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Abstract

In the present paper we analyze the optimal control problem governed
by a dynamical fluid-solid interaction model. We consider linear fluid and
solid models, described by the Stokes equation and linear elasticity equation,
respectively. Along the boundary, on which the fluid and the solid interact,
we assume the velocity and stress vectors to be continuous. Moreover, we
assume the interface boundary to be fixed. For a justification and an analysis
of such type of fluid-solid interaction model see [3]. The cost function for the
optimal control problem is considered to be of the tracking type.

In the first, theoretical, part of the paper we prove that the optimal control
problem, introduced above, admits at least one solution u ∈ Uad. Further, us-
ing both, sensitivity and adjoint approach, we derive the first order necessary
optimality conditions for the optimal control problem.

The second, practical, part of the paper is devoted to the description of
the numerical realization for finding solution of the optimal control problem
and numerical examples. Theoretical results from the first part of the paper,
in particular, the presentation of the adjoint system, are here exploited.

For the spatial discretization of both, primal and adjoint problems, we
apply the Finite Volume Particle Method (FVPM) (see e.g. [4, 9]). During
the implementation we also use an extension of this method for incompressible
flows, i.e. an adaptation of the FVPM for the solution of the Poisson equation
and the pressure-correction algorithm (see [6]). For the time discretization
of the Stokes and linear elasticity problem we apply the implicit and the
Newmark time stepping schemes, respectively. The solution of the optimal
control problem is determined using the Gradient Algorithm.

In the final part of the paper we present some numerical examples for
the solution of the optimal control problem using theoretical and numerical
techniques introduced above.

Keywords: Optimal control, Fluid-structure interaction, Finite Volume Particle
Method

1 Introduction

In the present paper we analyze the optimal control problem governed by a dy-
namical fluid-solid interaction model. To begin with, we consider linear fluid and
solid models, described by the Stokes equation and linear elasticity equation, re-
spectively, and derive the first order necessary optimality conditions for a specific
form of the objective function.
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Let Ω = Ω1

⋃

Ω2 be a bounded set in R
d, d = 2, with the boundary Γ =

Γ1

⋃

Γ2

⋃

Γ0. Γ is a C∞ - manifold of dimension (d − 1). We assume, that Ω lies
locally on one side of Γ. Fluid occupies the Ω1 domain, with the boundary Γ1

⋃

Γ0.
The solid occupies the domain Ω2 with the boundary Γ2

⋃

Γ0. Γ0 is the common
boundary for Ω1 and Ω2, so that alongside the boundary Γ0 the fluid and the solid
interact. For the better understanding the situation is schematically represented in
Figure 1.

Ω1
Ω2

Γ0

Γ1

Γ2

n1

n2

Figure 1: Schematic illustration of physical domains for the fluid-structure interac-
tion

The mathematical model for the Stokes problem is given by:

ρ1yt +∇p− µ1∇ · (∇y +∇yT ) = ρ1f1 +Byuy in (0, T )× Ω1,
−div y = 0 in (0, T )× Ω1,

y = 0 on (0, T )× Γ1,
y|t=0 = y0 in Ω1.















(SP)

Here y = (y1, y2) denotes the fluid velocity, p the fluid pressure, f1 the given body
force per unit mass, By a given control operator, uy ∈ Uy denotes a control variable
of the fluid, ρ1 and µ1 the constant fluid density and viscosity, y0 the given initial
velocity, T > 0 the terminal time.

The following equations describe the linear elasticity problem:

ρ2xtt − µ2∇ · (∇x +∇xT )− λ2∇(∇ · x) = ρ2f2 +Bxux in (0, T )× Ω2,
x = 0 on (0, T )× Γ2,

x|t=0 = x0 in Ω2,
xt|t=0 = x1 in Ω2.















(LE)

In the model (LE) x = (x1, x2) denotes the displacement of the solid, f2 the given
loading force per unit mass, Bx a given control operator, ux ∈ Ux denotes a control
variable for the solid, µ2 and λ2 are the Lamé constants, ρ2 the constant solid
density, x0 and x1 the given initial data. Uy and Ux are the Hilbert spaces of
controls.

Furthermore, along the boundary Γ0 on which the fluid and the solid interact
we assume the velocity and stress vectors to be continuous. This can be described
mathematically by the following interface conditions:

xt = y on Γ0,
µ2(∇x+∇xT ) · n2 + λ2(∇ · x)n2 = pn1 − µ1(∇y +∇yT ) · n1 on Γ0.

}

(IC)

Here, ni, i = 1, 2, are the unit normal vectors to the boundary ∂Ωi pointing toward
he exterior of Ωi, i = 1, 2. Throughout we assume the interface boundary Γ0 to be
fixed.
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In addition to the state equations (SP) and (LE) we consider the cost function
J(y, x, uy, ux). Then, the optimal control problem will be read as:

min J(y, x, uy, ux) over (y, x, uy, ux)
subject to (SP), (LE), (IC).

}

(OCP)

We assume that the objective function J(y, x, uy, ux) is at least once Frechet-
differentiable, weakly lower semi-continuous and radially unbounded in uy and ux.
The last means that

J(y, x, uy, ux) → ∞ as ‖uy‖Uy
→ ∞ or ‖ux‖Ux

→ ∞.

In the following we specify the objective as

J =
α1

2

∫ T

0

{∫

Ω1

|y − yd|
2dx+

∫

Ω2

|x− xd|
2dx

}

dt+
α4y

2
‖uy‖

2
Uy

+
α4x

2
‖ux‖

2
Ux
. (1)

This function is of tracking type and obviously satisfy the required properties. The
task is to establish the necessary optimality conditions for the optimal control prob-
lem (OCP) with the objective function defined by (1).

To begin with, we introduce the required functional spaces:

Vy = {f ∈ H0
1 (Ω1), div f |Ω1

= 0}, (2)

Hy = {f ∈ L2(Ω1), div f |Ω1
= 0}, (3)

Vx = {f ∈ H0
1 (Ω2)}, (4)

Hx = {f ∈ L2(Ω2)}, (5)

Wy(0, T ) = {f ∈ L2(0, T ;Vy); f
′ ∈ L2(0, T ;V ⋆

y )}, (6)

Wx(0, T ) = {f ∈ L2(0, T ;Vx); f
′ ∈ L2(0, T ;Hx); f

′′ ∈ L2(0, T ;V ⋆
x )}, (7)

V = {f ∈ H0
1 (Ω), div f |Ω1

= 0}, (8)

H = {f ∈ L2(Ω), div f |Ω1
= 0}, (9)

W = Wy ×Wx, (10)

Uy, Ux = Hilbert spaces of controls, (11)

U = Uy × Ux. (12)

V ⊂ H ⊂ V ⋆, H⋆ = H.

Similar to [3], we introduce continuous bilinear forms

ay(t, φ, ψ) =
1

2

∫

Ω1

µ1(∇φ+∇φT ) : (∇ψ +∇ψT )dΩ, ∀φ, ψ ∈ Vy , (13)

ax(t, φ, ψ) =

∫

Ω2

µ2

2
(∇φ +∇φT ) : (∇ψ +∇ψT ) + λ2(∇ · φ)(∇ · ψ)dΩ, ∀φ, ψ ∈ Vx,(14)

where the relation : denotes A : B = tr(A⊤B). ay(t, φ, ψ) and ax(t, φ, ψ) are
continuous, coercive, bilinear forms on Vy and Vx, respectively. Moreover, they
satisfy the following relations:

ay(t, φ, φ) ≥ Ky‖φ‖
2
Vy
, ∀φ ∈ Vy, if meas(Γ1) 6= 0, (15)

ax(t, φ, φ) ≥ Kx‖φ‖
2
Vx
, ∀φ ∈ Vx, if meas(Γ2) 6= 0, (16)

ay(t, φ, φ) + (φ, φ)Ω1
≥ Ky‖φ‖

2
Vy
, ∀φ ∈ Vy, if meas(Γ1) = 0, (17)

ax(t, φ, φ) + (φ, φ)Ω2
≥ Kx‖φ‖

2
Vx
, ∀φ ∈ Vx, if meas(Γ2) = 0. (18)

(These conditions will be needed to prove the existence of y and x, compare [7], e.g.
p.105).
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Since the forms ay(t, φ, ψ) and ax(t, φ, ψ) are linear and continuous, they can be
interpreted using the operators Ay(t) and Ax(t) in the following way:

ay(t, φ, ψ) = (Ay(t)φ, ψ), Ay(t)φ ∈ V ⋆
y ,

ax(t, φ, ψ) = (Ax(t)φ, ψ), Ax(t)φ ∈ V ⋆
x .

This defines linear operators:

Ay ∈ L(Vy , V
⋆
y ), Ax ∈ L(Vx, V

⋆
x ).

The control operators By and Bx are defined as:

By ∈ L(Uy, L
2(0, T ;V ⋆

y )), Bx ∈ L(Ux, L
2(0, T ;Hx)) (h1)

Moreover, we assume that the body forces f1 and f2 and the initial data y0, x0 and
x1 satisfy:

f1 ∈ L2(0, T ;V ⋆
y ), f2 ∈ L2(0, T ;Hx),

y0 ∈ Hy, x0 ∈ Vx, x1 ∈ Hx.
(h2)

Using the introduced linear operators Ay and Ax the evolution problems (SP) and
(LE) can be rewritten in the form:

ρ1yt +Ay(t)y = ρ1f1 +Byuy in L2(0, T ;V ⋆
y ),

y|t=0 = y0, y0 given in Hy.

}

(SPo)

ρ2xtt +Ax(t)x = ρ2f2 +Bxux in L2(0, T ;Hx),
x|t=0 = x0, x0 given in Vx,
xt|t=0 = x1, x1 given in Hx.







(LEo)

Using the results in [3], we can prove:

Theorem 1.1. Assuming the hypotheses (h1) and (h2) be satisfied, the fluid-
structure interaction problem (SPo) + (LEo) + (IC) admits a unique solution
(y, x) ∈Wy ×Wx. The mapping

{f1, uy, y0, f2, ux, x0, x1} →

{

y, x,
dx

dt

}

is a linear continuous map of

L2(0, T ;V ⋆
y )×Uy×Hy×L

2(0, T ;Hx)×Ux×Vx×Hx → L2(0, T ;Vy)×L
2(0, T ;Vx)×L

2(0, T ;Hx).

2 Set of inequalities defining the optimal control

Consider the sets of admissible controls Uyad
for the fluid and Uxad

for the solid to
be closed convex subsets of Uy and Ux, respectively. Introduce the abbreviations

U = Uy × Ux, Uad = Uyad
× Uxad

, u = (uy, ux) ∈ Uy × Ux,

and
Λu = canonical isomorphism of U into U⋆,
Λy = canonical isomorphism of Vy into V ⋆

y ,
Λx = canonical isomorphism of Vx into V ⋆

x .
Using the introduced notations and the existence results of Theorem 1.1 we

rewrite the (OCP) into the reduced setting as:

min Ĵ(u) = J(y(u), x(u), uy, ux) over (uy, ux)
subject to u = (uy, ux) ∈ Uad.

}

(OCPr)
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Here, y(uy) and x(ux) is the unique solution of the problem (SPo) + (LEo) + (IC)
corresponding to the controls uy and ux. This solution exists due to Theorem 1.1.
Now, we are in a position to prove the following theorem:

Theorem 2.1. There exists an element u ∈ Uad being a solution of the reduced
optimal control problem (OCPr).

Proof. Since Ĵ(u) ≥ 0 there exists an infimum j = infu∈Uad
Ĵ(u). Therefore, there

is a minimizing sequence {un}
∞
n=1 ⊂ Uad, such that

Ĵ(un) → j as n→ ∞.

Because of the radial unboundness of Ĵ(u) relative to u and the fact that Ĵ(un) → j
as n→ ∞, the sequence {un}

∞
n=1 is bounded, i.e.

‖un‖U ≤ const.

Since U = Uy × Ux is a Hilbert space, it is reflexive. Therefore, from the sequence
{un}

∞
n=1 we may extract a weakly convergent subsequence {unk

}∞k=1, such that

unk
⇀ ū in U.

Because Uad is closed and convex, it is weakly closed. Therefore, ū ∈ Uad. Due to
the weakly lower semi-continuity of Ĵ(u) we obtain

Ĵ(ū) ≤ lim
k→∞

inf Ĵ(unk
) = j.

Since j is the infimum of all possible controls on Uad, we have Ĵ(ū) = j. Thus,
ū ∈ Uad is the optimal control for (OCPr).

The control u is an optimal control for the (OCPr) and thus also for (OCP) if
and only if the following optimality condition is satisfied:

〈Ĵ ′(u), (v − u)〉U⋆,U ≥ 0, ∀v ∈ Uad.

This means

〈Ĵuy
(u), (vy − uy)〉U⋆

y ,Uy
≥ 0, ∀vy ∈ Uyad

,

〈Ĵux
(u), (vx − ux)〉U⋆

x ,Ux
≥ 0, ∀vx ∈ Uxad

.

}

(OC)

Calculating the derivatives Ĵuy
(u) and Ĵux

(u) we obtain

∫ T

0

〈α1Λy(y(u)− yd), y(v)− y(u)〉V ⋆
y ,Vy

dt+ α4y(uy, vy − uy)Uy
≥ 0, ∀vy ∈ Uyad

,

∫ T

0
〈α1Λx(x(u) − xd), x(v) − x(u)〉V ⋆

x ,Vx
dt+ α4x(ux, vx − ux)Ux

≥ 0, ∀vx ∈ Uxad
.















(OC’)

We formally introduce the adjoint states ȳ(u) and x̄(u) for the fluid and solid by:

−ȳt +A⋆
y(t)ȳ = α1Λy(y(u)− yd) in Ω1 × (0, T ),

ȳ(T, u) = 0, in Ω1.

}

(ASP)

x̄tt +A⋆
x(t)x̄ = α1Λx(x(u) − xd) in Ω2 × (0, T ),

x̄(T, u) = 0, in Ω2,
x̄t(T, u) = 0, in Ω2.







(ALE)

If we impose a stronger hypotheses on Λx(x(u) − xd), namely:

Λx(x(u) − xd) ∈ L2(0, T ;Hx), (instead of L2(0, T ;V ⋆
x ))
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and reverse the flow of time (change t to T−t), then by applying Theorem1.1 the ad-
joint problem (ASP) + (ALE) admits a unique solution

{

ȳ, x̄, dx̄
dt

}

∈ L2(0, T ;Vy)×
L2(0, T ;Vx)× L2(0, T ;Hx).

To proceed further we multiply the both sides of (ASP) and (ALE) by (y(v) −
y(u)) and (x(v) − x(u)), respectively. We integrate the obtained products over the
time interval [0, T ]. Noting that

∫ T

0

(

−
d

dt
ȳ(u), y(v)− y(u)

)

dt =

∫ T

0

(

ȳ(u),
d

dt
y(v)−

d

dt
y(u)

)

dt,

∫ T

0

(

A⋆
y(t)ȳ(u), y(v)− y(u)

)

dt =

∫ T

0

(ȳ(u), Ay(t)y(v)−Ay(t)y(u)) dt,

and
∫ T

0

(φ′′(t), ψ(t))dt = (φ′(T ), ψ(T ))−(φ′(0), ψ(0))−(φ(T ), ψ′(T ))+(φ(0), ψ′(0))+

∫ T

0

(φ(t), ψ′′(t))dt.

The last equality is valid for e.g. φ, ψ ∈ L2(0, T ;Vx);φ
′, ψ′ ∈ L2(0, T ;Hx);φ

′′, ψ′′ ∈
L2(0, T ;V ⋆

x ). Using these three relations we obtain for the (ASP)

∫ T

0

α1 (Λy(y(u)− yd), y(v)− y(u))
V ⋆
y ,Vy

dt =

∫ T

0

(

ȳ(u), (
d

dt
+Ay(t))(y(v) − y(u))

)

dt =

=

∫ T

0

(ȳ(u), Byvy −Byuy) dt =
(

B⋆
y ȳ(u), vy − uy

)

U⋆
y ,Uy

=
(

Λ−1
Uy
B⋆

y ȳ(u), vy − uy

)

Uy

.

For the adjoint problem (ALE) the reformulations yield:

∫ T

0

α1 (Λx(x(u)− xd), x(v)− x(u))V ⋆
x ,Vx

dt =

∫ T

0

(

x̄(u), (
d2

dt2
+Ax(t))(x(v) − x(u))

)

dt =

=

∫ T

0

(x̄(u), Bxvx −Bxux) dt = (B⋆
xx̄(u), vx − ux)U⋆

x ,Ux
=

(

Λ−1
Ux
B⋆

xx̄(u), vx − ux
)

Ux
.

Therefore, the optimality conditions (OC’) can be rewritten as

(Λ−1
Uy
B⋆

y ȳ(u) + α4yuy, vy − uy)Uy
≥ 0, ∀vy ∈ Uyad

,

(Λ−1
Ux
B⋆

xx̄(u) + α4xux, vx − ux)Ux
≥ 0, ∀vx ∈ Uxad

.







(OC”)

At this point we are in a position to formulate the following theorem:

Theorem 2.2. First order necessary optimality conditions. The optimal control
u for the (OCP) can be characterized by the following system of equations and
inequalities:

(SPo) + (LEo) + (ASP) + (ALE) + (OC”) with

y(u), ȳ(u) ∈ L2(0, T ;Vy);

x(u), x̄(u) ∈ L2(0, T ;Vx); x′(u), x̄′(u) ∈ L2(0, T ;Hx).

The well-posed adjoint boundary value problem, i.e. with boundary and inter-
face conditions, is given by:

−ρ1ȳt +∇p̄− µ1∇ · (∇ȳ +∇ȳT ) = α1Λy(y(u)− yd) in (0, T )× Ω1,
−div ȳ = 0 in (0, T )× Ω1,
ȳ(u) = 0 on (0, T )× Γ1,

ȳ(T, u) = 0 in Ω1.















(ASP’)

6



ρ2x̄tt − µ2∇ · (∇x̄ +∇x̄T )− λ2∇(∇ · x̄) = α1Λx(x(u)− xd) in (0, T )× Ω2,
x̄ = 0 on (0, T )× Γ2,

x̄(T, u) = 0 in Ω2,
x̄t(T, u) = 0 in Ω2.















(ALE’)

p̄n1 − µ1(∇ȳ +∇ȳT ) · n1 = −ȳ on (0, T )× Γ0,
µ2(∇x̄ +∇x̄T ) · n2 + λ2(∇ · x̄)n2 = x̄t on (0, T )× Γ0.

}

(AIC)

3 Numerical realization

The discretization of the fluid-solid interaction problem (SP) + (LE) + (IC) is de-
scribed firstly in this section. Then, an optimization algorithm is presented to solve
the (OCP). A description for its numerical realization follows after that. Finally, a
numerical example is presented.

3.1 Discrete solution of the fluid-solid interaction problem

At the beginning we concentrate on the fluid modeled by the Stokes problem. For
convenience, we rewrite its mathematical formulation once more:

ρ1yt +∇p− µ1∇ · (∇y +∇yT ) = ρ1f1 +Byuy in (0, T )× Ω1,
−div y = 0 in (0, T )× Ω1,

y = 0 on (0, T )× Γ1, (1)
y|t=0 = y0 in Ω1.















(SP)

xt = y on Γ0, (2)
µ2(∇x+∇xT ) · n2 + λ2(∇ · x)n2 = pn1 − µ1(∇y +∇yT ) · n1 on Γ0. (3)

}

(IC)

After division of the time interval (0, T ) into n equidistant parts, a single time step
become the length ∆t. The time discretization of the Stokes problem (SP) is of
semi-implicit type, i.e. the velocity in the mass conservation equation as well as in
the diffusive part of the momentum equation is considered in the new time point.
The same is true for the pressure contribution in the momentum equation. The
r.h.s. of this equation is considered in contrast at the old time point. Particularly,
at each time step we solve the following Quasi-Stokes problem:

ρ1
yi+1

−yi

∆t
+∇pi+1 − µ1∇ · (∇yi+1 +∇(yi+1)T ) = ρ1f

i
1 +Byu

i
y,

−div yi+1 = 0.

}

(DSP)

For the solution of the discrete problem (DSP) a Schurcomplement-method is ap-
plied, which is realized using the preconditioned CG-Algorithm (for details see
[5, 8]). Details of the implementation: For solving the Quasi-Stokes problem we
use the BC (1) + (2).

The spatial discretization of the Stokes problem (SP) is realized by the Finite
Volume Particle Method (FVPM). Details of this method for conservation laws
see e.g. in [4, 9]. An extension of this method for incompressible flows, i.e. an
adaptation of the FVPM for the solution of the Poisson equation and the pressure-
correction algorithm see [6]. Also, we give some details how this method should be
applied for the PCG-Algorithm later for the concrete numerical example.

In the following we consider the solid which motion is modeled by the linear
elasticity problem:

ρ2xtt − µ2∇ · (∇x +∇xT )− λ2∇(∇ · x) = ρ2f2 +Bxux in (0, T )× Ω2,
x = 0 on (0, T )× Γ2,

x|t=0 = x0 in Ω2,
xt|t=0 = x1 in Ω2.















(LE)
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xt = y on Γ0,
µ2(∇x+∇xT ) · n2 + λ2(∇ · x)n2 = pn1 − µ1(∇y +∇yT ) · n1 on Γ0.

}

(IC)

For its time discretization we apply the ”Newmark” time integration scheme (follow
description in the book [2]). The crucial idea is to use the Taylor expansion for the
displacement x and its velocity xt at the new time point (t+∆t).

x(t+∆t) ≈ x(t) + ∆txt(t) +
∆t2

2
[(1− β2)xtt(t) + β2xtt(t+∆t)] ,

xt(t+∆t) ≈ xt(t) + ∆t [(1− β1)xtt(t) + β1xtt(t+∆t)] ,

where β1 and β2 are appropriate parameters, which monitor the implicity or the
explicity of the integration scheme. In the following numerical computations we
use parameters β1 = 1/2 and β2 = 1/2, which produce an unconditionally stable
time stepping scheme. For simplicity of notations we rewrite the system (LE) in an
operator setting form as:

ρ2xtt + Ax(t)x = ρ2f2 +Bxux

with a linear continuous operator Ax ∈ L(Vx, V
⋆
x ) introduced in Section 1. Given

the initial values for the displacement x(0) and its velocity xt(0) at the time point
t = 0, we obtain the acceleration xtt(0) from the equation:

xtt(0) = −
1

ρ2
Ax(0)x(0) + f2 +

1

ρ2
Bxux.

For the successive time steps we calculate xtt(t+∆t) from the equation:

ρ2xtt(t+∆t) +Ax(t+∆t)x(t +∆t) =

ρ2xtt(t+∆t) +Ax(t+∆t)
[

x(t) + ∆txt(t) +
∆t2

2
[(1− β2)xtt(t) + β2xtt(t+∆t)]

]

=
[

ρ2 +
∆t2

2
β2Ax(t+∆t)

]

xtt(t+∆t) +Ax(t+∆t)
[

x(t) + ∆txt(t) +
∆t2

2
(1− β2)xtt(t)

]

=

ρ2f2 +Bxux,























(⋆)

and substitute its value if required in:

x(t+∆t) ≈ x(t) + ∆txt(t) +
∆t2

2
[(1− β2)xtt(t) + β2xtt(t+∆t)] ,

xt(t+∆t) ≈ xt(t) + ∆t [(1− β1)xtt(t) + β1xtt(t+∆t)] .

The interface boundary condition on Γ0 are considered once in (⋆) by the application
of Ax(t+∆t) in the second addend as a flux contribution. The space discretization
is implemented, similar to the fluid case, using the FVPM.

Now follows the discretization of the adjoint Stokes system (ASP’). Following
the argumentation in [1] we apply the next scheme for the time discretization:

ρ1
ȳi−1

−ȳi

∆t
+∇p̄i−1 − µ1∇ · (∇ȳi−1 +∇(ȳi−1)T ) = α1Λy(y

i−1 − yi−1
d ),

−div ȳi−1 = 0.

}

(DASP)

Starting with the final time t = T we apply the discretization scheme (DASP)
to obtain values for ȳ and p̄ for the preceeding time point (t − ∆t), which corre-
sponds to the notation (i− 1) in (DASP). For their computation we apply also the
preconditioned CG-algorithm with the schurcomplement-method (see above).

For the time discretization of the adjoint linear elasticity problem we apply
the Newmark scheme described above. The difference is only in the starting time
point, t = T and ∆t is replaced by −∆t in the computations concerning the adjoint
problem. Spatial discretization for both adjoint problems is provided using FVPM.

Next, we describe the optimization strategy to solve the optimal control problem
(OCP). For this purpose we apply the following gradient algorithm:
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Algorithm 3.1. Optimization algorithm (Gradient algorithm)
k = 0, u0 is given.
S0. If ‖∇Ĵ(uk)‖2 ≤ tol Stop, else:
S1. Compute yk, pk, xk, ẋk for given uk using state equations.
S2. Compute ȳk, p̄k, x̄k, ˙̄xk using adjoint equations.
S3. Compute the descent direction vk as an antigradient

vk = −Ĵ(uk).

S4. Step length computation:

sk = argmins>0Ĵ(uk + svk).

S5. Set uk+1 = uk + skvk, k = k + 1, goto S0.

Details for application of Algorithm 3.1 will be described in the next subsection,
where we consider a concrete numerical example.

3.2 Example

As a numerical example we consider the following two domains Ω1

⋃

Ω2 = Ω. For
better understanding the situation is illustrated in Figure 2. The fluid occupies

Ω1Ω2

Γ0

Γ1

Γ1

Γ1

Γ2

Γ′
2

Γ′
2

n1

n2

Figure 2: Schematic illustration of physical domains for the numerical example

the domain Ω1 with the boundary Γ0

⋃

Γ1, the solid occupies the domain Ω2 with
the boundary Γ0

⋃

Γ2

⋃

Γ′
2. Γ0 is the common boundary for the fluid and for the

solid. Each domain is a quadrat with the side length one. We consider Uad = U ,
which simplifies the calculation of the descent direction vk in the step S3 of the
Optimization Algorithm 3.1.

For the realization of the spatial discretization with FVPM N × N particles
ψI(x, t), I = (i, j), i, j = 1, .., N are equidistantly positioned within each domain,
i.e. into Ω1 and Ω2. Theoretically, particles can move with their own velocities,
but since the interface Γ0 is fixed due to the assumptions, velocities of particles are
zero. The flux function F(y, t) for the fluid is

F(y, t) = −
1

ρ1











2µ1
∂yx

∂x
− p µ1(

∂yx

∂y
+

∂yy

∂x
)

µ1(
∂yx

∂y
+

∂yy

∂x
) 2µ1

∂yy

∂y
− p











.
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Figure 3: Displacement field for the desired solid and the velocity field for the
desired fluid for t = 0.25, t = 0.5, t = 0.75, t = 1.0.

The flux function F(x, t) for the solid is

F(x, t) = −
1

ρ2











2µ2
∂xx

∂x
+ λ2(

∂xx

∂x
+

∂xy

∂y
) µ2(

∂xx

∂y
+

∂xy

∂x
)

µ2(
∂xx

∂y
+

∂xy

∂x
) 2µ2

∂xy

∂y
+ λ2(

∂xx

∂x
+

∂xy

∂y
)











.

In the two formulas above the fluid velocity and solid displacement vectors y and

x are defined as y =

(

yx
yy

)

and x =

(

xx
xy

)

. Note that the derivatives ∂·
∂x

and

∂·
∂y

within the flux functions are evaluated at the consistency points xij in order to

obtain a consistent approximation (for details see [6]). This approach is similar to
the staggered grid approach.

Boundary conditions on Γ′
2 for this numerical example slightly differ from the

BC assumed so far. For the sake of stability in this example we consider:

µ2(∇x+∇xT ) · n2 + λ2(∇ · x)n2 = 0 on Γ′
2.

}

(IC′)

Parameters α1, α4x and α4y are set to one, one and 0.01, respectively. Final time
T = 1. The desired state is evaluated with controls ux and uy are set to zero and
0.1, respectively, for all t ∈ [0, T ]. The parameter N for the spatial discretization
is set to N = 10. The time step interval is ∆t = 0.25. Initial state for the solid
displacement and velocity is x(0) = xt(0) = 0 in Ω2. Initial fluid velocity is

y(x, 0) = e

[

(cos 2πx1 − 1) sin 2πx2
−(cos 2πx2 − 1) sin 2πx1

]

in Ω1.

In Figure 3 the displacement field for the desired solid and the velocity field for the
desired fluid are illustrated for several time points. For the solution of the (OCP)
with the parameters described above, we apply the Gradient Algorithm 3.1 from
the previous section. Starting control variables are ux(t) = 1.0, uy(t) = 0 for all
t ∈ [0, T ]. Velocity and displacement fields produced with these controls and serving
as an initial state for the optimization are illustrated in Figure 4. The convergence
behavior of this numerical test is listed in Table 1.
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Figure 4: Displacement field for the initial solid and the velocity field for the initial
fluid for t = 0.25, t = 0.5, t = 0.75, t = 1.0.

Iteration number Step length J(x, y, ux, uy) ‖∇Ĵ(ux, uy)‖0
0 0.168569
1 1.00 0.158357 0.020238
2 1.00 0.158202 0.000175
3 1.00 0.158088 0.000129
4 1.00 0.158004 0.000095

Table 1: Convergence behavior of the Algorithm 3.1 for the numerical example
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Figure 5: Displacement field for the optimized solid and the velocity field for the
optimized fluid for t = 0.25, t = 0.5, t = 0.75, t = 1.0.

Figure 5 illustrates displacement and velocity fields for the solid and for the fluid,
respectively, obtained after the optimization for different time points.
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