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SUMMARY

Kernel-based reconstruction methods are applied to obtain highly accurate approximations of
local vector fields from normal components assigned at the edges of a computational mesh. The
theoretical background of kernel-based reconstructions for vector-valued functions is first reviewed,
before the reconstruction method is adapted to the specific requirements of relevant applications in
computational fluid dynamics. To this end, important computational aspects concerning the design of
the reconstruction scheme, such as the selection of suitable stencils, are explained in detail. Extensive
numerical examples and comparisons concerning hydrodynamic models show that the proposed kernel-
based reconstruction improves the accuracy of standard finite element discretizations, including
Raviart-Thomas (RT) elements, quite significantly, while retaining discrete conservation properties
of important physical quantities, such as mass, vorticity or potential enstrophy.
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1. INTRODUCTION

Kernel-based reconstruction methods have recently gained enormous popularity in relevant
applications of computational science and engineering, such as meshfree discretizations for
partial differential equations [11, 12, 13, 14], particle-based numerical simulations [18], machine
learning [35] and manifold learning [21], as well as in many other challenging problems of high-
dimensional approximation.

Radial (reproducing) kernels, also referred to as radial basis functions (RBFs), are powerful
tools for interpolation and approximation of scalar-valued multivariate functions. In fact, radial
kernels provide highly accurate reconstructions from discrete scattered data without imposing
too severe restrictions on the spatial distribution of the sample points. Moreover, customized
preconditioners lead to stable implementations of the reconstruction scheme, whose evaluation
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is fast – due to the kernel’s simple representation. Therefore, radial kernels are especially very
popular in applications of high-dimensional approximation. For a recent account on theoretical
and practical aspects of radial (reproducing) kernels and their applications, we refer to the
textbooks [7, 17, 39].

Suitable choices for radial kernels include polyharmonic splines, Gaussians, and (inverse)
multiquadrics, where the latter two kernels may (for band-limited target functions) lead to
spectral convergence rates of the respective interpolation methods. Moreover, it can be shown
that, in this case, also any derivative of the interpolated target function can be approximated
accurately by the corresponding derivative of the kernel-based interpolant, see [39, Chapter 11]
for theoretical details on error bounds.

Quite recently, different concepts of meshfree methods were developed to solve numerically
partial differential equations by radial kernels, where the utilized approaches include collocation
methods [9, 10], Galerkin methods [38], and methods of backward characteristics [4], to mention
but a few.

But the utility of radial kernels has also been shown for mesh-based methods, such as for
instance in [19, 37] where radial kernels were used to obtain highly accurate finite volume
ENO schemes by local reconstruction from scattered cell average values. Radial kernels were
also applied to semi-Lagrangian discretizations in [3], and similar interpolation approaches
based on kriging were used in [33]. In [31, 32], interpolation by radial kernels is essential to
achieve accurate semi-Lagrangian schemes on Cartesian grids with cut boundary cells. Another
example is the recent adaptive ADER scheme [20], where kernel-based interpolation is used to
construct appropriate error estimators for mesh adaption. Moreover, radial kernels were used
in [41] to develop high order approximation schemes for discretizing differential operators of
the shallow water equations.

In all these applications, scalar-valued radial kernels were used for local interpolation,
which allows one to reconstruct a function at any point in space, given its scalar values in
a neighbourhood of that point. In this paper, we aim at pursuing further this development by
using radial kernels for the interpolation of vector-valued functions. In this case, due to the
reconstruction scheme, the radial kernel is required to be matrix-valued rather than scalar-
valued.

The overall framework of Hermite-Birkhoff interpolation via matrix-valued radial kernels
is covered in outmost generality through the seminal paper [24] of Narcowich and Ward.
Although we believe that the 1994 paper [24] has remarkably great potential for applications in
computational fluid dynamics and related fields, it seems that it has not gained much attention
in applications since then. Indeed, more ad hoc reconstruction approaches were developed
instead, e.g. in [26, 36] for similar problems.

In the present paper, relevant theoretical details from [24] are briefly reviewed first, before
some of the theory is adapted to the particular requirements of specific applications in
computational fluid dynamics which we wish to address here. To this end, we will specialize
the very general method of [24] to design much simpler, yet powerful, reconstruction schemes
by diagonally-scaled radial kernels, in which case the matrix-valued radial kernel is given
by a diagonal matrix. This way we wish to make the results of [24] more accessible. The
primary goal of this paper, however, is to provide accurate vector field reconstructions in
order to improve standard finite element discretizations, such as low order Raviart-Thomas
(RT) elements [27, 29].

In RT finite element methods, discrete vector fields are usually represented by their



KERNEL-BASED VECTOR FIELD RECONSTRUCTION 3

components normal to the edges of the computational mesh. Relevant applications of RT
elements include electromagnetic [15] and hydrodynamical problems, the latter being the
focus of the present paper. Although higher order RT elements were developed, low order
ones lead more easily to numerical methods that exhibit appealing mimetic properties, such
as conservation of mass, vorticity and potential enstrophy. Recent methods for computational
fluid dynamics applications, such as [5, 6, 8, 23, 26], rely on the above mentioned conservation
properties. The kernel-based Gaussian reconstruction method proposed in this paper allows
us to enhance the accuracy of low order RT elements, while retaining the important discrete
conservation properties of the above mentioned schemes.

The outline of this paper is as follows. In Section 2, key features of kernel-based vector
field reconstruction (by using diagonally-scaled radial kernels) are first reviewed, before the
specific vector reconstruction problem is explained in Section 3. Practical aspects concerning
the implementation of the proposed reconstruction method are also addressed, especially the
choice of suitable stencils. In Section 4, the accuracy of the utilized kernel-based Gaussian
reconstruction scheme is assessed in comparison with RT elements of order zero, RT0. This is
done through specific numerical experiments, where accuracy rates are determined numerically
for both methods. Finally, in Section 5, the practical relevance of the proposed kernel-based
vector field reconstruction method is demonstrated by using two different shallow water models,
aiming at atmospheric and coastal modelling, respectively.

2. VECTOR FIELD RECONSTRUCTION FROM HERMITE-BIRKHOFF DATA

This section explains kernel-based reconstruction for vector-valued functions from scattered
Hermite-Birkhoff data. In order to discuss this problem, let u : R

d → R
n denote a vector-

valued function, u = (u1, . . . , un). Moreover, assume that for a finite set Λ = {λ}λ∈Λ of
linearly independent vector-valued linear functionals, samples λ(u) ∈ R are given, where the
action of any λ = (λ1, . . . , λn) ∈ Λ on u is defined as

λ(u) =

n
∑

k=1

λk(uk).

Specific examples for functionals λ, as we utilize them in relevant hydrodynamical applications,
are given in Section 3.

Reconstruction of u from values {λ(u) :λ ∈ Λ} requires finding a suitable recovery function
s : R

d → R
n satisfying

λ(s) = λ(u), for all λ ∈ Λ, (1)

or, s
∣

∣

Λ
= u

∣

∣

Λ
, in short hand notation. The approach taken in this paper uses diagonally-scaled

matrix-valued radial kernel functions.

In order to explain this particular reconstruction scheme, let Φ : R
d → R

n×n be a diagonal
matrix-valued function,

Φ(x) = diag(φ1(x), . . . , φn(x)) =







φ1(x)
. . .

φn(x)






∈ R

n×n for x ∈ R
d (2)
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with scalar-valued diagonal components φj : R
d → R, 1 ≤ j ≤ n. Moreover, we assume that

Φ is even, Φ(x) = Φ(−x) for all x ∈ R
d, i.e., φj(x) = φj(−x) for all 1 ≤ j ≤ n. Suitable

entries for the diagonal components φj of Φ in (2) are radial kernel functions, φ(r) ≡ φj(r),

r = ‖x‖, where popular choices include Gaussians, φ(r) = e−r2

, and inverse multiquadrics,
φ(r) = 1/

√
1 + r2.

Now according to the proposed reconstruction scheme, the interpolant s in (1) is has the
form

s = τ ∗ Φ with τ =
∑

µ∈Λ

cµµ, (3)

where the convolution product
τ ∗ Φ : R

d → R
n

between the diagonal matrix Φ and the functional τ = (τ1, . . . , τn) is defined componentwise
as

[τ ∗ Φ]j(x) = τjφj(x − y) for 1 ≤ j ≤ n.

Therefore, any component sj , 1 ≤ j ≤ n, of the reconstruction s = (s1, . . . , sn) in (3) can
be expressed as

sj(x) = [τ ∗ Φ]j(x) =
∑

µ∈Λ

cµ[µ ∗ Φ]j(x) =
∑

µ∈Λ

cµµy
j φj(x − y), (4)

where µy
j denotes action of the functional µj on variable y ∈ R

d.
Now solving the reconstruction problem (1) under the assumption s = τ ∗ Φ for s in (3)

amounts to solving the N -by-N linear equation system

Ac = u
∣

∣

Λ
(5)

with unknown c = (cµ)µ∈Λ ∈ R
N , where

A = (λ(µ ∗ Φ))µ,λ∈Λ
∈ R

N×N , (6)

so that any component aµ,λ = λ(µ ∗ Φ) of A has the form

aµ,λ =
n

∑

j=1

λx
j µy

j φj(x − y) for µ, λ ∈ Λ.

Note that the linear system (5) has, for any input data, a unique solution, provided that Φ
is positive definite, which in other words means that the matrix A in (6) is for any combination
of admissible input data – functionals Λ and function values u

∣

∣

Λ
– positive definite.

Definition 1. Let Φ : R
d → R

n×n be an even matrix-valued function. We say that Φ is
positive definite, iff the quadratic form

∑

µ,λ∈Λ

cµcλλ(µ ∗ Φ) (7)

is positive for any set Λ = {λ}λ∈Λ of linearly independent functionals and any non-zero vector
c = (cµ) ∈ R

N \ {0}.
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It is straightforward to show that any diagonal matrix-valued function Φ is positive definite,
if and only if all its diagonal components φj , 1 ≤ j ≤ n, are positive definite. We prove this
simple but quite useful characterization later in this section through Lemma 1. To this end, let
us first make some further preparations. Note that the Definition 1 for positive definite vector-
valued functions covers in particular the special case of scalar-valued functions, where n = 1.
Therefore, it makes sense to require φj ∈ PD for the individual scalar-valued components of
Φ in (2).

But scalar-valued positive definite functions are well-understood. Moreover, the class
of radial positive definite functions can be characterized through completely monotone
functions [22]. This particular characterization – due to I.J. Schoenberg in 1938 – gives a useful
necessary and sufficient criterion for the construction of radial positive definite kernel functions.
For details, we refer to [22]. Important examples for scalar-valued radial positive definite

functions, radial kernels, φ ∈ PD, are Gaussians, φ(r) = e−r2

, and inverse multiquadrics,
φ(r) = 1/

√
1 + r2, as already mentioned at the outset of this section.

We further remark that the class of positive definite functions is scale-invariant, so that in
particular both φ(r) = e−αr2 ∈ PD and φ(r) = 1/

√
α2 + r2 ∈ PD are positive definite for any

scalar α > 0. In fact, this observation is of crucial importance in the numerical experiments of
Sections 4 and 5.

Now it is straightforward to show that the following observation is true.

Lemma 1. Let Φ = diag(φ1, . . . , φn) be an even diagonal matrix-valued function with scalar-
valued diagonal components φj : R

d → R. Then, Φ is positive definite, Φ ∈ PD, iff all its
scalar-valued diagonal components φj, 1 ≤ j ≤ n, are positive definite, i.e.,

φj ∈ PD for all 1 ≤ j ≤ n ⇐⇒ Φ ∈ PD.

Proof: Regard the quadratic form

∑

µ,λ∈Λ

cµcλλ(µ ∗ Φ) =
∑

µ,λ∈Λ

cµcλ

n
∑

j=1

λx
j (µy

j φj(x − y))

=

n
∑

j=1





∑

µ,λ∈Λ

cµcλλx
j (µy

j φj(x − y)



 . (8)

Now, according to [16], for any φ = φj ∈ PD the quadratic form
∑

µ,λ∈Λ

cµcλλx
j (µy

j φ(x − y)) =
∑

µ,λ∈Λ

cµcλλj(µj ∗ φ)

is positive for any non-vanishing c = (cµ)µ∈Λ ∈ R
N \ {0}.

But this, in combination with the representation (8), immediately implies that the quadratic
form (7) is positive for all non-vanishing c ∈ R

N \ {0}, in which case Φ is positive definite,
Φ ∈ PD.

As for the converse, it is easy to see from (8) that Φ ∈ PD implies φj ∈ PD, for any
1 ≤ j ≤ n, which completes our proof.

Let us finally remark that the reconstruction scheme of this section can be generalized from
positive definite Φ ∈ PD to conditionally positive definite Φ, by following along the lines of
Narcowich and Ward [24]. This would lead to a larger family of potentially available φj , albeit



6 L. BONAVENTURA, A. ISKE, E. MIGLIO

with a more complicated reconstruction scheme. We omit further technical aspects, since these
lengthy details are clearly beyond the aims and scope of this paper.

We rather prefer to work with positive definite radial kernels Φ ∈ PD. Let us conclude the
discussion of this section as follows.

Theorem 1. Let Φ = diag(φ1, . . . , φn) be positive definite, Φ ∈ PD, i.e. φj ∈ PD for all
1 ≤ j ≤ n. Then the reconstruction problem (1) has a unique solution s of the form

s(x) =
∑

µ∈Λ

cµ(µ ∗ Φ),

where the coefficients c = (cµ)µ∈Λ of s can be computed by solving the linear system Ac = u
∣

∣

Λ
,

whose coefficient matrix A in (6) is positive definite. Any component sj of s = (s1, . . . , sn)
can be expressed as

sj(x) =
∑

µ∈Λ

cµµy
j φj(x − y) for 1 ≤ j ≤ n.

Concrete and relevant examples for s, Φ and Λ are given in the following two sections.

3. LOCAL VECTOR FIELD RECONSTRUCTION IN TWO DIMENSIONS

We now formulate the specific vector reconstruction problem that we wish to address in
hydrodynamical applications, some of which are discussed in Section 5. In this particular case
we work with planar vector fields u : R

2 → R
2, u = [u1, u2], so that d = 2 and n = 2. Moreover,

we assume we are given a (possibly scattered) set X = {x1, . . . ,xN} ⊂ R
2 of N pairwise distinct

planar points, where each xi ∈ X corresponds to a unit vector nT
i = [n1

i , n
2
i ] ∈ R

2, satisfying
‖ni‖ = 1, for 1 ≤ i ≤ N .

Now we wish to reconstruct a smooth vector field u : R
2 → R

2, from given scalar samples
ui = nT

i · u(xi) ∈ R, for 1 ≤ i ≤ N . According to the reconstruction scheme proposed in the
previous section, we are concerned with solving

λi(u) = λi(s), for 1 ≤ i ≤ N,

where λi = nT
i · δxi

, and where δxi
denotes the Dirac point evaluation functional, defined as

δxi
(u) = u(xi) ∈ R

2, for 1 ≤ i ≤ N .

Recall that the recovery function s = (s1, s2) : R
2 → R

2 is required to have the form (3),
and whose two components can be expressed as in (4). Moreover, we assume

Φ = diag(φ1, φ2) =

[

φ1 0
0 φ2

]

.

Hence, λi ∗ Φ, 1 ≤ i ≤ N , has the form

(λi ∗ Φ)(x) =

[

φ1(x − xi)n
1
i

φ2(x − xi)n
2
i

]

, for 1 ≤ i ≤ N, (9)
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and therefore, the reconstruction s in (3) can be expressed as

s(x) =
N

∑

i=1

ci

[

φ1(x − xi)n
1
i

φ2(x − xi)n
2
i

]

.

Moreover, the unknown coefficients c = (c1, . . . , cN )T ∈ R
N of s are computed by solving the

linear system Ac = u
∣

∣

Λ
in (5), where

u
∣

∣

Λ
= (λ1(u), . . . , λN (u))T = (nT

1 u(x1), . . . ,n
T
Nu(xN ))T ∈ R

N ,

and where the entries in the positive definite matrix A = (aij)1≤i,j≤N ∈ R
N×N are given by

aij = λj(λi ∗ Φ) = n1

jn
1

i φ1(xj − xi) + n2

jn
2

i φ2(xj − xi), for 1 ≤ i, j ≤ N.

4. COMPARISONS BETWEEN GAUSSIAN KERNELS AND RT ELEMENTS

In this section, we present selected numerical experiments in order to assess the effective
accuracy order of kernel-based reconstruction by using the positive definite Gaussians, where
we let φ1(r) ≡ φ2(r) ≡ φ(r) = e−r2/4 ∈ PD. According to available theoretical bounds [39,
Chapter 11], spectral convergence rates can be proven for a very small class of smooth functions.
But for hydrodynamic models from realistic application scenarios (in particular for the shallow
water models in Section 5) we rely on less smoothness, so that the theoretical error bounds do
no longer apply.

Moreover, we remark that the spectral condition number κ(A) of the arising interpolation
matrix A is, as a function of the minimal distance between different sample points, of
exponential growth. This is due to the uncertainty principle of the reconstruction method,
which says that none of the commonly used radial kernel functions manages to combine good
approximation behaviour with a numerically stable reconstruction process. This dilemma,
discovered by Schaback [34], requires carefully selecting available method parameters in
order to obtain a reasonable trade-off between these two conflicting requirements, i.e., high
approximation order and good numerical stability.

Our numerical results concerning Gaussian reconstruction, as reflected by Tables I and II, are
involving four different stencils of sizes N = 3, 9, 15, 21. The four stencils are shown in Figure 1.
Note that for any stencil in Figure 1, the interpolation points are lying on a hexagonal grid.
This is in order to reasonably balance the methods’ resulting accuracy, on the one hand, and
their numerical stability, on the other hand. For further motivation concerning this particular
point sampling we refer to our previous findings in [17, Subsection 3.9].

To evaluate the methods’ approximation behaviour, we consider the resulting maximal error
ǫ = ‖s − u‖∞ among the barycenters of the triangles in the stencils’ corresponding Delaunay
triangulation, see Figure 1. Similar to the assessment in our previous paper [31] concerning
kernel-based reconstruction for the scalar case, we consider using the vector field

[

u

v

]

=

[

cos(k π (x − 1

4
)) sin(k π (y − 1

4
))

sin(k π (x − 1

4
)) cos(k π (y − 1

4
))

]

,

where increasingly denser data sets are used. The data sets were generated by scaling the
interpolation points X, so that qX ≡ h = 2−i, i = 0, 1, 2, 3, 4, for the separation distance

qX = min
x,y∈X

x6=y

‖x − y‖
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(a) N = 3 (b) N = 9 (c) N = 15 (d) N = 21

Figure 1. Stencils of different sizes N for accuracy tests.

of the interpolation points in stencil X.
The numerical results in Table I show the approximation error ǫ(RT0) obtained when using

Raviart-Thomas elements of order zero, RT0, in comparison with the approximation error
ǫ(RBF) of Gaussian reconstruction. Table I also shows the corresponding spectral condition
number κ(A) of the Gaussian interpolation matrix A. For the purpose of further comparison,
corresponding approximation errors obtained with a RT1 reconstruction are also shown, along
with estimates for the resulting convergence rates. The test were performed for a decreasing
sequence of separation distances h = 2−i, i = 0, 1, 2, 3, 4, just before the linear system of
Gaussian reconstruction becomes numerically unstable, due to too large spectral condition
numbers, cf. the last column of Table I.

Table I. Comparison between RT0, RT1 and Gaussian reconstruction for the 15-point stencil in
Figure 1 (c). The relative approximation error ǫ, approximate convergence rate, and spectral condition

number κ(A) of the corresponding Gaussian interpolation matrix A are shown, respectively.

h ǫ(RT0) rate ǫ(RT1) rate ǫ(RBF) rate κ(A)

2−0 7.177 · 10−1 - 7.0920 · 10−1 - 7.248 · 10−1 - 3.625 · 104

2−1 3.070 · 10−1 1.225 1.6431 · 10−1 2.109 1.151 · 10−1 2.654 2.511 · 106

2−2 1.349 · 10−1 1.187 4.4320 · 10−2 1.890 1.451 · 10−2 2.988 1.650 · 108

2−3 6.238 · 10−2 1.112 1.1277 · 10−2 1.974 1.773 · 10−3 3.033 1.064 · 1010

2−4 2.991 · 10−2 1.060 2.6904 · 10−3 2.067 2.178 · 10−4 3.025 6.833 · 1011

For the numerical results in Table I, the 15-point stencil of Figure 1 (c) was utilized.
As expected, we obtain linear convergence for Raviart-Thomas reconstruction of order zero,
whereas Gaussian reconstruction yields third order accuracy, see Table I. Moreover, despite
the small separation distance of up to h = 2−4, Gaussian reconstruction is very robust. But
for smaller values of h, the corresponding linear system is ill-conditioned, so that it does not
make sense to further evaluate the method’s accuracy.

In a second test case, we compare the approximation quality of Gaussian reconstruction for
four different stencils of sizes N = 3, 9, 15, 21, displayed in Figure 1. Our numerical results are
reflected by Table II (for N = 3, 9, 21) and Table I (for N = 15).
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Table II. Gaussian reconstruction for stencils of different sizes N , see Figure 1.

h ǫ (N = 3) rate ǫ (N = 9) rate ǫ (N = 21) rate

2−0 7.177 · 10−1 - 7.156 · 10−1 - 7.180 · 10−1 -
2−1 3.070 · 10−1 1.225 1.251 · 10−1 2.516 8.767 · 10−2 3.034
2−2 1.349 · 10−1 1.187 1.769 · 10−2 2.823 1.181 · 10−2 2.892
2−3 6.238 · 10−2 1.112 2.594 · 10−3 2.770 1.819 · 10−3 2.698
2−4 2.991 · 10−2 1.060 4.270 · 10−4 2.603 9.958 · 10−5 4.192

Not too surprisingly, the accuracy order is increasing with the size N of the utilized stencils,
see Table I and II. Indeed, the stencil with N = 21 interpolation points yields the best
accuracy rate among the four stencils, namely slightly above order four, whereas the stencil
with N = 3 points yields first order accuracy only, which is comparable to the convergence
rate obtained from Raviart-Thomas reconstruction of order zero, RT0. In other words, for any
stencil with more than three interpolation points, Gaussian reconstruction is superior to RT0

reconstruction. Further supporting numerical results were recorded in [2].

5. APPLICATION TO FLUID DYNAMICS PROBLEMS

In this section, we discuss applications of the proposed kernel-based Gaussian reconstruction
method to computational fluid dynamics models. More specifically, we will refer to models
for the shallow water equations, using discretization approaches in which the velocity field
is represented by its normal components with respect to the mesh edges. The shallow water
equations model the two dimensional flow of a thin fluid layer in domains whose characteristic
length in the horizontal is much larger than the fluid depth. The shallow water equations result
from the Navier-Stokes equations when the hydrostatic assumption holds and only barotropic
and adiabatic motions are considered. Furthermore, a vertical average is performed, so that
only mean values for the velocities in the horizontal directions are considered, see e.g. [25].

The shallow water equations can be written as

∂h

∂t
+ ∇ ·

(

Hv
)

= 0, (10)

∂v

∂t
+ (v · ∇)v = −fk × v − g∇h. (11)

Here, v denotes the two-dimensional velocity vector, k is the radial unit vector perpendicular to
the plane on which v is defined (or to the local tangent plane, in case of applications in spherical
geometry), h is the height of the fluid layer above a reference level, H = h−hs is the thickness of
the fluid layer, hs is the orographic or bathymetric profile, g is the gravitational constant, and
f is the Coriolis parameter. Equations (10)-(11) are the starting point for Eulerian-Lagrangian
discretizations.
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Another widely used formulation for applications to large scale atmospheric dynamics is the
so called vector invariant form, see e.g. [40], which can be written as

∂v

∂t
= −(ζ + f)k × v −∇

(

gh + K
)

. (12)

Here, ζ is the component of relative vorticity in the direction of k and K = ‖v‖2/2 denotes
the kinetic energy. This formulation is usually the starting point for the derivation of energy,
potential enstrophy and potential vorticity preserving discretizations, see e.g. [1, 30].

Spatial discretizations with staggered arrangements of the discrete variables are popular for
the shallow water equations, since they allow for better representation of the gravity wave
propagation, see e.g. [28]. On unstructured grid, an analog of a staggered discretization is
given by the zero order Raviart-Thomas elements RT0, see e.g. [27]. Although high order RT
elements are also available, the low order ones, RT0 elements, lead more easily to numerical
methods that exhibit important discrete conservation properties, such as discrete mass or
vorticity preservation. These properties are important for a number of applications and
various methods which take advantage of them are discussed in the two following subsections.
Our main point is that the accuracy of these models has been limited so far by the first
order convergence of the RT0 elements. As it will be shown in the following, the proposed
kernel-based Gaussian reconstruction can effectively improve these methods, by achieving a
more accurate discretization of the nonlinear momentum advection terms, either in Eulerian
or in semi-Lagrangian formulations. Although in general this is not sufficient to raise the
convergence order of the overall methods, models employing kernel-based reconstructions
display significantly smaller errors and have in general less numerical dissipation, making
their use attractive for a number of applications.

5.1. EULERIAN SHALLOW WATER MODELS

Eulerian discretizations of equations (10)-(12) have been proposed in [5, 6], which preserve
discrete approximations of mass, vorticity and potential enstrophy. These properties are
important for numerical models of general atmospheric circulation, especially for applications
to climate modelling. The two time level, semi-implicit scheme in these papers used RT
reconstruction to compute the nonlinear terms in the discretization of (12). Here, we will
compare results obtained with a three-time level, semi-implicit time discretization, coupled
to the potential enstrophy preserving spatial discretization of [6], using either the Raviart-
Thomas algorithm or a kernel-based reconstruction of the velocity field necessary for the
solution of equation (12). For these tests, we employed Gaussian reconstruction by using the

positive definite Gaussian kernel φ(r) = e−r2

. Moreover, a 9-point stencil was employed,
see Figure 1 (b), using the normal components to the edges of the triangle on which the
interpolation is being carried out and to the edges of its nearest neighbours (i.e., of the triangles
which have common edges with it). We remark that in this case the velocity components are
lying on planes tangent to the sphere at the edge points where the velocity component is
defined. In order to apply Gaussian reconstruction, these vector components are interpreted
as vectors in three dimensional space and the procedure described in Section 3 is extended in
the natural way to the three dimensional case.

We consider one stationary and two non-stationary test cases for the shallow water equations
belonging to the set of standard benchmark problems introduced in [40]. First, we study how
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the algorithm performs when applied to test case 3 of this test suite, which consists of a
steady-state, zonal geostrophic flow with a narrow jet at midlatitudes. For this test case,
an analytic solution is available, so that errors can be computed by applying the numerical
method at different resolutions. The values of the relative error in various norms, as computed
at day 2 with different spatial resolutions and with time step ∆t = 1800 s, is displayed in
Tables III and IV for both Raviart Thomas elements and Gaussian reconstruction, respectively.
The convergence rates remain essentially the same, due to the fact that the second order
discretization of the geopotential gradient is the same in both tests. However, it can be observed
that the errors (both in the height and velocity fields) have decreased by an amount that ranges
between 30 % and 50 %.

Table III. Relative errors for nonlinear terms in shallow water test case 3 obtained by using RT0

reconstruction.

Level ℓ2-error, h ℓ2-error, v ℓ∞-error, h ℓ∞-error, v
3 7.42e-3 0.25 2.53e-2 0.33
4 1.94e-3 5.9e-2 8.1e-3 9.1e-2
5 6.05e-4 1.27e-2 2.9e-3 1.87e-2
6 2.54e-4 3.19e-3 1.24e-3 4.17e-3

Table IV. Relative errors for nonlinear terms in shallow water test case 3 obtained by Gaussian
reconstruction on a 9-point stencil, see Figure 1 (b).

Level ℓ2-error, h ℓ2-error, v ℓ∞-error, h ℓ∞-error, v
3 7.27e-3 0.16 2.08e-2 0.17
4 1.52e-3 3.38e-2 6.74e-3 5.77e-2
5 4.05e-4 7.7e-3 1.7e-3 1.22e-2
6 1.45e-4 2.11e-3 4.8e-4 2.89e-3

We have then considered the non-stationary test case 5 of [40], for which the initial datum
consists of a zonal flow impinging on an isolated mountain of conical shape. The imbalance in
the initial datum leads to the development of a wave propagating all around the globe. This
test is relevant to understand the response of the numerical model to orographic forcing. Plots
of the meridional velocity component at simulation day 5 are shown in Figure 2, as computed
using a timestep ∆t = 900 s on an icosahedral grid at spatial resolution of approximately
240 km. We observe that the meridional velocity field obtained by using RT0 finite elements is
much less regular than that obtained by Gaussian reconstruction, which is consistent with our
numerical results obtained in reference simulations at higher resolution with spectral models.

Finally, we have considered the non-stationary test case 6 of [40], for which the initial datum
consists of a Rossby-Haurwitz wave of wavenumber 4. This type of wave is an analytic solution
for the barotropic vorticity equation, which can also be used to test shallow water models on
a time scale of up to 10-15 days. The relative vorticity field is shown in Figure 3, as computed
at day 5 with a timestep of ∆t = 900 s on an icosahedral grid with a spatial resolution of
approximately 240 km. It can be observed that, when using RT0 reconstruction, the structure
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(a) Reconstruction by RT0 (b) Gaussian reconstruction

Figure 2. Meridional velocity in shallow water test case 5, obtained by (a) RT0 reconstruction (b)
Gaussian reconstruction on a 9-point stencil. The contour line spacing is 6 ms−1.

of some vorticity extrema is disrupted, while spurious maxima and minima appear close to
the poles. This is in contrast to the more regular field obtained by Gaussian reconstruction,
which is in better agreement with high resolution reference simulations obtained with spectral
models. Furthermore, the relative change in total energy for both model runs is displayed in
Figure 3. It can be observed that total energy loss is reduced by approximately 30 % when
using Gaussian reconstruction, thus improving the energy conservation properties of the model,
which conserves potential enstrophy but not energy, as discussed in [6]. We remark that, for
Eulerian models, the additional computational cost required by Gaussian reconstruction can
be significantly reduced. Indeed, it is possible to compute for each grid cell a set of time
independent coefficients that yield the velocity vector at the cell center as linear combination
of the velocity components at the points included in the RBF stencil. For the model runs
described above, it was observed that Gaussian reconstruction increases the required CPU
time by approximately 20 % in comparison to the simpler scheme RT0.

5.2. EULERIAN-LAGRANGIAN SHALLOW WATER MODELS

Numerical methods for the shallow water equations using formulation (10)-(11) have been
proposed in [8, 23], which couple a mass conservative, semi-implicit discretization on
unstructured Delaunay meshes to an Eulerian-Lagrangian treatment of momentum advection.
The resulting methods are highly efficient due to their rather weak stability restrictions,
while mass conservation allows for their practical (and successful) application to a number
of pollutant and sediment transport problems. A key step of the Eulerian-Lagrangian method
is the interpolation at the foot of characteristic lines. In the papers quoted above, this is
performed by RT0 elements or by low order interpolation procedures based on area weighted
averaging. These interpolators have at most first order convergence rate and can introduce
large amounts of numerical diffusion, which limits their applicability especially in long term
simulations.
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(a) Reconstruction by RT0
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(b) Gaussian reconstruction

Figure 3. Relative vorticity in shallow water test case 6, obtained by (a) RT0 reconstruction (b)
Gaussian reconstruction on a 9-point stencil. The contour line spacing is 10−5 ms−1.
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Figure 4. Relative decay in total energy in shallow water test case 6, obtained by RT0 reconstruction
(dotted line) and by Gaussian reconstruction on a 9-point stencil (solid line).

Firstly, the test proposed in [41] has been carried out, in which a 800 m long and 800 m wide
basin was considered. The domain was discretized by an unstructured triangular mesh with
26,812 elements and 13,868 nodes, corresponding to a horizontal resolution of approximately
2 km. The basin depth was taken to be 20 m. At the inflow boundary, a Dirichlet condition was
imposed on the free surface, given by a sinusoidal wave with an amplitude of 1 m and a period
of approximately 12 h and the initial velocity field was assumed to be zero. The resulting
wavefront, computed after approximately 30 h by the Eulerian-Lagrangian method of [23],
using a timestep ∆t = 6 s and either RT0 elements or Gaussian reconstruction at the foot of the
characteristic, is displayed in Figure 5. It can be observed that for Gaussian reconstruction the
wavefront is much sharper. The maximum in the free surface elevation (which would be equal
to the maximum boundary value in the linear regime) is better captured by approximately
10 %. This can lead to significant improvements in a number of relevant applications, such as
flooding prediction in the Venice Lagoon, which is at end of a closed sea basin of approximately
the same magnitude as the simulated channel.

Furthermore, another shallow water test involving a closed rectangular basin, 150 m long
and 15 m wide, was performed, whose discretization is given by an unstructured triangular
mesh with 3,646 elements and 1,984 nodes. For the free surface, an unbalanced initial datum
was assumed, given by η(x) = h0 cos(xπ/150). The amplitude of the disturbance was taken
to be equal to h0 = 0.1 and the initial velocity field was assumed to be zero. The resulting
free oscillations have been simulated by the same method described above, using either RT0

elements or Gaussian reconstruction at the foot of the characteristic. The free oscillations of
the fluid were simulated for a total of 100 s with a timestep ∆t = 0.1 s. The time evolution
of kinetic energy is shown in Figure 6, while the height field values computed throughout
the simulation in an element close to one of the boundaries are shown in Figure 7. It can be
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Figure 5. Free surface elevation in long channel test, obtained from RT0 reconstruction (dotted line)
and Gaussian reconstruction on a 9-point stencil (solid line).

observed that the energy dissipation caused by the interpolation of the Eulerian-Lagrangian
method is reduced by 20 % when using Gaussian reconstruction, whereas the maxima and
minima in the height field are improved by approximately 10 %.

In other tests, even larger improvements were observed. For example, a square domain
of width 20 m was considered, which was discretized by an unstructured triangular mesh
with 3,984 elements and 2,073 nodes. A constant basin depth of 2 m was assumed. At initial
time, still water was assumed and the free surface profile was taken to be a Gaussian hill
centered at the center of the domain, with amplitude 0.1 m and standard deviation 2 m. In
absence of any explicit dissipative term, the total energy of the system should be conserved.
The free oscillations of the fluid were simulated for a total of 6 s with a timestep ∆t = 0.01 s.
The time evolution of total energy is shown in Figure 8. It can be observed that the energy
dissipation caused by the interpolation of the Eulerian-Lagrangian method is reduced by 40 %
when using Gaussian reconstruction.

We remark that in the case of Eulerian-Lagrangian models the extra computational cost
due to the use of Gaussian reconstruction is higher than in the Eulerian case. This is because
the coefficients which yield the velocity vector at the cell center as linear combination of
the velocity components have to be recomputed at each time step for each of the trajectory
departure points.
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Figure 6. Kinetic energy for free oscillations test with Eulerian-Lagrangian model, obtained by RT0

reconstruction (dotted line) and Gaussian reconstruction on a 9-point stencil (solid line).
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Figure 7. Height field time series at boundary element for free oscillations test with Eulerian-
Lagrangian model, obtained by RT0 reconstruction (dotted line) and Gaussian reconstruction on

a 9-point stencil (solid line).
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obtained by RT0 (dotted line) and Gaussian reconstruction on a 9-point stencil (solid line).

6. CONCLUSION
The utility of diagonally-scaled radial kernel functions for accurate reconstruction of vector
fields in fluid dynamics problems has been demonstrated. The theory of the utilized
reconstruction method has been reviewed and adapted to applications in computational fluid
dynamics. Important computational aspects concerning the implementation of the kernel-
based Gaussian reconstruction method were discussed. A number of supporting numerical
tests have shown that Gaussian reconstruction improves the accuracy of low order Raviart-
Thomas elements RT0, while retaining important discrete conservation properties, unlike high
order RT elements.
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