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Abstract

We propose a general control framework for two-phase flows with vari-
able densities in the diffuse interface formulation, where the distribution
of the fluid components is described by a phase field. The flow is governed
by the diffuse interface model proposed in [Abels, Garcke, Grün, M3AS
22(3):1150013(40), 2012]. On the basis of the stable time discretization
proposed in [Garcke, Hinze, Kahle, APPL NUMER MATH, 99:151–171,
2016] we derive necessary optimality conditions for the time-discrete and
the fully discrete optimal control problem. We present numerical exam-
ples with distributed and boundary controls, and also consider the case,
where the initial value of the phase field serves as control variable.
Keywords: Optimal control, Boundary control, Initial value control,
Two-phase flow, Cahn–Hilliard, Navier–Stokes, Diffuse-interface models.

1 Introduction
In this paper we study a general discrete framework for control of two-phase
fluids governed by the thermodynamically consistent diffuse interface model
proposed in [Abels et al., 2012]. For the discretization we use the approach
of [Garcke et al., 2016], where the authors propose a time discretization scheme,
that preserves this important property in the time discrete setting and, us-
ing a post-processing step, also in the fully discrete setting including adaptive
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mesh discretization. As control actions we consider distributed control, Dirichlet
boundary control, and control with the initial condition of the phase field.

For the practical implementation we adapt the adaptive treatment devel-
oped in [Garcke et al., 2016] to the optimal control setting. On the discrete
level, special emphasis has to be be taken for the control with the intial value
of the phase field, since the distribution of its phases is an outcome of the op-
timization procedure and thus a-priori unknown. In this case we combine the
variational discretization from [Hinze, 2005b] with error estimation techniques
to find a good mesh for the numerical representation of the a-priori unknown
phase distribution.

Let us comment on related literature on time discretizations and control of
(two-phase) fluids. For investigations of further time discretizations we refer
to [Aland, 2014, Hintermüller et al., 2015, Grün and Klingbeil, 2014, Garcke
et al., 2016, Guillén-Gonzáles and Tierra, 2014, Guo et al., 2014, Grün et al.,
2016]. Concerning optimal control and feedback control of fluids there is a wide
range of literature available. Here we only mention [Gunzburger and Maservisi,
2000, Hinze and Kunisch, 2004, Fursikov et al., 1998, Berggren, 1998, Bewley
et al., 2001,Hinze, 2005a].

Let us further comment on available literature for control of Cahn–Hilliard
multiphase flow systems. In [Hintermüller and Wegner, 2012] distributed op-
timal control of the Cahn–Hilliard system with a non smooth double obstacle
potential is proposed, and in [Hintermüller and Wegner, 2014] this work is ex-
tended to time-discrete two-phase flow given by a Cahn–Hilliard Navier–Stokes
system with equal densities. Both works aim at existence of optimal controls
and first order optimality conditions. In [Hintermüller et al., 2015] the authors
consider time discrete optimal control of multiphase flows based on the diffuse
interface model of [Abels et al., 2012]. This work aims at establishing existence
of solutions and stationarity conditions for control problems with free energies
governed by the double obstacle potential, which is achieved through an appro-
priate limiting process of control problems with smooth relaxed free energies.
The focus of the present work is different in that we consider numerical analysis
of the fully discrete problem, propose a tailored numerical adaptive concept for
the control problem, and present numerical examples which clearly show the
potential of our approach.

We also mention the work of [Baňas et al., 2014], where optimal control for
a binary fluid, that is described by its density distribution, is proposed.

Let us finally comment on feedback control approaches for multiphase flows.
Model predictive control is applied to the model from [Abels et al., 2012] in
[Hinze and Kahle, 2013,Kahle, 2013,Kahle, 2014].

The paper is organized as follows. In Section 2 we state the model for the
two-phase system and summarize assumptions that we require for the data. In
Section 3 we state the time discretization scheme proposed in [Garcke et al.,
2016] and summarize properties of the scheme which we need in the present
paper. We formulate the time discrete optimization problem in Section 3. In
Section 4 we consider the optimal control problem in the fully discrete setting
and present numerical examples in Section 5.
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2 The governing equations
The two-phase flow is modeled by the diffuse interface model proposed in [Abels
et al., 2012].

ρ∂tv + ((ρv + J) ⋅ ∇) v − div (2ηDv) +∇p
−µ∇ϕ − ρK − f = 0 ∀x ∈ Ω, ∀t ∈ I, (1)

−div(v) = 0 ∀x ∈ Ω, ∀t ∈ I, (2)
∂tϕ + v ⋅ ∇ϕ − div(b∇µ) = 0 ∀x ∈ Ω, ∀t ∈ I, (3)

−σε∆ϕ + σ
ε
W ′(ϕ) − µ = 0 ∀x ∈ Ω, ∀t ∈ I, (4)

v(0, x) = v0(x) ∀x ∈ Ω, (5)
ϕ(0, x) = ϕ0(x) ∀x ∈ Ω, (6)
v(t, x) = g ∀x ∈ ∂Ω, ∀t ∈ I, (7)

∇µ(t, x) ⋅ νΩ = ∇ϕ(t, x) ⋅ νΩ = 0 ∀x ∈ ∂Ω, ∀t ∈ I. (8)

Here ϕ denotes the phase field, µ the chemical potential, v the velocity field and
p the pressure. Furthermore J = −ρ2−ρ1

2
b∇µ is a diffuse flux for ϕ.

In addition Ω ⊂ Rn, n ∈ {2,3}, denotes an open, convex and polygonal (n = 2)
or polyhedral (n = 3) bounded domain. Its outer unit normal is denoted as νΩ,
and I = (0, T ] with 0 < T <∞ is a time interval.

The free energy density is denoted byW and is assumed to be of double-well
type with exactly two minima at ±1. For W we use a splitting W = W+ +W−,
where W+ is convex and W− is concave.

The density is denoted by ρ = ρ(ϕ), fulfilling ρ(−1) = ρ1 and ρ(1) = ρ2,
where ρ1, ρ2 denote the densities of the involved fluids. The viscosity is denoted
by η = η(ϕ), fulfilling η(−1) = η1 and η(1) = η2, with individual fluid viscosities
η1, η2. The constant mobility is denoted by b. The gravitational force is denoted
by K. By Dv = 1

2
(∇v + (∇v)t) we denote the symmetrized gradient. The scaled

surface tension is denoted by σ and the interfacial width is proportional to ε.
We further have a volume force f and boundary data g, as well as an initial
phase field ϕ0 and a solenoidal initial velocity field v0.

Concerning results on existence of solutions for (1)–(8) under different as-
sumptions on W and b we refer to [Abels et al., 2013a,Abels et al., 2013b,Grün,
2013].

Assumptions
For the data of our problem we assume:

(A1) W ∶ R → R is twice continuously differentiable and is of double-well type,
i.e. it has exactly two minima at ±1 with values W (±1) = 0.

(A2) W and its derivatives are polynomially bounded, i.e. there exists a C > 0
such that ∣W (x)∣ ≤ C(1 + ∣x∣q), ∣W ′

+
(x)∣ ≤ C(1 + ∣x∣q−1), ∣W ′

−
(x)∣ ≤ C(1 +
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∣x∣q−1), ∣W ′′

+
(x)∣ ≤ C(1+ ∣x∣q−2), and ∣W ′′

−
(x)∣ ≤ C(1+ ∣x∣q−2) holds for some

q ∈ [2,4] if n = 3 and q ∈ [2,∞) if n = 2.

(A3) There exists ϕa ≤ −1 and ϕb ≥ 1, such that ρ(ϕ) = ρ(ϕa) for ϕ ≤ ϕa, and
ρ(ϕ) = ρ(ϕb) for ϕ ≥ ϕb. For ϕa < ϕ < ϕb the function ρ(ϕ) is affine linear,
i.e. ρ(ϕ) = 1

2
((ρ2 − ρ1)ϕ + (ρ1 + ρ2)), and we define ρδ ∶= (ρ2−ρ1)

2
.

Further, η(ϕ) = η(ϕa) for ϕ ≤ ϕa, and η(ϕ) = η(ϕb) for ϕ ≥ ϕb. For ϕa <
ϕ < ϕb the function η(ϕ) is affine linear, i.e. η(ϕ) = 1

2
((η2 − η1)ϕ + (η1 + η2)).

We define ρ > ρ > 0, η ≥ η > 0 fulfilling

● ρ ≥ ρ(ϕ) ≥ ρ > 0,

● η ≥ η(ϕ) ≥ η > 0,

see Remark 2.

(A4) The mean value of ϕ is zero, i.e. there holds 1
∣Ω∣ ∫Ω ϕdx = 0. This can

be achieved by choosing the values indicating the pure phases accordingly
and considering a shifted system if required. In this case the values ±1
change to some other appropriate values.

Remark 1. The Assumptions (A1)–(A2) are for example fulfilled by the poly-
nomial free energy density

W poly(ϕ) = 1

4
(1 − ϕ2)2

.

Another free energy density fulfilling these assumptions is the relaxed double-
obstacle free energy density given by

λ(y) ∶= max(0, y − 1) +min(0, y + 1),

ξ ∶= 1 + 2s +
√

4s + 1

2s
,

δ ∶= 1

2
(1 − ξ2) + s

3
∣λ(ξ)∣3,

W s(y) = 1

2
(1 − (ξy)2) + s

3
∣λ(ξy)∣3 + δ (9)

where s≫ 0 denotes a relaxation parameter. W s can be understood as a relax-
ation of the double-obstacle free energy density

W∞(ϕ) =
⎧⎪⎪⎨⎪⎪⎩

1
2
(1 − ϕ2) if ∣ϕ∣ ≤ 1,

0 else,

which is proposed in [Oono and Puri, 1988,Blowey and Elliott, 1991] to model
phase separation. We note that here we use a cubic penalisiation to obtain the
required regularity from (A1) and that ξ is chosen such thatW s takes its minima
at ±1 and δ is such that W s(±1) = 0.
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In the numerical examples of this work we use the free energy density W ≡
W s. For this choice the splitting into convex and concave part reads

W+(ϕ) = s
1

3
∣λ(ξϕ)∣3, W−(ϕ) =

1

2
(1 − (ξϕ)2) + δ.

Remark 2. For the weak formulation of (1)–(8) we later require affine linearity
of ρ on the image of ϕ. The affine linearity of η is assumed for simplicity. Note
that in view of Assumption (A3), this essentially implies a bound on ϕ, namely
ϕ ∈ (ϕa, ϕb) as stated in Assumption (A3).

Using W s as free energy density we argue, that for s sufficiently large (see
[Garcke et al., 2016, Rem. 6]) ∣ϕ∣ ≤ 1 + θ holds, with θ sufficiently small, and
in [Kahle, 2015] it is shown for the Cahn–Hilliard equation without transport,
that for the energy (9) in fact ∥ϕ∥L∞(Ω) ≤ 1 +Cs−1/2 holds.

In a general setting one might use a nonlinear dependence between ϕ and
ρ, see e.g. [Abels and Breit, 2016], or choose a cut-off procedure as proposed
in [Grün, 2013,Guillén-Gonzáles and Tierra, 2014].

Anyway, since we later require linearity of ρ on the image of ϕ we state
Assumption (A3) and note that this assumption is fulfilled in our numerical
examples in Section 5.

Notation
We use the conventional notation for Sobolev and Hilbert Spaces, see e.g.
[Adams and Fournier, 2003]. With Lp(Ω), 1 ≤ p ≤ ∞, we denote the space
of measurable functions on Ω, whose modulus to the power p is Lebesgue-
integrable. L∞(Ω) denotes the space of measurable functions on Ω, which are
essentially bounded. For p = 2 we denote by L2(Ω) the space of square inte-
grable functions on Ω with inner product (⋅, ⋅) and norm ∥ ⋅ ∥. By W k,p(Ω),
k ≥ 1,1 ≤ p ≤ ∞, we denote the Sobolev space of functions admitting weak
derivatives up to order k in Lp(Ω). If p = 2 we write Hk(Ω).

For f ∈ H1(Ω)n we introduce the continuous trace operator γ ∶ H1(Ω)n →
H

1
2 (∂Ω)n as γf ∶= f ∣∂Ω. We further note that for g ∈ H 1

2 (∂Ω)n with g ⋅ νΩ = 0
there exists g̃ ∈ H1(Ω)n, (divg̃, q) = 0∀q ∈ L2(Ω) with γg̃ = g and ∥g̃∥H1(Ω)n ≤
C∥g∥

H
1
2 (∂Ω)n

, where C is independent of g.

The subspace H1
0(Ω)n ⊂H1(Ω)n denotes the set of functions with vanishing

boundary trace. We further set

L2
(0)(Ω) = {v ∈ L2(Ω) ∣ (v,1) = 0},

and with

Hσ(Ω) = {v ∈H1(Ω)n ∣ (div(v), q) = 0∀q ∈ L2(Ω)}

we denote the space of all weakly solenoidal H1(Ω) vector fields. We stress
that there is no correspondence between the subscript σ and the scaled surface
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tension. We denote both terms using σ since these are standard notations. We
further introduce

H0,σ(Ω) =H1
0(Ω)n ∩Hσ(Ω).

For u ∈ Lq(Ω)n, q > 2 if n = 2, q ≥ 3 if n = 3, and v,w ∈H1(Ω)n we introduce
the trilinear form

a(u, v,w) = 1

2
∫

Ω
((u ⋅ ∇) v)wdx − 1

2
∫

Ω
((u ⋅ ∇)w) v dx. (10)

Note that there holds a(u, v,w) = −a(u,w, v), and especially a(u, v, v) = 0.
We have the following stability estimate by Hölder inequalities and Sobolev
embedding

∣a(u, v,w)∣ ≤ C∥u∥Lq(Ω)∥v∥H1(Ω)∥w∥H1(Ω).

For a square summable series of functions (fm)Mm=1 ∈ VM , where (V, ∥ ⋅∥V ) is
a normed vector space, we introduce the notation ∥(fm)Mm=1∥2

V = ∑Mm=1 ∥fm∥2
V .

3 The time-discrete setting
In [Garcke et al., 2016] existence of time discrete weak solutions for (1)–(4) is
shown for the case of g = 0 and f = 0. In this section we formulate a time
discrete optimization problem for (1)–(4), where we use g, f , and ϕ0 as controls,
and show existence of solutions together with first order optimality conditions.

Let 0 = t0 < t1 < . . . < tm−1 < tm < tm+1 < . . . < tM = T denote an equidistant
subdivision of the interval I = [0, T ] with τm+1 − τm ≡ τ and sub intervals
I0 = {0}, Im = (tm−1, tm], m = 1, . . . ,M . From here onwards the superscript
m denotes the corresponding variables at time instance tm, e.g. ϕm ∶= ϕ(tm).
For functions f ∈ L2(0, T, V ) we introduce fm ∶= ⨏Im f(t)dt ∈ V . Note that this
can be seen as a discontinuous Galerkin approximation using piecewise constant
values.

We now introduce the optimal control problem under consideration. For this
purpose we interpret ϕ0, f, and g as sought control that we intend to choose,
such that the corresponding phase field ϕM is close to a desired phase field ϕd
in the mean square sense. If ϕd is the measurement of a real world system, then
finding ϕ0 such that the corresponding phase field ϕM is close to ϕd resembles
an inverse problem.

We denote by u ∈ U the control, where

U = UI ×UV ×UB = K ×L2(0, T ;Ruv) ×L2(0, T ;Rub)

is the space of controls, where

K ∶= {v ∈H1(Ω) ∣ ∫
Ω
v dx = 0, ∣v∣ ≤ 1} ⊂H1(Ω) ∩L∞(Ω)
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denotes the space of admissible initial phase fields.
By

B ∶ U →H1(Ω) ∩L∞(Ω) ×L2(0, T ;L2(Ω)n) ×L2(0, T ; (H1/2(∂Ω))n)

we denote the linear and bounded control operator, which consists of three com-
ponents, i.e. B = [BI ,BV ,BB], where BI(uI , uV , uB) ≡ BIuI ∶= uI , which is the
initial phase field for the system, BV (uI , uV , uB) ≡ BV uV with BV uV (t, x) =
∑uvl=1 fl(x)u

l
V (t) where fl ∈ L2(Ω)n are given functions, which is a volume force

acting on the fluid inside Ω, and BB(uI , uV , uB) ≡ BBuB , with BBuB(t, x) =
∑ubl=1 gl(x)u

l
B(t) where gl ∈ H1/2(∂Ω)n denote given functions, and this is a

boundary force acting on the fluid as Dirichlet boundary data. To obtain a
solenoidal velocity field, BBuB has to fulfill the compatibility condition ∫∂ΩBBuB ⋅
νΩ ds = 0, and in the following for simplicity we assume gl ⋅ νΩ = 0, l = 1, . . . , ub,
point wise.

Given a triple (αI , αV , αB) of non negative values with αI +αV +αB = 1 we
introduce an inner product for u = (uI , uV , uB) ∈ U and v = (vI , vV , vB) ∈ U by

(u, v)U = αI(∇uI ,∇vI)L2(Ω) + αV (uV , vV )L2(0,T ;Ruv ) + αB(uB , vB)L2(0,T ;Rub)
(11)

and the norm ∥u∥2
U = (u,u)U .

We use the convention, that α⋆ = 0, ⋆ ∈ {I, V,B}, means, that we do not
apply this kind of control. If αI = 0 we use ϕ0 as given data, if αB = 0, we
assume no-slip boundary data for v. For notational convenience, in the following
we assume α⋆ /= 0 for all ⋆ ∈ {I, V,B}.

We stress, that we do not discretize the control in time, although the state
equation is time discrete. Thus we follow the concept of variational discretiza-
tion [Hinze, 2005b]. Anyway, the control is discretized implicitly in time by the
adjoint equation that we will derive later. We also note, that in view of the
state equation, this allows us to dynamically adapt the time step size τ to the
flow condition without changing the control space.

Following [Garcke et al., 2016] we propose the following time discrete coun-
terpart of (1)–(8):
Let u ∈ U and v0 ∈Hσ(Ω) ∩L∞(Ω) be given.

Initialization for m = 1:
Set ϕ0 = uI and v0 = v0.
Find ϕ1 ∈H1(Ω)∩L∞(Ω), µ1 ∈W 1,3(Ω), v1 ∈Hσ(Ω), with γ(v1) = BBu1

B , such
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that for all w ∈H0,σ(Ω), Φ ∈H1(Ω), and Ψ ∈H1(Ω) it holds

1

τ
∫

Ω
(1

2
(ρ1 + ρ0)v1 − ρ0v0)wdx + a(ρ1v0 + J1, v1,w)

+∫
Ω

2η1Dv1 ∶Dwdx − ∫
Ω
µ1∇ϕ0w + ρ0Kwdx − ⟨BV u1

V ,w⟩
H−1(Ω),H1

0 (Ω)
= 0,

(12)
1

τ
∫

Ω
(ϕ1 − ϕ0)Ψdx + ∫

Ω
(v0 ⋅ ∇ϕ0)Ψdx + ∫

Ω
b∇µ1 ⋅ ∇Ψdx = 0,

(13)

σε∫
Ω
∇ϕ1 ⋅ ∇Φdx − ∫

Ω
µ1Φdx + σ

ε
∫

Ω
(W ′

+
(ϕ1) +W ′

−
(ϕ0))Φdx = 0,

(14)

where J1 ∶= −ρδb∇µ1.

Two-step scheme for m > 1:
Given ϕm−2 ∈H1(Ω)∩L∞(Ω), ϕm−1 ∈H1(Ω)∩L∞(Ω), µm−1 ∈W 1,3(Ω), vm−1 ∈
Hσ(Ω),
find vm ∈ Hσ(Ω), γ(vm) = BBumB , ϕm ∈ H1(Ω) ∩ L∞(Ω), µm ∈ W 1,3(Ω) such
that for all w ∈H0,σ(Ω), Ψ ∈H1(Ω), and Φ ∈H1(Ω) it holds

1

τ
∫

Ω
(ρ

m−1 + ρm−2

2
vm − ρm−2vm−1)wdx + ∫

Ω
2ηm−1Dvm ∶Dwdx

+a(ρm−1vm−1 + Jm−1, vm,w)

−∫
Ω
µm∇ϕm−1w + ρm−1Kwdx − ⟨BV umV ,w⟩H−1(Ω),H1

0 (Ω)
= 0, (15)

∫
Ω

ϕm − ϕm−1

τ
Ψdx + ∫

Ω
(vm ⋅ ∇ϕm−1)Ψdx + ∫

Ω
b∇µm ⋅ ∇Ψdx = 0, (16)

σε∫
Ω
∇ϕm ⋅ ∇Φdx − ∫

Ω
µmΦdx + σ

ε
∫

Ω
(W ′

+
(ϕm) +W ′

−
(ϕm−1))Φdx = 0, (17)

where Jm−1 ∶= −ρδb∇µm−1. We further use the abbreviations ρm ∶= ρ(ϕm) and
ηm ∶= η(ϕm).

We note that in (15)–(17) the only nonlinearity arises from W ′

+
and thus

only the equation (17) is nonlinear. A similar argumentation holds for (12)–
(14). The regularity ∇µm−1 ∈ L3(Ω) is required for the trilinear form a(⋅, ⋅, ⋅),
see (10).

Remark 3. We note that (15)–(17) is a two-step scheme for the phase field
variable ϕ, and thus we need an initialization as proposed in (12)–(14). Here,
as in [Garcke et al., 2016] the sequential coupling of (13)–(14) and (12) is used
as proposed in [Kay et al., 2008].

Another variant might be to require initial data on time instance t−1 for the
phase field and at t0 for the velocity field. Equations (16)–(17) can than be
solved for ϕ0 and µ0 to obtain initial values, see [Hintermüller et al., 2015].

Since we are later also interested in control of the initial value ϕ0 we propose
the initialization scheme (12)–(14) here.
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Theorem 4. Let v0 ∈Hσ(Ω) ∩L∞(Ω)n and u ∈ U be given data.
Then there exists a unique solution (v1, ϕ1, µ1) to (12)–(14), and it holds

∥v1∥H1(Ω)n+∥ϕ1∥H2(Ω) + ∥µ1∥H2(Ω)

≤ C1(v0)C2 (∥uI∥H1(Ω), ∥BV u1
V ∥L2(Ω)n , ∥BBu1

B∥
H

1
2 (∂Ω)n

) (18)

and ϕ1, µ1 can be found be Newton’s method. The constant C2 depends polyno-
mially on its arguments.

Proof. The existence of (ϕ1, µ1) ∈ H1(Ω) ×H1(Ω) follows from ( [Hintermüller
et al., 2011]). There the corresponding system without the transport term v0∇uI
is analyzed. This term is a given volume force, that can be incorporated in a
straightforward manner. From this we directly obtain the stability inequality

∥ϕ1∥H1(Ω) + ∥µ1∥H1(Ω) ≤ C1(v0)C2(∥uI∥H1(Ω)).

Since ∣W ′

+
(ϕ)∣ ≤ C(1 + ∣ϕ∣q ∣), q ≤ 3 we have W ′

+
(ϕ) ∈ L2(Ω) and by L2

regularity theory we have ϕ1 ∈H2(Ω) and

∥ϕ1∥H2(Ω) ≤ C(∥µ1∥H1(Ω), ∥ϕ1∥H1(Ω), ∥uI∥H1(Ω)).

We further have v0∇uI ∈ L2(Ω) and thus we have µ1 ∈ H2(Ω) and the
stability inequality

∥µ1∥H2(Ω) ≤ C1(v0)C2(∥uI∥H1(Ω), ∥ϕ1∥H1(Ω)).

Convergence of Newton’s method directly follows from [Hintermüller et al.,
2011]. Note that the only nonlinearity W ′

+
is monotone.

With v0, ϕ1, uI , and µ1 given data, (12) defines a coercive and continuous
bilinear form on Hσ and thus existence and stability of a solution follows from
Lax-Milgram’s theorem. This uses the antisymmetry of the trilinear form a and
Korn’s inequality.

Theorem 5. Let vm−1 ∈ Hσ(Ω), ϕm−2 ∈ H1(Ω) ∩ L∞(Ω), ϕm−1 ∈ H1(Ω) ∩
L∞(Ω), and µm−1 ∈W 1,3(Ω), be given data. Then there exists a unique solution
(vm, ϕm, µm) to (15)–(17).

It further holds ϕm ∈ H2(Ω) and if additionally ϕm−1 ∈ W 1,3(Ω) we have
µm ∈H2(Ω) and the stability inequality

∥vm∥H1(Ω)n+∥µm∥H2(Ω) + ∥ϕm∥H2(Ω)

≤C (∥vm−1∥H1(Ω)n , ∥ϕm−1∥W 1,3(Ω), ∥ϕm−2∥H1(Ω),

∥BV umV ∥L2(Ω)n , ∥BBumB ∥
H

1
2 (∂Ω)n

) ,

holds. The constant C depends polynomially on its arguments.
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Proof. In [Garcke et al., 2016] the existence for γ(BBumB ) = 0 and BV umV = 0 is
shown using a Galerkin approach. The additional volume force is incorporated
in a straight forward manner, and the boundary data BBumB can be introduced
by investigating a shifted system, see Theorem 4.

We define e ∶= B̃BumB and use w = vm − e as test function in (15), Ψ = µm
as test function in (16), and Φ = τ−1(ϕm − ϕm−1) as test function in (17), and
add the resulting equations. Using the properties of W ′

+
and W ′

−
we obtain

(compare [Garcke et al., 2016, Thm. 3])

E(vm, ϕm, ϕm−1) + 1

2
∫

Ω
ρm−2∣vm − vm−1∣2 dx + 2τ ∫

Ω
ηm−1∣Dvm∣2 dx

+ τ ∫
Ω
b∣∇µm∣2 dx + σε

2
∥∇ϕm −∇ϕm−1∥2

≤ E(vm−1, ϕm−1, ϕm−2) + ∫
Ω
(ρ

m−1 + ρm−2

2
vm − ρm−2vm−1) e dx

+ τa(ρm−1vm−1 + Jm−1, vm, e) + 2τ ∫
Ω
ηm−1Dvm ∶Dedx

− τ ∫
Ω
µm∇ϕm−1e dx + (ρm−1K,vm − e) + τ(BV umV , vm − e)L2(Ω)n .

By using the inequalities of Hölder, Korn and Young, together with Assump-
tion (A3) and the stability of the extension operator ⋅̃ the claim follows. The
regularity ϕm, µm ∈ H2(Ω) follow as in the proof of Theorem 4, but now using
∇ϕm−1 ∈ L3(Ω) and vm ∈Hσ ↪ L6(Ω).

Let us next introduce the optimization problem under investigation. For
this we first rewrite (12)–(17) in a compact and abstract form and introduce

Y ∶=Hσ(Ω)M × (H1(Ω) ∩L∞(Ω))M ×W 1,3(Ω)M ,

Y0 ∶=H0,σ(Ω)M × (H1(Ω) ∩L∞(Ω))M ×W 1,3(Ω)M ,
y ∶=(vm, ϕm, µm)Mm=1 ∈ Y,

Z ∶= (H0,σ(Ω)M ×H1(Ω)M ×H1(Ω)M)⋆

e ∶ Y0 ×U → Z,

e(y0, u) = 0 (19)
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The operator e is defined as follows

⟨ỹ, e(y0, u)⟩Z⋆,Z ∶=

τ−1 (1

2
(ρ1 + ρ0)(v1

0 + B̃Bu1
B) − ρ0v0, ṽ1) + a(ρ1v0 + J1, v1

0 + B̃Bu1
B , ṽ

1)

+ (2η1D(v1
0 + B̃Bu1

B),Dṽ1) − (µ1∇u1 + ρ0K, ṽ1)
− (BV u1

V , ṽ
1)

+ τ−1(ϕ1 − u1, ϕ̃
1) + (v0∇u1, ϕ̃

1) + (b∇µ1,∇ϕ̃1)
+ σε(∇ϕ1,∇µ̃1) − (µ1, µ̃1)
+ σε−1(W ′

+
(ϕ1) +W ′

−
(u1), µ̃1)

+
M

∑
m=2

[τ−1 (1

2
(ρm−1 + ρm−2)(vm0 + B̃BumB ) − ρm−2(vm−1

0 + B̃Bum−1
B ), ṽm)

+ a(ρm−1(vm−1
0 + B̃Bum−1

B ) + Jm−1, vm0 + B̃BumB , ṽ
m)

+ (2ηm−1D(vm0 + B̃BumB ),Dṽm) − (µm∇ϕm−1 + ρm−1K, ṽm)
− (BV umV , ṽm)
+ τ−1(ϕm − ϕm−1, ϕ̃m) + ((vm0 + B̃BumB )∇ϕm−1, ϕ̃m) + (b∇µm,∇ϕ̃m)
+ σε(∇ϕm,∇µ̃m) − (µm, µ̃m)

+σε−1(W ′

+
(ϕm) +W ′

−
(ϕm−1), µ̃m)]

with y0 ∶= (vm0 , ϕm, µm)Mm=1 ∈ Y0, and ỹ = ((ṽm)Mm=1, (ϕ̃m)Mm=1, (µ̃m)Mm=1)))) ∈
Z⋆. Here again ρm ∶= ρ(ϕm), ηm ∶= η(ϕm) and especially ρ0 ∶= ρ(uI), η0 ∶=
η(uI).

Now the time-discrete optimization problem under investigation is given as

min
u∈U

J((ϕm)Mm=1, u) =
1

2
∥ϕM − ϕd∥2

L2(Ω)

+ α
2
(αI ∫

Ω

ε

2
∣∇uI ∣2 + ε−1Wu(uI)dx

+ αV ∥uV ∥2
L2(0,T ;Ruv ) + αB∥uB∥2

L2(0,T ;Rub))

s.t. e(y, u) = 0.

(P)

Here ϕd ∈ L2(Ω) is a given desired phase field, and α > 0 is a weight for the
control cost. For the control cost of the initial value we use the well-known
Ginzburg–Landau energy of the phase field uI with interfacial thickness ε. Here
we use the double obstacle free energy density Wu ≡W∞ given in Remark 1. In
our numerical examples it is advantageous to use this non-smooth free energy
density instead of the smoother one used for the simulation.

Theorem 6. Let v0 ∈Hσ(Ω) ∩L∞(Ω), u ∈ U be given.
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Then there exists a unique solution to the equation e(y, u) = 0, i.e. there exist
(vm, ϕm, µm)Mm=1 ∈ Y such that (vm, ϕm, µm) is the unique solution to (12)–(17)
for m = 1, . . . ,M . Moreover there holds

∥(vm)Mm=1∥H1(Ω)n + ∥(ϕm)Mm=1∥H2(Ω) + ∥(µm)Mm=1∥H2(Ω)

≤C1 (v0)C2 (∥uI∥H1(Ω), ∥(BV umV )Mm=1∥L2(Ω)n , ∥(BBumB )Mm=1∥H 1
2 (∂Ω)n

) .

Further e(y, u) is Fréchet-differentiable with respect to y, and ey(y, u) ∈
L(Y0, Z) has a bounded inverse. Thus Newton’s method can be applied for find-
ing the unique solution of (19) for given u.

Proof. The existence and stability of the solution for each time instance follows
directly from Theorem 4 and Theorem 5.

The equation e(y, u) = 0 is of block diagonal form with nonlinear entries on
the diagonal. Thus solving(19) reduces to solving each time instance with given
data from the previous time instance. As argued in Theorem 4 and Theorem
5 these nonlinear equations can be solved by Newton’s method. Applying this
argument for all time instances we obtain that ey(y, u) ∈ L(Y0, Z) has a bounded
inverse.

Lemma 7. The functional e ∶ Y0 × U → Z is continuously differentiable with
respect to y and u. Furthermore the equation e(y0, u) = 0 for each u admits a
unique solution y(u), and ey(y0, u) is continuously invertible.

The functional J(y0, u) is continuously differentiable with respect to y0 and
u.

Based on Lemma 7 we introduce the reduced functional Ĵ(u) ∶= J(y0(u), u)
and state the following theorem.

Theorem 8 (Existence of an optimal control). There exists at least one solution
to P, i.e. at least one optimal control.

Proof. Since Ĵ is bounded from below, there exists a minimizing sequence ul
with Ĵ(ul)→ Ĵ⋆ and Ĵ⋆ ∶= infu Ĵ(u).

Since Ĵ is radially unbounded, there exists a closed ball V ⊂ U , bounded,
convex and closed such that ul ⊂ V and thus there exists a weakly convergent
subsequence, in the following again denoted by (ul). Since closed convex sets
are weakly closed, (ul) ⇀ u⋆ ∈ V holds. Let yl = (vl, ϕl, µl) denote the unique
solution of (12)–(17) for ul. Then yl ⇀ y⋆ ∈ Y , with y⋆ = y⋆(u⋆), and (u⋆, y⋆)
solves (12)-(17). This can be shown as in [Garcke et al., 2016, Thm. 6].

It remains to show, that J(u⋆) = J⋆. Since yl ⇀ y⋆ especially ϕMl ⇀ ϕM
⋆

and
thus by the lower weak semi continuity of norms together with an embedding
argument for Wu we have

Ĵ(u⋆) ≤ lim inf Ĵ(ul) = Ĵ⋆.

Thus u⋆ is an optimal control.
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We next derive first order optimality conditions in the abstract setting. We
introduce an adjoint state p ∈ Z⋆ and the Lagrangian as

L(y, p, u) ∶= J(y, u) − ⟨p, e(y, u)⟩Z⋆,Z .

By Lagrangian calculus we then obtain the following first order optimality
conditions.

Theorem 9 (First order optimality conditions in abstract setting). Let u ∈ U ,
y ∈ Y be an optimal solution to P. Then there exists an adjoint state p ∈ Z⋆ and
the triple (u, y, p) fulfills the following first order optimality conditions:

e(y, u) = 0 ∈ Z, (20)
(ey(y, u))⋆p = Jy(y, u) ∈ Y ⋆

0 , (21)
⟨Ju(y, u) + (eu(y, u))⋆p,w − u⟩U⋆,U = 0 ∀w ∈ U. (22)

Proof. From Lemma 7 we have that e and J fulfill the assumptions of [Hinze
et al., 2009, Cor. 1.3], which in turn asserts the claim.

To state the first order optimality system we introduce Lagrange multiplier
p ∈ Z⋆, p = (pmv , pmϕ , pmµ )Mm=1 ∈ HM

0,σ × H1(Ω)M × H1(Ω)M and define the La-
grangian

L ∶ U × (H0,σ)M × (H1(Ω) ∩L∞(Ω))M ×W 1,3(Ω)M

× (H0,σ)M ×H1(Ω)M ×H1(Ω)M → R

13



as

L(u, vm0 , ϕm, µm, pmv , pmϕ , pmµ ) ∶= 1

2
∥ϕM − ϕd∥2

L2(Ω)

+ α
2
(αV ∥uV ∥2

L2(0,T ;Ruv ) + αB∥uB∥2
L2(0,T ;Rub) + αI (∫

Ω

δ

2
∣∇uI ∣2 +

1

δ
Wu(uI)dx))

−
M

∑
m=2

[1

τ
(ρ

m−1 + ρm−2

2
(vm0 + B̃BumB ) − ρm−2(vm−1

0 + B̃Bum−1
B ), pmv )

+ a(ρm−1(vm−1
0 + B̃Bum−1

B ) + Jm−1, (vm0 + B̃BumB ), pmv )
+ (2ηm−1D(vm0 + B̃BumB ),Dpmv )

−(µm∇ϕm−1, pmv ) − (ρm−1K,pmv ) − (BV umV , pmv )]

−
M

∑
m=2

[1

τ
(ϕm − ϕm−1, pmϕ ) + ((vm0 + B̃BumB )∇ϕm−1, pmϕ ) + (b∇µm,∇pmϕ )]

−
M

∑
m=2

[σε(∇ϕm,∇pmµ ) − (µm, pmµ ) + σ
ε
(W ′

+
(ϕm) +W ′

−
(ϕm−1), pmµ )]

− [1

τ
(ρ

1 + ρ0

2
(v1 + B̃Bu1

B) − ρ0v0, p1
v) + a(ρ1v0 + J1, (v1 + B̃Bu1

B), p1
v)

+(2η1D(v1 + B̃Bu1
B),Dp1

v) − (µ1∇uI , p1
v) − (ρ0K,p1

v) − (BV u1
V , p

1
v)]

− [1

τ
(ϕ1 − uI , p1

ϕ) + (v0∇uI , p1
ϕ) + (b∇µ1,∇p1

ϕ)]

− [σε(∇ϕ1,∇p1
µ) − (µ1, p1

µ) +
σ

ε
(W ′

+
(ϕ1) +W ′

−
(uI), p1

µ)] .

Here again ρm ∶= ρ(ϕm), ηm ∶= η(ϕm) and especially ρ0 ∶= ρ(u1), η0 ∶= η(u1). In
the following we write vm ∶= vm0 + B̃BumB .

The optimality system is now given by (DL(x), x̃ − x) ≥ 0, where x ab-
breviates all arguments of L and x̃ denotes an admissible direction. For all
components of x except uI it even holds (DL(x), x̃) = 0 since there no further
constraints apply, while UI is a convex subset of H1(Ω) ∩L∞(Ω).

Derivative with respect to the velocity
The derivative with respect to vm0 for m = 2, . . . ,M into a direction ṽ ∈ H0,σ is
given by

(DvmL(. . . ,vm, . . .), ṽ) =

− 1

τ
((ρ

m−1 + ρm−2

2
ṽ, pmv ) − (ρm−1ṽ, pm+1

v ))

− a(ρmṽ, vm+1
0 + B̃Bum+1

B , pm+1
v )

− a(ρm−1(vm−1
0 + B̃Bum−1

B ) + Jm−1, ṽ, pmv )
− (2ηm−1Dṽ,Dpmv ) − (ṽ∇ϕm−1, pmϕ ) = 0.

(23)

14



For m = 1 we get

(Dv1L( . . . , v1, . . .), ṽ) =
1

τ
(ρ0ṽ, p2

v) − a(ρ1ṽ, v2
0 + B̃Bu2

B , p
2
v)

− 1

2τ
((ρ1 + ρ0)ṽ, p1

v) − a(ρ1(v0
0 + B̃Bu0

B) + J1, ṽ, p1
v) − (2η1Dṽ,Dp1

v) = 0.

(24)
Note that for notational convenience here we introduce artificial variables vM+1

0 ,
pM+1
v , uM+1

B and set them to vM+1
0 ≡ pM+1

v ≡ 0, uM+1
B = 0.

Remark 10. Note that we derive the adjoint system in the solenoidal setting.
Introducing a variable p for the pressure in the primal equation leads to an
additional adjoint variable pp for the adjoint pressure and to an additional term
(−divṽ, pp).

Derivative with respect to the chemical potential
The derivative with respect to the chemical potential for m = 2, . . . ,M in a
direction µ̃ ∈W 1,3(Ω) is

(DµmL(. . . , µm, . . .), µ̃) =
− a(Jmµm µ̃, vm+1, pm+1

v ) + (µ̃∇ϕm−1, pmv ) − (b∇µ̃,∇pmϕ ) + (µ̃, pmµ ) = 0.
(25)

For m = 1 the equations is

(Dµ1L(. . . , µ1, . . .), µ̃) =
− a(J1

µµ̃, v
2, p2

v) − a(J1
µµ̃, v

1, p1
v) + (µ̃∇uI , p1

v) − (b∇µ̃,∇p1
ϕ) + (µ̃, p1

µ) = 0.
(26)

Here for m = 1, . . . ,M we abbreviate Jmµ µ̃ = −ρδb∇µ̃, and for notational conve-
nience we introduce artificial variables vM+1 = vM+1

0 + ̃BBuM+1
B , pM+1

v , and set
them to vM+1 ≡ pM+1

v ≡ 0.
The above also contains the boundary condition

∇pmϕ ⋅ νΩ = 0 m = 1, . . . ,M,

in weak form, which for smooth pmϕ follows from integration by parts.

Derivative with respect to the phase field
The derivative with respect to the phase field ϕm in a direction ϕ̃ ∈ H1(Ω) ∩
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L∞(Ω) is for m = 2, . . . ,M

(DϕmL(. . . , ϕm, . . .), ϕ̃) =

δmM(ϕm − ϕd, ϕ̃) −
1

τ
(ρ′ v

m+1pm+1
v + vm+2pm+2

v

2
, ϕ̃) + 1

τ
(ρ′vm+1pm+2

v , ϕ̃)

− a(ρ′ϕ̃vm, vm+1, pm+1
v ) − (2η′ϕ̃Dvm+1,Dpm+1

v )
+ (µm+1∇ϕ̃, pm+1

v ) + (ρ′ϕ̃K, pm+1
v )

− 1

τ
((ϕ̃, pmϕ ) − (ϕ̃, pm+1

ϕ )) − (vm+1∇ϕ̃, pm+1
ϕ )

− σε(∇ϕ̃,∇pmµ ) − σ
ε
(W ′′

+
(ϕm)ϕ̃, pmµ ) − σ

ε
(W ′′

−
(ϕm)ϕ̃, pm+1

µ ) = 0,

(27)
where δmM denotes the Kronecker delta. For m = 1 we get

(Dϕ1L(. . . , ϕ1, . . .), ϕ̃) =

− 1

τ
(ρ

′

2
ϕ̃, v2p2

v) − a(ρ′ϕ̃v1, v2, p2
v) − a(ρ′ϕ̃v0, v1, p1

v)

− (2η′ϕ̃Dv2,Dp2
v) − (2η′ϕ̃Dv1,Dp1

v) − (µ2∇ϕ̃p2
v) − (ρ′ϕ̃K, p2

v)

+ 1

τ
(ϕ̃, p2

ϕ) − (v2∇ϕ̃, p2
ϕ) −

σ

ε
(W ′′

−
(ϕ1)ϕ̃, p2

µ)

− 1

τ
(ρ

′ϕ̃

2
v1, p1

v) −
1

τ
(ϕ̃, p1

ϕ) − σε(∇ϕ̃,∇p1
µ) −

σ

ε
(W ′′

+
(ϕ1)ϕ̃, p1

µ) = 0.

(28)

Here for notational convenience we introduce artificial variables vM+1 = vM+1
0 +

̃BBuM+1
B , vM+2 = vM+2

0 + ̃BBuM+2
B , pM+1

v , pM+2
v , and set them to zero.

The above also contains the boundary condition

∇pmµ ⋅ νΩ = 0 m = 1, . . . ,M,

in weak form, which for smooth pmµ follows from integration by parts.

Derivative with respect to the control
Finally we calculate the derivative with respect to the control for the three parts
of the control space.

For a test direction w ∈ UV we have

(DuV L(u, . . .),w) = ααV ∫
I
(uV ,w)Ruv dt +

M

∑
m=1

(BV wm, pmv )L2(Ω) = 0,

and thus the optimality condition is

αταV u
m
V +B∗

V p
m
v = 0 ∈ Ruv m = 1, . . . ,M (29)

Here B⋆

V p
m
v is defined as

B⋆

V p
m
v ∶= ((fl, pmv )L2(Ω)n)uvl=1.
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Concerning the derivative with respect to uB we have for a test function
w ∈ UB

(DuBL(u, . . .),w) = ααB ∫
I
(uB ,w)Rub dt − τ−1 (ρ

1 + ρ0

2
B̃Bw1, p1

v)

− a(ρ1v0 + J1, B̃Bw1, p1
v) − 2(η1DB̃Bw1,Dp1

v)

−
M

∑
m=2

[τ−1 (ρ
m−1 + ρm−2

2
B̃Bwm, p

m
v ) − (ρm−2 ̃BBwm−1, pmv )

+a(ρm−1vm−1 + Jm−1, B̃Bwm, p
m
v ) + a(ρm−1 ̃BBwm−1, vm, pmv )

+ 2(ηm−1DB̃Bwm,Dp
m
v ) + (B̃Bwm∇ϕm−1, pmϕ )] = 0.

(30)

For smooth solutions we use the derivative with respect the velocity, the
no-flux boundary condition for vm as well as for µm and integration by parts to
observe

(DuBL(u, . . .),w) = ααB ∫
I
(uB ,w)Rub dt

−
M

∑
m=2

∫
∂Ω

2ηm−1Dpmv ⋅ νΩBBw
m ds − ∫

∂Ω
2η1Dp1

v ⋅ νΩBBw
1 ds

and thus the optimality condition in a strong formulation is

ααBτu
m
B − ((2ηm−1Dpmv ⋅ νΩ, g

l)H−1/2(∂Ω),H1/2(∂Ω))
ub

l=1
= 0 ∈ Rub ∀m = 2, . . . ,M,

ααBτu
1
B − (2η1Dp1

v ⋅ νΩ, g
l)H−1/2(∂Ω),H1/2(∂Ω) = 0 ∈ Rub .

(31)

The derivative with respect to the initial condition uI in a direction w−uI ∈
UI is

(DuIL(u, . . .),w − uI)U⋆

I
,UI =

α

2
αI (ε(∇uI ,∇(w − uI)) + ε−1 ∫

Ω
W ′

u(uI)(w − uI)dx)

− 1

2τ
(ρ′(w − uI)v2, p2

v) +
1

τ
(ρ′(w − uI)v1, p2

v)

− 1

2τ
(ρ′(w − uI)v1, p1

v) +
1

τ
(ρ′(w − uI)v0, p1

v)

+ (µ1∇(w − uI), p1
v) + (ρ′(w − uI)K,p1

v)

+ 1

τ
((w − uI), p1

ϕ) − (v0∇(w − uI), p1
ϕ) −

σ

ε
(W ′′

−
(uI)(w − uI), p1

µ) ≥ 0.

(32)
We note that uI ∈ H1(Ω) ∩ L∞(Ω) and thus that there exists no gradient rep-
resentation for DuIL. This is reflected later in our numerical approach.

Remark 11. From (29) we see, that in fact uV has a discrete structure with
respect to time, namely it is piecewise constant over time intervals, as the adjoint
variable pv is. The same holds for uB.
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4 The fully discrete setting
We next use finite elements to discretize the optimal control problem P in space.
For this we use finite elements on locally adapted meshes. At time instance tm,
m = 1, . . . ,M we use a quasi-uniform, triangulation of Ω with NTm triangles
denoted by Tm = {Ti}NTmi=1 fulfilling Ω = ⋃NTmi=1 T i.

On Tm we define the following finite element spaces:

V1
m ={v ∈ C(Tm) ∣ v∣T ∈ P1(T )∀T ∈ Tm},
V2
m ={v ∈ C(Tm)n ∣ v∣T ∈ P2(T )n ∀T ∈ Tm},

where P l(S) denotes the space of polynomials up to order l defined on S. We
note that by construction V1

m ⊂ W 1,∞(Tm) and V2
m ⊂ W 1,∞(Tm)n holds. We

introduce the discrete analog to the space Hσ(Ω):

Hσ,m ∶= {v ∈ V2
m ∣ (divv, q) = 0∀q ∈ V1

m ∩L2(Ω)},

and

H0,σ,m ∶= {v ∈Hσ,m ∣γ(v) = 0}.

We further introduce a linear H1-stable projection operator Pm ∶ H1(Ω) →
V1
m satisfying

∥Pmv∥Lp(Ω) ≤ C∥v∥Lp(Ω), and ∥∇Pmv∥Lr(Ω) ≤ C∥∇v∥Lr(Ω),

for v ∈H1(Ω) with r ∈ [1,2] and p ∈ [1,6] if n = 3, and p ∈ [1,∞) if n = 2 and

∥Pmv − v∥H1(Ω) → 0

for h→ 0 for v ∈H2(Ω) Typically examples are the Clément operator or, by re-
stricting the preimage to C(Ω)∩H1(Ω), the Lagrangian interpolation operator.

Using these spaces we state the discrete counterpart of (12)–(17):

Let u ∈ U and v0 ∈Hσ ∩L∞(Ω)n be given.
Initialization for m = 1:
Set ϕ0

h ∶= uI , v0 ∶= v0. Find v1
h ∈Hσ,1, γ(v1

h) = Π1(BBu1
B), ϕ1

h ∈ V1
1 , µ

1
h ∈ V1

1 such
that for all w ∈H0,σ,1, Ψ ∈ V1

1 , Φ ∈ V1
1 it holds:

τ−1 (1

2
(ρ1
h + ρ0

h)v1
h − ρ0

hv
0,w) + a(ρ1

hv
0 + J1

h, v
1
h,w)

+(2η1
hDv

1
h,Dw) − (µ1

h∇ϕ0
h + ρ0

hg,w) − (BV u1
V ,w) = 0, (33)

1

τ
(ϕ1

h − P 1ϕ0
h,Ψ) + (b∇µ1

h,∇Ψ) + (v0∇ϕ0
h,Ψ) = 0, (34)

σε(∇ϕ1
h,∇Φ) + σ

ε
(W ′

+
(ϕ1

h) +W ′

−
(P 1ϕ0

h),Φ) − (µ1
h,Φ) = 0, (35)

where J1 ∶= −ρδb∇µ1
h.
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Two-step scheme for m > 1:
Given ϕm−2

h ∈ V1
m−2, ϕ

m−1
h ∈ V1

m−1, µ
m−1
h ∈ V1

m−1, v
m−1
h ∈Hσ,m−1, find vmh ∈Hσ,m,

γ(vmh ) = Πm(BBumB ), ϕmh ∈ V1
m, µmh ∈ V1

m such that for all w ∈ H0,σ,m, Ψ ∈ V1
m,

Φ ∈ V1
m it holds:

τ−1 (1

2
(ρm−1
h + ρm−2

h )vmh − ρm−2
h vm−1

h ,w) + a(ρm−1
h vm−1

h + Jm−1
h , vmh ,w)

+(2ηm−1
h Dvmh ,Dw) − (µmh ∇ϕm−1

h + ρm−1
h g,w) − (BV umV ,w) = 0,

(36)
1

τ
(ϕmh − Pmϕm−1

h ,Ψ) + (b∇µmh ,∇Ψ) + (vmh ∇ϕm−1
h ,Ψ) = 0,

(37)

σε(∇ϕmh ,∇Φ) + σ
ε
(W ′

+
(ϕmh ) +W ′

−
(Pmϕm−1

h ),Φ) − (µmh ,Φ) = 0,

(38)

where Jm−1
h ∶= −ρδb∇µm−1

h .
We introduce

V2
m,b ∶= {v∣∂Ω ∣ v ∈ V2

m, ∫
∂Ω
v∣∂Ω ⋅ νΩ ds = 0}

and define Πm for m = 1, . . . ,M as the L2(∂Ω) projection onto the trace space
of V2

m,b. This projection is used to incorporate the boundary data and fulfills
∥Πmg − g∥L2(∂Ω) → 0 for all g ∈H1/2(∂Ω) with ∫∂Ω g ⋅ νΩ ds = 0.

We require bounds with respect to W 1,p(Ω)-norms for the solution of (33)–
(38) and prepare these with the following lemmas.

Lemma 12. For all 1 < p < ∞ there exists a continuous function C(p), such
that

∥∇u∥Lp(Ω) ≤ C(p) sup
η∈Lq(Ω),η≠0

(η,1)=0

(∇u,∇η)
∥∇η∥Lq(Ω)

,

where 1
p
+ 1
q
= 1. Further, from the generalized Poincaré inequality, [Alt, 2016,

Thm. 8.16], we obtain ∥η∥W 1,q(Ω) ≤ C∥∇η∥Lq(Ω) and thus

∥∇u∥Lp(Ω) ≤ C(p) sup
η∈Lq(Ω),η≠0

(η,1)=0

(∇u,∇η)
∥η∥W 1,q(Ω)

.

Proof. The proof follows as in [Barrett et al., 2005, Lem. 1.1] and uses Lp-
stability for u shown in [Geng and Shen, 2010, Thm. 1.2].

Lemma 13. For v ∈W 1,p(Ω) let Qhv ∈ V1
m be defined by

(∇Qhv,∇w) = (∇v,∇w) ∀w ∈ V1
m, (39)

∫
Ω
Qhv dx = ∫

Ω
v dx. (40)
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Let 1 < p <∞. Then it holds

∥Qhv∥W 1,p(Ω) ≤ C(p)∥v∥W 1,p(Ω). (41)

Proof. The proof follows the lines of [Brenner and Scott, 2008, Ch. 8]. However,
from the fact that the boundary data is of Neumann type new difficulties arise
and we refer to [Barrett et al., 2005] and [Nürnberg and Tucker, 2015] how to
deal with these issues.

Lemma 14. Let uh ∈ V1
m ⊂W 1,q(Ω). Then it holds

∥∇uh∥Lp(Ω) ≤ C(p) sup
ηh∈V

1
m,ηh≠0

(η,1)=0

(∇uh,∇ηh)
∥ηh∥W 1,q(Ω)

,

where 1
p
+ 1
q
= 1.

Proof. Directly follows by combining Lemma 12, the definition of Qhv in (40)
and the stability estimate (41), compare [Nürnberg and Tucker, 2015, Thm.
2.3].

Theorem 15. For given v0 ∈ H1(Ω)n ∩ L∞(Ω)n, u ∈ U there exist v1
h ∈ Hσ,1,

γ(v1
h) = Π1(BBu1

B), ϕ1
h ∈ V1

1 and µ1
h ∈ V1

1 solving (33)–(35). It further holds

∥µ1
h∥W 1,3(Ω) + ∥ϕ1

h∥W 1,4(Ω) + ∥v1
h∥H1(Ω)

≤ C1(v0)C2 (∥uI∥H1(Ω), ∥BV u1
V ∥L2(Ω)n , ∥BBu1

B∥
H

1
2 (∂Ω)n

) ,

and Newton’s method can be used to find the unique solution to (33)–(35).

Proof. For (34)–(35) the existence of a unique solution and the applicability of
Newton’s method follows from [Hintermüller et al., 2011]. Also the stability in
H1 is proven there.

To obtain the estimates of higher regularity we use Lemma 14. It holds (34)

C∥µ1
h∥W 1,3(Ω) ≤ ∥∇µ1

h∥L3(Ω) + ∥µ1
h∥L3(Ω)

≤∥µ1
h∥L3(Ω) +C sup

vh∈V
1
m,(vh,1)=0

∥vh∥
W

1, 3
2 (Ω)

=1

(∇µ1
h,∇vh)

≤C∥µ1
h∥H1(Ω) +C sup(∣1

τ
(ϕ1

h − P 1ϕ0
h, vh)∣ + ∣(v0∇ϕ0

h, vh)∣)

≤C∥µ1
h∥H1(Ω) +C sup (∥ϕ1

h − P 1ϕ0
h∥L2(Ω)∥vh∥L2(Ω) + ∥v0∇ϕ0

h∥L2(Ω)n∥vh∥L2(Ω))
≤C∥µ1

h∥H1(Ω) +C∥ϕ1
h − P 1ϕ0

h∥L2(Ω) +C∥v0∇ϕ0
h∥L2(Ω)n

≤C (∥µ1
h∥H1(Ω) + ∥ϕ1

h∥H1(Ω) + ∥ϕ0
h∥H1(Ω) + ∥v0∥L∞(Ω)n∥ϕ0

h∥H1(Ω))
(42)

which, together with the already known bound for ∥µ1
h∥H1(Ω) states the bound

on µ1
h in W 1,3(Ω). Note the continuous embedding W 1, 32 (Ω)↪ L2(Ω) used for

vh.
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For ϕ1
h we argue similarly and estimate

C∥ϕ1
h∥W 1,4(Ω)

≤∥ϕ1
h∥L4(Ω) +C sup

vh∈W
1, 4

3 (Ω),(vh,1)=0

∥v∥
W

1, 4
3 (Ω)

=1

((∇ϕ1
h,∇vh))

≤C∥ϕ1
h∥H1(Ω) +C sup(∣(µ1

h, vh)∣ + ∣σ
ε
(W ′

+
(ϕ1

h) +W ′

−
(P 1ϕ0

h), vh)∣)

≤C∥ϕ1
h∥H1(Ω) +C∥µ1

h∥L2(Ω) +C sup [(1 + ∣ϕ1
h∣q−1, ∣vh∣) + (1 + ∣P 1ϕ0

h∣q−1, ∣vh∣)]
≤C∥ϕ1

h∥H1(Ω) +C∥µ1
h∥L2(Ω)

+C (∥1 + ∣ϕ1
h∣q−1∥L2(Ω) + ∥1 + ∣P 1ϕ0

h∣q−1∥L2(Ω)) sup ∥vh∥L2(Ω)

≤C∥ϕ1
h∥H1(Ω) +C∥µ1

h∥L2(Ω) +C (1 + ∥ϕ1
h∥H1(Ω) + ∥ϕ0

h∥H1(Ω)) .

We note the continuous embeddings W 1, 43 (Ω)↪ L2(Ω) and H1(Ω)↪ L6(Ω).
The existence of a unique solution for (33) and stability for v1

h then follows
from standard arguments for the Oseen equation, since we use an LBB-stable
finite element pair.

Theorem 16. For given u ∈ U , ϕm−2 ∈ V1
m−2, ϕ

m−1 ∈ V1
m−1, µ

m−1 ∈ V1
m−1,

vm−1 ∈ Hσ,m−1, and for all m = 2, . . . ,M there exist vmh ∈ Hσ,m, γ(vmh ) =
Πm(BBumB ), ϕmh ∈ V1

m and µmh ∈ V1
m solving (36)–(38).

It further holds

∥µmh ∥W 1,3(Ω) + ∥ϕmh ∥W 1,4(Ω) + ∥vmh ∥H1(Ω)n

≤ C (∥vm−1
h ∥H1(Ω)n , ∥µm−1

h ∥W 1,3(Ω), ∥ϕm−1
h ∥W 1,4(Ω),

∥BV umV ∥L2(Ω)n , ∥BBumB ∥
H

1
2 (∂Ω)n

) ,

and the constant depends polynomially on its arguments.

Proof. In [Garcke et al., 2016] the existence of unique solutions to (36)–(38)
together with bounds in H1(Ω) on the solution is shown for the case BV umV = 0,
BBu

m
B = 0, using [Temam, 1977, Lem. II 1.4]. The volume force BV umV is given

data that enters the proof in a straightforward manner. The boundary data
BBu

m
B can be incorporated by investigating a shifted system as in Theorem 5.

The estimates of higher regularity follow as in Theorem 15. There the bound
for µ1

h relies on L∞(Ω) regularity of v0, that is not available here. Instead in
(42) we can use a L6(Ω) bound for vmh that directly follows from the H1(Ω)
bound by Sobolov embedding, together with the L3(Ω) bound for ∇ϕm−1

h .

Theorem 17. Let v0 ∈ H1(Ω)n ∩ L∞(Ω), u ∈ U be given. Then there ex-
ist sequences (vm)Mm=1 ∈ (Hσ,m)Mm=1, (ϕm)Mm=1, (µm)Mm=1 ∈ (V1

m)Mm=1, such that
(vm, ϕm, µm) is the unique solution to (33)–(38) for m = 1, . . . ,M . Moreover
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there holds

∥(vmh )Mm=1∥H1(Ω) + ∥(µmh )Mm=1∥W 1,3(Ω) + ∥(ϕmh )Mm=1∥W 1,4(Ω)

≤ C1(v0)C2 (∥uI∥H1(Ω), ∥(BV umV )Mm=1∥L2(Ω)n , ∥(BBumB )Mm=1∥H 1
2 (∂Ω)n

) .

Here the constants C1,C2 depend polynomially on their arguments.

Proof. The existence of the solution for each time instance follows directly from
Theorem 15 and Theorem 16. The stability estimate follows from iteratively
applying the stability estimates from Theorem 15;

Remark 18. The bounds with respect to higher norms are required in Sec-
tion 4.1 for the limit process h→ 0.

To derive first order necessary optimality conditions we argue as in the case
of the time discrete optimization problem and show that Newton’s method can
be used for solving the primal equation (33)–(38) on each time instance.

Theorem 19. Newton’s method can be used for finding the unique solution to
(33)–(38) on each time instance.

Proof. For m = 1 this is argued in Theorem 15. For m > 1 we abbreviate
equation (36)–(38) by F ((vmh , ϕmh , µmh ), (w,Φ,Ψ)) = 0. Then F is Fréchet differ-
entiable, since all terms are linear beside the term W ′

+
which is differentiable by

Assumption (A1). The derivative in the direction (δv, δϕ, δµ) ∈H0,σ,m×V1
m×V1

m

is given by

⟨G(vmh , ϕmh , µmh )(δv, δϕ, δµ), (w,Φ,Ψ)⟩ ∶=
1

τ
(ρ

m−1 + ρm−2

2
δv,w) + a(ρm−1vm−1 + Jm−1, δv,w)

+ (ηm−1Dδv,Dw) − (δµ∇ϕm−1,w)

+ 1

τ
(δϕ,Ψ) + (b∇δµ,∇Ψ) + (δv∇ϕm−1,Ψ)

+ σε(∇δϕ,∇Φ) + σ
ε
(W ′′

+
(ϕmh )δϕ,Φ) − (δµ,Φ).

The existence of a solution (δv, δϕ, δµ) can be shown following [Garcke et al.,
2016, Thm. 2], using Brouwer’s fixpoint theorem. The boundedness of (δv, δϕ, δµ)
follows from the same proof.

We next introduce the fully discrete analog to problem (P).

min
u∈U

J((ϕmh )Mm=1, u) =
1

2
∥ϕMh − ϕd∥2

L2(Ω)

+ α
2
(αI (∫

Ω

δ

2
∣∇uI ∣2 + δ−1Wu(uI)dx)

+ αV ∥uV ∥2
L2(0,T ;Ruv ) + αB∥uB∥2

L2(0,T ;Rub))

s.t. (33) − (38).

(Ph)
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We stress, that we do not discretize the control for the initial value. However
for a practical implementation we need a discrete description for uI . This will
be discussed after deriving the optimality conditions, see Section 5.

Theorem 20 (Existence of an optimal discrete control). There exists at least
one optimal control to Ph.

Proof. The claim follows from standard arguments, compare Theorem 8.

We next state the fully discrete counterpart of the first order optimality
conditions from Section 3.

For this we introduce adjoint variables (pmv,h)Mm=1 ∈ (H0,σ,m)Mm=1, (pmϕ,h)Mm=1 ∈
(V1
m)Mm=1, and (pmµ,h)Mm=1 ∈ (Vm)Mm=1. For convenience in the following we often

write vmh ∶= vm0,h + B̃BumB .
By the same Lagrangian calculus as in Section 3 we obtain the following

fully discrete optimality system.

Derivative with respect to the velocity
The derivative with respect to vm0,h for m = 2, . . . ,M into a direction ṽ ∈ V2

m is
given by

(Dvm
h
L(. . . ,vmh , . . .), ṽ) =

− 1

τ
((
ρm−1
h + ρm−2

h

2
ṽ, pmv,h) − (ρm−1

h ṽ, pm+1
v,h ))

− a(ρmh ṽ, vm+1
h , pm+1

v,h ) − a(ρm−1
h vm−1

h + Jm−1
h , ṽ, pmv,h)

− (2ηm−1
h Dṽ,Dpmv,h) − (ṽ∇ϕm−1

h , pmϕ,h) = 0.

(43)

For m = 1 we get

(Dv1
h
L( . . . , v1

h, . . .), ṽ) =

− 1

2τ
((ρ1

h + ρ0)ṽ, p1
v,h) +

1

τ
(ρ0ṽ, p2

v,h) − a(ρ1
hṽ, v

2
h, p

2
v,h)

− a(ρ1
hv

0
h + J1

h, ṽ, p
1
v,h) − (2η1

hDṽ,Dp
1
v,h) = 0.

(44)

Note that for notational convenience here we introduce artificial variables vM+1
h ,

pM+1
v,h , and set them to vM+1

h ≡ pM+1
v,h ≡ 0.

Derivative with respect to the chemical potential
The derivative with respect to the chemical potential for m = 2, . . . ,M in a
direction µ̃ ∈ V1

m is

(Dµm
h
L(. . . , µmh , . . .), µ̃) =
− a(Jµµ̃, vm+1

h , pm+1
v,h ) + (µ̃∇ϕm−1

h , pmv,h) − (b∇µ̃,∇pmϕ,h) + (µ̃, pmµ,h) = 0.
(45)
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For m = 1 the equations is

(Dµ1L(. . . , µ1, . . .), µ̃) =
− a(Jµµ̃, v2

h, p
2
v,h) − a(J1

µµ̃, v
1
h, p

1
v,h) + (µ̃∇uI , p1

v,h)
− (b∇µ̃,∇p1

ϕ,h) + (µ̃, p1
µ,h) = 0.

(46)

Here for m = 1, . . . ,M we abbreviate Jmµ µ̃ = −ρδb∇µ̃ and for notational con-
venience we introduce artificial variables vM+1

h and pM+1
v,h , and set them to

vM+1
h ≡ pM+1

v,h ≡ 0.

Derivative with respect to the phase field
The derivative with respect to the phase field ϕmh in a direction ϕ̃ ∈ V1

m is for
m = 2, . . . ,M

(Dϕm
h
L(. . . , ϕmh , . . .), ϕ̃) =

δmM(ϕmh − ϕd, ϕ̃) −
1

τ
(ρ′

vm+1
h pm+1

v,h + vm+2
h pm+2

v,h

2
, ϕ̃) + 1

τ
(ρ′vm+1

h pm+2
v,h , ϕ̃)

− a(ρ′ϕ̃vmh , vm+1
h , pm+1

v,h ) − (2η′ϕ̃Dvm+1
h ,Dpm+1

v,h )
+ (µm+1

h ∇ϕ̃, pm+1
v,h ) + (ρ′ϕ̃g, pm+1

v,h )

− 1

τ
((ϕ̃, pmϕ,h) − (Pm+1ϕ̃, pm+1

ϕ,h )) − (vm+1
h ∇ϕ̃, pm+1

ϕ,h )

− σε(∇ϕ̃,∇pmµ,h) −
σ

ε
(W ′′

+
(ϕmh )ϕ̃, pmµ,h) −

σ

ε
(W ′′

−
(Pm+1ϕmh )Pm+1ϕ̃, pm+1

µ,h ) = 0.

(47)
Here δmM denotes the Kronecker delta of m and M . For m = 1 we get

(Dϕ1
h
L(. . . , ϕ1

h, . . .), ϕ̃) =

− 1

τ
(ρ

′

2
ϕ̃, v2

hp
2
v,h) − a(ρ′ϕ̃v1

h, v
2
h, p

2
v,h) − a(ρ′ϕ̃v0, v1

h, p
1
v,h)

− (2η′ϕ̃Dv2
h,Dp

2
v,h) − (2η′ϕ̃Dv1

h,Dp
1
v,h) − (µ2

h∇ϕ̃p2
v,h) − (ρ′ϕ̃g, p2

v,h)

+ 1

τ
(P 2ϕ̃, p2

ϕ,h) − (v2
h∇ϕ̃, p2

ϕ,h) −
σ

ε
(W ′′

−
(P 2ϕ1

h)P 2ϕ̃, p2
µ,h)

− 1

τ
(ρ

′ϕ̃

2
v1
h, p

1
v,h) −

1

τ
(ϕ̃, p1

ϕ,h) − σε(∇ϕ̃,∇p1
µ,h) −

σ

ε
(W ′′

+
(ϕ1

h)ϕ̃, p1
µ,h) = 0.

(48)
Here for notational convenience we introduce artificial variables vM+1

h , vM+2
h ,

pM+1
v,h , and pM+2

v,h , and set them to zero.

Remark 21. We note that the projection operator Pm enters (47)–(48) acting
on the test function ϕ̃.

Derivative with respect to the control
Finally we calculate the derivative with respect to the control for the three parts
of the control space.
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For a test direction w ∈ UV we have

(DuV L(u, . . .),w) = ααV ∫
I
(uV ,w)Ruv dt +

M

∑
m=1

(BV wm, pmv,h)L2(Ω) = 0,

and thus the optimality condition is

αταV u
m
V +B∗

V p
m
v,h = 0 ∈ Ruv m = 1, . . . ,M. (49)

Here B⋆

V p
m
v is defined as

B⋆

V p
m
v ∶= ((fl, pmv,h)L2(Ω)n)uvl=1.

Concerning the derivative with respect to uB we have for a test function
w ∈ UB

(DuBL(u, . . .),w) = ααB ∫
I
(uB ,w)Rub dt − τ−1 (

ρ1
h + ρ0

2
B̃Bw1, p1

v,h)

− a(ρ1
hv

0 + J1
h, B̃Bw

1, p1
v,h) − 2(η1

hDB̃Bw
1,Dp1

v,h)

−
M

∑
m=2

[τ−1 (
ρm−1
h + ρm−2

h

2
B̃Bwm, p

m
v,h) − (ρm−2

h
̃BBwm−1, pmv,h)

+a(ρm−1
h vm−1

h + Jm−1
h , B̃Bwm, p

m
v,h) + a(ρm−1

h
̃BBwm−1, vmh , p

m
v,h)

+ 2(ηm−1
h DB̃Bwm,Dp

m
v,h) + (B̃Bwm∇ϕm−1

h , pmϕ,h)]

=∶ ααB ∫
I
(uB ,w)Rub dt + Fh(w) = 0.

(50)

Here Fh(w) abbreviates the action of the discrete normal derivative of pv,h, see
e.g. [Hinze et al., 2009].

The derivative with respect to the initial condition uI in any direction w−uI ∈
UI is

(DuIL(u, . . .),w − uI)U⋆

I
,UI =

α

2
αI (ε(∇uI ,∇(w − uI)) + ε−1 ∫

Ω
W ′

u(uI)(w − uI)dx)

− 1

2τ
(ρ′(w − uI)v2

h, p
2
v,h) +

1

τ
(ρ′(w − uI)v1

h, p
2
v,h)

− 1

2τ
(ρ′(w − uI)v1

h, p
1
v,h) +

1

τ
(ρ′(w − uI)v0, p1

v,h)

+ (µ1
h∇(w − uI), p1

v,h) + (ρ′(w − uI)K,p1
v,h)

+ 1

τ
((w − uI), p1

ϕ,h) − (v0∇(w − uI), p1
ϕ,h) −

σ

ε
(W ′′

−
(uI))(w − uI), p1

µ,h) ≥ 0,

(51)
and this inequality holds for all w ∈ UI .

Remark 22. We use the finite element space V1
1 for the representation of uI .
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4.1 The limit h→ 0

We next investigate the limit h→ 0 for problem Ph. Let u⋆, ϕ⋆ denote a solution
to P and uh, ϕh denote a solution to Ph. Since uh, ϕh is a minimizer for J in the
discrete setting, we have J(uh, ϕh) ≤ J(Phu⋆, Phϕ⋆) ≤ CJ(u⋆, ϕ⋆) = Cj, where
Ph denotes any H1-stable projection onto the discrete spaces. Thus

1

2
∥ϕMh − ϕd∥2 + α

2
(αI ∫

Ω

ε

2
∣∇uI,h∣2 + ε−1Wu(uI,h)dx

+ αV ∥uB,h∥2
L2(0,T ;Ruv ) + αB∥uV,h∥2

L2(0,T ;Rub)) ≤ Cj.
(52)

Note that the mean value of uI,h is fixed and thus by Poincarés inequality we
have ∥uI,h∥H1(Ω) ≤ C(1 + ∥∇uI,h∥).

Thus from (52) we obtain the following bounds uniform in h:

∥uI,h∥H1(Ω) + ∥uB,h∥L2(0,T ;Ruv ) + ∥uV,h∥L2(0,T ;Rub) ≤ C.

Using Theorem 17 we further get the bounds

∥(vmh )Mm=1∥H1(Ω)n + ∥(µmh )Mm=1∥W 1,3(Ω) + ∥(ϕmh )Mm=1∥W 1,4(Ω) ≤ C.

Using Lax-Milgram’s theorem and the above bounds we further obtain bounds

∥(pmv,h)Mm=1∥H1(Ω)n + ∥(pmϕ,h)Mm=1∥H1(Ω) + ∥(pmµ,h)Mm=1∥H1(Ω) ≤ C

for the adjoint variables.
Now there exist u⋆I ∈ H1(Ω), u⋆V ∈ L2(0, T ;Ruv), u⋆B ∈ L2(0, T ;Rub) such

that

uI,h ⇀ u⋆I , uV,h ⇀ u⋆V , uB,h ⇀ u⋆B .

There further exist (vm,⋆)Mm=1 ∈ (H1(Ω)n)M , (ϕm,⋆)Mm=1 ∈ W 1,4(Ω)M , and
(µm,⋆)Mm=1 ∈W 1,3(Ω)M such that

vmh ⇀ vm,⋆, ϕmh ⇀ ϕm,⋆, µmh ⇀ µm,⋆ ∀m = 1, . . . ,M.

And there further exist (pm,⋆v )Mm=1 ∈H1(Ω)M , (pm,⋆ϕ )Mm=1 ∈H1(Ω)M , and (pm,⋆µ )Mm=1 ∈
H1(Ω)M such that

pmv,h ⇀ pm,⋆v , pmϕ,h ⇀ pm,⋆ϕ , pmµ,h ⇀ pm,⋆µ ∀m = 1, . . . ,M.

Now let us proceed to the limit in the fully discrete optimality system. To
this end we will especially show the following strong convergence results

ϕmh → ϕm in H1(Ω),
µmh → µm in W 1,3(Ω),
vmh → vm in Hσ(Ω),
uI,h → uI in H1(Ω),
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for m = 1, . . . ,M .

The limit h→ 0 in the primal equation
The convergence of (38) to (17) and of (35) to (14) follows directly from the
proposed weak convergences together with the strong convergence ϕmh → ϕm in
L∞ obtained by compact Sobolev embedding. To obtain strong convergence in
H1(Ω) we argue as in the proof of Theorem 15.

Let B ∶ H1(Ω) × H1(Ω) → R denote the coercive bilinear form B(u, v) =
σε(∇u,∇v)+ (u, v) and let Qhϕ1 ∈ V1

1 denote the projection of ϕ1 onto V1
1 with

respect to B fulfilling ∥Qhϕ1 − ϕ1∥H1(Ω) → 0 for h→ 0, since ϕ1 ∈H2(Ω).
Then it holds

∥ϕ1
h − ϕ1∥H1(Ω) ≤ ∥ϕ1

h −Qhϕ1∥H1(Ω) + ∥Qhϕ1 − ϕ1∥H1(Ω),

and

C∥ϕ1
h −Qhϕ1∥2

H1(Ω)

≤ B(ϕ1
h −Qhϕ1, ϕ1

h −Qhϕ1) = B(ϕ1
h − ϕ1, ϕ1

h −Qhϕ1)
≤∣(µ1

h − µ1, ϕ1
h −Qhϕ1)∣ + ∥ϕ1

h − ϕ1∥L2(Ω)∥ϕ1
h −Qhϕ1∥L2(Ω)

+ σ
ε
∣(W ′

+
(ϕ1

h) −W ′

+
(ϕ1), ϕ1

h −Qhϕ1)∣ + σ
ε
∣(W ′

−
(P 1ϕ0

h) −W ′

−
(ϕ0), ϕ1

h −Qhϕ1)∣

≤∥µ1
h − µ1∥L2(Ω)∥ϕ1

h −Qhϕ1∥L2(Ω) + ∥ϕ1
h − ϕ1∥L2(Ω)∥ϕ1

h −Qhϕ1∥L2(Ω)

+ σ
ε
∥W ′

+
(ϕ1

h) −W ′

+
(ϕ1)∥L5/3(Ω)∥ϕ1

h −Qhϕ1∥L5/2(Ω)

+ σ
ε
∥W ′

−
(P 1ϕ0

h) −W ′

−
(ϕ0)∥L5/3(Ω)∥ϕ1

h −Qhϕ1∥L5/2(Ω).

Using Sobolev embeddingH1(Ω)↪ Lp(Ω), p ≤ 6 and dividing by ∥ϕ1
h−Qhϕ1∥H1(Ω)

the resulting differences tend to zero by compact Sobolev embedding, or by
Lebesgue’s generalized convergence theorem and Assumption (A2). The same
arguments apply for the case m > 1.

The convergence of equation (37) to (16) and (34) to (13) is shown using
the strong convergence vmh → vm in L3(Ω) together with weak convergence
∇ϕm−1

h ⇀ ∇ϕm−1 in L2(Ω) yielding weak convergence of the transport term
vmh ∇ϕm−1

h in L6/5. For m = 1 v0∇ϕ0
h converges weakly in L2(Ω). Further,

strong convergence µmh → µm in H1(Ω) follows as above.
To show strong convergence in W 1,3 it is thus sufficient to show strong

convergence for ∇µ1
h → ∇µ1 in L3(Ω). We define Qhv ∈ V1

1 by

(∇(Qhv − v),∇wh) = 0 ∀wh ∈ V1
1 ,

(Qhv,1) = (v,1),

satisfying ∥Qhv∥W 1, 3
2 (Ω)

≤ C∥v∥
W 1, 3

2 (Ω)
, Lemma 13.
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We adapt the idea from Theorem 15 and proceed

C∥∇µ1
h −∇µ1∥L3(Ω)

≤ sup

v∈W
1, 3

2 (Ω),(v,1)=0

∥v∥
W

1, 3
2 (Ω)

=1

(∇(µ1
h − µ1),∇v) = sup [(∇(µ1

h − µ1),∇Qhv) + (∇(µ1
h − µ1),∇(v −Qhv))]

≤ sup [(∇(µ1
h − µ1),∇Qhv) + (∇µ1,∇(Qhv − v))]

≤ C sup [∣τ−1(ϕ1
h − ϕ1,Qhv)∣ + ∣τ−1(P 1ϕ0

h − ϕ0,Qhv)∣ + ∣(v0∇ϕ0
h − v0∇ϕ0,Qhv)

+∣τ−1(ϕ1 − ϕ0,Qhv − v)∣ + ∣(v0∇ϕ0,Qhv − v)∣]
≤ C [∥ϕ1

h − ϕ1∥L2(Ω) + ∥P 1ϕ0
h − ϕ0∥L2(Ω)

+∥ϕ1 − ϕ0∥L2(Ω) sup ∥Qhv − v∥L2(Ω) + ∥v0∇ϕ0∥L2(Ω) sup ∥Qhv − v∥L2(Ω)]
+C sup ∣(v0∇Qhv,ϕ0

h − ϕ0)∣
≤ C [∥ϕ1

h − ϕ1∥L2(Ω) + ∥P 1ϕ0
h − ϕ0∥L2(Ω)

+∥ϕ1 − ϕ0∥L2(Ω) sup ∥Qhv − v∥L2(Ω) + ∥v0∇ϕ0∥L2(Ω) sup ∥Qhv − v∥L2(Ω)]
+C∥v0∥L∞(Ω)∥ϕ0

h − ϕ0∥L2(Ω).

Note that we used integration by parts to deal with the transport term. From
the Hölder and Sobolev inequalities it follows

∥Qhv − v∥2
L2(Ω) ≤ ∥Qhv − v∥L 3

2 (Ω)
∥Qhv − v∥L3(Ω).

The last term is bounded due to the fact, that ∥v∥
W 1, 3

2 (Ω)
≤ 1 and Qh is stable in

W 1, 32 (Ω). Since ∥Qhv − v∥L 3
2 (Ω)

≤ Ch∥v∥
W 1, 3

2 (Ω)
we obtain ∥Qhv − v∥L2(Ω) → 0

for h → 0 and thus the strong convergence of ∇µh in L3(Ω). If m > 1 we can
use the strong convergence ϕm−1

h → ϕm−1 in H1(Ω) ↪ L6(Ω) together with
∥vmh ∥L6(Ω) ≤ C to treat the transport term.

Next we consider the convergence of (36) to (15) and (33) to (12). Here the
convergence (ηm−1

h Dvmh ∶ Dw) → (ηm−1Dvm ∶ Dw) follows from the strong con-
vergence ϕm−1

h → ϕm−1 in L∞(Ω) (by compact embedding W 1,4(Ω) ↪ L∞(Ω))
and the weak convergence Dvmh ⇀ Dvm in L2(Ω). The convergence of the tri-
linear form is obtained by using the just shown strong convergence ∇µmh → ∇µm
in L3(Ω) together with the weak convergence of vmh ⇀ vm in L6(Ω).

Let us finally show strong convergence vmh → vm in H1(Ω)n. Let B ∶ Hσ ×
Hσ → R denote the coercive bilinear form B(u, v) = (η1

hDu ∶ Dv) + (u, v). The
coercivity of B follows from Korn’s inequality. Let wh ∈Hσ,1 denote a sequence,
such that ∥wh−v1∥H1(Ω)n → 0 for h→ 0 and wh∣∂Ω ≡ v1

h∣∂Ω. The weak continuity
of Π1 ensures that Π1(v1

h) → v1∣∂Ω and thus such sequence wh exists. Then we
have wh ⇀ v1

h in H1(Ω) for h→ 0 and it holds

∥v1
h − v1∥H1(Ω)n ≤ ∥v1

h −wh∥H1(Ω)n + ∥wh − v1∥H1(Ω)n .
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Now we proceed with

C∥v1
h −wh∥2

H1(Ω)n

≤ B(v1
h −wh, v1

h −wh) = B(v1
h, v

1
h −wh) −B(wh, v1

h −wh)
≤ (BV u1

h, v
1
h −wh) + (µ1

h∇ϕ0
h, v

1
h −wh) + (ρ0

hg, v
1
h −wh)

− a(ρ1
hv

0 + J1
h, v

1
h, v

1
h −wh) − τ−1 (

ρ1
h + ρ0

h

2
v1
h − ρ0

hv
0, v1

h −wh)

+ (v1
h, v

1
h −wh) − 2(η1

hDwh ∶D(v1
h −wh)) − (wh, v1

h −wh)
≤ ∥u1

v,h∥L2(Ω)∥v1
h −wh∥L2(Ω) + ∥µ1

h∇ϕ0
h∥L 3

2 (Ω)
∥v1
h −wh∥L3(Ω)

+ ∥ρ0
hg∥L2(Ω)n∥v1

h −wh∥L2(Ω)

+ ∣a(ρ1
hv

0 + J1
h, v

1
h, v

1
h −wh)∣

+ τ−1∥1

2
(ρ1
h + ρ0

h)v1
h − ρ0

hv
0∥L2(Ω)∥v1

h −wh∥L2(Ω)

+ ∥v1
h −wh∥2

L2(Ω) + ∣2(η1
hDwh ∶D(v1

h −wh))∣.

Now ∣(η1
hDv

1 ∶ D(v1
h −wh))∣ → 0 for h → 0 since η1

hDwh → η1Dv1 in L2(Ω) and
D(v1

h −wh) ⇀ 0 in L2(Ω), and thus beside the trilinear form all terms directly
vanish for h→ 0.

For the trilinear form we use the antisymmetry a(⋅, v1
h −wh, v1

h −wh) = 0 and
proceed

∣a(ρ1
hv

0 + J1
h, v

1
h, v

1
h −wh)∣ = ∣a(ρ1

hv
0 + J1

h,wh, v
1
h −wh)∣

= ∣1
2
(th∇wh, v1

h −wh) −
1

2
(th∇(v1

h −wh),wh)∣

≤ 1

2
∥th∥L3(Ω)∥wh∥H1(Ω)∥v1

h −wh∥L2(Ω)

+ 1

2
∣(th∇(v1

h −wh),wh)∣ ,

We note the strong convergence wh → v1 in L6(Ω) and th → t in L3(Ω). Thus
the last term tends to zero for h→ 0.

For m > 1 we use ρm−1
h → ρm−1 in L∞(Ω) to again obtain the strong conver-

gence ρm−1
h vm−1

h + Jm−1
h → ρm−1vm−1 + Jm−1 in L3(Ω).

The limit h→ 0 in the dual equation
The convergence of (43) and (44) to (23) and (24), i.e. the adjoint Navier–Stokes
equation, is shown as in the primal equation using the strong convergence of ϕmh
in L∞(Ω) and µmh in W 1,3(Ω) to show convergence of the trilinear form and of
the diffusion term.

The convergence of (45) and (46) to (25) and (26) uses strong convergence
of pm+1

v,h in L4(Ω) and of vm+1
h in L6(Ω), where the additional regularity for vh

is required.
The convergence of (47) and (48) to (27) and (28) also follows directly using

the above shown strong convergence of the primal variables. Especially for the
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term (η′ϕ̃Dvm+1
h ∶ Dpm+1

v,h ) we need the strong convergence vm+1
h → vm+1 in

H1(Ω).
The limit h→ 0 in the derivative w.r.t. the control
The convergence of (49) to (29) is shown using the strong convergence pmv,h in
L2(Ω).

The convergence of (50) to (30) is shown using the various strong convergence
results.

Finally we show the convergence of (51) to (32). Since J(uh, ϕh)→ J(u⋆, ϕ⋆),
we observe convergence ∥∇uI,h∥L2(Ω) → ∥∇u⋆I∥L2(Ω). Together with Poincaré’s
inequality and the weak convergence uI,h ⇀ u⋆I in H1(Ω) we observe strong
convergence uI,h → u⋆I in H1(Ω). The convergence (51) to (32) now readily
follows.

5 Numerical examples
In this section we show numerical results for the optimal control problem Ph.
The implementation is done in C++ using the finite element toolbox FEniCS
[Logg et al., 2012] together with the PETSc linear algebra backend [Balay et al.,
2014] and the linear solver MUMPS [Amestoy et al., 2001]. For the adaptation
of the spatial meshes the toolbox ALBERTA [Schmidt and Siebert, 2005] is
used. The minimization problem is solved by steepest descent method. If the
initial phase field is not used as control, we use the GNU scientific library [gsl,
2013], if the initial value is used as control we use a self written implementation
using the H1 regularity of the control u1.

Let us next define some data, that is used throughout all examples. We use
ρ(ϕ) = ρ2−ρ1

2
ϕ+ ρ1+ρ2

2
and η(ϕ) = η2−η1

2
ϕ+ η1+η2

2
, where ρ1, ρ2 and η1, η2 depend

on the actual example. For the free energy we always use (9), with s = 1e4, and
the mobility is set to b ≡ ε/500.

5.1 The adaptive concept
For the construction of the spatially adapted meshes we use the error indicators
that are constructed in [Garcke et al., 2016] for the primal equation and use
the series of meshes that we construct for the primal equation also for the
dual equation. This means that we use classical residual based error estimation
to obtain suitable error indicators. We note that following [Carstensen and
Verfürth, 1999] the cell-wise residuals for the Cahn–Hilliard equation can be
subsumed to the edge-wise error indicators. We further note that from our
numerical tests we obtain that the cell-wise residuals of the momentum equation
is much smaller than the edge-wise indicators, while it turns out to be very
expensive to evaluate. Thus we neglect this term. The final error indicator
is the cell-wise sum of the jumps of the normal derivatives of the phase field
variable, the chemical potential and the velocity field over the cell boundary.
The final adaptation scheme for the primal equation is a Dörfler marking scheme
based on this indicator, see e.g. [Dörfler, 1996,Garcke et al., 2016].
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For the Dörfler marking we set the largest cell volume to Vmax = 0.0003,
while the smallest cell volume is set to Vmin = 1

2
(πε

8
)2

which results in 8 triangles
across the interface of thickness O(πε).

Concerning the temporal resolution, we stress that we did not discretize the
control uV and uB with respect to time, i.e. we use the variational discretization
approach from [Hinze, 2005b]. Thus we can adapt the time step size during
the optimization to fulfill a CFL-condition without changing the actual control
space. Thus we start with a given large time step size τ and reduce this steps size
whenever the CFL-condition maxT

∣ym∣T ∣τ

diam(T ) ≤ 1 is violated for any m = 1, . . . ,M

by halven τ .

5.2 A rising bubble
In this example investigate the pure boundary control αV ≡ αI ≡ 0. Here we use
uI = ϕ0 as given data that we represent on a adapted mesh using the proposed
adaptive concept.

We investigate the example of a rising bubble, compare [Kahle, 2014] and
use the parameters from the benchmark paper [Hysing et al., 2009], i.e. ρ1 =
1000, ρ2 = 100, η1 = 10, η2 = 1. The surface tension is 24.5 which due to our
choice of free energy corresponds to σ = 15.5972. The gravitational constant is
g = (0,−0.981)t and the computational domain is Ω = (0,1)× (0,1.5). The time
interval is I = [0,1.0] and we start with a step size τ = 5e − 3, that is refined to
τ = 2.5e − 3 throughout the optimization.

The initial phase field is given by

ϕ0(x) =
⎧⎪⎪⎨⎪⎪⎩

sin((∥x −M1∥ − r)/ε) if ∣∥x −M1∥ − r∣/ε ≤ π/2,
sign(∥x −M1∥ − r) else,

(53)

with M1 = (0.5,0.75)t and r = 0.25. The desired phase field is given by the
same expression but with M1 = (0.5,0.5)t. Thus we aim to move a bubble to
the bottom without changing its shape.

Concerning the ansatz functions for the operator BB we introduce the vector
field

(f[m,ξ, c](x))i =
⎧⎪⎪⎨⎪⎪⎩

cos ((π/2)∥ξ−1(x −m)∥)2
if c ≡ i and ∥ξ−1(x −m)∥ ≤ 1,

0 else.

This describes an approximation to the Gaussian bell with local support. The
center is given by m and the diagonal matrix ξ describes the width of the bell
in unit directions. We identify a scalar value for ξ with ξI, where I denotes the
identity matrix. The parameter c is the number of the component in which the
vector field f is non-zero. On the left and right boundary of Ω we provide 10
equidistantly distributed ansatz functions f[mi, ξi, ci](x). Here ξi = 1.5/10 and
ξi = 1.0/10 if mi is located on bottom or top. We always choose ci such that the
ansatz function is tangential to Ω.
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Figure 1: The initial phase field ϕ0 (left), the desired phase field ϕd (middle)
and the control areas together with the zero-level lines of ϕ0 and ϕd (right)
for the rising bubble example. Note that each of the control areas contains 10
controls of the type f[m,ξ, c](x) that point tangential to ∂Ω with overlapping
support.

We set α = 1e−10 and ε = 0.04 and stop the optimization as soon as ∥∇J(u)∥U
is decreased by a factor of 0.1.

In Figure 1 we present the initial phase field ϕ0, the desired phse field ϕd
and the control areas together with the zero-level lines of ϕ0 and ϕd.

The steepest descent method is able to reduce ∥∇J∥U from 6e−2 to 4.6e−2 in
67 iterations and stagnates due to no further decrease in ∥∇J∥U . Mean while the
functional J is reduced from 0.509 to 0.033. In Figure 2 we show the evolution
of ϕ for the optimal control together with the magnitude of the velocity field.

In Figure 3 we show the evolution of the control action over time. We observe
a rapid decay of the control strength at the end of the time horizon, while the
first peak corresponds to a strong control at the side walls in the region above
the bubble, that is rather inactive after this initial stage.

5.3 Reconstruction of the initial value
Finally we investigate an example of finding an initial phase field, such that
after a given amount of time without further control action a desired phase field
is achieved. Here we apply only initial value control, i.e. αV = αB = 0, and we
use no-slip boundary conditions for the velocity field.

Let us turn to the representation of uI . We initialize uI with a constant value
uI = −0.8 and use a homogeneously refined initial mesh for its representation.
We use this mesh for T1.

After each step of the minimization algorithm we use the jumps accross edges
in normal direction of ∇uI to construct a new grid for the representation of uI
and interpolate the current control to the new grid. The marking is evaluated
based on a Dörfler approach.

The parameter for this example are given as ρ1 = 1000, ρ2 = 1, η1 = 10,
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Figure 2: The evolution of the optimally controlled phase field and velocity
field at times t = 0.25,0.5,0.75,1.0 (left to right) when control is only applied
to the side walls and not at the bottom and the top part of the boundary. The
pictures show the magnitude of the velocity field on the left and the phase field
on the right. For t = 0.1 we additionally indicate the zero-level line of ϕd by a
black line. Note that the velocity field coincides with BBuB on the boundary.
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Figure 3: The evolution of the optimal control action over time, i.e. ∥u(t)∥ for
the rising bubble example.
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Figure 4: The optimal control uI (left) and the resulting distribution at the end
of the time interval (right), where the bubble is shown in gray. The black line
indicates the zero level line of the desired shape.

η2 = 0.1, σ = 1.245 and g ≡ −0.981. These are the parameters of the second
benchmark from [Hysing et al., 2009], where σ was rescaled due to our specific
choice of energy. We note that due to the large ratio in density, the bubble
undergoes strong deformation during rising. The optimization horizon again is
I = [0,1.5], and Ω = (0,1)2. We set α = 0.2 and solve the optimization problem
for ε = 0.02.

We initialize the optimization with uI ≡ −0.8 and use a circle around M =
(0.5,0.6) with radius r = 0.1763040551 as defined in (53) as desired shape. These
values are used such that ∫Ω ϕd − uI dx = 0 is fulfilled.

The optimization problem is solved using the VMPT method, proposed in
[Blank and Rupprecht, 2015]. It is an extension of the projected gradient method
to the Banach space setting. In our situation this is H1(Ω) ∩L∞(Ω).

We stop the allover algorithm as soon as ∣(DJuI (⋅), v)∣ < 1e − 3, where v
denotes the current normalized search direction. In our example this is reached
after 31 iterations, where J is reduced from 3.8e-1 to 1.9e-1, and especially
∥ϕK − ϕd∥ is reduced from 0.43 to 0.16.

In Figure 4 we show the initial shape at the end of the optimization process,
on the left and the corresponding shape at the end of the optimization time
interval together with the zero level line of the desired shape on the right.

Remark 23. In first examples we used an energy for Wu that fulfills Assump-
tions (A1)–(A4) and the method of steepest descent to solve the resulting op-
timization problem. There we only got very slow convergence of the algorithm
and the resulting optimal uI had much broader interfaces. So it seems that it is
recommended to use the non-smoth free energy as we propose here.
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