (t) =

{
2/(kq) if t ∈ ((l − 1)/l, 1]

0 if t ∈ (0, (l − 1)/l]
(5.3)

And then the following two maps of block-slide type:

g
(1)
kq,l : T2 → T2 defined by g

(1)
kq,l

(
(x1, x2)

)
= (x1 − σ(4)(x2), x2) (5.4)
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Figure 4: Illustration of the action of gk,q,l on T2 with l = 4, k = 6 and q = 3. We note how the

blocks are moved by the intermediate maps: D1
g

(1)
k,q,l−−−→ D2

g
(2)
k,q,l−−−→ D3

g
(3)
k,q,l−−−→ D4

g
(4)
k,q,l−−−→ D5. Note

that every other atoms apart from the four we flipped are kept constant at the end.
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g
(2)
kq,l : T2 → T2 defined by g

(2)
kq,l

(
(x1, x2)

)
= (x1 + σ(4)(x2), x2) (5.5)

Finally we piece everything together and define the following block-slide type of map

gk,q,l : T2 → T2 defined by gk,q,l = g
(2)
k,q,l ◦ f0,k,q ◦ g

(1)
k,q,l ◦ f0,k,q (5.6)

using the map f0,k,q from section 4.1.
We end this section after noting that the above block-slide type of map takes Skq,l0,l−1 → Skq,l1,l−1,

Skq,l1,l−1 → Skq,l0,l−1, S
kq,l
2,l−1 → Skq,l3,l−1, S

kq,l
3,l−1 → Skq,l2,l−1 and acts as an identity everywhere else. This is

the same as the product of two 2-cycles in the symmetric group on a set of k × l elements.

Transposition

Finally we show that there exists a block-slide on the torus which switches two blocks and leaves
all other invariant. Unfortunately if we work with the partition Skq,l, we do not know if such a
map exists. The way we circumnavigate this problem is to go to a finer partition, namely Skq,2l
and show that with some care, a product of two 2-cycles in Skq,2l is a transposition in Skq,l

First we define the following two step functions:

σ
(5)
kq,l : (0, 1]→ R defined by σ

(5)
kq,l(t) =


0 if t ∈ ((2l − 1)/(2l), 1]

2/(kq) if t ∈ ((2l − 2)/(2l), (2l − 1)/(2l)]

0 if t ∈ (0, (2l − 2)/(2l)]

(5.7)

σ
(6)
kq,l : (0, 1]→ R defined by σ

(6)
kq,l(t) =


0 if qt mod 1 ∈ (0, 2/k]

1/(2l) if qt mod 1 ∈ (2/k, 4/k]

0 if qt mod 1 ∈ (4/k, 1]

(5.8)

And then the following four block-slide type of map:

h
(1)
kq,l : T2 → T2 defined by h

(1)
kq,l

(
(x1, x2)

)
= (x1 + σ

(5)
kq,l(x2), x2) (5.9)

h
(2)
kq,l : T2 → T2 defined by h

(2)
kq,l

(
(x1, x2)

)
= (x1 − σ(5)

kq,l(x2), x2) (5.10)

h
(3)
kq,l : T2 → T2 defined by h

(3)
kq,l

(
(x1, x2)

)
= (x1, x2 + σ

(6)
kq,l(x1)) (5.11)

h
(4)
kq,l : T2 → T2 defined by h

(4)
kq,l

(
(x1, x2)

)
= (x1, x2 − σ(6)

kq,l(x1)) (5.12)

Finally we piece everything together and define the following block-slide type of map

hk,q,l : T2 → T2 defined by hk,q,l := h
(2)
k,q,l ◦ h

(4)
k,q,l ◦ gk,q,2l ◦ h

(3)
k,q,l ◦ h

(1)
k,q,l (5.13)

More generally we can define for any (i, j) 6= (0, l − 1), the following block-slide type of map:

h
(i,j)
k,q,l : T2 → T2 defined by (5.14)

h
(i,j)
k,q,l := φ(i−1)/(kq) ◦ (h

(4)
kq,l)

2(l−1−j) ◦ hk,q,l ◦ (h
(3)
k,q,l)

2(l−1−j) ◦ φ−(i−1)/(kq) (5.15)

We end this section by observing that h(i,j)
k,q,l maps Skq,l0,l−1 → Skq,li,j , Skq,li,j → Skq,l0,l−1 and acts as identity

everywhere else. So we obtained all transpositions of the form (1, n) in the symmetric group on a
set of kl elements.
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Figure 5: Illustration of the action of hk,q,l on T2 with l = 4, k = 6 and q = 3. We note how the

blocks are moved by the intermediate maps: E2
h

(1)
6,3,4−−−→ E3

h
(3)
6,3,4−−−→ E4

g6,3,4−−−→ E5
h

(4)
6,3,4−−−→ E6

h
(2)
6,3,4−−−→ E7.

Note that every other atoms apart from the two we flipped are kept constant at the end.
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Figure 6: Picture of κ(1) with n = 5 drawn over the interval (0, 1/(n2l3q)] on the x-axis.

All permutations are block-slide type of maps

We now show that any permutation which commutes with φ1/q is a block-slide type of map.

Theorem E. Let Π be any permutation of kql elements. We can naturally consider Π to be a
permutation of the partition Skq,l of the torus T2. Assume that Π which commutes with φ1/q. Then
Π is a block-slide type of map.

Proof. Follows from the fact that all permutations are generated by transpositions.

5.2 Description of the required combinatorics
Here we prove theorem D. We begin by describing the combinatorics we need at the n+ 1 th stage
of the induction process abstractly.

For t = 0, . . . , r − 1, we consider the following subsets of T2:

Nt := T1 ×
[ t
r
,
t+ 1

r

)
(5.16)

We denote the restriction of the Lebesgue measure µ to Nt by µt.
For natural numbers n, l and q we define the following partition of the torus T2:

Gl3q :=
{
Gi,j,l3q : Gi,j,l3q :=

[ i

l3q
,
i+ 1

l3q

)
×
[ j
lr
,
j + 1

lr

)
, 0 ≤ i < l3q, 0 ≤ j < lr

}
(5.17)

We define the following permutation of the above partition:

h(2) : T2 → T2 (5.18)

which acts on the atoms of partition Gl3q that are contained in [0, 1/(lq))×T1 in the following way
(for t = 0, . . . , r − 1)

If 0 ≤ i < l : (h(2))−1
(
Gi,j,l3q

)
= Gi′,j′,l3q, where i′ = b j

r
c, j′ = r · i+ j mod r, (5.19)
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if l ≤ i < l2 : (h(2))−1
(
Gi,tl+j,l3q

)
= Gi′,tl+j′,l3q, where i′ = b i

l
c · l + j, j′ = i mod l.

(5.20)

We extend this permutation to the whole of T2 equivariantly. Since the above description is not
very clear, we give a somewhat imprecise but more demonstrative description of the above map.
Note that the following rectangles get mapped in the following way:

(h(2))−1
([ i

l3q
,
i+ 1

l3q

)
×
[
0, 1
))

=
[
0,

1

l2q

)
×
[ i
l
,
i+ 1

l

)
if 0 ≤ i < l

(h(2))−1
([ i

l3q
,
i+ 1

l3q

)
×
[ t
r
,
t+ 1

r

))
=
[ i′
l2q

,
i′ + 1

l2q

)
×
[ tl + j′

lr
,

(t+ 1)l + j′ + 1

lr

)
if l ≤ i < l2,

where i′ = b il c and j
′ = i mod l. Notice that in the first region narrow rectangular stripes of full

height get squished and are distributed over the full height of the torus which will allow us to prove
minimality. While all other rectangles are mapped to rectangles of small diameter but they remain
within the horizontal strip Nt on the torus. These stripes will form the support of a preimage of
the invariant measures.
By the previous subsection we know that this is a block slide type of map and hence allows good
analytic approximations by Proposition 2.20. We denote this (ε, δ)-approximation by h(2), the
corresponding “bad set” by E and set F = T2 \ E.

For this number δ and given natural numbers q, l, n, we define the following step function:

κ̃(1) : [0,
1

l2q
)→ R defined by κ̃(1)(x) =



0 if x ∈ [0, 1
n2l3q )

δ
lr if x ∈ [ 1

n2l3q ,
2

n2l3q )

2 δ
lr if x ∈ [ 1

n2l3q ,
2

n2l3q )

. . . . . .

. . . . . .

(bn
2

2 c − 2) δlr if x ∈ [
bn2

2 c−1

n2l3q ,
bn2

2 c
n2l3q )

(bn
2

2 c − 1) δlr if x ∈ [
bn2

2 c
n2l3q ,

bn2

2 c+1

n2l3q )

(bn
2

2 c − 2) δlr if x ∈ [
bn2

2 c+1

n2l3q ,
bn2

2 c+2

n2l3q )

. . . . . .

. . . . . .
δ
lr if x ∈ [n

2−2
n2l3q ,

n2−1
n2l3q )

0 if x ∈ [n
2−1
n2l3q ,

1
l3q )

(5.21)

Let κ1 be the 1
l3q -periodic real-analytic

(
ε̃, δ̃
)
-approximation of κ̃(1). With the aid of this we define

h(1) : T2 → T2 defined by h(1)(x1, x2) := (x1, x2 + κ(1)(x1)) (5.22)

and we often refer to the above map as “trapping map”. The purpose of this map is to capture a
large portion of every φ orbit.
Hereby we introduce the so-called “trapping zones” (for t = 0, . . . , r − 1 and s = 0, . . . , lq − 1)
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Figure 7: Illustration of the action of (h(2))−1 on the rectangle [0, 1/q)× [0, 1) inside the torus T2.
The combinatorics depicted here is repeated with periodicity 1/q. We used r = 4, and l = 3 for
this diagram.
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As,i = h(1)
(
φ
s
lq
( lr−1⋃
j=0

Gi,j,l3q
)
∩ F

)
if 0 ≤ i < l (5.23)

Bts,i = h(1)
(
φ
s
lq
( l−1⋃
j=0

Gi,tl+j,l3q
)
∩ F

)
if l ≤ i < l2 (5.24)

In our specific constructions we define hn+1 = h1,n+1 ◦ h2,n+1 using the parameters q = qn,
l = ln, ε < εn

2lnqn
, δ = δn <

1
n4·2lnqn , ε̃ = ε̃n <

δn
2lnqn

and δ̃ = δ̃n <
δn

2lnqn
.

As announced we have the following trapping property:

Lemma 5.25. Let x ∈ T2 be arbitrary. Then the orbit
{
φkαn+1(x)

}
k=0,...,qn+1

meets every set As,i.

Moreover, for every Bts,i at least ωnt (x) · (1− 8
n2 )·qn+1

l3nqn
iterates of the orbit

{
φkαn+1(x)

}
k=0,...,qn+1

lie
in Bts,i, where ωnt (x) does not depend on s, i. On the contrary at most 10

n2 · qn+1 iterates are not
captured by the collection of sets Bts,i.

Proof. Let x = (x1, x2) ∈ T2 and i ∈
{

0, . . . , l3q − 1
}
be arbitrary. Note that

Gi,j,l3q ∩ F ⊇

[
i+ δ

2

l3q
,
i+ 1− δ

2

l3q

]
×

[
j + δ

2

lr
,
j + 1− δ

2

lr

]
(5.26)

by our approximation Proposition 2.20. Due to n2·δn
lnr

< 1
n2lnr

and our choice of the approxi-

mative step function κ(1) there are at most four sections
[
i
l3q +

u+ δ̃
2

n2l3q ,
i
l3q +

u+1− δ̃2
n2l3q

]
, where u ∈{

1, . . . , n2 − 2
}
, on an arbitrary

[
i+ δ

2

l3q ,
i+1− δ2
l3q

]
-section such that x2 does not belong to any of the

h(1)
((
Gi,j,l3q

)
∩ F

)
-domains for j = 0, . . . , lr − 1. Since {k · αn+1}k=0,...,qn+1−1 is equidistributed

on S1, the number of iterates k, such that
{
φkαn+1(x)

}
k=0,...,qn+1−1

is captured by one of these
domains is at least

b

(
1− 6

n2

)
·
(

1− δ̃n
)
· qn+1

l3nqn
c ≥

(
1− 8

n2

)
· qn+1

l3nqn
. (5.27)

Depending on the point x ∈ T2 there is a portion ωnt (x) of these iterates spent in trapping regions
Bts,i belonging to Nt. This portion does not depend on the indices s, i. Since there are lnqn ·

(
l2n − ln

)
such indices, the last claim follows.

5.3 Proof of minimality
Criterion for minimality

We recall the notion of a minimal dynamical system:

Definition 5.28. Let X be a topological space and f : X → X be a continuous transformation.
The map f is called minimal if for every x ∈ X the orbit

{
f i (x)

}
i∈N is dense in X.
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Equivalently f is minimal if for every x ∈ X and every non-empty open set U ⊆ X there is
i ∈ N such that f i (x) ∈ U . In the case of X being a metric space every open set contains an γ-ball
for γ sufficiently small. Thus, f is minimal if for every x ∈ X, every γ > 0 and for every γ-ball Bγ
there is i ∈ N such that f i (x) ∈ Bγ . Hereby, we can deduce the subsequent criterion of minimality
in the setting of our constructions:

Lemma 5.29. Suppose that the set of iterates
{
h−1
n+1 ◦ φi·αn+1 ◦Hn+1 (x)

}
i=0,...,qn+1−1

meets every

set of the form
[
j1
lnqn

, j1+1
lnqn

]
×
[
j2
ln
, j2+1

ln

]
for every x ∈ T2. Moreover, we assume that the sequence

(Tn)n∈N constructed as in section 5.2 converges to a diffeomorphism T in the Diffωρ -topology and
satisfies d0

(
T i, T in+1

)
< 1

2n for all i = 0, ..., qn+1 − 1. Then T = limn→∞ Tn is minimal.

Proof. At first we observe that

diam
(
H−1
n

([
j1
lnqn

,
j1 + 1

lnqn

]
×
[
j2
ln
,
j2 + 1

ln

]))
≤ ‖DHn‖0 ·

2

ln
,

which converges to 0 as n→∞ (because of ‖DHn‖0 <
ln
2n by equation 2.28), and that the family of

sets
[
j1
lnqn

, j1+1
lnqn

]
×
[
j2
ln
, j2+1

ln

]
covers the whole space T2. Hence, for every ε > 0 and y ∈ Tm there

is M1 ∈ N such that for every n ≥M1 there exists a set H−1
n

([
j1
lnqn

, j1+1
lnqn

]
×
[
j2
ln
, j2+1

ln

])
⊆ B ε

2
(y).

Let x ∈ T2, ε > 0 and an ε-ball Bε (y), at which y ∈ T2, be arbitrary. Since d0

(
T i, T in+1

)
< 1

2n

for all i = 0, ..., qn+1 − 1 there is M2 ∈ N such that d0

(
T i, T in+1

)
< ε

2 for all i = 0, ..., qn+1 − 1 and
n ≥M2.
We consider n ≥ Ñ := max {M1,M2}. Then there is a set H−1

n

([
j1
lnqn

, j1+1
lnqn

]
×
[
j2
ln
, j2+1

ln

])
⊆

B ε
2

(y) and by assumption an i < qn+1 such that T in+1 (x) ∈ H−1
n

([
j1
lnqn

, j1+1
lnqn

]
×
[
j2
ln
, j2+1

ln

])
⊆

B ε
2

(y). By the triangle inequality we obtain

d
(
T i (x) , y

)
≤ d

(
T i (x) , T in+1 (x)

)
+ d

(
T in+1 (x) , y

)
≤ d0

(
T i, T in+1

)
+
ε

2
< ε.

Thus, we conclude T i (x) ∈ Bε (y). Hence, T is minimal.

Application of the criterion

The conditions on the convergence of the sequence (Tn)n∈N and proximity d0

(
T i, T in+1

)
< 1

2n for all

i = 0, ..., qn+1−1 are fulfilled by Remark 1. Let x ∈ T2 and
[
j1
lnqn

, j1+1
lnqn

]
×
[
j2
ln
, j2+1

ln

]
be arbitrary. We

have to show that the orbit
{
h−1
n+1 ◦ φiαn+1 ◦Hn+1 (x)

}
i=0,...,qn+1−1

meets
[
j1
lnqn

, j1+1
lnqn

]
×
[
j2
ln
, j2+1

ln

]
.

For this purpose, we note that there is i ∈ {0, ..., qn+1 − 1} with φiαn+1◦Hn+1 (x) ∈ Aj1,j2 by Lemma
5.25. Then we compute

h−1
n+1 (Aj1,j2) = h−1

2,n+1

φ j1
lnqn

( lnr−1⋃
j=0

Gj2,j,l3nqn
)
∩ Fn

 = φ
j1
lnqn ◦ h−1

2,n+1

lnr−1⋃
j=0

Gj2,j,l3nqn ∩ Fn


⊂ φ

j1
lnqn

([
0,

1

l2nqn

]
×
[
j2
ln
,
j2 + 1

ln

])
⊂
[
j1
lnqn

,
j1 + 1

lnqn

]
×
[
j2
ln
,
j2 + 1

ln

]
and we can apply Lemma 5.29 to prove the minimality of T .
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5.4 The ergodic invariant measures
Construction of the measures

As announced we will construct the ergodic invariant measures with the aid of the normalized
restrictions µt of the Lebesgue measure on the sets Nt, i.e. µt (A) = µ(A∩Nt)

µ(Nt)
for any measurable

set A ⊆ T2. Since each set Nt is φβ-invariant for any β ∈ S1, we have
(
φβ
)
∗ µt = µt. With these

we define the measures ξnt :=
(
H−1
n

)
∗ µt and can prove their Tn-invariance:

(Tn)∗ ξ
n
t = (Tn)∗

((
H−1
n

)
∗ µt
)

=
(
Tn ◦H−1

n

)
∗ µt =

(
H−1
n ◦ φαn+1

)
∗ µt =

(
H−1
n

)
∗ (φαn+1)∗ µt = ξnt .

Here we used the relation f∗g∗µ = (f ◦ g)∗ µ for maps f, g. This holds because we have for any
measurable set A:

f∗g∗µ (A) = g∗µ
(
f−1 (A)

)
= µ

(
g−1

(
f−1 (A)

))
= µ

(
(f ◦ g)

−1
(A)
)

= (f ◦ g)∗ µ (A) .

In the next step we want to estimate µ
(
H−1
n+1 (Nt)4H−1

n (Nt)
)
. For this purpose, we have to

examine which parts of the set Nt are not mapped back to Nt under h−1
n+1 = h−1

2,n+1 ◦ h
−1
1,n+1. The

measure difference is composed of our error set En∩Nt, the part, where the conjugation map h−1
n+1 is

constructed to prove minimality (i.e. on the lnqn sets
[

k
lnqn

, k
lnqn

+ 1
l2n·qn

]
×T for k = 0, ..., lnqn−1),

and the part that is not mapped back to Nt under h−1
1,n+1. The last one is caused by the translation

about at most n2δn
2ln

in the x2-coordinate produced by h−1
1,n+1. Altogether, we obtain:

µ
(
H−1
n+1 (Nt)4H−1

n (Nt)
)

= µ
(
h−1
n+1 (Nt)4Nt

)
≤ 1

ln
+
n2δn
ln

+ µ(En+1) ≤ 1

ln
. (5.30)

Now we can use the same approach as in [Wi01], chapter 7:
By equation 5.30 the sequence

{
H−1
n (Nt)

}
n∈N is a Cauchy sequence in the metric on the associated

measure algebra. Since this space is complete (e.g. [Pe83], Proposition 1.4.3.), there exists a limit
Bt := limn→∞H−1

n (Nt) in the measure algebra. For this limit we have µ (Bt) = µ (Nt), because
H−1
n is measure-preserving. The sets Bt and Bs are measurably disjoint due to the disjointness of

the sets Nt and Ns. Moreover, we have weak convergence of the measures (ξnt )n∈N to a measure ξt,
where ξt (A) = µ(A∩Bt)

µ(Bt)
for any measurable set A ⊆ T2. For this absolutely continuous measure ξt

we conclude limn→∞ (Tn)∗ ξ
n
t (A) = T∗ξt (A) due to the triangel inequality

µ
(
Hn

(
T−1
n A

)
∩Nt

)
= µ

(
T−1
n A ∩H−1

n (Nt)
)
≤ µ

(
T−1
n A ∩Bt

)
+ µ

(
H−1
n (Nt)4Bt

)
≤ µ

(
T−1
n A4T−1A

)
+ µ

(
T−1A ∩Bt

)
+ µ

(
H−1
n (Nt)4Bt

)
(where the first summand converges to 0 as n→∞ because of Tn → T ). So we obtain

ξt = lim
n→∞

ξnt = lim
n→∞

(Tn)∗ ξ
n
t = T∗ξt

using the shown Tn-invariance of the measure ξnt . Thus, the measures ξt are T -invariant.
Furthermore, these measures ξt are linearly independent because the sets B1, ..., Bd are measurably
disjoint as noted before. Since any non-ergodic invariant measure can be written as a linear combi-
nation of ergodic measures ([Wa75], Theorem 5.15), there cannot be less than d ergodic measures.
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Estimates on Birkhoff sums

In this subsection we show that the measures ξt are the only possible ergodic measures for T . For
this purpose, we will prove a result on the Birkhoff sums (see Lemma 5.33) and have to gain control
over almost everything of every φ-orbit. In this connection the following sets are useful: In case of
0 ≤ s < lnqn, 0 < j1 < ln and 0 ≤ j2 < ln we introduce

∆t
s,j1,j2 =

[
s

lnqn
+

j1
l2n · qn

,
s

lnqn
+
j1 + 1

l2n · qn

]
×
[
t

r
+

j2
lnr

,
t

r
+
j2 + 1

lnr

]
Note that there are l3nqn ·

(
1− 1

ln

)
such sets ∆t

s,j1,j2
on Nt. We denote the family of these sets by

Ωtn as well as the union of these sets by Ω̃tn. Then µ
(
Nt \ Ω̃tn

)
= 1

lnr
, i.e. µt

(
Nt \ Ω̃tn

)
≤ 1

ln
.

We observe that diam
(
H−1
n

(
∆t
s,j1,j2

))
< ‖DH−1

n ‖0 · 1
ln
. By the requirements on the number ln in

equation 5.1 we obtain∣∣ρi (H−1
n (x)

)
− ρi

(
H−1
n (y)

)∣∣ ≤ Lip (ρi) · diam
(
H−1
n

(
∆t
s,j1,j2

))
<

1

n2

for every x, y ∈ ∆t
s,j1,j2

and the function ρi ∈ Ξ in case of i = 1, ..., n. Averaging over all y ∈ ∆t
s,j1,j2

we obtain: ∣∣∣∣∣ρi (H−1
n (x)

)
− 1

ξnt
(
H−1
n

(
∆t
s,j1,j2

)) ∫
H−1
n (∆t

s,j1,j2
)
ρi dξ

n
t

∣∣∣∣∣ < 1

n2
. (5.31)

Furthermore, we recall that the image of the trapping region Bts,i under h−1
n+1 is contained in

∆t
s,b iln c,i mod ln

. Vice versa, Bts,j1·ln+j2
is the unique trapping region that is mapped into ∆t

s,j1,j2
.

Hence, we can estimate the number of i ∈ {0, ..., qn+1 − 1} such that h−1
n+1 ◦φi·αn+1 (x) is contained

in ∆t
s,j1,j2

by $n
t (x) · (1− 8

n2 )·qn+1

l3nqn
for arbitrary x ∈ T2 using Lemma 5.25.

Lemma 5.32. Let ρi ∈ Ξ and i = 1, ..., n. Then for every y ∈ T2 we have

inf
ξn∈Θn

∣∣∣∣∣ 1

qn+1

qn+1−1∑
k=0

ρi
(
T kn+1y

)
−
∫
ρi dξ

n

∣∣∣∣∣ < 20

n2
· ‖ρi‖0 +

1

n2
,

where Θn is the simplex generated by
{
ξn0 , ..., ξ

n
r−1

}
.

Proof. Let x ∈ T2 be arbitrary. We introduce the measure ξnx :=
∑r−1
t=0 $

n
t (x) · ξnt ∈ Θn.

The set of numbers k ∈ {0, 1, ..., qn+1 − 1} such that the iterates φk·αn+1 (x) are not contained in
one of the trapping regions of the second kind is denoted by Ia. Referred to Lemma 5.25 there are
at most 10

n2 · qn+1 numbers in Ia. We obtain
∣∣∑

k∈Ia ρi
(
H−1
n+1 ◦ φk·αn+1 (x)

)∣∣ ≤ ‖ρi‖0 · 10
n2 · qn+1.

Moreover, we denote the set of k ∈ {0, 1, ..., qn+1 − 1} such that the iterate h−1
n+1 ◦ φkαn+1 (x) is

contained in the corresponding trapping region ∆ ∈ Ωtn by I∆. By the above considerations there

are at least $n
t (x) · (1− 8

n2 )·qn+1

l3nqn
= $n

t (x) · qn+1 ·
(
1− 8

n2

)
·µt (∆) and at most $n

t (x) · qn+1 ·µt (∆)

many numbers in I∆ for an arbitrary ∆ ∈ Ωtn. Thus, we obtain for an arbitrary ∆ ∈ Ωtn using
equation 5.31:∣∣∣∣∣∣ 1

qn+1

∑
j∈I∆

ρi
(
H−1
n+1 ◦ φjαn+1 (x)

)
−
∫
H−1
n (∆)

ρi d ($n
t (x) ξnt )

∣∣∣∣∣∣
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≤ ($n
t (x)µt) (∆)

n2
+

8

n2
·
∫
H−1
n (∆)

|ρi| d ($n
t (x) ξnt ) ≤ ($n

t (x)µt) (∆) ·
(

1

n2
+

8

n2
· ‖ρi‖0

)
.

Altogether, we conclude∣∣∣∣∣ 1

qn+1

qn+1−1∑
k=0

ρi
(
H−1
n+1 ◦ φkαn+1x

)
−
∫
ρi dξ

n
x

∣∣∣∣∣ =

∣∣∣∣∣ 1

qn+1

qn+1−1∑
k=0

ρi
(
H−1
n+1 ◦ φkαn+1(x)

)
−
r−1∑
t=0

 ∑
∆∈Ωtn

∫
H−1
n (∆)

ρi d ($n
t (x) ξnt ) +

∫
H−1
n (Nt\Ω̃tn)

ρi d ($n
t (x) ξnt )

∣∣∣∣∣
≤

∣∣∣∣∣∣
r−1∑
t=0

∑
∆∈Ωtn

 1

qn+1

∑
j∈I∆

ρi
(
H−1
n+1 ◦ φjαn+1 (x)

)
−
∫
H−1
n (∆)

ρid ($n
t (x) ξnt )

∣∣∣∣∣∣
+

1

qn+1
· ‖ρi‖0 ·

10

n2
· qn+1 + ‖ρi‖0 ·

r−1∑
t=0

($n
t (x)µt)

(
Nt \ Ω̃tn

)
≤ 1

n2
+

8

n2
· ‖ρi‖0 + ‖ρi‖0 ·

10

n2
+

2 · ‖ρi‖0
ln

=
20

n2
· ‖ρi‖0 +

1

n2
.

With x = Hn+1 (y) we obtain the claim.

We point out that the measure ξnx used in the above proof was dependent on the point x, but
independent of the function ρ ∈ Ξ.

Lemma 5.33. For every ρ ∈ Ξ and y ∈ T2 we have

inf
ξn∈Θn

∣∣∣∣∣ 1

qn+1

qn+1−1∑
k=0

ρ
(
T k (y)

)
−
∫
ρ dξn

∣∣∣∣∣→ 0 as n→∞,

where Θn is the simplex generated by
{
ξn0 , ..., ξ

n
r−1

}
.

Proof. By Remark 1 we have

d
(qn+1)
0 (T, Tn+1) := max

i=0,1,...,qn+1−1
d0

(
T i, T in+1

) n→∞→ 0.

Then for every ρ ∈ Ξ we have
∣∣ρ (T i (x)

)
− ρ

(
T in+1 (x)

)∣∣ n→∞→ 0 uniformly for i = 0, 1, ..., qn+1 − 1,
because every continuous function on the compact space T2 is uniformly continuous. Thus, we get:∥∥∥ 1
qn+1

∑qn+1−1
i=0 ρ

(
T i (x)

)
− 1

qn+1

∑qn+1−1
i=0 ρ

(
T in (x)

)∥∥∥
0

n→∞→ 0. Applying the previous Lemma 5.32
we obtain the claim.

Since the family Ξ is dense in C
(
T2,R

)
, the convergence holds for every continuous function by

an approximation argument.
Now we can prove that the measures ξ0, ..., ξr−1 are the only possible ergodic ones: Assume that
there is another ergodic invariant probability measure ξ. By the Birkhoff Ergodic Theorem we have
for every ρ ∈ C

(
T2,R

)
lim
n→∞

1

n

n−1∑
k=0

ρ
(
T k (x)

)
=

∫
T2

ρ dξ for ξ-a.e. x ∈ T2.



5.5 Possible Generalizations 44

With the aid of Lemma 5.33 we obtain for every ρ ∈ C
(
T2,R

)
and x in a set of ξ-full measure:∫

T2

ρ dξ = lim
n→∞

1

n

n−1∑
k=0

ρ
(
T k (x)

)
= lim
n→∞

1

qn+1

qn+1−1∑
k=0

ρ
(
T k (x)

)
= lim
n→∞

∫
T2

ρ dξn,

where ξn is in the simplex generated by
{
ξn0 , ..., ξ

n
r−1

}
. As noted this measure does not depend on

the function ρ. Thus, we have for every ρ ∈ C
(
T2,R

)
: limn→∞

∫
T2 ρ dξ

n =
∫
T2 ρ dξ. Since the

simplex generated by {ξ0, ..., ξr−1} is weakly closed, this implies that ξ is in this simplex. We recall
that ergodic measures are the extreme points in the set of invariant Borel probability measures
(see [Wa75], Theorem 5.15.). Then ξ has to be one of the measures {ξ0, ..., ξr−1} and we obtain a
contradiction. Hence, the measures ξt, t = 0, . . . , r− 1 are the only possible ergodic ones. Since we
have already observed that these are linearly independent and any non-ergodic invariant measure
can be written as a linear combination of ergodic ones, we conclude that the ξt are exactly the
ergodic measures of T .

5.5 Possible Generalizations
Remark 2. By putting the combinatorics from [AK70, section 5] on the rectangles

[
i
l3q ,

i+1
l3q

)
×[

t
r ,

t+1
r

)
that are not contained in the minimality region, we can construct the diffeomorphism T

to be even weakly mixing with respect to each measure ξt. We can realize these combinatorics with
the aid of Theorem E.
Remark 3. With some additional technical and notational effort it is possible to generalize Theorem
D and the previous Remark to any torus Td, d ≥ 2. Indeed, we construct the r ergodic invariant
measures on Nt = S1 ×

[
t
r ,

t+1
r

)
× Td−2 and consider partition elements[

i1
ld+1q

,
i1 + 1

ld+1q

)
×
[
i2
lr
,
i2 + 1

lr

)
×
[
i3
l
,
i3 + 1

l

)
× . . .×

[
id
l
,
id + 1

l

)
(5.34)

as building blocks in the description of the combinatorics. Then we use the combinatorics from the
beginning of section 3.2 to map sets of the form

[
i

ld+1q
, i+1
ld+1q

)
×
[
j
lr ,

j+1
lr

)
× [0, 1)d−2 to sets of the

form
[
i1
l3q ,

i1+1
l3q

)
×
[
j
lr ,

j+1
lr

)
×
[
i3
l ,

i3+1
l

)
× . . .×

[
id
l ,

id+1
l

)
.

Remark 4. In this Remark we present modifications in order to prove the existence of a real-analytic
diffeomorphism T ∈ Diff ω

ρ (T2, µ) which is minimal and has countable many ergodic invariant
measures. By weak*-convergence there must be at least one singular ergodic measure. Indeed, we
have precisely one singular measure and the other invariant measures are absolutely continuous
with respect to Lebesgue measure.

This time we are going to construct the invariant measures on sets Nt, t ∈ Z. For t ∈ N we
define Nt = S1×

[
t
t+1 ,

t+1
t+2

)
⊂ T2 with x2-length 1

(t+2)·(t+1) . For each n ∈ N we choose tn ∈ N such
that

1

(tn + 1) · tn
<

δn−1

2n · ‖DH−1
n ‖0 ·maxi=1,...,n Lip(ρi)

. (5.35)

Hereby, we define the further sets

N0 = S1 ×
[

1

(t1 + 1) · t1
,

1

2

)
,
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N−n = S1 ×
[

1

(tn+1 + 1) · tn+1
,

1

(tn + 1) · tn

)
for every n ∈ N.

Additionally, for every n ∈ N we will use sets

N̄tn = S1 ×
[

tn
tn + 1

, 1

)
=
⋃
t≥tn

Nt

N
(1)
−n = S1 ×

[
0,

1

(tn + 1) · tn

)
.

This time we choose ln = (tn + 1)!. Note that by equation 5.35 the conditions 2.28 and 5.1 are
satisfied. Moreover, this choice of ln allows us to consider building blocks

[
i

l3nqn
, i+1
l3nqn

)
×
[
j
ln
, j+1
ln

)
for

the 1
lnqn

-equivariant combinatorics of h−1
2,n+1 to be contained in N̄tn , N

(1)
−n and Nt for −n < t < tn.

As before, h−1
2,n+1 is supposed to map long stripes

[
i

l3nqn
, i+1
l3nqn

)
× [0, 1) to

[
0, 1

l2nqn

)
×
[
i
ln
, i+1
ln

)
for

0 ≤ i < ln. For ln ≤ i < l2n h
−1
2,n+1 maps stripes of width 1

l3nqn
and full height in the particular set

N
(1)
−n or Nt for −n < t < tn to sets with height 1

ln
, while on N̄tn h

−1
2,n+1 acts approximately as the

identity on the building blocks. For the trapping map h(1) the step function is constructed with
steps of seize δ

l in our modification.

6 Future Work
Finally we note that Theorem E can be used to upgrade many constructions from the smooth
category to the analytic category on the torus. We list some results here.

6.1 Real-analytic diffeomorphisms with homogeneous spectrum and dis-
jointness of convolutions

The second author in [Ku16] was able to show that on any smooth compact connected manifold M of
dimensionm ≥ 2 admitting a smooth non-trivial circle action, there exists a smooth diffeomorphism
f ∈ Aα = {h ◦ φα ◦ h−1 : h ∈ Diff∞(M,µ)} for every Liouvillian number α which admits a good
approximation of type (h, h + 1), a maximal spectral type disjoint with its convolutions and a
homogeneous spectrum of multiplicity two for the Cartesian square f×f . Its is possible to generalize
this result to the analytic category for some Liouvillian numbers.

Theorem 6.1. For any ρ > 0, there exist real-analytic diffeomorphisms T ∈ Diff ω
ρ (T2, µ) that

have a maximal spectral type disjoint with its convolutions, a homogeneous spectrum of multiplicity
2 for T × T and admit a good approximation of type (h, h+ 1).

6.2 Coding untwisted AbC diffeomorphisms and the anti-classification
problem

This work is motivated from a series of pioneering work done by Belezney, Foreman, Hjorth, Rudolph
and Weiss on the interface of ergodic theory and foundations of mathematics. They were able to
show that the conjugacy problem in abstract ergodic theory is non Borel. Later Foreman and Weiss
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found a method to code a ‘large’ class of smooth diffeomorphisms constructed on T2 or the annulus
or the disk by an untwisted version of the AbC method into some symbolic systems known as
uniform circular systems. This in particular shows that the measure isomorphism relation among
pairs (S, T ) of measure preserving diffeomorphisms of M is not a Borel set with respect to the C∞
topology.

The first author was able to show that the constructions we do in the real-analytic category
on T2 are robust enough to construct a large family of untwisted AbC diffeomorphisms measure
theoretically isomorphic to uniform circular systems. Loosely this can be summarized into the
following theorem:

Theorem 6.2 ([Ba]). Let T be an ergodic transformation on a standard measure space. Then the
following are equivalent:

1. T is measure theoretically isomorphic to a real-analytic (untwisted) AbC diffeomorphism (sat-
isfying some requirements).

2. T is isomorphic to a uniform circular system (with ‘fast’ growing parameters).

This along with some additional works of Foreman and Weiss would imply an anti-classification
result for measure preserving real-analytic diffeomorphisms. More precisely,

Theorem 6.3. The measure-isomorphism relation among pairs (S, T ) ∈ Diff ω
ρ (T2, µ)×Diff ω

ρ (T2, µ)
is not a Borel set with respect to the Diff ω

ρ (T2, µ) topology.
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