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A NOTE ON THE COMPUTATION OF ALL ZEROS OF SIMPLE
QUATERNIONIC POLYNOMIALS

DRAHOSLAVA JANOVSKÁ∗ AND GERHARD OPFER†

Abstract. Polynomials with quaternionic coefficients located only on one side of the powers (we
call them simple polynomials) may have two different types of zeros: isolated and spherical zeros.
We will give a new characterization of the types of the zeros and, based on this characterization,
we will present an algorithm for producing all zeros including their types without using an iteration
process which requires convergence. The main tool is the representation of the powers of a quaternion
as a real, linear combination of the quaternion and the number one (as introduced by Pogorui and
Shapiro in 2004) and the use of a real companion polynomial which was already introduced for the
first time by Niven, 1941. There are several examples.
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1. Introduction. The first attempts to find the zeros of a quaternionic polyno-
mial were made by Niven in 1941, [13]. Polynomials of type (1.3) (see below, p. 2),
which we shall call simple, were considered. The idea of Niven was to divide the poly-
nomial by a quadratic polynomial with (certain) real coefficients and to adjust the
coefficients of the quadratic polynomial by an iterative procedure in such a way that
the remainder of the division vanished. Finally, it was shown, that the set of zeros
of the resulting quadratic polynomial also contained quaternions. The first numeri-
cally working algorithm based on these ideas was presented 2001 by Serôdio, Pereira,
and Vitória, [17]. Further contributions to polynomials with quaternionic coefficients
were made by Pumplün and Walcher, 2002, [16], De Leo, Ducati, and Leonardi, 2006,
[12], Gentili and Struppa, 2007, [2], Gentili, Struppa, and Vlacci, 2008, [3], Gentili
and Stoppato, [4]. Polynomials over division rings were investigated by Gordon and
Motzkin, 1965, [5]. See also the book by Lam, §16, [10]. A large bibliography on
quaternions in general was given by Gsponer and Hurni, 2006, [6]. We would also like
to mention an extension of this investigation to polynomials with coefficients at either
side of the powers. See Janovská and Opfer, [7]. Only as an aperçu we mention, that
Felix Klein was apparently not so fond of quaternions. He wrote (p. 20, [9]): ”Daß
man in dieser Theorie zu Resultaten gelangt, die im Sinne der gewöhnlichen Algebra
absurd sind, zeigt folgendes Beispiel:...“.1 And then a polynomial of degree three with
infinitely many zeros follows.

Another successful idea was introduced by Pogorui and Shapiro, 2004, [15]. They
systematically used the fact that a power of a quaternion z could be represented in
the form zj = αz + β, where α, β were real and where α, β did not fully depend on z
but only on the real part (the first component) and the length of z (as a vector in R4).
The emphasis of the work by Pogorui and Shapiro was put mainly on the structure
of the set of zeros, in particular, on the number of zeros, but not on the systematic
computation of the zeros. They use the multiplicities of the zeros of a certain real
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polynomial as a means for characterizing the two types of zeros which will emerge
for simple, quaternionic polynomials. This real polynomial is associated with the
given, simple, quaternionic polynomial and will be called companion polynomial in this
investigation. The characterization of the two types of zeros, presented here is based,
however, on the value of a certain quaternionic number. One type is characterized by
the value zero, the other type by any nonzero value. We do not use the multiplicities.
Based on this new characterization an algorithm is presented for finding all zeros
including the type of zero. It is based on the (real and complex) zeros of the real
companion polynomial. The resulting algorithm is simple. It was tested successfully
on hundreds of examples. A summary of the algorithm is given in the end of the
paper.

By R, C we denote the fields of real and complex numbers, respectively, and by
Z the set of integers. By H we denote the (skew) field of quaternions that consists of
elements of R4, equipped with the multiplication rule

ab := (a1b1 − a2b2 − a3b3 − a4b4, a1b2 + a2b1 + a3b4 − a4b3,(1.1)
a1b3 − a2b4 + a3b1 + a4b2, a1b4 + a2b3 − a3b2 + a4b1),

where a := (a1, a2, a3, a4), b := (b1, b2, b3, b4), aj , bj ∈ R, j = 1, 2, 3, 4. By #a we
will denote the real part of a, which is defined by a1, the first component of a. By
$a, we denote the imaginary part , the second component a2 of a, and |a| denotes the
absolute value of a, where |a| :=

√
a2
1 + a2

2 + a2
3 + a2

4 and where a := (a1, a2, a3, a4) in
all cases. The multiplication rule implies, in particular,

#(ab) = #(ba) and ra = ar for a, b ∈ H, r ∈ R.(1.2)

Let

pn(z) :=
n∑

j=0

ajz
j, z, aj ∈ H, j = 0, 1, 2, . . . , n, a0, an %= 0(1.3)

be a given quaternionic polynomial with degree n, where n is a positive integer. As we
have already mentioned, such a polynomial will be called simple. We are interested in
finding its zeros. The assumption a0 %= 0 implies, that the origin is never a zero of pn.
The assumption an %= 0 ensures that the degree of the polynomial is not less than n.
Without loss of generality we could assume an = 1. It should be noted, that the
general form of a quaternionic monomial would be a0 · z · a1 · z · a2 · · ·aj−1 · z · aj such
that the above pn is only a very special type of quaternionic polynomial. See [14] for
some statements on polynomials of general type. It should also be noted that it is still
possible to evaluate pn(z) by Horner’s scheme, although coefficients and argument are
in H.

By looking at

p2(z) := z2 + 1,(1.4)

we see that not only z1,2 := ±i are zeros of p2 but also h−1z1,2h for all h ∈ H\{0}. In
general, if pn is a polynomial with real coefficients and z0 is a zero of pn, then h−1z0h
is also a zero for all h ∈ H\{0}. This follows from h−1pn(z)h = pn(h−1zh). Since
h−1zh = z for real z, we obtain new zeros only if z is not real. Only in passing, we
note that the above p2 differs from p̃2 defined by p̃2(z) := (z − i)(z + i) and p̃2 does
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not belong into the class of simple polynomials, defined in (1.3). The properties of p2

lead to the introduction of equivalence classes of quaternions.2
Definition 1.1. Two quaternions a, b ∈ H are called equivalent , denoted by

a ∼ b, if

a ∼ b ⇔ ∃h ∈ H\{0} such that a = h−1bh.(1.5)

The set

[a] :=
{
u ∈ H : u = h−1ah for all h ∈ H\{0}

}
(1.6)

will be called an equivalence class of a. It is easily seen that ∼ indeed defines an
equivalence relation. Equivalent quaternions a, b can easily be recognized by

a ∼ b ⇔ #a = #b and |a| = |b|, (cf. [8]).(1.7)

We identify a real number a1 by the quaternion (a1, 0, 0, 0) and a complex number
a1 + ia2 by the quaternion (a1, a2, 0, 0). Let a be real. Then [a] = {a}, which means,
that in this case, the equivalence class consists only of one element, a. If a is not real,
then [a] contains infinitely many elements, which according to (1.5), (1.6), (1.7) can
be characterized by

[a] := {z ∈ H : #z = #a, |z| = |a|}(1.8)

and can be regarded as a two dimensional sphere in R4. Let a := (a1, a2, a3, a4) ∈ H.
Then, the conjugate of a, denoted by a, is defined by

a := (a1,−a2,−a3,−a4).

From (1.8) it follows, that

a ∈ [a].

The most important rule for the conjugate is

ab = b a.

And for the inverse, there is the formula

a−1 =
a

|a|2 for a %= 0.(1.9)

2. Isolated and spherical zeros of polynomials. The set of zeros of a poly-
nomial of type (1.3) will separate into two classes. This is the main content of this
section.

Definition 2.1. Let z0 be a zero of pn, where pn is defined in (1.3). If z0 is not
real and has the property that pn(z) = 0 for all z ∈ [z0], then we will say that z0 will
generate a spherical zero. For short, we will also say that z0 is , rather than generates
a spherical zero. If z0 is real or does not generate a spherical zero it is called an
isolated zero. The number of zeros of pn will be defined as the number of equivalence
classes, which contain at least one zero of pn.

2Algebraists use the phrase conjugacy classes.
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In what follows, we will see that under the assumption that z0 is a zero of pn,
either all elements in [z0] are zeros or z0 is the only zero in [z0]. For examples look back
at the remarks in connection with the polynomial defined in (1.4). One of the results
of Pogorui and Shapiro is that the number of zeros does not exceed n. However, this
result was already known to Gordon and Motzkin, 1965, Theorem 2, [5]. A result by
Eilenberg and Niven, 1944, [1] says, that all simple polynomials pn of degree n ≥ 1
have at least one zero. Actually, the result by Eilenberg and Niven applies to all
quaternionic polynomials which contain only one monomial with the highest degree.

All powers zj, j ∈ Z of a quaternion z have the form zj = αz + β with real α, β.
This was used in the context of quaternionic polynomials for the first time by Pogorui
and Shapiro, [15]. In particular,

z2 = 2#z z − |z|2.(2.1)

In order to determine the numbers α, β we set up the following iteration (for negative

j and nonvanishing z we use z−1 =
z

|z|2
instead of z)

zj = αjz + βj , αj , βj ∈ R, j = 0, 1, . . . , where(2.2)
α0 = 0, β0 = 1,(2.3)

αj+1 = 2#z αj + βj ,(2.4)
βj+1 = −|z|2αj , j = 0, 1, . . .(2.5)

The corresponding iteration given by Pogorui and Shapiro is a three term recursion
whereas this one (formulas (2.3) to (2.5)) is a two term recursion. Thus, they differ,
formally. In some cases two term recursions are more stable, than the corresponding
three term recursion. For an example, see Laurie, 1999, [11]. The given recursion is
a very economic means to calculate the powers of a quaternion. In order to compute
all powers of z ∈ H up to degree n by standard means, one needs n − 1 quaternionic
multiplications, where one quaternionic multiplication (see (1.1)) needs 28 flops (real
floating point operations), whereas the recursion (2.3) to (2.5) needs only 3n flops.
The sequence {αj} is defined by a difference equation of order two with constant
coefficients. Using the theory of difference equations, it is possible to give a closed
form solution for αj . There are two versions valid for the case z %∈ R. One of the
versions is purely real, the other is formally complex. The real version of the solution
is as follows:

αj =
${uj

1}√
|z|2 − (#z)2

, u1 := #z + i
√
|z|2 − (#z)2,

√
|z|2 − (#z)2 > 0, j ≥ 0,(2.6)

where u1 is one of the two complex solutions of u2 − 2#z u + |z|2 = 0. Formula (2.6)
for αj is easier to program than the iteration (2.3) to (2.5). However, since a power
is involved, an economic use of (2.6) would also require an iteration.

By means of (2.2) the polynomial pn can be written as

pn(z) :=
n∑

j=0

ajz
j =

n∑

j=0

aj(αjz+βj) =
( n∑

j=0

αjaj

)
z+

n∑

j=0

βjaj =: A(z)z+B(z).(2.7)

Theorem 2.2. Let z0 ∈ H be fixed. Then A(z) = const, B(z) = const for all
z ∈ [z0], where A, B are defined in (2.7). Let z0 be a zero of pn. Then,

pn(z0) = A(z)z0 + B(z) = 0 for all z ∈ [z0].(2.8)
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The quantities A, B in (2.8) can only vanish simultaneously. If A(z0) = 0 and if z0 is
not real, then, z0 generates a spherical zero of pn. If A(z0) %= 0, then z0 is an isolated
zero of pn.

Proof. From (2.3) to (2.5) it is clear, that the coefficients αj , βj, j ≥ 0 are the
same for all z with the same #z, |z|. Thus, the coefficients are the same for all z ∈ [z0],
therefore, A(z) = const, B(z) = const for all z ∈ [z0]. If A(z0) = 0, then necessarily
B(z0) = 0, and vice versa. Recall, that z0 %= 0. If A(z0) = 0 we have p(z) = 0 for
all z ∈ [z0]. This implies that z0 generates a spherical zero if z0 is not real. Let
A(z0) %= 0. Then, for all z ∈ [z0] equation (2.8) defines z0 uniquely. Apart from z0,
there is no zero in [z0].

From here on, it seems reasonable to change the notation from A(z) to A(#z, |z|)
and from B(z) to B(#z, |z|) if the arguments should be mentioned at all. For the
following theorem, see also Gordon and Motzkin, Theorem 4, [5].

Theorem 2.3. Let z0, z1 ∈ H be two different zeros of pn with z0 ∈ [z1]. Then
pn(z) = 0 for all z ∈ [z1] and z0 generates a spherical zero of pn and A(#z, |z|) =
B(#z, |z|) = 0, where A, B are defined in (2.7).

Proof. Since z0, z1 are assumed to be different and to belong to the same equiv-
alence class, they cannot be real. It follows from (2.7) that pn(zj) = A(#z, |z|)zj +
B(#z, |z|) = 0 for all z ∈ [z0] = [z1], j = 0, 1. Taking differences, we obtain
pn(z0)−pn(z1) = A(#z, |z|)(z0−z1) = 0 for all z ∈ [z1] = [z0], implying A(#z, |z|) = 0.
According to Theorem 2.2, the zero z0 generates a spherical zero of pn.

This shows, that Definition 2.1 is meaningful. Either, with z %∈ R the whole
equivalence class [z] consists of zeros (z is a spherical zero), or apart from z ∈ H,
there is no zero in [z] (z is an isolated zero).

Thus, we have the following classification of the zeros z0 of pn given in (1.3):
1. z0 is real. By definition, z0 is isolated.
2. z0 is not real. A(#z0, |z0|) = 0 ⇒ z0 is spherical, all z ∈ [z0] are zeros of pn.
3. z0 is not real. A(#z0, |z0|) %= 0 ⇒ z0 is isolated.

3. The companion polynomial. Let pn be the polynomial defined in (1.3)
with the quaternionic coefficients a0, a1, . . . , an. Following Niven [1941, Section 2],
[13] or more recently ([2004]) Pogorui and Shapiro [15], we define the polynomial q2n

of degree 2n with real coefficients by

q2n(z) :=
n∑

j,k=0

ajakzj+k =
2n∑

k=0

bkzk, z ∈ C, where(3.1)

bk :=
min(k,n)∑

j=max(0,k−n)

ajak−j ∈ R, k = 0, 1, . . . , 2n.(3.2)

We will call q2n the companion polynomial of the quaternionic polynomial pn. It
should always be regarded as a polynomial over C not over H. Since it has real
coefficients, we may assume that it is always possible to find all (real and complex)
zeros of q2n. How are the quaternionic zeros of pn related to the real or complex zeros
of q2n? This question will be answered in this section.

Lemma 3.1. Let pn(z) = A(#z, |z|)z + B(#z, |z|) be as described in (2.7). Then,
(we delete the arguments of A and B)

q2n(z) = |A|2z2 + 2#(AB)z + |B|2.(3.3)
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Proof. Let zj = αjz + βj , cf. (2.2) to (2.5). Then, we have

q2n(z) =
n∑

j,k=0

ajakzj+k =
n∑

j=0

aj

(
n∑

k=0

akzk

)
zj =

n∑

j=0

aj(Az + B)zj

=
n∑

j=0

aj(Az + B)(αjz + βj) [αj , βj ∈ R]

=
n∑

j=0

(αjaj)Az2 +
n∑

j=0

(βjaj)Az +
n∑

j=0

(αjaj)Bz +
n∑

j=0

(βjaj)B

= |A|2z2 + 2#(AB)z + |B|2.

Thus, the formula (3.3) is correct.
Formula (3.3) again shows that A(#z, |z|) = 0 ⇔ B(#z, |z|) = 0 if z is a zero

of pn. The real zeros of pn can be discovered quite easily.
Theorem 3.2. Let z0 ∈ R. Then,

q2n(z0) = 0 ⇔ pn(z0) = 0.

The set of the real zeros is the same for pn and for q2n.
Proof. On the real line z ∈ R, we have q2n(z) = |pn(z)|2.
Since q2n has real coefficients and because of q2n(z) = |pn(z)|2 for z ∈ R, the

zeros of q2n come always in pairs

. . . r, r, . . . , a + ib, a− ib, . . . ,(3.4)

where r, a, b represent real numbers.
The case of spherical zeros is easy as well.
Theorem 3.3. Let z0 be a nonreal zero of q2n and let A(#z0, |z0|) = 0. See (2.7)

for the definition of the quaternion A. Then, z0 generates a spherical zero of pn.
Proof. Equation (3.3) implies that B(#z0, |z0|) = 0 as well, where the quaternion

B is also defined in (2.7). Thus, pn(z0) = 0 by (2.7) and from Theorem 2.2 we
conclude, that z0 generates a spherical zero of pn.

For the remaining part, we have to investigate those nonreal zeros z of q2n for
which A(#z, |z|) %= 0. In general, we will have pn(z) %= 0. However, we can try to find
a z0 ∈ [z] such that pn(z0) = 0. If that is possible, z0 must necessarily have the form

z0 := −A(#z, |z|)−1B(#z, |z|) = −A(#z, |z|)B(#z, |z|)
|A(#z, |z|)|2 .(3.5)

This follows from Theorem 2.2 and formulas (1.9) and (2.7). We have to show, that
z0 ∈ [z], which means that we have to show that #z0 = #z and |z0| = |z|.

Lemma 3.4. Let z be a nonreal zero of q2n with A(#z, |z|) %= 0. Define z0 as in
(3.5). Then

#z0 = #z and |z0| = |z|.

Proof. According to Lemma 3.1, the zero z of q2n, obeys the equation

(3.3′) q2n(z) = |A(#z, |z|)|2z2 + 2#(A(#z, |z|)B(#z, |z|))z + |B(#z, |z|)|2 = 0.
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From here on, we delete the arguments of A and B. We put

(z1, z2, 0, 0) := z; (v1, v2, v3, v4) := AB.(3.6)

Then, by separating the real and imaginary part, equation (3.3′) implies

|A|2(z2
1 − z2

2) + 2v1z1 + |B|2 = 0, |A|2z1 + v1 = 0.(3.7)

It follows from the definition of z0 that

#z0 = −#(AB)
|A|2 = − v1

|A|2 = z1 = #z,

where the last equation follows from the second equation in (3.7). Moreover,

|z0| =
∣∣∣∣−

AB

|A|2

∣∣∣∣ =
|B|
|A| .

If we insert the second equation of (3.7) into the first one, we obtain

−|A|2(z2
1 + z2

2) + |B|2 = 0,

and this gives the desired property |B|2
|A|2 = |z|2 and thus, |z0| = |z|.

Theorem 3.5. Let pn be given and let q2n be the corresponding companion
polynomial and assume that z is a nonreal, complex zero of q2n with A(#z, |z|) %= 0.
Then, z0 defined in formula (3.5) is an isolated zero of pn. If we use the notation (3.6)
and |v| =

√
v2
2 + v2

3 + v2
4 we can give z0 also the following form, denoted for the

moment by

Z0 :=
(

z1,−
|z2|
|v| v2,−

|z2|
|v| v3,−

|z2|
|v| v4

)
.(3.8)

Proof. We will show that Z0 = z0. Clearly, we have Z0 ∈ [z]. For an arbitrary
a ∈ H let us denote by vec(a) the three dimensional vector consisting of the last three
components of a. From the previous lemma we know that |vec(z0)| = |v|

|A|2 = |z2|,
thus,

1
|A|2 =

|z2|
|v| .

In the formula for Z0 we replace the quantity |z2|
|v| by 1

|A|2 and we obtain Z0 = z0.
With respect to (3.5), formula (3.8) has the advantage, that it only involves the

product AB. Formula (3.5) also needs |A|2.
There is still one missing link. Is it true, that the zeros of the companion poly-

nomial q2n really exhaust all zeros of pn or is it possible that pn has a zero which we
do not find by checking all zeros of q2n?

Theorem 3.6. Let pn(z0) = 0 where pn is defined in (1.3). Then, there is an
z ∈ C with z ∈ [z0] such that q2n(z) = 0, where q2n is defined in (3.1), (3.2).

Proof. If z0 ∈ R, we have q2n(z0) = 0. This follows from Theorem 3.2. If
A(#z0, |z0|) = 0 and z0 is not real, then, the class [z0] contains exactly one complex
z with positive imaginary part such that q2n(z) = 0. From here on, we assume that
A(#z0, |z0|) %= 0. We have pn(z0) = A(#z0, |z0|)z0 + B(#z0, |z0|) = 0 and, thus,

z0 = −A(#z0, |z0|)B(#z0, |z0|)
|A(#z0, |z0|)|2

.(3.9)
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For q2n, we have the formula (3.3) which is a quadratic equation with real coefficients
and one of the two complex zeros is (we delete the arguments of A, B)

z = −#(AB)
|A|2 +

i
|A|2

√
|A|2|B|2 −

(
#(AB)

)2
.(3.10)

Since |#u| ≤ |u| for all u ∈ H, the radicand in (3.10) is never negative. It remains to
show that z ∈ [z0] which is equivalent to #z0 = #z and |z0|2 = |z|2. From (3.9) and
(3.10) we deduce that

#z = −#(AB)
|A|2 = #z0.

From the same equations we obtain

|z|2 =
(
#(AB)

)2

|A|4 +
|A|2|B|2 −

(
#(AB)

)2

|A|4 =
|B|2
|A|2 = |z0|2.

Conclusion 3.7. The proposed procedure finds all zeros of the quaternionic
polynomial pn (defined in (1.3)). The set of zeros of pn is not empty and the number
of zeros (see Definition 2.1, p. 3) does not exceed n.

The following example shows all typical features of a quaternionic polynomial.
Example 3.8. Let

p6(z) := z6 + jz5 + iz4 − z2 − jz − i.(3.11)

Then, the companion polynomial for p6 is

q12(x) = x12 + x10 − x8 − 2x6 − x4 + x2 + 1.(3.12)

The twelve zeros of q12 are

1 (twice), −1 (twice), ±i (twice each), 0.5(±1 ± i).

There are two different real zeros z1,2 = ±1 which are also zeros of p6. There is
one spherical zero z3 = i of p6 (−i generates the same spherical zero). And, finally
there are two isolated zeros which have to be computed from x = 0.5(±1 ± i) by
formula (3.8). This formula yields

z4 := 0.5(1,−1,−1,−1), z5 := 0.5(−1, 1,−1,−1),

and p6 has altogether five zeros in the sense of Definition 2.1.

4. Polynomials with coefficients on the right side of the powers. If we
want to compute the zeros of

p̃n(z) :=
n∑

j=0

zjaj , z, aj ∈ H, j = 0, 1, 2, . . . , n, a0, an %= 0,(4.1)

rather than those of pn, we apply the former theory to

pn(z) := p̃n(z) =
n∑

j=0

aj zj, z, aj ∈ H, j = 0, 1, 2, . . . , n, a0, an %= 0.(4.2)
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The companion polynomial q2n is identical for p̃n and for pn and thus, the zeros of
the companion polynomials are the same.

Lemma 4.1. The two polynomials p̃n(z) :=
∑n

j=0 zjaj and pn(z) :=
∑n

j=0 ajzj

have the same real and spherical zeros. And for nonreal isolated zeros we have

pn(z) = 0 ⇐⇒ p̃n(z) = 0.(4.3)

Proof. An adaption of the theory of the foregoing section.

5. Numerical considerations. The polynomial in Example 3.8 is a contrived
example. It has the property that p6(z) = (z2 + jz + i)(z4 − 1). Normally, one
is not able to guess the zeros and one has to rely on machine computations. If we
compute the zeros of q12 of the previous example, given in (3.12), we find by MATLAB
computation the figures listed in Table 1, which are not as precise as desired, though
the integer coefficients of p12 are exact.

Table 1. Zeros of q12 by MATLAB computations and correct values.

1 −1.00000000000000 +0.00000001131891i −1
2 −1.00000000000000 −0.00000001131891i −1
3 −0.50000000000000 +0.86602540378444i 0.5(−1 +

√
3 i)

4 −0.50000000000000 −0.86602540378444i 0.5(−1 −
√

3 i)
5 1.00000000000000 +0.00000001376350i 1
6 1.00000000000000 −0.00000001376350i 1
7 0.50000000000000 +0.86602540378444i 0.5(1 +

√
3 i)

8 0.50000000000000 −0.86602540378444i 0.5(1 −
√

3 i)
9 0.00000000001566 +1.00000000619055i i

10 0.00000000001566 −1.00000000619055i −i
11 −0.00000000001566 +0.99999999380945i i
12 −0.00000000001566 −0.99999999380945i −i

There is the following remark.: The four zeros with multiplicity one, numbered
3,4,7,8 in Table 1 are precise to machine precision, however, all other zeros, which
are zeros with multiplicity 2 have errors of magnitude 10−8. It is easy to improve on
these zeros. If z is one of the zeros with multiplicity two, an application of one step
of Newton’s method applied to q′2n = 0 with starting point z is sufficient to obtain
machine precision. For zeros of multiplicity four, one should apply Newton’s method
to q′′′2n = 0, etc., possibly with two steps.

We made some hundred tests with polynomials pn of degree n ≤ 50 with random
integer coefficients in the range [−5, 5] and with real coefficients in the range [0, 1].
In all cases we found only (nonreal) isolated zeros z. The test cases showed |pn(z)| ≈
10−13. Real zeros and spherical zeros did not show up. If n is too large, say n ≈ 100,
then it is usually not any more possible to find all zeros of the companion polynomial
by standard means (say roots in MATLAB) because the coefficients of the companion
polynomial will be too large.

6. The quadratic case. We will specialize the given results to the quadratic
case

p2(z) := z2 + a1z + a0, a0, a1 ∈ H, a0 %= 0.(6.1)
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We first repeat the results already given by Niven [13] in 1941. Then we will compare
them with the foregoing theory. In all cases, we assume that #a1 = 0. This simplifies
some formulas and there is no loss of generality, since

p̃n(u) := p2(u − #a1

2
) := u2 + (a1 −#a1)u +

#a1

2

(
#a1

2
− a1

)
+ a0(6.2)

=: u2 + ã1u + ã0, #ã1 = 0.(6.3)

Theorem 6.1. Let p2 be given as in (6.1) and let #a1 = 0.
1. If both a1, a0 are real (hence, a1 = 0), then p2 has either two different real

zeros in H (a0 < 0), or one spherical zero in H (a0 > 0). The zeros in the first
case are ±

√
−a0, the spherical zero is [c] =

{
z ∈ H : z = h−1ch, h ∈ H\{0}

}
,

where c :=
√

a0 i.
2. If at least one of the coefficients a1, a0 is not real, then p2 has either one or

two isolated zeros in H. It has one zero if

2#(a0a1) = (2#a0 + |a1|2)2 − 4|a0|2 = 0.(6.4)

It has two zeros, otherwise.
Proof. Niven, Theorem 2, p. 658, [13].
The approach chosen here leads to the following. The companion polynomial for

p2 is

q4(x) := x4 + (2#a0 + |a1|2)x2 + 2#{a0a1}x + |a0|2.(6.5)

Lemma 6.2. The companion polynomial q4 is a complete square if and only if the
conditions of (6.4) are met.

Proof. Let q4(z) = (z2 + Cz + D)2 = z4 + 2Cz3 + (2D + C2)z2 + 2CDz + D2.
Comparing with (6.5) yields C = 0, D2 = |a0|2 and the conditions (6.4), hence,
q4(z) = (z2 ± |a0|)2. If the conditions (6.4) are met it is easy to see, that q4 is a
complete square.

Lemma 6.3. Let the companion polynomial q4 be a complete square and let q4

have two real zeros r and s. Then r + s = 0.
Proof. Let q4(z) =

(
(z − r)(z − s)

)2 = (z2 − (r + s)z + rs)2. According to the
Lemma 6.2 we must have r + s = 0.

As already noted in (3.4), real zeros come always in pairs. Thus, the existence of
two different real zeros of p2 always implies that q4 is a complete square.

Corollary 6.4. Let ±r be two real zeros of p2. Then both coefficients a0, a1 of
p2 are real and a1 = 0 and a0 < 0.

Proof. We have r2 ± a1r + a0 = 0. If we subtract these two equations from
each other, we obtain 2ra1 = 0, thus, a1 = 0. This implies r2 + a0 = 0, hence,
a0 = −r2 < 0.

Theorem 6.5. Let p2 be given as in (6.1) with #a1 = 0. Then, there exists
exactly one spherical zero z /∈ R of p2 if and only if a0, a1 ∈ R and a0 > 0, a1 = 0.
This zero is generated by z = √

a0 i.
Proof. A spherical zero z /∈ R is characterized by A(#z, |z|) = B(#z, |z|) = 0,

where

A(#z, |z|) = α0a0 + α1a1 + α2a2 = 0 · a0 + 1 · a1 + #z · 1 = a1 + #z = 0,

B(#z, |z|) = β0a0 + β1a1 + β2a2 = 1 · a0 + 0 · a1 − |z|2 · 1 = a0 − |z|2 = 0.
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It follows that a1 ∈ R and thus, a1 = 0 and because of z /∈ R ⇒ z %= 0 we obtain
a0 = |z|2 > 0.

The last remainig case in which q4 is a complete square, is the following one:

q4(z) =
(
(z − c)(z − c)

)2
, c ∈ C\R.

If at least one of the coefficients a0, a1 of p2 is not real, both complex zeros, c, c of
q4 are double zeros, but produce the same isolated zero of p2 (cf. formula (3.8)), and
there are no other zeros of p2. If q4 is not a complete square and if at least one of
the coefficients a0, a1 of p2 is not real, there will be two isolated zeros of p2. Thus,
Niven’s theory has been confirmed.

Theorem 6.6. It is possible, that the companion polynomial q2n possesses pairs
of nonreal, complex-conjugate zeros of multiplicity two and that the corresponding
zeros of pn are isolated zeros.

Proof. We will present an example for this case.
Example 6.7. Let

p̂2(ẑ) := ẑ2 + â1ẑ + â0, where â1 :=
√

3
3

(3, 1, 1, 1), â0 :=
1
2
(1, 1, 1, 1).(6.6)

Since the real part of â1 is not vanishing, we apply the transformation (6.2), namely
ẑ = z −

√
3

2 and obtain

p2(z) := z2 + a1z + a0, where a1 :=
√

3
3

(0, 1, 1, 1), a0 := −1
4
(1, 0, 0, 0).(6.7)

For these coefficients the conditions of (6.4) are valid and the companion polynomial
is a complete square

q4(z) = (z2 + |a0|)2, where |a0| =
1
4
.(6.8)

The only (isolated) zero of p2 is

−
√

3
6

(0, 1, 1, 1),

which implies that the only (isolated) zero of p̃2 is

−
√

3
6

(3, 1, 1, 1).

In the end, we will quote Corollary 5, p. 388, [15] of Pogorui and Shapiro. In order
to understand the notation we give the following explanation: Rn is a polynomial of
degree n where the powers stand on the right side of the coefficients, correspondingly,
Ln is a polynomial where the powers are located on the left side of the coefficients.
The basic polynomial F∗

2n is what we called the companion polynomial q2n.
“Given a polynomial Rn (or Ln), there exist a one-to-one correspondence between

its nonspherical zeroes and the pairs of the complex-conjugate zeroes of the basic poly-
nomial F∗

2n as well as a one-to-one correspondence between the spherical zeroes of
Rn (or Ln) and the pairs of complex-conjugate zeroes of multiplicity 2 of the basic
polynomial F∗

2n.”
According to the second part of this corollary, the polynomial p2 defined in (6.7)

should have a spherical zero since the companion polynomial q4 defined in (6.8) has
a pair of complex-conjugate zeros of multiplicity 2. However, this is not the case as
we have shown in Example 6.7.
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7. Summary of the algorithm. For finding the zeros of

(1.3′) pn(z) :=
n∑

j=0

ajz
j, z, aj ∈ H, j = 0, 1, . . . , n, an = 1 , a0 %= 0, n ≥ 1

do the following steps:

1. Compute the real coefficients b0, b1, . . . , b2n of the companion polynomial q2n

by formula (3.2) on page 5. Make sure that they are real.
2. Compute all 2n (real and complex) zeros of q2n, (in MATLAB, use the com-

mand roots). Denote these zeros by z1, z2, . . . , z2n and order them (if neces-
sary) such that z2j−1 = z2j, j = 1, 2, . . . , n. If a specific z2j0−1 is real, then,
it means that z2j0−1 = z2j0 .

3. Define an integer vector ind (like indicator) of length n and set all components
to zero. Define a quaternionic vector Z of length n and set all components
to zero.
For j:=1:n do
(a) Put z := z2j−1.
(b) if z is real, Z(j) := z; go to the next step; end if
(c) Compute v := A(z)B(z) by formula (2.7), with the help of (2.3) to (2.5)

on page 4.
(d) if v = 0, put ind(j) := 1; Z(j) := z; go to the next step; end if
(e) if v %= 0, let (v1, v2, v3, v4) := v. Compute |w| :=

√
v2
2 + v3

3 + v2
4 , put

(3.8′) Z(j) :=
(
#(z),− |$(z)|

|w| v2,−
|$(z)|
|w| v3,−

|$(z)|
|w| v4

)
.

end if
end for

The result of this algorithm will be an integer vector ind and a quaternionic
vector Z, both of length n. If ind(j) = 1, it signals that the complex number Z(j)
generates a spherical zero of pn. In all other cases Z(j) will be an isolated zero of
pn. Though the quaternionic vector Z has length n, the number of pairwise distinct
entries may be smaller.

There are two delicate decisions to make in the above algorithm. In step 3(b) one
has to decide whether z is real. And in step 3(d) one has to decide whether v is zero.
Since a real zero of q2n is always a double zero and if one has not used the hints of
the end of Section 6 to improve on the precision of the real zeros, a test of the form
|$(z)| < 10−5 is appropriate. In our experience, the test for v = 0 can be carried
out in the form |v| < 10−10. As already noted, steps 3(b), 3(d) occur in particularly
constructed examples. In hundreds of random examples, we found that only step 3(e)
occurred. But nevertheless, it would be wise to add a correction step in the zero finder
for the companion polynomial q2n.
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