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Abstract: In the present work we treat the inverse problem of identifying the matrix-valued diffusion
coefficient of an elliptic PDE from measurements with the help of techniques from PDE constrained op-
timization. We prove existence of solutions using the concept of H-convergence and employ variational
discretization for the discrete approximation of solutions. Using a discrete version of H-convergence
we are able to establish the strong convergence of the discrete solutions. Finally we present some

numerical results.
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1 Introduction

In this work we consider the inverse problem of identifying the diffusion matrix A = A(z) in
an elliptic PDE
—div (A(z)Vy) =g in Q, y =0 on 900 (1.1)
from measurements of data. Here, {2 C R™ is a bounded open set with a Lipschitz boundary.
Furthermore, we assume that A(z) = (a;;(z))};— satisfies a;; € L>°(£2) and that there exists
a > 0 such that >71',_; a;;(2)§&; > alé)? for all ¢ € R” and a.a. x € Q. Given g € H~1(Q),
the boundary value problem (1.1) then has a unique weak solution y € H}(f2) in the sense
that
/QAVy -Vudz = (g,v) for all v € Hj(Q), (1.2)

where (-, -) denotes the duality pairing between H~(Q) and H}(2). Furthermore,

19llmz < Cliglla-1 (1.3)

with a constant C' which only depends on a. We shall denote this solution by y = T'(4, g) in

order to also emphasize its dependence on A.

*Institut fiir Analysis und Numerik, Otto-von—Guericke-Universitdt Magdeburg, Universitatsplatz 2, 39106
Magdeburg, Germany

fSchwerpunkt Optimierung und Approximation, Universitit Hamburg, Bundesstraie 55, 20146 Hamburg,
Germany.



In what follows we assume that measurements (20, f®0) ¢ Z x H™Y(Q),1 < i < N
(Z = L*(Q) or Z = H}(Q)) are available, from which we would like to reconstruct the
diffusion matrix A. To do so, we employ a least squares approach together with a Tikhonov
regularization, i.e. we consider

N
(P) min J(4) = 2" [y = 2Ol + JIAP sty = T(A, fO), 1< i< N (14)
i=1

Here, v > 0 and we use the symbol |- || for the L? norm on spaces of scalar, vector or matrix—
valued functions, while the admissible set M will be specified in Section 2. Our choice,
motivated by the concept of H-convergence, guarantees the existence of a minimum of J. By
discretizing (1.1) with the help of linear finite elements we obtain an approximation J, of J.
Our main result, Theorem 3.4, says that each sequence of minimizers (Ap)p~o of Jp, has a
subsequence that converges strongly in L? to a minimum of J. In order to establish this result
we shall adapt a discrete version of H-convergence, introduced by Eymard and Gallouét in
[3] for finite volume schemes, to our setting. The above convergence result justifies the use of
Jp, in solving the identification problem. In practice we employ a projected steepest descent
algorithm for minimizing Jj, see Section 4.

Let us review related work which is concerned with the identification of matrix—valued pa-
rameters in elliptic PDEs. In [1], Alt, Hoffmann and Sprekels obtain a reconstructed matrix
by investigating the long time behaviour of a suitable dynamical system, see also [6]. In [10],
Kohn and Lowe introduce a variational method that is based on a convex functional involving
the variables y and AVy and investigate its stability properties. Stability results for the re-
construction of matrices of the form A = Vp® Vy can be found in [8]. In [13], Rannacher and
Vexler prove a—priori estimates for a matrix—identification problem in which a finite number
of unknown parameters is estimated from finitely many pointwise observations.

A lot of work has been devoted to the parameter estimation problem for a scalar diffusion
coefficient. Identifiability results can e.g. be found in [2], [14] and [16]. A survey of numerical
methods for parameter estimation problems can be found in [11]. Error estimates for a least
squares approach have been obtained by Falk in [4] and more recently by Wang and Zou
[17] for a functional involving a Tikhonov regularization. That paper also contains a long list
of further contributions. Let us finally note that the concept of H-convergence has recently
been used by Leugering and Stingl in [12] in order to treat problems in material design, in

particular to identify strain tensors from displacements in linear elasticity.

2 Existence of a minimum

Let us denote by S,, the set of all symmetric n x n matrices endowed with the inner product
A - B = trace(AB). We consider the subset

K:={AecS,[a<)N(A)<bi=1,...,n}

where 0 < a < b < oo are given constants and A;(A),...,\,(A) denote the eigenval-
ues of A. Since K is a convex and closed subset of S, we may introduce the orthogonal



projection Px : S, — K for which we can derive a formula as follows: given A € S,
let S be an orthogonal matrix such that SAS? = diag(A1(A),...,\(A)) =: D. If we let
D = diag (Pragi(A1(A)), .., Py (An(A))), where Py, 4(x) := max{a, min{z,b}}, 2 € R, then
clearly S'DS € K and we have for every B € K

(A-S'DS)-(B-S'DS) = (D-D)-(SBS'~D Z(A )= Pra (Ai(A))) (bis — P iy (Xi(A))),

where B = SBS! € K. Hence b;; € [a,b],i =1,...,n which immediately yields
(A—S'DS)-(B—-S'DS)<0, forall BEK

and therefore Pg(A) = S'diag (P (Ai(A)), ..., Pay(A(A))) S.

Next, let us introduce the set
M:={A e L>®(Q)"" | A(z) € K a.e. in Q}.

In proving the existence to problem (P) the following compactness result is crucial, see e.g.
[15].

Theorem 2.1. Let (Ag)ren be a sequence in M. Then there exists a subsequence (Ays)gren
and an element A € M such that for every g € H=1(Q)

T(Ap,g) = T(A,g) in HY(Q) and Ay VT (Aw,g) — AVT(A,g) in L*(Q)" (2.1)
The sequence (A )gprem is then said to be H-convergent to A and one writes Ay B 4.

Lemma 2.2. Suppose that (Ap)ren s a sequence in M with Ay E A and Ap 2 Ay in
Le(Q)™". Then A(x) < Ap(z) a.e. in 2 and

1A]* < [ Aol < lim inf || Ag[*. (2.2)
k—o00

Proof. The proof of Corollary 3.3 below will include an argument which shows in a similar
setting that A < Ag a.e. in . Furthermore, from the Courant—Fischer minmax theorem we
infer that \;(A(z)) < Ai(Ao(x)),i =1,...,n and hence taking into account that \;(A(z)) > 0

= Z)\i(A(iL’))2 < Z)\i(Ao(x))2 = |Ap(x)]?> a.e in Q.
i=1 =1

Integration over {2 together with the weak lower semicontinuity of the L?-norm then implies

(2.2) . 1

We are now in position to establish the existence of a solution to the minimization problem
(1.4).

Theorem 2.3. Problem (P) has a solution A € M.



Proof. Let (Ag)ken € M be a minimizing sequence for problem (P) so that J(Ax) \
infacpm J(A) as k — oo. Combining Theorem 2.1 with the fact that (Ag)ren is bounded
in L>®(Q)™" we deduce that there exist A € M, Ay € L*(Q)™" such that Ay 5 A and
A = Ay in L®(Q)™" for some suitable subsequence. Letting y,(:,) = T(Ap, fO),y® =

T(A, f®),1 <i< N, we therefore have y,(;,) — 4@ in H (). Hence,

N N
1 . T y 2 . . 1 () i) 112 v ;. . 2
J(A) = §;|Iy(”—z(”llz+§lz4l Sl}gglgofggﬂyé =217 + 5 lim inf || Ay |
< liminf J(Ay) = inf J(A
< liminf J(Ay) Jnf, (A),

k' —o0

where we also used (2.2). 1
Let us next derive a suitable form of the necessary first order optimality conditions for a
solution of (P). To begin, it is not difficult to verify that J is Fréchet differentiable on M

with
N

J(AH =Y (%W =20, wD); +4(A, H)p2, He L®(@@Q)™" (2.3)
=1

where y = T(A, f®) and w® = DsT(A, fO)H € HL(Q),1 < i < N is the partial

derivative of T with respect to A in direction H which is given as the unique solution of

/AVw(i) -Vudr = /HVy(i) -Vudr  for all v € H} (D). (2.4)
Q Q

In order to rewrite (2.3) we introduce the functions p(i) € H&(Q),i =1,...,N as the unique

solutions of the following adjoint problems:

/AVU VpDdz = (y@ — 20 v),  for all v € HL(Q). (2.5)
Q

Abbreviating (a ® b)g; = %(akbl + aibg), k, 0l =1,...,n for a,b € R™ we then have
N . .
J(A)H = / (=Y vy @ Vvp¥) +4A) - Hdz, H e L>(Q)™". (2.6)
Q=

Note that the above integral exists since Vy® @ Vp(® € L(Q)™". In conclusion
Theorem 2.4. Let A € M be a solution of (P). Then for every A > 0
N . .
A(x) = Pg (A —A <7A - Z vy (z) @ Vpt (:c))) a.e. in .
i=1

Proof. The optimality of A implies that J/(A)(A — A) > 0 for all A € M which can be
rewritten with the help of (2.6) as follows:

N
/ <A - A (’yA — ZVy(i)(x) ® Vp(i)(x)> — A) : (/Nl — A))dq: <0 forall Ae M.
Q

i=1



A localization argument shows that A(z) is the orthogonal projection of

=1

A(z) — A (Wl x) — ZV@/(’ ® Vp (z ))

onto K a.e. in §2 which implies the result. 1

Let us note that the particular choice A = % gives
1 (& A A
A(z) = Pk (; (Z vy (z) © vp (a:))) a.e. in (. (2.7)
i=1
3 Finite element discretization

Let 75, be a regular triangulation of  with maximum mesh size h := maxpc7, diam(7") and
suppose that € is the union of the elements of 7j; boundary elements are allowed to have

one curved face. We define the space of linear finite elements,
Xy = {v, € HY(Q) | vy, is a linear polynomial on each T € T}
It is well known that there exists an interpolation operator IIj, : H}(€2) — X}, such that
Mw —win H'(Q) as h — 0 for every w € H}(Q). (3.1)
For given A € M and g € H~1(2), the problem

/AVyh -Vopdx = (g,vy) for all vy, € X,
Q

has a unique solution y, = Ty (A, g) € X}. Furthermore, a standard argument yields the error
bound

b
Iy = wnlly < in€ lly—enllgy,  where y = T(4,g). (3:2)
In order to set up an approximation of (P) we use variational discretization as in [5] and
consider
(@) _ @2 o A2 (1) _ j :
(Ph)  min Ju(A Z lyy” = 27)1% + S IAIF sty = Th(A, f9),1<i<N. (3.3)

Similar arguments as in Section 2 show that Jp is Fréchet differentiable and that for A € M
J(AVH = / ( Zw(” ® Vp +7A> -Hdz, H e L®@Q)"" (3.4)

Since dim X}, < oo it is straightforward to see that (P,) has a solution A;, € M. Furthermore,
every solution Aj of (P},) satisfies

Ap( ( ZV@/(Z ) ® Vp(z)(:r)> a.e. in §, (3.5)

5



cf. (2.7). Here, y}(f) = T3,(Ap, f®) and pg) € Xj, are the solutions of the adjoint problems

/AhVUh . Vpg)dx = (y,(f) — z(i),vh)z for all v, € Xj,,1 <37 < N. (3.6)
Q

Remark 3.1. Let us note that in view of (3.5) Ay, is piecewise constant so that a discretization
of the set M is not required. Variational discretization automatically yields solutions to (3.3)

which allow a finite-dimensional representation.

In order to investigate the convergence of the approximate solutions we shall employ a discrete

version of Theorem 2.1.

Theorem 3.2. Let (Ap)n>o be a sequence in M. Then there exists a subsequence (Ap)p~o
and A € M such that for every g € H-1(Q)

Tw(Ap,g) = T(A,g) in H (Q) and AN Ty (A, g) — AVT(A,g) in L2(Q)".  (3.7)
We then say that the sequence (Ap )penm Hd—converges to A and write Ay Ky

Proof. The line of argument follows the corresponding proof in the continuous case (see [15])
and a similar result for a finite volume scheme, see [3]. We therefore only sketch the main
steps.

Step 1: One first shows that there exists a subsequence, for ease of notation again denoted
by (Ap)n>0, and continuous linear operators S : H=*(Q) — H}(Q), R : H71(Q) — L*(Q)"
such that for every g € H1(Q)

Th(An,9) — S(g) in H}(Q), ALVTL(An,g) — R(g) in L*(Q)"  as h — 0. (3.8)

Step 2: We show that S is invertible. For g € H~1(Q) denote by w € H(Q),wy, € X}, the

solutions of
/ Vw - Vudr = {g,v), v € H}(Q), / Vuwy, - Vupdz = (g,vs), vp € Xp.
Q Q

Clearly, |lw||g1 = [lgllz-1 and wp — w in H}(Q) in view of (3.1). Setting yj, = Ty (A, g) we

have in addition that
/ ApVyp - Vupdx = (g,vp) = / Vwy, - Vopdz, vy, € Xy,
Q Q

from which we infer that [jwp,|] < bllynll mp recalling the definition of M. Combining this
bound with (3.8) and using again the properties of M we deduce that

2 2 : 2 RTINS 2
ol = Nlwliy = lim llwallz, < b7 lim inf {lya[|7,

b? b? b?
< —liminf | A : = — liminf = — .
< Ttmint [ AV Vde = L limintlg.n) = - (0.56). (9)

which implies that S is invertible.
Step 3: Let C' : HH(Q) — L*(Q2)" be defined by Cv := RS~ 1v. For a given g € H~1(Q) the
function yp, = T}, (An, g) satisfies by definition

/ ApVyp - Vopdx = (g,v)  for all v, € Xp,. (3.10)
Q

6



Sending A — 0 and taking into account (3.8) and (3.1) we infer
/ Cy - Vvdr = (g,v) for all v € H}(Q), wherey = S(g). (3.11)
Q

Next, let g,§ € H~1(Q) be arbitrary and define y = S(g),7 = S(3) as well as y, =
Th(An, 9), 9n = Th(An, G). Recalling (3.10) we have for every ¢ € C§°(£2)

/ CARVYn - Vipdxr = / ApNyy - Vrypdx + (g, 00n) — (9, 7h) — / ApVyn - Vo gpdr,
Q Q Q

where we have abbreviated ry, = @, — I5(¢gn) and I, denotes the Lagrange interpolation

operator. A standard interpolation estimate implies

logn = In(in)lla(ry < CRID* (@il z2r) < Chllelmzoe @ llgnllmery, T € Th,

so that r, — 0in HE(Q) as h — 0 since ||§]| g1 < C. Observing in addition that A, Vy, — Cy
in L2(Q)", g — ¢y in Hi(Q) and g5, — § in L*(Q) we obtain

lim / ARy - Viindz = (g, i) / Cy -V jd,
h—0 Q Q

which, combined with (3.11), yields
lim / wARLVYyp - Vpdr = / Cy - Vydz. (3.12)
h—0 Jq Q

Similarly as in [3, Proof of Theorem 2| one now deduces from (3.11) and (3.12) that there
exists A € M such that
(Cy)(xz) = A(z)Vy(z) a.e. in . (3.13)

This completes the proof of the theorem. |

Corollary 3.3. Suppose that (Ap)n=o is a sequence in M with Ay A4 A and Ap 2 Ag in
L®(Q)™". Then A < Ag a.e. in Q and |A||? < ||Ag||? < liminfy,_o || An|>.

Proof. We use the same notation as in the proof of Theorem 3.2. By Step 2 above there exists
for every y € HZ(Q) an element g € H~1(2) such that y = S(g). Defining y5, = Tj,(Asn, 9)
there holds y;, — y in H}(Q), ApVy, — AVy in L?(Q)". Furthermore, we have for any
© € C5°(2), ¢ > 0 that

0 < /QwAhV(yh —y) - V(yn —y)dx
= / ©ARVYn - Vypdz — 2/ wARVyn - Vydx + / pARVy - Vydax.
Q Q Q

Recalling (3.12), (3.13) and the fact that A, — Ag in L°°(Q)™" we obtain upon sending
h—0

0< —/ pAVy - Vydx +/ pAgVy - Vydz,
Q Q



from which we infer that AVy - Vy < AgVy - Vy a.e. in Q. Since y € HL() is arbitrary we
deduce that A < Ag a.e. in 2. The remaining estimate is obtained in the same way as in the

proof of Lemma 2.2. |

We are now in position to prove a convergence result for a sequence (Ap)n~o of solutions of
(Ph)-

Theorem 3.4. Let A, € M be a solution of (Pp,). Then there exists a subsequence (Ap)n/>0
and A € M such that Ay — A in L2(Q)™", Ty (Ap, fO) = T(A, fO) in Z,1<i < N and
A is a solution of (P).

Proof. In view of Theorem 3.2 and Corollary 3.3 there exists a subsequence, again denoted
by (Ap)nso, and A € M such that A, 2§ A and A, = Ag in L(Q)™" with A < A,
a.e. in ). Let y() = T3(Ap, fD),y® = T(A, f),1 < i < N. Then y}(f) — ¢y in H}(Q),
A Vy,(l) — AVy® in L?(9)", so that we may deduce similarly as in the proof of Theorem 2.3
that J(A) < liminf, .o J,(Ap). Next, Theorem 2.3 implies that (P) has a solution A € M.

Then we have

J(A) < J(A) < hm mf Jn(Ap) < limsup Jy,(4p) < limsup Jy,(4) = J(A),
h—0 h—0

where the last equality follows from (3.2) and (3.1). We deduce that
lim Jy,(Ap) = J(A) = J(A), (3.14)
h—0

in particular, A is a minimum of J. Furthermore, we have

@ @2 Y 2 @ G i 2 Y 2
—ley ”Hz+§HAh—AII ZII 20) (()—Z”)Hz+§|\Ah—AII

N

N N
1 7 i i i i i 1 ; ;
= g2 I =2V = =0 = g -

i=1 =1

Y v
+§\|Ah||2 —v(Ap, A) + §||A||2

N
= T An) + J(A) = Y () =20,y O =20z — y(An, 4)

=1

— ley(’)—z(”llz v(Ao, A)

< 2J(A) - Z ly® — 29)1Z -~ A|> =
=1

where we have used (3.14) and the fact that A < Ay a.e. in Q. The theorem is proved. 1

4 Numerical examples

Let  := (-1, 1)2 ¢ R?. We consider a finite element approximation with piecewise linear,

continuous functions defined on a triangulation containing 512 triangles, constructed with



the POIMESH environment of MATLAB. We take N = 1 with data (z, f) given by z = Iy

where
y(xy, 20) = (1 — ) (1 — 23) and f(x1,22) = (1 — 23)(62% +2) +2(1 — 27).
Note that y is the solution of (1.1) when
1+22 0

A(xl, .%'2) =
0 1

In the definition of K we have chosen a = 0.5 and b = 10. The discrete problem (3.3) is solved
using the projected steepest descent method with Armijo step size rule, see e.g. [9]. In view

of Remark 3.1 it is sufficient to iterate within the class of matrices in M that are piecewise

constant. Given such an A the new iterate is computed according to
A = A7) with 7 = ma{8 Ju(A(3) = Ju(4) < ~Z1A(8) - A%}
where 3 € (0,1) and
A(T)ip = Px (A\T + 7 (Vynr @ Vpur — '7A|T)>7 T € Th.

Here, y, = Th(A, f) and py, is the solution of the adjoint problem (3.6). In our calculations

we chose v = 0.001, o = 107%, 8 = 0.5 and as initial matrix

The iteration was stopped if [|[AT — A(1)|| < 74 + 7-]|A° — A°(1)|| or the maximum number
of 5000 iterations was reached. For 7, = 1072 and 7, = 1072 we have ||A° — A°(1)| =
7.94 x 1072, J,(A%) = 2.18 x 10! and the algorithm terminated after 400 iterations with A
and g, = Th(fl, f) such that

Gn — 2] = 1.02 x 1072, ||JA— A =2.05 and J,(A) = 2.77 x 1072,

Note that we cannot expect the difference A— A to become small since the diffusion matrix will
not be determined uniquely by just one set of data. Performing 5000 iterations we obtained
A and g, such that

Gn — 2] =822 x 1073, ||[A— A =1.53 and J,(A) = 2.32 x 1072,

Fig. 1 from left to right shows g, z and g, — z after 400 iterations.
By combining the projected gradient method with a homotopy in the parameter v we were
also able to treat the case v = 0. We started with v = 1 and reduced y by a factor of 0.8 after

every ten iterations. Using the same notation as above we obtained after 5000 iterations
|gn — 2| = 9.61 x 1074, ||A— Al =1.40

and the corresponding results are displayed in Fig. 2. One observes that the difference between
yn and z is comparatively large in regions where Vy is small which is in agreement with

classical results on the identifiability of scalar diffusion coefficients, see e.g. [14].
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Figure 1: Numerical solution, desired state, and error g, — z for v = 1. x 1073 after the

stopping criterion of the projected steepest descent method is met.

Figure 2: Numerical solution, desired state, error g, — z for v = 0 after 5000 iterations of the

steepest descent method.
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