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Abstract

In this work we develop an adaptive algorithm for solving elliptic
optimal control problems with simultaneously appearing state and con-
trol constraints. The algorithm combines a Moreau-Yosida technique
for handling state constraints with a semi-smooth Newton method for
solving the optimality systems of the regularized sub-problems. The
state and co-state variables are discretized using continuous piecewise
linear finite elements while a variational discretization concept is ap-
plied for the control. To perform the adaptive mesh refinements cycle
we derive local error estimators which extend the goal-oriented error
approach to our setting. The performance of the overall adaptive solver
is assessed by numerical examples.
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1 Introduction

Optimal control problems with state constraints have been the topic of an
increasing number of theoretical and numerical studies. The challenging
character of these problems roots in the fact that state constraints feature
low regular Lagrange multipliers [4, 7]. This low regularity does not al-
low a pointwise interpretation which complicates not only the analysis of
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these problems but also their numerical treatment as well. In addition, in
the presence of control constraints, the solution may exhibit subsets of the
underlying domain where both control and state are active simultaneously.
In this case, the uniqueness of Lagrange multipliers can not be guaranteed
[25] which yields to undetermined optimality systems. To overcome these
difficulties several techniques in the literature have been proposed. Very
popular are relaxation concepts for state constraints such as Lavrentiev,
interior point and Moreau-Yosida regularization. The former one is inves-
tigated by Tröltzsch in [26] and together with Meyer and Rösch in [20].
Barrier methods in function space ([29]) applied to state constrained op-
timal control problems are considered by Schiela in [23]. Relaxation by
Moreau-Yosida regularization is matter of subject for the fully discrete case
in [3, 5] as well as in function space in the work [15] by Hintermüller and
Kunisch. Recently in [16] a generalized Moreau-Yosida-based framework
also applies for constraints on the gradient of the state. However, as far as
we are concerned with adaptive approaches, experiences with this type of
problems stay limited. Residual-type a posteriori error estimators for mixed
control-state constrained problems are derived in [18]. On the other hand
the dual weighted residual method proposed in [1] is applied to derive goal-
oriented adaptive meshes for better resolving a certain quantity of interest.
This technique is extended for pde-constrained optimization to the presence
of control constraints in [11, 27] as well as to state constraints in [2, 10, 12].
Within the framework of goal-oriented adaptive function space algorithms a
Lavrentiev regularization approach is considered in [13, 18] while an adap-
tive interior point method is proposed in the works [24, 30].

In this work we design an adaptive finite element algorithm to solve el-
liptic optimal control problems with control and pointwise state constraints.
Following [16], our algorithm combines a Moreau-Yosida regularization ap-
proach with a semi-smooth Newton solver [14]. We apply the variational
discretization concept [8, 17] to the state equation of the regularized op-
timal control problem. Moreover, for a fixed regularization parameter, we
develop a goal-oriented a posteriori error estimate to assess the performance
of the variational discretization in terms of the objective functional. We
therefore derive a regularized extension of the error representation obtained
in [10] to the control and state constrained case. In particular no residual
associated to the first order optimality condition with respect to the control
appears in our approach. We mention here that we are not interested in
the error involved by the regularization parameter. Our aim is rather per-
forming a first attempt to understand the behaviour of a goal-oriented based
error estimate in connection with a Moreau-Yosida regularization. An over-
all error reduction which ties the regularization parameter with the current
mesh size is subject of an ongoing research work.

The rest of this paper is organized as follows: In the next section we
present the optimal control problem under consideration and recall its first
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order necessary optimality system. In Section 3 we introduce the regularized
version of the problem and state the main convergence theorem. In Section 4
we first apply variational discretization to the regularized sub-problems and
propose a semi-smooth Newton solver for the resulting discrete systems. In
Section 5 we derive the error representation in terms of the objective func-
tional and we adress the related implementation issues. Finally, numerical
examples are reported in Section 6.

2 Optimal control problem

Let Ω be a bounded polygonal and convex domain in Rd (d = 2, 3) with
boundary ∂Ω. We consider the general elliptic partial differential operator
A : H1(Ω) −→ H1(Ω)∗ defined by

Ay :=
d∑

i,j=1

∂xj (aijyxi) +
d∑
i=1

biyxi + cy

along with its formal adjoint operator A∗

A∗y =
d∑
i=1

∂xi

( d∑
j=1

aijyxj + biy
)

+ cy.

We subsequently assume the coefficients aij , bi and c (i, j = 1, . . . , d) to be
sufficiently smooth functions on Ω̄. Moreover we suppose that there exists
c0 > 0 such that

∑d
i,j=1 aij(x)ξiξj ≥ c0 for almost all x in Ω and all ξ

in Rd. Corresponding to the operator A we associate the bilinear form
a(·, ·) : H1(Ω)×H1(Ω) −→ R with

a(y, v) :=
∫

Ω

( d∑
i,j=1

aijyxivxj +
d∑
i=1

biyxiv + cyv
)
.

Suppose that the form a is coercive on H1(Ω), i.e. there exists c1 > 0 such
that a(v, v) ≥ c1‖v‖2H1(Ω) for all v in H1(Ω). This follows for instance when

inf essx∈Ω

(
c− 1

2

d∑
i=1

∂xibi

)
> 0 and inf essx∈∂Ω

( d∑
i=1

biνi

)
≥ 0

holds. Here ν denotes the unit outward normal at ∂Ω.

For given u ∈ L2(Ω) and fixed f ∈ L2(Ω) the homogeneous Neumann
boundary value problem

Ay = u+ f in Ω
∂νAy :=

∑d
i,j=1 aijyxiνj = 0 on ∂Ω

(2.1)
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has a unique solution y =: G(u) ∈ H2(Ω). Moreover, there exists a constant
C depending on f and the domain Ω such that

‖G(u)‖H2(Ω) ≤ C‖u‖L2(Ω) + C.

We notice that (2.1) should be interpreted in the variational form

a(y, v) = (u+ f, v) ∀v ∈ H1(Ω), (2.2)

where ( ·, · ) stands for the standard inner product in L2(Ω) or L2(Ω)d re-
spectively.

Now for given ud, yd ∈ L2(Ω), α > 0 and ua, ub, ya and yb ∈ R with
ua < ub and ya < yb we focus on the optimal control problem

J(y, u) := 1
2‖y − yd‖

2
L2(Ω) + α

2 ‖u− ud‖
2
L2(Ω) → min

s.t. y = G(u), u ∈ Uad, and ya ≤ y ≤ yb a.e. in Ω,
(2.3)

where Uad is the set of admissible controls given by

Uad =
{
u ∈ L2(Ω) : ua ≤ u ≤ ub in Ω

}
.

Under the Slater condition

∃us ∈ Uad : ya < G(us) < yb in Ω, (2.4)

Theorem 2.1 holds true (see for instance [6]). Condition (2.4) holds for
instance if there exists some β ∈ (0, 1) such that ua ≤ ((1−β)ya+βyb)c(x)−
f(x) ≤ ub a.e. in Ω. Below the space of Radon measuresM(Ω̄) is identified
to the dual space of C0(Ω̄) such that

〈µ, y〉 := 〈µ, y〉M(Ω̄),C0(Ω̄) :=
∫

Ω̄
y dµ ∀µ ∈M(Ω̄) ∀y ∈ C0(Ω̄).

and

∀µ ∈M(Ω̄) : µ ≥ 0⇐⇒ 〈µ, y〉 ≥ 0 ∀y ∈ C0(Ω̄) with y ≥ 0.

Theorem 2.1. The optimal control problem (2.3) has a unique solution
(y∗, u∗) ∈ H2(Ω) × Uad. Moreover there exist p∗ ∈ W 1,s(Ω) for all 1 ≤ s <
d/(d − 1), λ∗a, λ∗b ∈ L2(Ω) and µ∗a, µ∗b ∈ M(Ω̄) satisfying the optimality
system

y∗ = G(u∗),
(p∗,Av) = (y∗ − yd, v) + 〈µ∗a + µ∗b , v〉 ∀v ∈W 1,1− 1

s (Ω) with ∂νAv|∂Ω = 0,
α(u∗ − ud) + p∗ + λ∗a + λ∗b = 0,

λ∗a ≤ 0, u∗ ≥ ua, (λ∗a, u
∗ − ua) = 0,

λ∗b ≥ 0, u∗ ≤ ub, (λ∗b , u
∗ − ub) = 0,

µ∗a ≤ 0, y∗ ≥ ya, 〈µ∗a, y∗ − ya〉 = 0,
µ∗b ≥ 0, y∗ ≤ yb, 〈µ∗b , y∗ − yb〉 = 0.

(2.5)
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3 Moreau-Yosida regularization

From the previous theorem we can see that the state constraints in (2.3)
features low regularity Lagrange multipliers. The adjoint equation in the
optimality system (2.5) is posed in a very weak sense and µ∗a, µ

∗
b are lying

only on the measure space M(Ω̄). This low regularity does not allow a
pointwise interpretation of the multipliers which complicates its analysis as
well as its numerical treatment. In this section, we overcome this difficulty
by applying a Moreau-Yosida regularization technique. In our case this tech-
nique penalizes the state constraints ya ≤ y ≤ yb by modifying the objective
functional J. The corresponding regularized optimal control problem reads

Jγ(y, u) := J(y, u) + γ
2‖min(0, y − ya)‖2 + γ

2‖max(0, y − yb)‖2 → min

s.t. y = G(u) and u ∈ Uad,
(3.1)

where γ > 0 denotes a regularization parameter tending to +∞ later on.
The max- and min-expressions in the regularized objective functional Jγ

arise from regularizing the indicator function corresponding to the set of
admissible states.
Notice that (3.1) is a pure control constrained optimal control problem that
has a unique solution (yγ , uγ) ∈ H2(Ω) × Uad. Furthermore, we can prove
the existence of Lagrange multipliers

(
pγ , λγa, λ

γ
b

)
∈ L2(Ω)× L2(Ω)× L2(Ω)

using standard theory of mathematical programming in Banach spaces [31]
such that

yγ = G(uγ)
(pγ ,Av) = (yγ − yd, v) +

(
µγa + µγb , v

)
∀v ∈ H2(Ω) with ∂νAv|∂Ω = 0,
α(uγ − ud) + pγ + λγa + λγb = 0,

λγa ≤ 0, uγ ≥ ua, (λγa, uγ − ua) = 0,
λγb ≥ 0, uγ ≤ ub,

(
λγb , u

γ − ub
)

= 0
(3.2)

holds, where

µγa = γmin(0, yγ − ya) and µγb = γmax(0, yγ − yb).

The convergence of the solutions of the regularized problems is the pur-
pose of the next result whose proof follows from the discussion in [16].

Theorem 3.1. Let {(yγ , uγ , pγ , λγa, λγb )}γ>0 be a sequence of solu-
tions of (3.2). Then, there exists a subsequence still denoted by
{(yγ , uγ , pγ , λγa, λγb )}γ>0 and

(p?, λ?a, λ
?
b , µ

?
a, µ

?
b) ∈ L2(Ω)× L2(Ω)× L2(Ω)×M(Ω̄)×M(Ω̄)
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such that, under the Slater condition (2.4),

yγ → y∗ in C0(Ω̄),

yγ ⇀ y∗ in H2(Ω)′,

uγ ⇀ u∗ in L2(Ω),

pγ ⇀ p? in L2(Ω),

λγa ⇀ λ?a in L2(Ω),

λγb ⇀ λ?b in L2(Ω),
µγa ⇀ µ?a in M(Ω̄),
µγb ⇀ µ?b in M(Ω̄),

as γ → +∞, with (y∗, u∗, p?, λ?a, λ
?
b , µ

?
a, µ

?
b) being a solution to the optimality

system (2.5).

4 Optimality system

Regarding the previous theorem, to recover the solution of the optimal con-
trol problem (2.3) an overall algorithm can be designed by solving (3.1) for
a sequence γ →∞. For (3.1) with γ fixed, a locally superlinear semi-smooth
Newton method can be applied (see [16]). In order to discretize the cor-
responding optimality system (3.2), we follow the variational discretization
concept introduced in [17], we approximate the space of state variables using
finite elements but keeping the infinite dimensional space Uad ⊂ L2(Ω) as
set of admissible controls.

Variational discretization

In the sequel and for the computational purposes we consider a shape-regular
simplicial triangulation Th of Ω. Since Ω is assumed to be a polyhedral, the
boundary ∂Ω is exactly represented by the boundaries of simplices T ∈ Th.
We refer to Nh = ∪npi=1{xi} as the set of nodes of Th. For each element T
in Th, we denote by hT and |T | the diameter and Lebesgue Rd measure of
T , respectively. The overall mesh size is defined by h := maxT∈Th diamT .
Further, we associate with Th the continuous piecewise linear finite element
space

Vh = {v ∈ C0(Ω̄) : v|T ∈ P1(T ), ∀T ∈ Th},

where P1(T ) is the space of first-order polynomials on T. The standard nodal
basis of Vh denoted by {φi}npi=1 satisfies φi(xj) = δij for all xj in Nh and i, j ∈
{1, . . . , np}. Here, δij represents the Kronecker symbol. Furthermore for all
v ∈ C0(Ω̄) we denote by ihv :=

∑np
i=1 v(xi)φi the Lagrange interpolation of

v with xi denoting the i-th vertex in Th. In analogy to (2.2) we define for
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given u ∈ L2(Ω) the discrete solution operator Gh by

yh =: Gh(u)⇐⇒ yh ∈ Vh and a(yh, vh) = (u+ f, vh) ∀vh ∈ Vh.

We approximate the objective functional J by a sequence of objectives Jh

Jh(yh, uh) :=
1
2
‖yh − yd‖2L2(Ω) +

α

2
‖uh − ud,h‖2L2(Ω),

where ud,h ∈ Vh denotes a finite element function corresponding to the given
shift control ud ∈ L2(Ω) with the property

‖ud − ud,h‖L2(Ω) ≤ Ch.

This can be realized by the standard L2-projection of ud onto Vh.

We are now in the position to apply variational discretization [17] to
problem (3.1). We therefore consider

Jγh (yh, uh) := Jh(yh, uh) + γ
2‖min(0, yh − ya)‖2 + γ

2‖max(0, yh − yb)‖2 → min

s.t. yh = Gh(uh) and uh ∈ Uad.
(4.1)

The existence of a solution of (4.1) as well as Lagrange multipliers again
follows from standard arguments. The corresponding first order optimality
system of (4.1) leads to the variationally discretized counterpart of (3.2)

yγh = Gh(uγh),
a(vh, p

γ
h) = (vh, y

γ
h − yd + µγa,h + µγb,h) ∀vh ∈ Vh,

α(uγh − ud,h) + pγh + λγa,h + λγb,h = 0,
λγa,h ≤ 0, uγh ≥ ua, (λγa,h, u

γ
h − ua) = 0,

λγb,h ≥ 0, uγh ≤ ub, (λγb,h, u
γ
h − ub) = 0,

(4.2)

where yγh, p
γ
h ∈ Vh and uγh, λ

γ
a,h, λ

γ
b,h ∈ L

2(Ω). The multipliers corresponding
to the regularized state constraints µγa,h and µγb,h are given by

µγa,h = γmin(0, yγh − ya) and µγb,h = γmax(0, yγh − yb).

We mention here that (4.1) is a function space optimization problem and the
optimal control uγh is not lying in a finite element space in general. However,
regarding (4.2), uγh corresponds to the projection of a finite element quantity
onto the admissible set Uad

uγh = Π[ua,ub]

(
− 1
α
pγh + ud,h

)
,

where Π[ua,ub] is the orthogonal projection onto Uad. This special structure
of uγh allows a matricial representation of (4.2). In what follows we extend
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the algorithm prescribed in [8] to the regularized problem (4.1). Therefore
let us introduce the standard mass- and system matrix as

M =
[∫

Ω φiφj
]np
i,j=1

and A =
[
a(φi, φj)

]np
i,j=1

.

We represent L2(Ω)-projections of the given data f, ud, yd onto Vh by the
vectors

f = M−1
[∫

Ω fφi
]np
i=1

, ud = M−1
[∫

Ω udφi
]np
i=1

, yd = M−1
[∫

Ω ydφi
]np
i=1

with corresponding finite element functions

fh =
np∑
i=1

fiφi, ud,h =
np∑
i=1

uid,hφi, yd,h =
np∑
i=1

yid,hφi.

Further we denote

ua =
[
ua
]np
i=1

,ub =
[
ub
]np
i=1

,ya =
[
ya
]np
i=1

,yb =
[
yb
]np
i=1

,

and
yγ =

[
yγh(xi)

]np
i=1

, pγ =
[
pγh(xi)

]np
i=1

.

Of particular importance is the following vector representation of the action
of an arbitrary uγh ∈ L

2(Ω) on Vh basis functions

uγ =
[∫

Ω u
γ
hφi
]np
i=1

,

which allows avoiding an explicit discretization of the control u. To deter-
mine the active sets of the control we use the projection formula between uγh
and pγh. Hence, we define the control inactive, lower active and upper active
sets, respectively, as

i(pγ) = {x ∈ Ω : ua < − 1
αp

γ
h(x) + ud,h(x) < ub}, (4.3)

a(pγ) = {x ∈ Ω : − 1
αp

γ
h(x) + ud,h(x) ≤ ua}, (4.4)

b(pγ) = {x ∈ Ω : ub ≤ − 1
αp

γ
h(x) + ud,h(x)}. (4.5)

With respect to these sets we additively split the mass matrix M into

M = Mp
i + Mp

a + Mp
b,

where

Mp
i =

[∫
i(pγ) φiφj

]np
i,j=1

, Mp
a =

[∫
a(pγ) φiφj

]np
i,j=1

, Mp
b =

[∫
b(pγ) φiφj

]np
i,j=1

.

Similarly we define My
a and My

b by

My
a =

[∫
a(yγ) φiφj

]np
i,j=1

, My
b =

[∫
b(yγ) φiφj

]np
i,j=1
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with

a(yγ) = {x ∈ Ω : yγh(x) ≤ ya}, b(yγ) = {x ∈ Ω : yb ≤ yγh(x)}. (4.6)

Let us emphasize that assembling all appearing mass matrices M•
• can be

vectorized within the few cases how triangles are active and / or inactive.
The number of those cases is insignificantly compared to the total number of
elements. The main CPU-time is required for solving the linearized systems
we are going to introduce now. The matrix form of (4.2) reads

Ayγ − uγ −Mf = 0, (4.7)

ATpγ −M(yγ − yd)− γMy
a(yγ − ya)− γMy

b(yγ − yb) = 0, (4.8)

uγ −
(
Mp

i

(
− 1
α

pγ + ud

)
+ Mp

aua + Mp
bub

)
= 0. (4.9)

Solution algorithm

We reduce (4.7)-(4.9) to a nonlinear system in xγ = [yγ ; pγ ]

Gγ(xγ) :=
[

Ayγ −
(
Mp

i (− 1
αpγ + ud) + Mp

aua + Mp
bub

)
−Mf

ATpγ −M(yγ − yd)− γMy
a(yγ − ya)− γMy

b(yγ − yb)

]
= 0.

(4.10)
Notice that, due to the presence of max- and min-operations involved in
(4.3)-(4.6), Gγ is not Fréchet-differentiable and a classical Newton method
can not be applied to solve (4.10). Nevertheless, a generalized Jacobian can
be defined for Gγ(x) with x = [y; p] ∈ R2np by

DGγ(x) :=
[

A 1
αMp

i

−(M + γMy
a + γMy

b) AT

]
.

To solve (4.10) we therefore perform semi-smooth Newton iterations (see for
instance [14, 21, 22]): Given x0 ∈ R2np, the iteration step reads

xn+1 = xn −DGγ(xn)−1Gγ(xn) for n = 0, 1, . . . (4.11)

until some stopping criterion is satisfied. With an approximate solution of
Gγ(xγ) = 0 at hand we recover the L2(Ω)-function uγh via

uγh(x) = Π[ua,ub]

(
− 1
α
pγh(x) + ud,h(x)

)
.

Proposition 4.1. The semi-smooth Newton iteration (4.11) is well defined.
The sequence (xn)n∈N generated by (4.11) converges to a solution xγ :=
[yγ ; pγ ] of (4.10) provided that ‖xγ − x0‖ is small enough.
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Proof. In order to show this proposition it suffices to prove that DG has got
an inverse which is bounded in some neighborhood of xγ .
For an arbitrarily chosen x := [y; p] ∈ R2np, we know that C := M+γMy

a +
γMy

b is symmetric and positive definite, A is positive definite and 1
αMp

i is
symmetric positive semi-definite. A Schur complement of the matrix block
DGγ(x) reads

S := A +
1
α

Mp
i A−TC,

which can be written as

S = A(I +
1
α

A−1Mp
i A−TC). (4.12)

From [19, Thm. 7.6.3] it follows that the product of a real symmetric pos-
itive definite matrix and a real symmetric positive semi-definite one is a
positive semi-definite matrix (which is not necessarily symmetric). There-
fore A−1Mp

i A−TC is a positive semi-definite matrix and, from (4.12), S
is invertible. Moreover, for a given r = [r1; r2] ∈ R2np, the solution d =
[d1; d2] ∈ R2np to the linear system

DGγ(x)d = r

can be computed using

d1 = S−1r1 −
1
α

S−1Mp
i A−T r2, (4.13)

d2 = A−T r2 + A−TCd1, (4.14)

where
S−1 = (I +

1
α

A−1Mp
i A−TC)−1A−1.

Notice that (taking for instance the matrix norm induced by ‖ · ‖1)

‖S−1‖ ≤ Cst‖A−1‖, (4.15)
max

(
‖Mp

i ‖, ‖M
y
a‖, ‖M

y
b‖
)
≤ Cst‖M‖, (4.16)

with Cst being a generic positive constant not depending on x. Consequently,
from (4.13), (4.14), (4.15) and (4.16) we infer that ‖DGγ(x)−1‖ is bounded
independently of x which completes the proof of this proposition.

5 Error representation and estimator

To achieve high accuracies in an optimal fashion, we marry our regulariza-
tion semi-smooth Newton solver with an adaptive mesh refinement process
based on a goal-oriented approach. As quantity of interest we consider the
objective functional J which is corresponding to the tracking part in the
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objective functional of the regularized optimal control problem (3.1). For a
fixed regularization parameter γ we derive hereafter an error representation
in J for the solutions of (3.1) and (4.1) respectively. In this section we make
the following

Assumption 5.1. ud = ud,h.

As a consequence of this assumption it holds J = Jh. Including more
general desired controls ud would lead to additional weighted data oscilla-
tion quantities (ud − ud,h, ·) in the error representation (5.1). For residual
type a posteriori estimators this was done in [18].
We mention here that the previous assumption is fulfilled by affine linear
functions or, more precisely, by a piecewise linear function over the coarsest
mesh in refinement processes which is not restrictive from practical point of
view. Indeed, in contrast to yd, ud is not a desired control but a background
control. In many applications, it is corresponding to the result of trial and
error experiments performed with a small number of degrees of freedom.

Following [10] we define the following residuals

ρp
γ
(·) := Jy(y

γ
h, u

γ
h)(·)− a(·, pγh) + (µγh, ·)

ρy
γ
(·) := −a(yγh, ·) + (uγh + f, ·)

with

µγ := γmin(0, yγ − ya) + γmax(0, yγ − yb),
µγh := γmin(0, yγh − ya) + γmax(0, yγh − yb).

As γ → ∞, µγ and µγh play the role of the measure Lagrange multipliers
corresponding to state constraints in the limit problem (2.3) (compare with
[10, Thm. 4.1, Rem. 4.1]). Moreover we abbreviate

λγ := λγa + λγb and λγh := λγa,h + λγb,h.

Theorem 5.2. Let (uγ , yγ) and (uγh, y
γ
h) be the solutions of the optimal

control problems (3.1) and (4.1) with corresponding adjoint states pγ , pγh
and multipliers associated to the control and state constraints λγ , λγh, µ

γ , µγh.
Then

2(J(yγ , uγ)− Jh(yγh, u
γ
h)) =

ρp
γ
(yγ − ihyγ) + ρy

γ
(pγ − ihpγ) + (µγ + µγh, y

γ
h − y

γ) + (λγ + λγh, u
γ
h − u

γ).
(5.1)
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Proof. For ease of exposition, we omit the superscript γ in this proof for the
quantities yγ , uγ , pγ , λγ , µγ and their discrete counterparts. We have

2(J(y, u)− Jh(yh, uh))
= α((u− ud) + (uh − ud), (u− ud)− (uh − ud))

+ ((y − yd) + (yh − yd), (y − yd)− (yh − yd))
= α(uh − ud, u) + (−α(u− ud), uh − u) + (−α(uh − ud), uh)

+ (yh − yd, y) + a(y, p)− a(yh, ph)− a(yh, p)
+ (µh, y)− (µ, y) + (µh, yh) + (µ, yh)
− (µh, y).

For the last step, the adjoint equation was used three times and a zero
was added. The last four terms can be summed up to (µ + µh, yh − y).
The term (yh − yd, y) + (µh, y) already belongs to the dual residual, while
−a(yh, p) belongs to the primal residual. The remaining both bilinear forms
with a are expressed by using the both primal equations. Furthermore
(ph, u+ f)− a(y, ph) = 0 is added to the equation. We obtain:

2(J(y, u)− Jh(yh, uh))
=− a(yh, p)

+ (yh − yd, y) + (µh, y)− a(y, ph)
+ (µ+ µh, yh − y)
+ α(uh − ud, u) + (−α(u− ud), uh − u) + (−α(uh − ud), uh)
+ (−p,−u− f) + (−ph, uh + f)
+ (ph, u+ f)
+ (uh, p)− (p, uh)

=− a(yh, p) + (uh + f, p)
− a(y, ph) + (yh − yd, y) + (µh, y)
+ (µ+ µh, yh − y)
+ (α(uh − ud) + ph, u)
+ (−α(u− ud)− p, uh − u) + (−α(uh − ud)− ph, uh)

=ρy(p) + ρp(y) + (µ+ µh, yh − y)
+ (α(uh − ud) + ph + λh, u)︸ ︷︷ ︸

=0

−(λh, u) + (λ, uh − u) + (λh, uh)

=ρy(p) + ρp(y) + (µ+ µh, yh − y) + (λ+ λh, uh − u).

Let us emphasize that in last intermediate step due to variational discretiza-
tion the residual for the control vanishes. Because of Galerkin orthogonality
of the error in the state and costate equation we could subtract arbitrary
functions ihp and ihy ∈ Vh within the residuals ρy and ρp and end up with
the assertion.

12



Let us now define the elementwise residuals

R
yγh
|T := uγh + f −Ayγh,

R
pγh
|T := yγh − yd −A

∗pγh,

Rp
γ

|T := yγ − yd −A∗pγ ,

and the edge residuals

r
yγh
|Γ :=

{
1
2ν · [∇y

γ
h · (aij)], Γ ⊂ ∂T \ ∂Ω

ν · (∇yγh · (aij)), Γ ⊂ ∂Ω
,

r
pγh
|Γ :=

{
1
2ν · [(aij)∇p

γ
h], Γ ⊂ ∂T \ ∂Ω

ν · ((aij)∇pγh + pγhb), Γ ⊂ ∂Ω
,

rp
γ

|Γ :=

{
1
2ν · [(aij)∇p

γ ], Γ ⊂ ∂T \ ∂Ω
ν · ((aij)∇pγ + pγb), Γ ⊂ ∂Ω

.

Here [·] denotes the jump across the inter-element edge Γ. Now by integra-
tion by parts we can localize the error representation (5.1) by

2(J(yγ , uγ)− Jh(yγh, u
γ
h)) =

∑
T∈Th

(yγ − yγh, R
pγh
|T )T − (yγ − yγh, r

pγh
∂T )∂T

+ (Ry
γ
h

|T , p
γ − ihpγ)T − (ry

γ
h

|∂T , p
γ − ihpγ)∂T

+ (yγ − yγh, R
pγ

|T )T − (yγ − yγh, r
pγ

|∂T )∂T

+ (λγ + λγh, u
γ
h − u

γ)T .

Since this localized sum still contains unknown quantities, we make use of
local higher order approximation ([1, Sec. 5.1]) which has shown to be a suc-
cessful heuristic technique for a posteriori error estimation. More precisely
we take the local higher order quadratic interpolant operator i(2)

2h : Vh →
P2(T ) for some T ∈ Th as already introduced in [10] for d = 2. The technique
for computing i

(2)
2h vh for some vh ∈ Vh can easily be carried over to three

space dimensions. However this is supposed to be numerically expensive. In
order to derive a computable estimator we now replace the unknown func-
tions yγ and pγ in (5.1) by i(2)

2h y
γ
h and i(2)

2h p
γ
h. Since uγ = Π[ua,ub]

(
− 1
αp

γ + ud
)

holds, a reasonable locally computable approximation is

ũγ = Π[ua,ub]

(
− 1
α
i
(2)
2h p

γ
h + ud

)
as already suggested in [27]. Similarly for λγ = −pγ −α(uγ − ud) we locally
compute

λ̃γ = −i(2)
2h p

γ
h − α (ũγ − ud)

13



Figure 1: ua active set for Example 1: blue by uγh, green by ũγ (left),
integrand (λ̃γ +λγh)(uγh− ũ

γ) with support on symmetric difference of active
sets (right).

instead.
The estimator ηγ now reads

ηγ =
∑
T∈Th

ηγT ,

where

2ηγT =(i(2)
2h y

γ
h − y

γ
h, R

pγh
|T )T − (i(2)

2h y
γ
h − y

γ
h, r

pγh
|∂T )∂T

+ (Ry
γ
h

|T , i
(2)
2h p

γ
h − p

γ
h)T − (ry

γ
h

|∂T , i
(2)
2h p

γ
h − p

γ
h)∂T

+ (i(2)
2h y

γ
h − y

γ
h, R

i
(2)
2h p

γ
h

|T )T − (i(2)
2h y

γ
h − y

γ
h, r

i
(2)
2h p

γ
h

|∂T )∂T

+ (λ̃γ + λγh, u
γ
h − ũ

γ)T .

While for the other quantities in ηγT quadrature rules of moderate order are
suited, one has to take care for the last term

(λ̃γ + λγh, u
γ
h − ũ

γ)T =
∫
T

(λ̃γ + λγh)(uγh − ũ
γ). (5.2)

The integrand is continuous but has a support within the symmetric dif-
ference of the control active set of the variational discrete solution and the
locally improved quantities. Such a situation is depicted in Figure 1. One
recognizes that ũγ keeps the activity structure as uγh has but smoothes the
control active boundary towards the exact control active boundary. The
kidney-shaped green area resolves the true control active set from Example
1 already very well even on a coarse mesh (compare also Figure 2 (right)).
Finally for computing (5.2) we just provide the integrand and a desired tol-
erance and apply an adaptive quadrature routine given in [28, Algo. 31] for
triangles containing the boundary of the control active set.
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In order to study the efficiency of our implemented estimator, we define
the effectivity of the estimator as

Ieff :=
J(yγ , uγ)− Jh(yγh, u

γ
h)

ηγ
.

Remark 5.3. Let us remark that the adjoint variable p admits less regularity
at state active sets such that higher order interpolation is not completely
satisfying. However this circumstance only leads to local higher weights in
the estimator and therefore reasonably suggests to refine at those regions.
The efficiency of the estimator is not affected as we are going to see in
the numerical experiments. Another thinkable heuristic technique to derive
a computable approximation for pγ − ihp

γ is to substitute the best known
object pγh for pγ and compute pγh − p

γ
h(xT ), where xT denotes the barycenter

of the element T .

Since the analytic solutions of the numerical examples are not known,
we approximate J(yγ , uγ) by Jh(yγh, u

γ
h) computed on a very fine mesh via

the expression

Jh(yγh, u
γ
h) =

1
2
yγTMyγ − yγTMyd +

1
2

∫
Ω
y2
d +

1
2α

pγTMp
i pγ

+
α

2
(ua − ud)TMp

a(ua − ud) +
α

2
(ub − ud)TMp

b(ub − ud). (5.3)

6 Numerical experiments

Based on the previous error estimations and the semi-smooth Newton solvers
described earlier, we design an adaptive finite element algorithm to solve
(4.1). The algorithm consists in performing cycles of the form

Solve =⇒ Estimate =⇒ Mark =⇒ Refine.

In the Mark step, elements are selected according to a bulk-type criterion
[9]. We select, for fixed specified 0 < θi < 1 (i ∈ {1, 2, 3}) the set M =
∪3
i=1Mi ⊂ Th such that

θ1

∣∣∣∣∣∣
∑
T∈Th

τT̊

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
T∈M1

τT̊

∣∣∣∣∣∣ ,
θ2

∣∣∣∣∣∣
∑
T∈Th

τ∂T

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
T∈M2

τ∂T

∣∣∣∣∣∣ ,
θ3

∣∣∣∣∣∣
∑
T∈Th

τλ

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
T∈M3

τλ

∣∣∣∣∣∣ ,
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where the local quantities τT̊ , τ∂T and τλ are defined by

2τT̊ := (i(2)
2h y

γ
h − y

γ
h, R

pγh
|T )T + (Ry

γ
h

|T , i
(2)
2h p

γ
h − p

γ
h)T + (i(2)

2h y
γ
h − y

γ
h, R

i
(2)
2h p

γ
h

|T )T ,

2τ∂T := (i(2)
2h y

γ
h − y

γ
h, r

pγh
|∂T )∂T + (ry

γ
h

|∂T , i
(2)
2h p

γ
h − p

γ
h)∂T + (i(2)

2h y
γ
h − y

γ
h, r

i
(2)
2h p

γ
h

|∂T )∂T ,

2τλ := (λ̃γ + λγh, u
γ
h − ũ

γ)T .

Flagging elements in such three separate steps has the advantage of properly
handling possible scaling difference between jump, element and multiplier
contributions in particular if the regularization parameter γ tends to infinity.
Once all the elements to be refined are marked, a new finer mesh is generated
using the longest bisection rule implemented within the Matlab pde-toolbox.
To assess the performance of the overall adaptive finite element algorithm
we compare it with a uniform mesh refinement by monitoring values of
the objective functional versus the numbers of degrees of freedom Ndof :=
np. Uniform refinement levels and the corresponding number of nodes np,
number of triangles nt and grid size h are documented in Table 1.
In the sequel we provide the documentation for two numerical examples.
For both examples, the analytic solution is not known, so for obtaining
the efficiency index we compute a reference solution on the finest grid in
Table 1 and hence an approximation of J(yγ , uγ). The semi-smooth Newton
solver converges generally in few iterations provided an appropriate update
strategy is used for the regularization coefficient. In our experiments we
use a simple continuation method. However more sophisticated techniques
might be used (see for instance [15]). We stop the semi-smooth Newton
solver as soon as

‖Gγ(xγn)‖2 ≤ εrel‖Gγ(xγ0)‖2 + εabs, n = 1, . . . , nmax,

for some user-specified maximum number of iterations nmax and tolerances
εrel and εabs. In our experiments we used nmax = 100. The absolute and
relative tolerances are chosen more and more stringent as γ →∞ such that
the final values are

εrel = 10−12, εabs = 10−8.

Example 1

As a first example we consider problem (2.3) with data

Ω = (0, 1)2, A = −∆ + Id, yd = sin(2πx1) sin(2πx2), f = ud = 0,
ua = −30, ub = 30, ya = −0.55, yb = 0.55, α = 10−4.

Its numerical solution in terms of − 1
αp

γ
h as well as the optimal state yγh is

displayed in Figure 2 for γ = 1014 on the mesh l = 14. The projection

16



l np nt h

1 81 128 0.17678
2 145 256 0.12500
3 289 512 0.08839
4 545 1024 0.06250
5 1089 2048 0.04419
6 2113 4096 0.03125
7 4225 8192 0.02210
8 8321 16384 0.01563
9 16641 32768 0.01105

10 33025 65536 0.00781
11 66049 131072 0.00552
12 131585 262144 0.00391
13 263169 524288 0.00276
14 525313 1048576 0.00195

Table 1: Mesh parameters for Example 1 (global refinement).

of − 1
αp

γ
h onto [ua, ub] corresponds to the optimal control uγh which repre-

sents together with yγh our best approximation to the solution of (3.1). The
boundaries of the control active sets are depicted as solid lines, while the
state active sets are coded as star and cross markers. The color blue corre-
sponds to the lower bound while the color red highlights the upper bound.
Now by using the expression (5.3) we get J(yγ , uγ) ≈ 0.0375586175. In Ta-
ble 2 we depict the efficiency coefficient and the convergence history of the
quantity of interest. Notice that the values of the efficiency coefficient are
close to 1 which illustrate the good performance of our error estimator. A
comparison between our adaptive finite element algorithm and a uniform
mesh refinement in terms of number of degrees of freedom is reported in
Figure 3. The adaptive refinement process performs well even though the
benefit in this example is not big since the characteristic features of the
optimal solution occupy an important area of the computational domain as
illustrated by the adapted grid in Figure 3. Our motivation for including
this example is to illustrate the variational discretization effect on the mesh
refinement process. If variational discretization for the control would not
have been used, one would expect also some refinement at the boundary of
the control active set.

Example 2

In this example we set the computational domain to Ω = (−1, 1) × (−1, 1)
and A = −∆ + Id. We take α = 10−3 and ud = yd = (−3x4

1 + 4x3
1)χ[0,1](x1),

where χA denotes the characteristic function of a set A. Furthermore we

17



Figure 2: ua,− 1
αp

γ
h, ub (left), ya ≤ yγh ≤ yb (middle) and active sets (right)

for Example 1 and l = 14.

k np J(yγ , uγ)− Jh(yγh, u
γ
h) Ieff

1 81 4.275 · 10−3 1.622
2 140 2.259 · 10−3 1.543
3 200 1.380 · 10−3 1.390
4 301 7.904 · 10−4 1.119
5 470 5.369 · 10−4 1.176
6 657 3.643 · 10−4 1.269
7 948 2.343 · 10−4 1.127
8 1405 1.790 · 10−4 1.187
9 2075 1.133 · 10−4 1.227

10 3123 7.148 · 10−5 1.144
11 4469 5.115 · 10−5 1.137
12 6775 3.281 · 10−5 1.172
13 9799 2.360 · 10−5 1.165
14 14305 1.546 · 10−5 1.181
15 20977 1.161 · 10−5 1.186
16 30445 7.763 · 10−6 1.256
17 44958 5.524 · 10−6 1.289
18 63389 3.996 · 10−6 1.290

Table 2: Adaptive refinement for Example 1 (bulk criterion, θi = 0.6).
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Figure 3: Adaptive mesh for k = 10 (left), comparison of error decrement
in the quantity of interest (right) for Example 1.

Figure 4: − 1
αp

γ
h +ud,h (left), yγh (middle) and active sets intersection (right)

for Example 2 and l = 14.

fix f = (36x2
1 − 24x1)χ[0,1](x1) and the bounds 0.1 ≤ u ≤ 2, 0.1 ≤ y ≤ 2.

This data is chosen such that the optimal control and optimal state exhibit
active sets whose intersection is not empty (see Figure 4). An approximation
J(yγ , uγ) ≈ 0.0130624289 of the optimal quantity of interest is computed on
the mesh level l = 14. We notice that the globally refined meshes have the
same numbers of nodes and elements as denoted in Table 1 for Example 1
but due to the enlarged domain the doubled mesh parameter h. Figure 4
displays the corresponding state yγh and the finite element quantity − 1

αp
γ
h +

ud,h. Throughout our computations we take γ = 108. The history of the
efficiency coefficients as well as the convergence of the quantities of interest
are reported in Table 3. As for the previous example we notice the high
accuracy of our error estimator illustrated by the fact that the efficiency
coefficient stays close to 1 during the adaptive procedure. The performance
of our adaptive algorithm is illustrated in Figure 5. In the same figure (left)
we clearly observe that the characteristic features of the solution are tracked
on the adapted grid.
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k np J(yγ , uγ)− Jh(yγh, u
γ
h) Ieff

1 289 2.482 · 10−4 1.261
2 330 1.805 · 10−4 1.128
3 411 1.635 · 10−4 1.307
4 483 8.344 · 10−5 1.674
5 604 5.544 · 10−5 1.215
6 758 4.051 · 10−5 1.000
7 993 3.370 · 10−5 1.155
8 1261 2.463 · 10−5 1.198
9 1628 1.684 · 10−5 1.202

10 2287 1.292 · 10−5 1.140
11 3110 9.290 · 10−6 1.155
12 4242 6.399 · 10−6 1.167
13 5526 4.136 · 10−6 1.168
14 7942 3.184 · 10−6 1.109
15 11281 2.268 · 10−6 1.121
16 15531 1.537 · 10−6 1.144
17 20867 1.041 · 10−6 1.148
18 30498 7.828 · 10−7 1.095

Table 3: Adaptive refinement for Example 2 (bulk criterion, θi = 0.5).

Figure 5: Adaptive mesh for k = 10 (left), comparison of error decrement
in the quantity of interest (right) for Example 2.
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[20] C. Meyer, A. Rösch and F. Tröltzsch: Optimal control of PDEs with
regularized pointwise state constraints. Comput Optim Appl 33, 209–
228 (2006).

[21] R. Mifflin: Semismooth and semiconvex functions in constrained opti-
mization. SIAM J. Control Optim. 15(6), 957–972 (1977).

22



[22] L. Qi and J. Sun: A nonsmooth version of Newton’s method. Math.
Program. 58(3), 353–367 (1993).

[23] A. Schiela: State constrained optimal control problems with states of
low regularity. SIAM J. Control Optim. 48(4), 2407–2432 (2009).

[24] A. Schiela and A. Günther: Interior point methods in function space for
state constraints - inexact Newton and adaptivity. DFG Schwerpunkt-
programm 1253, Preprint No. SPP1253-08-06 (2009).

[25] A. Shapiro: On uniqueness of Lagrange multipliers in optimization
problems subject to cone constraints. SIAM J. Optim. 7(2), 508–518
(1997).
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