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Abstract. An adaptive ADER finite volume method on unstructured meshes is proposed.
The method combines high order polyharmonic spline WENO reconstruction with high order flux
evaluation. Polyharmonic splines are utilised in the recovery step of the finite volume method
yielding a WENO reconstruction that is stable, flexible and optimal in the associated Sobolev (Beppo-
Levi) space. The flux evaluation is accomplished by solving generalised Riemann problems across
cell interfaces. The mesh adaptation is performed through an a posteriori error indicator, which
relies on the polyharmonic spline reconstruction scheme. The performance of the proposed method
is illustrated by a series of numerical experiments, including linear advection, Burgers’ equation,
Smolarkiewicz’s deformational flow test, and the five-spot problem.
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1. Introduction. During the last 30 years, finite volume methods (FVM) have
gained great popularity as numerical schemes for hyperbolic problems. Classical FVM
are typically of low order (cf. e.g., [14, 16]). High order FVM include essentially non-

oscillatory (ENO) and the more sophisticated weighted essentially non-oscillatory

(WENO) schemes (see, e.g., [1, 8, 10, 16, 21, 22, 35] and references therein) for the
discretisation of the space variables. Available high order FVM often combine high
order space discretisations with one-step or multistep time stepping methods, such as
total variation diminishing Runge-Kutta (TVD-RK) methods. However, high order
TVD-RK methods are complicated to implement and, moreover, they have a reduced
region of absolute stability [9]. This essentially limits the order of TVD-RK time
discretisations [18].

In the WENO framework, a collection of stencils is first selected in the neighbour-
hood of each cell (control volume). For each stencil, a high order recovery function is
computed from the stencil’s cell average values. The WENO reconstruction for the
cell is then given by a weighted sum of the stencils’ recovery functions. The weights
are chosen so that unphysical oscillations in regions of low regularity of the solution
(e.g. near sharp fronts and shocks) are avoided. In available (multivariate) WENO
methods, local (multivariate) polynomial interpolation is used in the reconstruction
step. Using multivariate polynomial interpolation in WENO reconstructions, how-
ever, has restrictions. Indeed, when using polynomial interpolation, the size of each
stencil is required to match the dimension of the polynomial ansatz space; this re-
duces the flexibility in the stencil selection. This restriction is particularly severe for
unstructured meshes, where for the sake of numerical stability enhanced flexibility in
the stencil selection is of vital importance [1].

∗Department of Mathematics, University of Leicester, University Road, Leicester, LE1 7RH,
United Kingdom (ta57@le.ac.uk). This author acknowledges the support of The Commonwealth
Scholarship Commission in the UK.

†Department of Mathematics, University of Leicester, University Road, Leicester, LE1 7RH,
United Kingdom (Emmanuil.Georgoulis@mcs.le.ac.uk).

‡Department of Mathematics, University of Hamburg, Bundesstrasse 55, D-20146 Hamburg, Ger-
many (iske@math.uni-hamburg.de).

1



2 T. ABOIYAR, E. H. GEORGOULIS AND A. ISKE

Therefore, the development of stable high order FVM for hyperbolic problems is
still an ongoing challenge.

Recently, ADER methods were introduced in [31, 32], and further developed
in [27, 29, 33], to obtain finite volume schemes of arbitrary high order. In the concept
of ADER, Arbitrary high order DERivatives are used to construct high order flux
evaluations, using generalised Godunov methods. The high order flux evaluation of the
ADER method can be combined with high order finite volume space discretisations
(e.g., WENO reconstructions), leading to an ADER-FVM of arbitrary high order.
ADER schemes have very recently gained considerable popularity in a wide range of
applications from engineering and physics, see e.g., [6, 19, 20, 25, 30].

The application of ADER schemes to nonlinear hyperbolic problems is a subject
of active research. For the multi-dimensional case, ADER schemes on Cartesian grids
can be found in [20, 25, 28]. ADER methods in combination with the discontinuous
Galerkin method are introduced in [7]. Adaptive ADER methods on unstructured
triangular meshes have recently been developed in [13], giving more flexible efficient
high order ADER schemes. In [13], adaptive ADER methods are combined with high
order polynomial WENO reconstructions.

Mesh adaptivity is particularly important for the computational efficiency of
FVM. Indeed, the presence of lower dimensional locally singular behaviour of the
solutions to hyperbolic problems (e.g., sharp gradients and discontinuities) require
different resolutions in different regions of the computational domain. This can be
accomplished using adaptive methods.

This work aims at the development of new stable adaptive FVM on unstructured
meshes of arbitrary high order, both in space and in time, using the ADER method-
ology. More specifically, a novel framework for WENO reconstruction is proposed,
whereby kernel-based interpolation (rather than polynomial interpolation) is utilised
in the WENO reconstruction step. Kernel-based interpolation leads to ansatz spaces
of variable dimensions, thereby can be applied to WENO reconstructions based on
stencils of variable sizes, hence enhancing the flexibility of WENO reconstruction
schemes. Our preferred choice of kernels are the family of the radial polyharmonic

splines. Apart from the enhanced flexibility in the stencil selection, this particular
choice has specific advantages concerning the numerical stability of local interpola-
tion. Moreover, they are easily implemented in any space dimension. Furthermore,
polyharmonic spline reconstruction leads to natural choices of oscillation indicators,
as per required in the WENO reconstruction step. More specifically, the oscillation
indicators are defined through the natural Sobolev semi-norms associated with the
polyharmonic spline interpolation problem. For each stencil, the polyharmonic spline
interpolant is the unique minimiser of the Sobolev semi-norm among all interpolants
in the corresponding Sobolev space. Thus, the polyharmonic spline interpolant is –
in that sense – the least oscillatory interpolant in the Sobolev space, which in turn
improves the stability of the employed WENO reconstruction. This is supported by
the numerical experiments presented in this work.

This work is organised as follows. In Section 2, the basic features of the finite
volume method are discussed. In Section 3, we present the general framework of in-
terpolation using polyharmonic splines. This includes a discussion on the numerical
stability and other relevant properties of polyharmonic splines. Then, in Section 4,
WENO reconstruction, based on polyharmonic splines, is introduced, before high or-
der flux evaluation by the ADER method is described in Section 5. Finally, Sections 6
and 7 contain a series of numerical experiments, illustrating the good performance of
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the proposed method, in terms of accuracy, efficiency and numerical stability.

2. The Finite Volume Method. We consider the scalar conservation law

ut + ∇ · F (u) = 0, (2.1)

with u ≡ u(t,x) : I × Ω → R, for an open bounded computational domain Ω and a
time interval I := (0, tf ], for some final time tf > 0, with F (u) := (f1(u), . . . , fd(u))T

denoting the corresponding flux function. We equip (2.1) with the initial condition

u(0,x) = u0(x), x ∈ Ω, (2.2)

along with (standard) suitable boundary conditions on the inflow part ∂Ω−(t) of the
boundary ∂Ω, defined by

∂Ω−(t) := {x ∈ ∂Ω : F (u(t,x)) · n(x)) < 0},

with n(x) denoting the outward unit normal vector to ∂Ω at the point x ∈ ∂Ω.
The construction of the finite volume method for the problem (2.1), (2.2) works

as follows. The time interval I is first partitioned into sub-intervals (tn, tn+1] of length
τn := tn+1 − tn, for n = 0, . . . , N − 1, with t0 = 0 and tN = tf . Moreover, for each
n = 0, 1, . . . , N , the computational domain Ω is partitioned into (possibly different)
conforming shape-regular triangulations T n = {T}T∈T n , consisting of d-dimensional
closed simplices, i.e., triangles for d = 2 or tetrahedra for d = 3, which we shall refer
to as control volumes or cells.

Integrating (2.1) over a space-time control volume (tn, tn+1] × T , T ∈ T n, yields

ūT (tn+1) = ūT (tn)−
1

|T |

d+1
∑

j=1

∫ tn+1

tn

∫

∂Tj

F (u)·nj dsdt for n = 0, . . . , N−1, (2.3)

where

ūT (tn) :=
1

|T |

∫

T

u(tn,x)dx for n = 0, . . . , N

is the cell average of the solution u on the control volume T ∈ T n at time t = tn.
Moreover, ∂Tj , j = 1, . . . , d+1, denote the faces of the simplex T and nj is the outward
unit normal vector to the face ∂Tj . Finally, |T | and |∂Tj | are the d-dimensional volume
of T and the (d − 1)-dimensional volume of the face ∂Tj , respectively.

We approximate (2.3) by the (standard, one-step) finite volume method,

ūn+1
T = ūn

T −
τn

|T |

d+1
∑

j=1

F̃n
T,j , for n = 0, . . . , N − 1, (2.4)

where ūn
T is an approximation to ūT (tn) and the numerical flux

F̃n
T,j ≈

1

τn

∫ tn+1

tn

(

∫

∂Tj

F (u) · nj ds

)

dt (2.5)

is an approximation to the time-average flux across the face ∂Tj , j = 1, . . . , d + 1, of
the control volume T ∈ T n during the time interval (tn, tn+1], n = 0, . . . , N − 1.
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More specifically, upon discretisation of both the temporal and spatial integrals
in (2.5), using a Gaussian quadrature with a number of qt and qx quadrature points
in time and in space, respectively, the numerical flux F̃n

T,j is chosen as

F̃n
T,j :=

qt
∑

k=1

Kk|∂Tj |

qx
∑

h=1

LhF (un,k,h
T,j ) · nj , (2.6)

where un,k,h
T,j are approximations to the function values u(tGk

,xGh
) (also known as

states of the solution) at the Gaussian integration points (tGk
,xGh

) with correspond-
ing weights (Kk, Lh), for 1 ≤ k ≤ qt and 1 ≤ h ≤ qx.

We remark that the (standard) finite volume method (2.4) is only a low order
method. However, high order reconstruction techniques can be used to retrieve higher
order approximations of the problem (2.1), (2.2) (see, e.g., [14, 16] and references
therein). To avoid spurious oscillations near steep gradients and discontinuities, we
shall employ WENO-type reconstructions relying on polyharmonic spline kernels for
the interpolation step, rather than (standard) multivariate polynomials. The next
section provides a brief discussion on kernel-based interpolation from cell average
values using polyharmonic splines.

3. Interpolation of Cell Averages by using Polyharmonic Splines. Given
a conforming triangulation T = {T}T∈T and a fixed cell T ∈ T , we consider a stencil

S := {R}R∈S ⊂ T ,

of size #S ∈ N, where we assume that T lies in S, i.e., T ∈ S. Note that any cell
R ∈ S is associated with a linear functional λR, defined by

λR(u) =
1

|R|

∫

R

u(x) dx, for R ∈ S and u(x) ≡ u(t,x),

i.e., λR is the cell average operator for R. We assume that the functionals {λR}R∈S

are linearly independent.
Now for the purpose of reconstructing given cell averages {λR(u)}R∈S on stencil

S ⊂ T , we consider using an interpolant of the form

s(x) =
∑

R∈S

αRλy

Rφ(‖x − y‖) + p(x), p ∈ Pd
m, (3.1)

where φ(‖ · ‖) : R
d → R is a (fixed) radial kernel function w.r.t. the Euclidean norm

‖ · ‖ on R
d and λy

R denotes action of functional λR on variable y, i.e.,

λy

Rφ(‖x − y‖) =
1

|R|

∫

R

φ(‖x − y‖) dy for R ∈ S.

Moreover, Pd
m denotes the space of all d-variate polynomials of order at most m (i.e.,

degree at most m − 1), so that any polynomial p ∈ Pd
m can be represented as

p(x) =
∑

|γ|<m

βγx
γ ,

where γ = (γ1, . . . , γd) ∈ N
d
0 is a multi-index of degree |γ| := γ1 + . . . + γd.
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Now on given cell averages {λR(u)}R∈S , we consider solving the interpolation
problem u

∣

∣

S
= s
∣

∣

S
, i.e.,

λR(u) = λR(s) for all R ∈ S. (3.2)

To this end, we need to determine r + q parameters, where q = dim(Pd
m) =

(

m−1+d
d

)

and r = #S. Noting that the linear conditions (3.2) amount to r equations, we
consider solving (3.2) under linear constraints

∑

R∈S

αRλR(p) = 0 for all p ∈ Pd
m,

leading to the (r + q) × (r + q) linear equation system A · γ = λ of the form

[

A P
PT 0

] [

α
β

]

=

[

λ
0

]

(3.3)

with unknown vectors α = (αR)R∈S ∈ R
r and β = (βγ)|γ|<m ∈ R

q, matrices

A = (λx

T λy

Rφ(‖x − y‖))
T,R∈S ∈ R

r×r and P = (λR(xγ))R∈S,|γ|<m ∈ R
r×q,

and right hand side λ = (λR(u))R∈S ∈ R
r.

We finally remark that the linear system (3.3) has a solution, thus giving an
interpolant s of the form (3.1), provided that the radial kernel φ is conditionally

positive definite of order m on R
d (see [15] for details). Moreover, the solution will be

unique, if the set {λR}R∈S of cell average operators is Pd
m-unisolvent, i.e., for p ∈ Pd

m

the implication

λR(p) = 0 for all R ∈ S =⇒ p ≡ 0

holds, so that any polynomial p ∈ Pd
m can uniquely be reconstructed from its cell

averages {λR(p)}R∈S . Finally, note that the interpolation scheme is invariant under
translations and rotations.

3.1. Polyharmonic Spline Interpolation. We now make the specific choice
φ ≡ φd,k : [0,∞) → R in (3.1), where

φd,k(‖ · ‖) =

{

‖ · ‖2k−d for d odd;
‖ · ‖2k−d log(‖ · ‖) for d even,

(3.4)

for 2k > d. In this case, m = k − ⌈d/2⌉ + 1 is the order of the conditionally positive
definite kernel φd,k. The so obtained class of radial kernels is known as polyharmonic

splines.
We pair each polyharmonic spline φd,k with the Beppo-Levi space

BLk(Rd) := {v :Dγv ∈ L2(Rd) for all |γ| = k} ⊂ C(Rd),

equipped with the semi-norm | · |BLk(Rd), being defined by

|v|2BLk(Rd) :=
∑

|γ|=k

(

k

γ

)

‖Dγv‖2
L2(Rd). (3.5)
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Due to Duchon [4], the resulting interpolant s ∈ BLk(Rd) in (3.1) satisfying (3.2) is
the unique minimiser of the energy | · |BLk(Rd) among all interpolants v ∈ BLk(Rd)

satisfying v
∣

∣

S
= u

∣

∣

S
, i.e., we have

|s|BLk(Rd) ≤ |v|BLk(Rd) for every v ∈ BLk(Rd) with v
∣

∣

S
= s
∣

∣

S
. (3.6)

This optimality of s gives rise to use the energy functional | · |BLk(Rd) as an oscillation
indicator for the ensuing WENO reconstruction algorithm. In fact, since the energy
value |s|BLk(Rd) reflects the minimum of high order variations among all interpolants

in BLk(Rd), the semi-norm |·|BLk(Rd) is a very suitable and most obvious choice for the
WENO oscillation indicator, which – in contrast to previous WENO reconstruction
schemes – comes naturally with the utilised interpolation scheme. Further details on
this are explained in the following section.

A prominent example from the family of polyharmonic spline kernels is the thin-

plate spline φ ≡ φ2,2(‖ · ‖) = ‖ · ‖2 log(‖ · ‖), which is a fundamental solution of the
biharmonic equation on R

2. For the thin-plate spline kernel, the interpolant s in (3.1)
has the form

s(x) =
∑

R∈S

αRλy

R

(

‖x − y‖2 log(‖x − y‖)
)

+ β1 + β2x1 + β3x2,

where x = (x1, x2)
T ∈ R

2, and the corresponding Beppo-Levi semi-norm

|s|2BL2(R2) =

∫

R2

(

s2
x1x1

+ 2s2
x1x2

+ s2
x2x2

)

dx

gives the bending energy of a thin-plate of infinite extent.

3.2. Stable Evaluation of Polyharmonic Spline Interpolants. The nu-
merical stability of interpolation by radial kernels is a critical issue in general, and
so particularly for polyharmonic spline interpolation. This is due to a large spectral
condition number of the collocation matrix A in (3.3), especially in situations, where
the functionals {λR}R∈S are nearly (i.e., numerically) linearly dependent. For fur-
ther details concerning the conditioning of the system (3.3), we refer to the seminal
work [17] of Narcowich and Ward.

As a remedy, a preconditioning strategy for Lagrange interpolation by polyhar-
monic splines is developed in [11]. The basic idea in [11] is to work with a locally
scaled interpolation problem. In this section, we adapt the preconditioning method
of [11] to the specific situation of this work.

In the present setting, the numerical stability of interpolation from cell average
values is critical in situations, where the minimal Euclidean distance between barycen-
tres of the distinct cells in a stencil S ⊂ T is small. This is supported by our numerical
observations. Moreover, this is consistent with the results in [17], where it is proven
(for the case of Lagrange interpolation) that the spectral condition number of the
interpolation matrix is bounded above by a monotonically decreasing function of the
minimal Euclidean distance between the interpolation points.

As we shall see in Section 5, a stable implementation of the ADER method does
not only require stable evaluations of the interpolants, but it also needs stable eval-
uations of their derivatives, necessitating the implementation of an efficient precon-
ditioner. To this end, we extend the construction of the preconditioner in [11] (for
Lagrange interpolation) to the present case of interpolation from cell averages.
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We begin by considering the Lagrange representation of the interpolant s in (3.1),
as given by

s(x) =
∑

R∈S

ℓR(x)λR(u), (3.7)

where the Lagrange basis functions ℓR are uniquely defined by the cardinal interpo-
lation conditions

λR(ℓT (x)) =

{

1 for T = R;
0 for T 6= R;

for T,R ∈ S,

in combination with the moment conditions
∑

R∈S

ℓR(x)λR(p) = p(x) for all p ∈ Pd
m,

requiring exact reconstruction of polynomials in Pd
m.

The Lagrange basis functions ζ(x) = (ℓT (x))R∈S ∈ R
r can then be evaluated at

any fixed argument x ∈ R
d by the solution of the linear system
[

A P
PT 0

] [

ζ(x)
η(x)

]

=

[

θ(x)
κ(x)

]

, (3.8)

or, A · µ(x) = ν(x), in short-hand notation, where

η(x) = (ηγ(x))|γ|<m ∈ R
q,

θ(x) = (λy

Rφ(‖x − y‖))R∈S ∈ R
r,

κ(x) = (xγ)|γ|<m ∈ R
q.

The Lagrange representation (3.7) of the interpolant s is particularly useful when
analysing the effect of local affine transformations. To see this, we consider for a fixed
stencil S and fixed cell T ∈ S the affine map FT : R

d → R
d, defined by

FT (x) = (x − bT )/hT ,

where bT and hT denote the barycentre and the diameter of T , respectively. We per-
form the change of variables x̂ = FT (x) and consider the corresponding transformed
interpolation problem u

∣

∣

Ŝ
= s
∣

∣

Ŝ
, i.e.,

λR̂(u) = λR̂(s), for all R̂ ∈ Ŝ, (3.9)

on the pulled-back stencil Ŝ := {R̂}R̂∈Ŝ , where R̂ := FT (R) for R ∈ S.
This leads us to the linear system, corresponding to (3.8),

[

Â P̂

P̂T 0

] [

ζ̂(x̂)
η̂(x̂)

]

=

[

θ̂(x̂)
κ̂(x̂)

]

,

or, Â · µ̂(x̂) = ν̂(x̂), in short hand notation, where

ζ̂(x̂) =
(

ℓ̂R̂(x̂)
)

R̂∈Ŝ
∈ R

r,

η̂(x̂) = (η̂γ(x̂))|γ|<m
∈ R

q,

θ̂(x̂) =
(

λŷ

R̂
φ(‖x̂ − ŷ‖)

)

R̂∈Ŝ
∈ R

r,

κ̂(x̂) = (x̂γ)|γ|<m ∈ R
q,
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and

Â =
(

λx

T̂
λy

R̂
φ(‖x − y‖)

)

T̂ ,R̂∈Ŝ
∈ R

r×r and P̂ =
(

λR̂(xγ)
)

R̂∈Ŝ,|γ|<m
∈ R

r×q.

Note that the Lagrange basis ζ̂(x̂) immediately yields the solution s of the trans-
formed interpolation problem (3.9) by

s(x̂) =
∑

R̂∈Ŝ

ℓ̂R̂(x̂) · λR̂(u).

Moreover, note that any derivative Dγζ(x), |γ| < m, of the Lagrange basis functions
ζ(x) can be expressed as

Dγζ(x) = h
−|γ|
T Dγ ζ̂(x̂) for every x ∈ R

d. (3.10)

Using (3.10) we are now in a position to propose a numerically stable evaluation of
Dγs for |γ| < m. This is done by rewriting Dγs(x) as

Dγs(x) = 〈Dγζ(x), λ〉 = 〈h
−|γ|
T Dγ ζ̂(x̂), λ〉 = h

−|γ|
T 〈Dγµ̂(x̂),λ〉

= h
−|γ|
T 〈Â−1Dγ ν̂(x̂),λ〉 = h

−|γ|
T 〈Dγ ν̂(x̂), Â−1λ〉,

where 〈·, ·〉 denotes the Euclidean inner product, and λ is the right hand side in (3.3).
Due to the conformity and the shape-regularity assumptions on the simplicial mesh
T , T is locally quasi-uniform, i.e., the sizes and shapes of neighbouring simplices in
a stencil S ⊂ T are not subject to strong variations. In this case, the matrix Â has
a small spectral condition number, and so the evaluation of the derivative

Dγs(x) = h
−|γ|
T 〈Dγ ν̂(x̂),b〉

is numerically stable by solving the preconditioned system Âb = λ rather than solving
the unpreconditioned system Aγ = λ in (3.3).

4. Kernel-Based WENO Reconstruction. We shall now apply polyharmonic
spline interpolation to weighted essentially non-oscillatory (WENO) methods for the
reconstruction step of finite volume methods, and so obtain kernel-based WENO re-
construction methods.

4.1. Oscillation Indicator and Weights. For each cell T ∈ T , we consider a
finite number of pairwise distinct stencils Si ⊂ T with T ∈ Si, each giving a unique
polyharmonic spline interpolant si, which can be computed from the available cell
averages in (2.4). We then define the WENO reconstruction s as a convex combination

s :=
∑

i

ωisi with
∑

i

ωi = 1 (4.1)

of the interpolants si with non-negative weights ωi. We remark that the choice of
the weights ωi is crucial in order to damp down spurious oscillations in the numerical
solution. In fact, ωi should be small whenever si is highly oscillatory (indicating a
large gradient/discontinuity of the solution across the region of the stencil Si); on the
contrary, ωi should be large whenever si varies slowly in the region of the stencil Si

(indicating a region of local smoothness).
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As already explained in the previous section, the Beppo-Levi semi-norm |·|BLk(Rd)

in (3.5) is a suitable oscillation measure for elements from the Beppo-Levi space
BLk(Rd). Moreover, due to the optimality of polyharmonic spline interpolation in
(3.6), it is most natural to define the oscillation indicator I : BLk(Rd) → [0,∞) by

I(v) := |v|2BLk(Rd) for v ∈ BLk(Rd).

For fixed parameters ǫ > 0 and ρ ∈ N, let

ω̃i := (ǫ + I(si))
−ρ, (4.2)

and define the non-negative weights ωi in (4.1) by

ωi :=
ω̃i

∑

j ω̃j

,

so that
∑

i ωi = 1.
The parameter ǫ in (4.2) is a small positive number used to avoid division by

zero. We remark that the numerical results are usually not sensitive to the choice of
ǫ. In general, large values ǫ are admissible for smooth regions of the solution, but
may lead to small (undesired) oscillations near shocks. Therefore, smaller values ǫ
are preferably used for problems with discontinuous/rapidly varying solutions. In our
numerical examples, we let ǫ = 10−6 (cf. [10, 13]).

The positive integer ρ in (4.2) serves to control the sensitivity of the weights with
respect to the oscillation I. Note that in the limit, when ρ tends to infinity, the
resulting WENO scheme becomes a classical ENO scheme. In contrast, when ρ tends
to zero, this leads to a WENO scheme with equal weights ωi, which may become
oscillatory or even unstable. In our implementation we let ρ = 2, which turns out to
be large enough to effectively reduce undesired oscillations near discontinuities, but
small enough to improve upon the classical ENO scheme.

4.2. Stencil Selection. Now we discuss the selection of the stencils Si. As
documented in previous work [8, 13, 24] on polynomial-based WENO reconstruction,
the selection of stencils is a critical and challenging task which influences heavily the
approximation behaviour of the resulting WENO reconstruction.

In the case of polynomial WENO reconstruction schemes, the number of cells
#Si in each stencil Si is required to match the dimension of the polynomial space
(cf., e.g., [13] and the references therein). This severe restriction, however, diminishes
the desired flexibility in the stencil selection, which is particularly critical in regions
where the solution is rapidly varying or even discontinuous.

In contrast, the WENO reconstruction using polyharmonic splines described above
requires that for any stencil Si its size r = #Si exceeds the dimension q of the poly-
nomial space, i.e., r ≥ q. For instance, in two dimensions, thin-plate spline WENO
reconstruction merely requires that each stencil contains at least three triangles. This
additional flexibility gives polyharmonic spline WENO reconstructions a clear ad-
vantage over polynomial WENO reconstruction schemes when applied to complex or
unstructured grids.

Nevertheless, given the additional flexibility in the stencil design, the construction
of suitable stencils requires particular care. Motivated by previous work [8, 13, 24],
three different types of stencils are constructed: isotropic centred stencils, anisotropic
forward sector stencils and backward sector stencils. We describe the construction of
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the three different types of stencils, restricting the discussion to the two-dimensional
setting, for the sake of simplicity. The generalisation of these constructions to three
(and higher) dimensions is rather intuitive: we refer to the algorithm of Dumbser and
Käser [5] for further details.

For a cell T ∈ S, the centred stencils are constructed by recursively including
levels of von Neumann neighbours to T . The level-0 von Neumann neighbours are
defined to be the cells sharing a common edge with T . The level-1 von Neumann
neighbours are, in turn, the cells sharing a common edge with level-0 von Neumann
neighbours of T , and so forth (see, e.g., [13] for a formal definition). Figure 4.1 shows
three different examples of cell centred stencils around one triangular cell T ∈ S (red),
with each stencil comprising seven triangles (one red, six green) lying in the level-1
von Neumann neighbourhood of T .

Fig. 4.1. Three cell centred stencils of size seven around triangle T (red).

The construction of forward sector stencils is described as follows. A forward
sector of a cell T is a sector spanned by two different edges of T that contains T itself
(see Figure 4.2 for an illustration). Therefore, any triangular cell T has three different
forward sectors. Now, for each forward sector of T , a corresponding forward sector
stencil may only contain a finite (but arbitrary) number of cells whose barycentres lie
in that forward sector. Figure 4.2 shows three different examples for forward sector
stencils of one triangle T ∈ S (red), each comprising seven triangles (one red, six
green).

Fig. 4.2. Three forward stencils of size seven generated by triangle T (red). The three corres-
ponding forward sectors are marked by dashed lines, respectively.

Finally, the backward sectors of a cell T are defined using the midpoints of the
edges in T : the backward sector corresponding to each midpoint me of an edge e of T
is the sector with origin me and spanned by the lines passing through the midpoints of
the other two edges in T lying opposite to e (see Figure 4.3 for an illustration). The
corresponding backward sector stencil may contain a finite (but arbitrary) number
of triangles whose barycentres lie in that backward sector. Figure 4.3 shows three
different examples for backward sector stencils of one triangle T ∈ S (red), each
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comprising seven triangles (one red, six green).

Fig. 4.3. Three backward stencils of size seven generated by triangle T (red). The three corres-
ponding backward sectors are marked by dashed lines, respectively.

After extensive numerical tests in two dimensions, we observed that seven stencils
(one centred, three forward sector, and three backward sector stencils) of size four are
sufficient for WENO reconstructions using thin-plate splines, φ2,2(‖·‖) = ‖·‖2 log(‖·‖),
when the problem admits smooth solutions. On the other hand, for problems with
locally discontinuous or rapidly varying solutions, seven stencils of size seven appear
to provide the required flexibility to reduce numerical oscillations. For reconstructions
using φ2,3(‖·‖) = ‖·‖4 log(‖·‖) it was observed that using nine stencils (three centred,
three forward sector, and three backward sector stencils) of size nine gave a stable
reconstruction in all cases.

In contrast to this, in our previous work [13] on ADER schemes using polynomial
WENO reconstructions, we rely, for each triangle T , on nine stencils (three centred,
three forward, three backward), where the number of triangles in each stencil is fixed
by the dimension of the polynomial space.

On the basis of our numerical observations, we remark that it is possible to use a
variable stencil size in various parts of the computational domain: one can use stencils
of smaller size in smooth regions of the solution and larger size stencils in non-smooth
ones, resulting to substantial savings in practical computations. We refer to [2] for a
detailed discussion on adaptive stencil selection.

5. High Order Flux Evaluation by using the ADER Method. In this
section, we give a brief account of the ADER method for flux evaluation of arbitrary
high order [27, 32, 34].

5.1. Flux Evaluation. To evaluate the numerical flux (2.6), we have to compute

the approximations un,k,h
T,j to the function values u(tGk

,xGh
).

In the ADER method, the term u(tGk
,xGh

) is approximated via a truncated
Taylor series expansion w.r.t. the time variable. In this setting, a local (orthogonal)
coordinate system (τ, xn) is used, where τ is the local time τ := t−tn with t ∈ [tn, tn+1]
and xn := x − xGh

, i.e., xn is a local coordinate oriented along the outer normal
vector, with origin xGh

. Then, the interface state u(τ, 0) (i.e., the state at x = xGh
)

is approximated via the Taylor series expansion

u(τ, 0) ≈ um(τ, 0) := u(0, 0) +

m−1
∑

j=1

τ j

j!
∂

(j)
t u(0, 0), (5.1)

where m is the local approximation order of the polyharmonic spline interpolation
scheme used in the WENO reconstruction [11]. According to the ADER method, the
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Taylor expansion (5.1) is used to evaluate um at any intermediate time tGk
∈ [tn, tn+1],

giving an m-th order approximation to u(tGk
, 0).

The evaluation of the time derivatives of u on the right hand side of (5.1) is the
subject of discussion in the following two subsections.

The leading term. The leading term u∗ := u(0, 0) in the expansion (5.1),
commonly known as the Godunov state of u, represents the first-instant interaction of
the initial data via the PDE (2.1). The Godunov state u∗ is, according to the classical
Godunov method, computed by solving a generalised Riemann problem (GRP) at the
cell interface.

Now at each Gaussian point xGh
on a cell interface, the original PDE problem can

be approximated by a series of one-dimensional GRPs oriented towards the normal
direction of the cell interface [34]. More specifically, let ∂n denote the derivative in
the direction normal to the interface (i.e., the direction of xn), let sL denote the
WENO reconstruction (on the actual cell T ), and let sR be the corresponding WENO
reconstruction of the adjacent cell (with common interface to T ). Then, the one-
dimensional GRP is defined by the PDE

vt + ∂nF (v) = 0

with initial conditions

v(0, xn) =

{

uL := lim
x→x

−

Gh

sL(x) for xn < 0,

uR := lim
x→x

+

Gh

sR(x) for xn > 0.

We refer to uL and uR as left and right states, respectively.

The higher order derivatives. To compute the high order time derivatives

∂
(j)
t u(t,x), j = 1, . . . ,m − 1, at the local interface (0, 0), we shall employ the classi-

cal Cauchy-Kowaleskaja procedure (also known as Lax-Wendroff procedure), whereby
we replace the time derivatives with spatial derivatives. This is done by using the
governing PDE (2.1).

To be more precise, the Cauchy-Kowaleskaja procedure is formulated as follows:
the PDE (2.1) can be rewritten as

ut = −
d
∑

i=1

f ′
i(u)uxi

, (5.2)

where f ′
i(u) = ∂fi(u)

∂u
, i = 1, . . . , d, thereby expressing ut by first order space deriva-

tives. Now the second order time derivative utt can be computed via

utt = −
d
∑

i=1

(

f
′′

i (u)utuxi
+ f ′

i(u)utxi

)

,

where the mixed derivatives utxi
, i = 1, . . . , d, are obtained by differentiating (5.2)

with respect to xi,

utxj
= −

d
∑

i=1

(

f
′′

i (u)uxi
uxj

+ f ′
i(u)uxixj

)

, for j = 1, . . . , d,

and so on for the higher order derivatives [31].
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Therefore, the problem of computing the time derivatives of u in (5.1) can be
reduced to the problem of computing the unknown spatial derivatives at the quadra-
ture points on the cell interfaces. To this end, following [13, 32], we first linearise the
PDE (2.1) about the Godunov state u∗, before we differentiate the linearised PDE to
arrive at

ϕγ
t + ∇ · F ∗(ϕγ) = 0,

with F ∗(v) = (f ′
1(u

∗)v, . . . , f ′
d(u

∗)v)T and ϕγ := Dγ ũ, for multi-indices γ, |γ| < m,
where ũ is the solution to the linearised problem

ũt + ∇ · F ∗(ũ) = 0.

The computation of ϕγ at xGh
is performed via the solution of the (standard)

Riemann problem [34]

ϕγ
t + ∂nF ∗(ϕγ) = 0

with initial conditions

ϕγ(0, xn) =

{

lim
x→x

−

Gh

DγsL(x) for xn < 0,

lim
x→x

+

Gh

DγsR(x) for xn > 0.

The so computed Godunov state u∗ and the corresponding higher order values ϕγ ,
|γ| < m, are, in combination with the Cauchy-Kowaleskaja procedure, used to obtain

the desired approximations to the time derivatives ∂
(j)
t u(0, 0) for 0 ≤ j ≤ m − 1.

These in turn, when inserted into the Taylor series expansion (5.1), yield m-th order

approximations un,k,h
T,j of the function values u(tGk

,xGh
).

In summary, high order flux evaluation using the ADER method requires the
solution of one (possibly nonlinear) generalised Riemann problem (GRP) and a se-
quence of m − 1 linear (standard) Riemann problems for the space derivatives. This
renders the ADER method as a high order generalisation of the classical Godunov
method. For further details concerning the ADER method, we refer to the seminal
papers [27, 32, 34] and references therein.

5.2. The CFL Condition. To maintain the stability of the ADER method, we
follow our previous work [13], where the time step size τn is restricted by the CFL

condition,

τn ≤ min
T∈T n

ρT

ηmax
T

,

where ρT is the radius of the inscribed (d − 1)-dimensional sphere of a cell T ∈ T n

and

ηmax
T := max |F ′(u) · n| with F ′(u) := (f ′

1(u), . . . , f ′
d(u))T

denotes the maximum normal characteristic speed of the flux, where the maximum
is taken over all Gaussian integration points of the cell interfaces of T (see [13] for
further details).

6. Numerical Results on Quasi-Uniform Triangular Meshes. We have
implemented the proposed ADER method in two space dimensions (i.e., d = 2) to
evaluate its performance in practice. For the WENO reconstruction step, we work
with two different polyharmonic spline kernels in (3.4): (a) thin-plate splines φ2,2 of
order m = 2; (b) φ2,3 of order m = 3.
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6.1. Linear Advection. We consider solving the linear advection equation

ut + ux1
+ ux2

= 0 where x = (x1, x2)

for u ≡ u(t,x) : [0, 1] × [−0.5, 0.5]2 → R with the initial condition

u0(x) = u(0,x) = sin2

(

π

(

x1 +
1

2

))

· sin2

(

π

(

x2 +
1

2

))

and with periodic boundary conditions, so that u0(x) ≡ u(t = 0,x) ≡ u(t = 1,x).
The numerical experiments are performed on a sequence of unstructured quasi-

uniform triangular meshes of decreasing average meshsizes h = 2−ℓ, for ℓ = 3, 4, 5, 6, 7.
The resulting approximation errors Ep in the Lp-norms, p ∈ {1, 2,∞}, together with
the corresponding convergence rates kp, for kernels φ2,2 and φ2,3, respectively, are
recorded in Tables 6.1 and 6.2.

Table 6.1

Linear advection. WENO reconstruction by φ2,2 on quasi-uniform meshes.

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 5.3421 · 10−2 − 6.9206 · 10−2 − 1.9900 · 10−1 −
1/16 9.9088 · 10−3 2.44 1.3099 · 10−2 2.40 4.2914 · 10−2 2.21
1/32 2.1862 · 10−3 2.17 3.0085 · 10−3 2.12 1.1495 · 10−2 1.90
1/64 5.3530 · 10−4 2.03 7.3156 · 10−4 2.04 3.1629 · 10−3 1.86
1/128 1.2837 · 10−4 2.06 1.7544 · 10−4 2.07 8.3581 · 10−4 1.92

Table 6.2

Linear advection. WENO reconstruction by φ2,3 on quasi-uniform meshes.

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 6.1728 · 10−2 − 7.3862 · 10−2 − 1.8427 · 10−1 −
1/16 7.6627 · 10−3 3.01 9.3616 · 10−3 2.98 2.5205 · 10−2 2.87
1/32 1.0337 · 10−3 2.89 1.2984 · 10−3 2.85 3.5693 · 10−2 2.82
1/64 1.3658 · 10−4 2.92 1.6920 · 10−4 2.94 5.1608 · 10−4 2.80
1/128 1.7192 · 10−5 2.99 2.2355 · 10−5 2.92 7.0106 · 10−5 2.88

Note that in the case of thin-plate spline WENO reconstruction, we obtain second
order convergence (see Table 6.1), whereas for WENO reconstruction by the kernel
φ2,3 in (3.4) we obtain third order convergence (see Table 6.2). These convergence
rates comply with the theoretical results in [11] concerning local approximation orders
for Lagrange interpolation by polyharmonic splines. Moreover, we remark that the
numerical results in Tables 6.1 and 6.2 are comparable with those obtained in [13]
(for polynomial WENO reconstruction), but at smaller computational costs, due to a
smaller number of stencils and their (variable) sizes (cf. the discussion at the end of
Section 4.2).

6.2. Burgers’ Equation. We consider solving the nonlinear inviscid Burgers’
equation

ut +
1

2

(

u2
)

x1
+

1

2

(

u2
)

x2
= 0 where x = (x1, x2) (6.1)
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for u ≡ u(t,x) : [0, 0.1] × [−1, 1]2 → R, with initial condition

u0(x) ≡ u(0,x) =
1

4
+

1

2
sin(π(x1 + x2))

along with periodic boundary conditions. The exact solution u of this problem is
given by the solution of the implicit equation

u =
1

4
+

1

2
sin(π((x1 − ut) + (x2 − ut))).

The numerical experiments are performed on a sequence of unstructured quasi-
uniform triangular meshes of decreasing average meshsizes h = 2−ℓ, for ℓ = 3, 4, 5, 6, 7.
The numerical results are shown in Tables 6.3 and 6.4. Note that the obtained conver-
gence rates are similar to those in the previous numerical example concerning linear
advection and, in particular, comply also with the theoretical results in [11]. Finally,
the numerical results presented here are comparable with those in [13] (for polynomial
WENO reconstruction), but at smaller computational costs, due to a smaller number
of stencils.

Table 6.3

Burgers’ equation. WENO reconstruction by φ2,2 on quasi-uniform meshes.

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 8.1771 · 10−2 − 6.2890 · 10−2 − 1.8409 · 10−1 −
1/16 1.8045 · 10−2 2.18 1.4170 · 10−2 2.15 4.3240 · 10−2 2.09
1/32 4.4844 · 10−3 2.00 3.4782 · 10−3 1.92 1.2590 · 10−2 1.78
1/64 1.0862 · 10−3 2.04 1.1468 · 10−3 1.78 3.4926 · 10−3 1.85
1/128 2.6412 · 10−4 2.04 2.8472 · 10−4 2.01 9.4887 · 10−4 1.88

Table 6.4

Burgers’ equation. WENO reconstruction by φ2,3 on quasi-uniform meshes.

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 6.3527 · 10−2 − 4.8526 · 10−2 − 1.5243 · 10−1 −
1/16 9.9128 · 10−3 2.68 7.3650 · 10−3 2.72 2.4624 · 10−2 2.63
1/32 1.3373 · 10−3 2.89 1.0215 · 10−3 2.85 3.4390 · 10−3 2.84
1/64 1.8292 · 10−4 2.87 1.3497 · 10−4 2.92 4.6394 · 10−4 2.89
1/128 2.3672 · 10−5 2.95 1.7106 · 10−5 2.98 8.6155 · 10−5 2.81

6.3. The Smolarkiewicz Deformational Flow Test. We apply the proposed
ADER method to the Smolarkiewicz deformational flow test [23], being regarded
as a challenging benchmark problem for the evaluation of numerical methods for
atmospheric flow problems. In this case, we consider solving the hyperbolic equation

ut + σ1(x)ux1
+ σ2(x)ux2

= 0 where x = (x1, x2)

on the computational domain Ω = [100, 100]2, where

σ1(x) = 8k sin(kx1) sin(kx2) and σ2(x) = 8k cos(kx1) cos(kx2)
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for k = 4π/100. The highly deformational velocity field produces symmetric counter-
rotating vortices (displayed in Figure 6.1), resulting in a multiscale behaviour of the
flow. The initial condition is given by

u0(x) =

{

1 − r(x)/15 for r(x) ≤ 15;

0 otherwise;

where r(x) =
√

(x1 − 50)2 + (x2 − 50)2, i.e., the compactly supported surface u0(x)
is given by a cone of unit height and radius 15 centred at the midpoint (50, 50) of Ω.
Figure 6.1 shows the steady velocity field, along with a contour plot for the cone
u0(x). Note that the support of the initial condition u0(x) overlaps with six vortices.

0 50 100
0

50

100

x
1

x
2

Fig. 6.1. Smolarkiewicz deformational flow test. Velocity field and contours of initial condition.

The analytical solution u(t,x) of the Smolarkiewicz deformational flow test ex-
hibits spiral distributions of mass densities winding gradually tighter (at increasing
time) within the square vortex cells (we refer to [26] for a detailed discussion on the
Smolarkiewicz deformational flow test). Therefore, as the solution u(t,x) evolves in
time, this results in fine filaments of the solution’s profile, thereby introducing smaller
scales, which may become very small relative to the resolution of the triangular mesh.

In the application of the proposed ADER method to the Smolarkiewicz deforma-
tional flow test, we work with thin-plate spline WENO reconstruction on an unstruc-
tured quasi-uniform triangular mesh of average meshsize h = 1 and for a constant
time step size τn ≡ τ = T/10000, where T = 2637.6, following [23]. Figure 6.2 shows
our numerical solution at times t = 3T/200, 3T/100, 9T/200, 3T/50, 4T/50, and
T/10, respectively.

Also, cross-sections of the numerical solution along the horizontal straight line
{(x1, 50) : 0 ≤ x1 ≤ 100} ⊂ Ω are, along with the corresponding cross-sections of the
exact solution u(t,x), provided in Figure 6.3 at times t = T/100, 3T/200, 3T/50, and
T/10, respectively.

We found that the numerical solution approximates the analytical solution well
in the time interval [0, T/50] (e.g. for times t1 = T/100 and t2 = 3T/200), even in
the vicinity of sharp gradients. However, for larger times t (e.g. for times t3 = 3T/50
and t4 = T/10) the approximation deteriorates and a reasonable amount of numerical
diffusion is observed.

The deterioration of accuracy of the numerical solution can be explained by the
increasingly multiscale behaviour of the exact solution as time evolves. Indeed, the
smallest scales of the exact solution are, at any time t ∈ [0, T/50], well-resolved by
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(a) t = 3T/200 (b) t = 3T/100

(c) t = 9T/200 (d) t = 3T/50

(e) t = 4T/50 (f) t = T/10

Fig. 6.2. Smolarkiewicz’s deformational flow test. Numerical solution at six different times.
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the meshsize of the (fixed) triangular mesh used. For larger times, however, the
numerical solution fails to capture the increasingly finer scales as the mesh is kept
fixed. Nevertheless, the numerical stability of the proposed method is evident at both
the scale resolving and the non-resolving regimes.
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(c) t = 3T/50
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(d) t = T/10

Fig. 6.3. Smolarkiewicz’s deformational flow test. Solution profiles along the line x2 ≡ 50.

7. Numerical Results on Adaptive Triangular Meshes. In this section, we
develop an adaptive version of the proposed ADER method. This requires customised
rules for the adaptive refinement and coarsening of the triangular mesh. The adaption
rules, developed in Section 7.2, rely on a suitable local error indicator, described in
Section 7.1. We prefer to keep the discussion in Sections 7.1 and 7.2 rather short,
as the construction of the adaption rules relies on a basic concept presented in the
previous work [13], where further details concerning the utilised mesh adaptation
strategy can be found.

7.1. The Error Indicator. The utilised error indicator is based on local poly-
harmonic spline interpolation from discrete cell averages. This makes sense insofar as
the local error indicator essentially needs to measure the approximation quality of the
numerical solution (computed through the utilised kernel-based WENO reconstruc-
tion) locally around a cell T .

The error indicator for a cell T is reconstructed from cell averages of cells lying
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in the Moore neighbourhood of T . Recall that the Moore neighbourhood

NM(T ) := {R ∈ T \ {T} : R ∩ T 6= ∅} ⊂ T

of a cell T ∈ T contains all cells in (the conforming shape-regular triangulation) T
which are sharing a common face or a common vertex with T . Note that the Moore
neighbourhood NM(T ) of T does not contain T .

To each cell T ∈ T , we assign its cell average value ūT to the barycentre bT of T ,
i.e., ūT ≡ ū(bT ), and we compute the (unique) polyharmonic spline interpolant sT

satisfying the Lagrangian interpolation conditions

sT (bR) = ū(bR) for all R ∈ NM(T ).

The local error indicator ε : T 7→ [0,∞) is then defined by

εT := |ū(bT ) − sT (bT )| for T ∈ T . (7.1)

Note that the error indicator εT estimates, for any T ∈ T , the local approximation
behaviour in the neighbourhood of the cell T ∈ T : a large value of εT indicates a
large approximation error around T , while a small value of εT indicates otherwise. As
supported by the numerical examples in the following Sections 7.3 and 7.4, the error
indicator serves to detect discontinuities and sharp gradients of the solution u.

7.2. Mesh Adaptation. The local error indicator (7.1) provides a useful cri-
terion reflecting which regions of the computational mesh require higher resolution
and which regions are well approximated. When higher resolution is indicated, the
mesh is locally refined, whereas in regions where the solution appears to be well ap-
proximated, the mesh is locally coarsened, so as to equidistribute the error over the
computational mesh.

The following mesh adaptation strategy is used to mark individual cells T in T
for refinement or coarsening. To this end, let ϑr, ϑd be two (user-defined) threshold
values, satisfying 0 < ϑd ≤ ϑr < 1, and let ε∗ := maxT∈T εT . A cell T ∈ T is chosen
for refinement, if εT > ϑr · ε∗, whereas T is chosen for coarsening, if εT < ϑd · ε∗.
Note that this splits the current cells of T into three classes – to be refined, to be
coarsened, or neither/nor to be refined/coarsened. In the numerical experiments of
the following two Subsections 7.3-7.4, we choose the values ϑr = 0.05 and ϑd = 0.01.

The refinement/coarsening of individual cells is accomplished as follows: a cell
T ∈ T is refined by inserting its barycentre bT as a new vertex into T , while a cell
T ∈ T is coarsened by removing all its vertices from T , provided that all cells in its
Moore neighbourhood NM(T ) are also marked for coarsening.

7.3. Burgers’ Equation Revisited. We consider solving Burgers’ equation (6.1)
again on Ω = [−0.5, 0.5]2, with the initial condition

u0(x) =







exp
(

‖x−c‖2

‖x−c‖2−R2

)

for ‖x − c‖ < R;

0 otherwise;
(7.2)

where R = 0.15 and c = (−0.2,−0.2)T.
Recall that even for smooth initial data, such as in (7.2), the solution of Burgers’

equation may spontaneously develop discontinuities, corresponding to shocks. This
behaviour leads to computational challenges which (among others) motivates the de-
velopment of adaptive numerical methods, in order to balance the required accuracy
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Fig. 7.1. Burgers’ equation. Numerical solution at four different times.
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Fig. 7.2. Burgers’ equation. Adaptive meshes at four different times.
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versus the computational complexity. We apply the adaptive version of the proposed
ADER method described above, using the thin-plate spline kernel φ2,2 in the WENO
reconstruction step.

The numerical simulation is initialised on mesh T 0 (shown in Figure 7.2(a)), which
is well-adapted to the initial condition u0 using 5 iterations of the adaptive algorithm.
The mesh is subject to further adaptive modifications during the simulation, using one
iteration of the adaptive algorithm per time-step. The resulting numerical solution is
shown in Figure 7.1 at four different times t = 0, t = 0.4, t = 0.8, and t = 1.2. The
corresponding adaptive meshes are shown in Figure 7.2.

Note that the adaptive triangular mesh captures the shape of the solution u
very well. In particular, the propagation of the shock front is well-resolved during
the simulation, see Figures 7.1 and 7.2. Indeed, in regions, where the solution u is
rather smooth, the triangular mesh is rather coarse. This helps reduce the required
computational costs, while maintaining the method’s accuracy.

7.4. Two-Phase Flow in Porous Media – The Five-Spot Problem. Fi-
nally, we turn to another challenging benchmark problem concerning two-phase flow
simulation in petroleum reservoirs. This particular application scenario is concern-
ing the displacement of one fluid, say oil, by another, say water, within a petroleum
reservoir. A somewhat simplified, but fairly realistic model problem for petroleum
reservoir simulation is the Buckley-Leverett model [3], concerning two-phase flow of
two immiscible and incompressible fluids, say water and oil, within a homogeneous
porous medium, where diffusive effects, such as capillary pressure, are ignored and
gravitational forces are neglected.

The resulting Buckley-Leverett equation is a time-dependent hyperbolic equation,

∂u

∂t
+ v · ∇F (u) = 0 where F (u) =

u2

u2 + σ(1 − u)2
, (7.3)

where v is the velocity field and σ is the ratio of the two fluids’ viscosities. The
value of the solution u ≡ u(t,x) is the saturation of the wetting fluid (water) in the
non-wetting fluid (oil).

Here, we consider solving the Buckley-Leverett equation for the test case scenario
of the popular five-spot problem. In this test case, the pores over the square-shaped
oil reservoir Ω = [−0.5, 0.5]2 are assumed to be filled with the non-wetting fluid (oil,
u ≡ 0) at initial time t = 0, before the wetting fluid (water, u ≡ 1) is injected through
a single injection well, located at the centre o := (0, 0) of the computational domain Ω.

As the simulation advances in time, the oil is displaced by the water towards the
four corner points C := {(±0.5,±0.5)} of Ω. The water injection is modelled by the
initial condition

u0(x) =

{

1 for ‖x‖ < 0.02;

0 otherwise.
(7.4)

Moreover, we use a steady velocity field v = −∇p, where the pressure is given by

p(x) ≡ p(t,x) =
∑

c∈C

log(‖x − c‖) − log(‖x − o‖) for all x ∈ Ω, t ∈ I.

In the application of petroleum reservoir simulation, the location of the shock
front at the interface of the two fluids, water and oil, is of particular importance [12].
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(a) t = 0 (b) t = 0.013840

(c) t = 0.033595 (d) t = 0.050461

(e) t = 0.068518 (f) t = 0.084685

Fig. 7.3. The five spot problem. Solution u (saturation of water in oil) at six different times.
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Fig. 7.4. The five spot problem. Adaptive triangular mesh at six different times.
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We apply the proposed adaptive ADER method to numerically solve the initial
value problem (7.3),(7.4) of the five-spot problem, using thin-plate spline WENO
reconstruction.

Our numerical results are reflected by Figures 7.3 and 7.4. Figure 7.4 displays a
sequence of adaptive triangular meshes generated by the proposed ADER method at
six different times, t = 0, t = 0.013840, t = 0.033595, t = 0.050461, t = 0.068518, and
t = 0.084685. The corresponding numerical solution u is shown in Figure 7.3, where
the progress of the oil displacement by water is visualised through the evolution of
the time-dependent saturation u ≡ u(t,x) of water in oil.

Note that the shock front propagation is captured quite effectively by the adap-
tive triangular mesh (see Figure 7.4). Moreover, in regions of the solution’s rarefrac-
tion wave the triangular mesh is re-coarsened after the shock front passed through
them. This leads to significant savings in computational costs, while maintaining the
method’s accuracy. The well-adapted distribution of triangles supports the utility of
the proposed adaption rules.

8. Conclusions. We have proposed an adaptive ADER finite volume method for
the numerical solution of scalar hyperbolic conservations laws. The ADER method,
relying on unstructured simplicial meshes, combines high order flux evaluations with
high order WENO reconstruction using polyharmonic spline kernels. This leads to a
finite volume method of arbitrary high order.

Polyharmonic spline WENO reconstruction schemes are very flexible, due the
variable dimension of their corresponding ansatz spaces. This extra flexibility allows
us to work with WENO stencils of variable sizes, unlike in previous polynomial recon-
structions, thereby leading to significant savings in computational costs. Moreover,
WENO reconstruction by polyharmonic splines is numerically stable. The stable im-
plementation of polyharmonic spline WENO reconstruction relies on a customised
preconditioner, which is developed in this paper. Finally, polyharmonic spline re-
construction leads to a natural choice for an oscillation indicator (as required in the
WENO reconstruction scheme), given by the energy functional of their associated
Sobolev (Beppo-Levi) space.

We have combined the polyharmonic spline WENO reconstruction scheme with a
previous mesh adaptation strategy relying on an a posteriori error indicator. This re-
sults in an efficient mesh modification scheme, which achieves to capture singularities
of the solution, such as sharp gradients and shock fronts, quite effectively.

The good performance of the resulting adaptive ADER method is demonstrated
by several challenging test case scenarios, including Burgers’ equation, the Smo-
larkiewicz’s deformational flow test, and the five-spot problem.
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Comptes Rendus Mécanique, (2004).

[7] , Arbitrary high order discontinuous Galerkin schemes, in Numerical methods for hyper-
bolic and kinetic problems, vol. 7 of IRMA Lect. Math. Theor. Phys., Eur. Math. Soc.,
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