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Abstract: In the present work we treat the inverse problem of identifying the matrix-valued diffusion

coefficient of an elliptic PDE from measurements with the help of techniques from PDE constrained op-

timization. We prove existence of solutions using the concept of H–convergence and employ variational

discretization for the discrete approximation of solutions. Using a discrete version of H–convergence

we are able to establish the strong convergence of the discrete solutions. Finally we present some

numerical results.
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1 Introduction

In this work we consider the inverse problem of identifying the diffusion matrix A = A(x) in

an elliptic PDE

−div (A(x)∇y) = g in Ω, y = 0 on ∂Ω (1.1)

from measurements of data. Here, Ω ⊂ R
n is a bounded open set with a Lipschitz boundary.

Furthermore, we assume that A(x) = (aij(x))
n
i,j=1 satisfies aij ∈ L∞(Ω) and that there exists

a > 0 such that
∑n

i,j=1 aij(x)ξiξj ≥ a|ξ|2 for all ξ ∈ R
n and a.a. x ∈ Ω. Given g ∈ H−1(Ω),

the boundary value problem (1.1) then has a unique weak solution y ∈ H1
0 (Ω) in the sense

that ∫
Ω
A∇y · ∇vdx = 〈g, v〉 for all v ∈ H1

0 (Ω), (1.2)

where 〈·, ·〉 denotes the duality pairing between H−1(Ω) and H1
0 (Ω). Furthermore,

‖y‖H1
0
≤ C‖g‖H−1 , (1.3)

with a constant C which only depends on a. We shall denote this solution by y = T (A, g) in

order to also emphasize its dependence on A.
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In what follows we assume that measurements (z(i), f (i)) ∈ Z × H−1(Ω), 1 ≤ i ≤ N

(Z = L2(Ω) or Z = H1
0 (Ω)) are available, from which we would like to reconstruct the

diffusion matrix A. To do so, we employ a least squares approach together with a Tikhonov

regularization, i.e. we consider

(P ) min
A∈M

J(A) :=
1

2

N∑
i=1

‖y(i) − z(i)‖2Z +
γ

2
‖A‖2 s.t. y(i) = T (A, f (i)), 1 ≤ i ≤ N. (1.4)

Here, γ > 0 and we use the symbol ‖ ·‖ for the L2 norm on spaces of scalar, vector or matrix–

valued functions, while the admissible set M will be specified in Section 2. Our choice,

motivated by the concept of H–convergence, guarantees the existence of a minimum of J . By

discretizing (1.1) with the help of linear finite elements we obtain an approximation Jh of J .

Our main result, Theorem 3.4, says that each sequence of minimizers (Ah)h>0 of Jh has a

subsequence that converges strongly in L2 to a minimum of J . In order to establish this result

we shall adapt a discrete version of H–convergence, introduced by Eymard and Gallouët in

[3] for finite volume schemes, to our setting. The above convergence result justifies the use of

Jh in solving the identification problem. In practice we employ a projected steepest descent

algorithm for minimizing Jh, see Section 4.

Let us review related work which is concerned with the identification of matrix–valued pa-

rameters in elliptic PDEs. In [1], Alt, Hoffmann and Sprekels obtain a reconstructed matrix

by investigating the long time behaviour of a suitable dynamical system, see also [6]. In [10],

Kohn and Lowe introduce a variational method that is based on a convex functional involving

the variables y and A∇y and investigate its stability properties. Stability results for the re-

construction of matrices of the form A = ∇p⊗∇y can be found in [8]. In [13], Rannacher and

Vexler prove a–priori estimates for a matrix–identification problem in which a finite number

of unknown parameters is estimated from finitely many pointwise observations.

A lot of work has been devoted to the parameter estimation problem for a scalar diffusion

coefficient. Identifiability results can e.g. be found in [2], [14] and [16]. A survey of numerical

methods for parameter estimation problems can be found in [11]. Error estimates for a least

squares approach have been obtained by Falk in [4] and more recently by Wang and Zou

[17] for a functional involving a Tikhonov regularization. That paper also contains a long list

of further contributions. Let us finally note that the concept of H–convergence has recently

been used by Leugering and Stingl in [12] in order to treat problems in material design, in

particular to identify strain tensors from displacements in linear elasticity.

2 Existence of a minimum

Let us denote by Sn the set of all symmetric n× n matrices endowed with the inner product

A ·B = trace(AB). We consider the subset

K := {A ∈ Sn | a ≤ λi(A) ≤ b, i = 1, . . . , n}

where 0 < a < b < ∞ are given constants and λ1(A), . . . , λn(A) denote the eigenval-

ues of A. Since K is a convex and closed subset of Sn we may introduce the orthogonal
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projection PK : Sn → K for which we can derive a formula as follows: given A ∈ Sn,
let S be an orthogonal matrix such that SASt = diag(λ1(A), . . . , λn(A)) =: D. If we let

D̃ = diag
(
P[a,b](λ1(A)), . . . , P[a,b](λn(A))

)
, where P[a,b](x) := max{a,min{x, b}}, x ∈ R, then

clearly StD̃S ∈ K and we have for every B ∈ K

(A−StD̃S)·(B−StD̃S) = (D−D̃)·(SBSt−D̃) =
n∑

i=1

(λi(A)−P[a,b](λi(A)))(b̃ii−P[a,b](λi(A))),

where B̃ = SBSt ∈ K. Hence b̃ii ∈ [a, b], i = 1, . . . , n which immediately yields

(A− StD̃S) · (B − StD̃S) ≤ 0, for all B ∈ K

and therefore PK(A) = Stdiag
(
P[a,b](λ1(A)), . . . , P[a,b](λn(A))

)
S.

Next, let us introduce the set

M := {A ∈ L∞(Ω)n,n |A(x) ∈ K a.e. in Ω}.

In proving the existence to problem (P ) the following compactness result is crucial, see e.g.

[15].

Theorem 2.1. Let (Ak)k∈N be a sequence in M. Then there exists a subsequence (Ak′)k′∈N
and an element A ∈ M such that for every g ∈ H−1(Ω)

T (Ak′ , g) ⇀ T (A, g) in H1
0 (Ω) and Ak′∇T (Ak′ , g) ⇀ A∇T (A, g) in L2(Ω)n. (2.1)

The sequence (Ak′)k′∈M is then said to be H–convergent to A and one writes Ak′
H→ A.

Lemma 2.2. Suppose that (Ak)k∈N is a sequence in M with Ak
H→ A and Ak

∗
⇀ A0 in

L∞(Ω)n,n. Then A(x) ≤ A0(x) a.e. in Ω and

‖A‖2 ≤ ‖A0‖2 ≤ lim inf
k→∞

‖Ak‖2. (2.2)

Proof. The proof of Corollary 3.3 below will include an argument which shows in a similar

setting that A ≤ A0 a.e. in Ω. Furthermore, from the Courant–Fischer minmax theorem we

infer that λi(A(x)) ≤ λi(A0(x)), i = 1, . . . , n and hence taking into account that λi(A(x)) ≥ 0

|A(x)|2 =
n∑

i=1

λi(A(x))
2 ≤

n∑
i=1

λi(A0(x))
2 = |A0(x)|2 a.e. in Ω.

Integration over Ω together with the weak lower semicontinuity of the L2-norm then implies

(2.2) .

We are now in position to establish the existence of a solution to the minimization problem

(1.4).

Theorem 2.3. Problem (P ) has a solution A ∈ M.
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Proof. Let (Ak)k∈N ⊆ M be a minimizing sequence for problem (P ) so that J(Ak) ↘
infA∈M J(A) as k → ∞. Combining Theorem 2.1 with the fact that (Ak)k∈N is bounded

in L∞(Ω)n,n we deduce that there exist A ∈ M, A0 ∈ L∞(Ω)n,n such that Ak′
H→ A and

Ak′
∗
⇀ A0 in L∞(Ω)n,n for some suitable subsequence. Letting y

(i)
k′ = T (Ak′ , f

(i)), y(i) =

T (A, f (i)), 1 ≤ i ≤ N , we therefore have y
(i)
k′ ⇀ y(i) in H1

0 (Ω). Hence,

J(A) =
1

2

N∑
i=1

‖y(i) − z(i)‖2Z +
γ

2
‖A‖2 ≤ lim inf

k′→∞
1

2

N∑
i=1

‖y(i)k′ − z(i)‖2Z +
γ

2
lim inf
k′→∞

‖Ak′‖2

≤ lim inf
k′→∞

J(Ak′) = inf
A∈M

J(A),

where we also used (2.2).

Let us next derive a suitable form of the necessary first order optimality conditions for a

solution of (P ). To begin, it is not difficult to verify that J is Fréchet differentiable on M
with

J ′(A)H =

N∑
i=1

(y(i) − z(i), w(i))Z + γ(A,H)L2 , H ∈ L∞(Ω)n,n (2.3)

where y(i) = T (A, f (i)) and w(i) = DAT (A, f
(i))H ∈ H1

0 (Ω), 1 ≤ i ≤ N is the partial

derivative of T with respect to A in direction H which is given as the unique solution of∫
Ω

A∇w(i) · ∇vdx = −
∫
Ω

H∇y(i) · ∇vdx for all v ∈ H1
0 (Ω). (2.4)

In order to rewrite (2.3) we introduce the functions p(i) ∈ H1
0 (Ω), i = 1, . . . , N as the unique

solutions of the following adjoint problems:∫
Ω

A∇v · ∇p(i)dx = (y(i) − z(i), v)Z for all v ∈ H1
0 (Ω). (2.5)

Abbreviating (a⊗ b)kl =
1
2(akbl + albk), k, l = 1, . . . , n for a, b ∈ R

n we then have

J ′(A)H =

∫
Ω

(
−

N∑
i=1

∇y(i) ⊗∇p(i) + γA
)
·Hdx, H ∈ L∞(Ω)n,n. (2.6)

Note that the above integral exists since ∇y(i) ⊗∇p(i) ∈ L1(Ω)n,n. In conclusion

Theorem 2.4. Let A ∈ M be a solution of (P ). Then for every λ > 0

A(x) = PK

(
A− λ

(
γA−

N∑
i=1

∇y(i)(x)⊗∇p(i)(x)

))
a.e. in Ω.

Proof. The optimality of A implies that J ′(A)(Ã − A) ≥ 0 for all Ã ∈ M which can be

rewritten with the help of (2.6) as follows:

∫
Ω

(
A− λ

(
γA−

N∑
i=1

∇y(i)(x)⊗∇p(i)(x)

)
−A

)
·
(
Ã−A

)
)dx ≤ 0 for all Ã ∈ M.

4



A localization argument shows that A(x) is the orthogonal projection of

A(x)− λ

(
γA(x)−

N∑
i=1

∇y(i)(x)⊗∇p(i)(x)

)

onto K a.e. in Ω which implies the result.

Let us note that the particular choice λ = 1
γ gives

A(x) = PK

(
1

γ

(
N∑
i=1

∇y(i)(x)⊗∇p(i)(x)

))
a.e. in Ω. (2.7)

3 Finite element discretization

Let Th be a regular triangulation of Ω with maximum mesh size h := maxT∈Th diam(T ) and

suppose that Ω̄ is the union of the elements of Th; boundary elements are allowed to have

one curved face. We define the space of linear finite elements,

Xh := {vh ∈ H1
0 (Ω) | vh is a linear polynomial on each T ∈ Th}.

It is well known that there exists an interpolation operator Πh : H1
0 (Ω)→ Xh such that

Πhw → w in H1(Ω) as h→ 0 for every w ∈ H1
0 (Ω). (3.1)

For given A ∈ M and g ∈ H−1(Ω), the problem∫
Ω

A∇yh · ∇vhdx = 〈g, vh〉 for all vh ∈ Xh

has a unique solution yh = Th(A, g) ∈ Xh. Furthermore, a standard argument yields the error

bound

‖y − yh‖H1
0
≤ b

a
inf

vh∈Xh

‖y − vh‖H1
0
, where y = T (A, g). (3.2)

In order to set up an approximation of (P ) we use variational discretization as in [5] and

consider

(Ph) min
A∈M

Jh(A) :=
1

2

N∑
i=1

‖y(i)h − z(i)‖2 + γ

2
‖A‖2 s.t.y

(i)
h = Th(A, f

(i)), 1 ≤ i ≤ N. (3.3)

Similar arguments as in Section 2 show that Jh is Fréchet differentiable and that for A ∈ M

J ′h(A)H =

∫
Ω

(
−

N∑
i=1

∇y
(i)
h ⊗∇p

(i)
h + γA

)
·Hdx, H ∈ L∞(Ω)n,n. (3.4)

Since dimXh <∞ it is straightforward to see that (Ph) has a solution Ah ∈ M. Furthermore,

every solution Ah of (Ph) satisfies

Ah(x) = PK

(
1

γ

N∑
i=1

∇y
(i)
h (x)⊗∇p

(i)
h (x)

)
a.e. in Ω, (3.5)
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cf. (2.7). Here, y
(i)
h = Th(Ah, f

(i)) and p
(i)
h ∈ Xh are the solutions of the adjoint problems∫

Ω

Ah∇vh · ∇p
(i)
h dx = (y

(i)
h − z(i), vh)Z for all vh ∈ Xh, 1 ≤ i ≤ N. (3.6)

Remark 3.1. Let us note that in view of (3.5) Ah is piecewise constant so that a discretization

of the setM is not required. Variational discretization automatically yields solutions to (3.3)

which allow a finite-dimensional representation.

In order to investigate the convergence of the approximate solutions we shall employ a discrete

version of Theorem 2.1.

Theorem 3.2. Let (Ah)h>0 be a sequence in M. Then there exists a subsequence (Ah′)h′>0

and A ∈ M such that for every g ∈ H−1(Ω)

Th′(Ah′ , g) ⇀ T (A, g) in H1
0 (Ω) and Ah′∇Th′(Ah′ , g) ⇀ A∇T (A, g) in L2(Ω)n. (3.7)

We then say that the sequence (Ah′)h′∈M Hd–converges to A and write Ah′
Hd→ A.

Proof. The line of argument follows the corresponding proof in the continuous case (see [15])

and a similar result for a finite volume scheme, see [3]. We therefore only sketch the main

steps.

Step 1: One first shows that there exists a subsequence, for ease of notation again denoted

by (Ah)h>0, and continuous linear operators S : H−1(Ω) → H1
0 (Ω), R : H−1(Ω) → L2(Ω)n

such that for every g ∈ H−1(Ω)

Th(Ah, g) ⇀ S(g) in H1
0 (Ω), Ah∇Th(Ah, g) ⇀ R(g) in L2(Ω)n as h→ 0. (3.8)

Step 2: We show that S is invertible. For g ∈ H−1(Ω) denote by w ∈ H1
0 (Ω), wh ∈ Xh the

solutions of∫
Ω
∇w · ∇vdx = 〈g, v〉, v ∈ H1

0 (Ω),

∫
Ω
∇wh · ∇vhdx = 〈g, vh〉, vh ∈ Xh.

Clearly, ‖w‖H1
0
= ‖g‖H−1 and wh → w in H1

0 (Ω) in view of (3.1). Setting yh = Th(Ah, g) we

have in addition that∫
Ω
Ah∇yh · ∇vhdx = 〈g, vh〉 =

∫
Ω
∇wh · ∇vhdx, vh ∈ Xh,

from which we infer that ‖wh‖H1
0
≤ b‖yh‖H1

0
recalling the definition of M. Combining this

bound with (3.8) and using again the properties of M we deduce that

‖g‖2H−1 = ‖w‖2H1
0
= lim

h→0
‖wh‖2H1

0
≤ b2 lim inf

h→0
‖yh‖2H1

0

≤ b2

a
lim inf
h→0

∫
Ω
Ah∇yh · ∇yhdx =

b2

a
lim inf
h→0

〈g, yh〉 =
b2

a
〈g, S(g)〉, (3.9)

which implies that S is invertible.

Step 3: Let C : H1
0 (Ω) → L2(Ω)n be defined by Cv := RS−1v. For a given g ∈ H−1(Ω) the

function yh = Th(Ah, g) satisfies by definition∫
Ω
Ah∇yh · ∇vhdx = 〈g, vh〉 for all vh ∈ Xh. (3.10)

6



Sending h→ 0 and taking into account (3.8) and (3.1) we infer∫
Ω
Cy · ∇vdx = 〈g, v〉 for all v ∈ H1

0 (Ω), where y = S(g). (3.11)

Next, let g, g̃ ∈ H−1(Ω) be arbitrary and define y = S(g), ỹ = S(g̃) as well as yh =

Th(Ah, g), ỹh = Th(Ah, g̃). Recalling (3.10) we have for every ϕ ∈ C∞0 (Ω)∫
Ω
ϕAh∇yh · ∇ỹhdx =

∫
Ω
Ah∇yh · ∇rhdx+ 〈g, ϕỹh〉 − 〈g, rh〉 −

∫
Ω
Ah∇yh · ∇ϕ ỹhdx,

where we have abbreviated rh = ϕỹh − Ih(ϕỹh) and Ih denotes the Lagrange interpolation

operator. A standard interpolation estimate implies

‖ϕỹh − Ih(ϕỹh)‖H1(T ) ≤ Ch‖D2(ϕỹh)‖L2(T ) ≤ Ch‖ϕ‖H2,∞(T )‖ỹh‖H1(T ), T ∈ Th,

so that rh → 0 inH1
0 (Ω) as h→ 0 since ‖ỹh‖H1 ≤ C. Observing in addition that Ah∇yh ⇀ Cy

in L2(Ω)n, ϕỹh ⇀ ϕỹ in H1
0 (Ω) and ỹh → ỹ in L2(Ω) we obtain

lim
h→0

∫
Ω
ϕAh∇yh · ∇ỹhdx = 〈g, ϕỹ〉 −

∫
Ω
Cy · ∇ϕ ỹdx,

which, combined with (3.11), yields

lim
h→0

∫
Ω
ϕAh∇yh · ∇ỹhdx =

∫
Ω
ϕCy · ∇ỹdx. (3.12)

Similarly as in [3, Proof of Theorem 2] one now deduces from (3.11) and (3.12) that there

exists A ∈ M such that

(Cy)(x) = A(x)∇y(x) a.e. in Ω. (3.13)

This completes the proof of the theorem.

Corollary 3.3. Suppose that (Ah)h>0 is a sequence in M with Ah
Hd→ A and Ah

∗
⇀ A0 in

L∞(Ω)n,n. Then A ≤ A0 a.e. in Ω and ‖A‖2 ≤ ‖A0‖2 ≤ lim infh→0 ‖Ah‖2.

Proof. We use the same notation as in the proof of Theorem 3.2. By Step 2 above there exists

for every y ∈ H1
0 (Ω) an element g ∈ H−1(Ω) such that y = S(g). Defining yh = Th(Ah, g)

there holds yh ⇀ y in H1
0 (Ω), Ah∇yh ⇀ A∇y in L2(Ω)n. Furthermore, we have for any

ϕ ∈ C∞0 (Ω), ϕ ≥ 0 that

0 ≤
∫
Ω
ϕAh∇(yh − y) · ∇(yh − y)dx

=

∫
Ω
ϕAh∇yh · ∇yhdx− 2

∫
Ω
ϕAh∇yh · ∇ydx+

∫
Ω
ϕAh∇y · ∇ydx.

Recalling (3.12), (3.13) and the fact that Ah
∗
⇀ A0 in L∞(Ω)n,n we obtain upon sending

h→ 0

0 ≤ −
∫
Ω
ϕA∇y · ∇ydx+

∫
Ω
ϕA0∇y · ∇ydx,
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from which we infer that A∇y · ∇y ≤ A0∇y · ∇y a.e. in Ω. Since y ∈ H1
0 (Ω) is arbitrary we

deduce that A ≤ A0 a.e. in Ω. The remaining estimate is obtained in the same way as in the

proof of Lemma 2.2.

We are now in position to prove a convergence result for a sequence (Ah)h>0 of solutions of

(Ph).

Theorem 3.4. Let Ah ∈M be a solution of (Ph). Then there exists a subsequence (Ah′)h′>0

and A ∈ M such that Ah′ → A in L2(Ω)n,n, Th′(Ah′ , f
(i))→ T (A, f (i)) in Z, 1 ≤ i ≤ N and

A is a solution of (P ).

Proof. In view of Theorem 3.2 and Corollary 3.3 there exists a subsequence, again denoted

by (Ah)h>0, and A ∈ M such that Ah
Hd→ A and Ah

∗
⇀ A0 in L∞(Ω)n,n with A ≤ A0

a.e. in Ω. Let y
(i)
h = Th(Ah, f

(i)), y(i) = T (A, f (i)), 1 ≤ i ≤ N . Then y
(i)
h ⇀ y(i) in H1

0 (Ω),

Ah∇y
(i)
h ⇀ A∇y(i) in L2(Ω)n, so that we may deduce similarly as in the proof of Theorem 2.3

that J(A) ≤ lim infh→0 Jh(Ah). Next, Theorem 2.3 implies that (P ) has a solution Ā ∈ M.

Then we have

J(Ā) ≤ J(A) ≤ lim inf
h→0

Jh(Ah) ≤ lim sup
h→0

Jh(Ah) ≤ lim sup
h→0

Jh(Ā) = J(Ā),

where the last equality follows from (3.2) and (3.1). We deduce that

lim
h→0

Jh(Ah) = J(A) = J(Ā), (3.14)

in particular, A is a minimum of J . Furthermore, we have

1

2

N∑
i=1

‖y(i)h − y(i)‖2Z +
γ

2
‖Ah −A‖2 = 1

2

N∑
i=1

‖(y(i)h − z(i))− (y(i) − z(i))‖2Z +
γ

2
‖Ah −A‖2

=
1

2

N∑
i=1

‖y(i)h − z(i)‖2Z −
N∑
i=1

(y
(i)
h − z(i), y(i) − z(i))Z +

1

2

N∑
i=1

‖y(i) − z(i)‖2Z

+
γ

2
‖Ah‖2 − γ(Ah, A) +

γ

2
‖A‖2

= Jh(Ah) + J(A)−
N∑
i=1

(y
(i)
h − z(i), y(i) − z(i))Z − γ(Ah, A)

→ 2J(A)−
N∑
i=1

‖y(i) − z(i)‖2Z − γ(A0, A)

≤ 2J(A)−
N∑
i=1

‖y(i) − z(i)‖2Z − γ‖A‖2 = 0,

where we have used (3.14) and the fact that A ≤ A0 a.e. in Ω. The theorem is proved.

4 Numerical examples

Let Ω := (−1, 1)2 ⊂ R
2. We consider a finite element approximation with piecewise linear,

continuous functions defined on a triangulation containing 512 triangles, constructed with
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the POIMESH environment of MATLAB. We take N = 1 with data (z, f) given by z = Ihy

where

y(x1, x2) = (1− x21)(1 − x22) and f(x1, x2) = (1− x22)(6x
2
1 + 2) + 2(1− x21).

Note that y is the solution of (1.1) when

A(x1, x2) =

⎡
⎢⎣ 1 + x21 0

0 1

⎤
⎥⎦ .

In the definition of K we have chosen a = 0.5 and b = 10. The discrete problem (3.3) is solved

using the projected steepest descent method with Armijo step size rule, see e.g. [9]. In view

of Remark 3.1 it is sufficient to iterate within the class of matrices in M that are piecewise

constant. Given such an A the new iterate is computed according to

A+ = A(τ) with τ = max
l∈N

{βl;Jh(A(β
l))− Jh(A) ≤ −

σ

βl
‖A(βl)−A‖2}

where β ∈ (0, 1) and

A(τ)|T := PK

(
A|T + τ

(
∇yh|T ⊗∇ph|T − γA|T

))
, T ∈ Th.

Here, yh = Th(A, f) and ph is the solution of the adjoint problem (3.6). In our calculations

we chose γ = 0.001, σ = 10−4, β = 0.5 and as initial matrix

A0 :=

⎡
⎢⎣ 2 −1

−1 2

⎤
⎥⎦ .

The iteration was stopped if ‖A+ − A(1)‖ ≤ τa + τr‖A0 − A0(1)‖ or the maximum number

of 5000 iterations was reached. For τa = 10−3 and τr = 10−2 we have ‖A0 − A0(1)‖ =

7.94 × 10−2, Jh(A0) = 2.18 × 10−1 and the algorithm terminated after 400 iterations with Ã

and ỹh = Th(Ã, f) such that

‖ỹh − z‖ = 1.02× 10−2, ‖A− Ã‖ = 2.05 and Jh(Ã) = 2.77 × 10−2.

Note that we cannot expect the difference A−Ã to become small since the diffusion matrix will

not be determined uniquely by just one set of data. Performing 5000 iterations we obtained

Ã and ỹh such that

‖ỹh − z‖ = 8.22× 10−3, ‖A− Ã‖ = 1.53 and Jh(Ã) = 2.32 × 10−2.

Fig. 1 from left to right shows ỹh, z and ỹh − z after 400 iterations.

By combining the projected gradient method with a homotopy in the parameter γ we were

also able to treat the case γ = 0. We started with γ = 1 and reduced γ by a factor of 0.8 after

every ten iterations. Using the same notation as above we obtained after 5000 iterations

‖ỹh − z‖ = 9.61 × 10−4, ‖A− Ã‖ = 1.40

and the corresponding results are displayed in Fig. 2. One observes that the difference between

ỹh and z is comparatively large in regions where ∇y is small which is in agreement with

classical results on the identifiability of scalar diffusion coefficients, see e.g. [14].
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Figure 1: Numerical solution, desired state, and error ỹh − z for γ = 1. × 10−3 after the

stopping criterion of the projected steepest descent method is met.
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Figure 2: Numerical solution, desired state, error ỹh− z for γ = 0 after 5000 iterations of the

steepest descent method.
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