Hamburger Beiträge zur Angewandten Mathematik

Identification of matrix parameters in elliptic PDEs

Klaus Deckelnick and Michael Hinze

Nr. 2011-05
February 2011

Identification of matrix parameters in elliptic PDEs

Klaus Deckelnick* \& Michael Hinze ${ }^{\dagger}$

Abstract

In the present work we treat the inverse problem of identifying the matrix-valued diffusion coefficient of an elliptic PDE from measurements with the help of techniques from PDE constrained optimization. We prove existence of solutions using the concept of H -convergence and employ variational discretization for the discrete approximation of solutions. Using a discrete version of H -convergence we are able to establish the strong convergence of the discrete solutions. Finally we present some numerical results.

Mathematics Subject Classification (2000): 49J20, 49K20, 35B37
Keywords: Parameter identification, elliptic optimal control problem, control constraints, $\mathrm{H}-$ convergence, variational discretization.

1 Introduction

In this work we consider the inverse problem of identifying the diffusion matrix $A=A(x)$ in an elliptic PDE

$$
\begin{equation*}
-\operatorname{div}(A(x) \nabla y)=g \text { in } \Omega, y=0 \text { on } \partial \Omega \tag{1.1}
\end{equation*}
$$

from measurements of data. Here, $\Omega \subset \mathbb{R}^{n}$ is a bounded open set with a Lipschitz boundary. Furthermore, we assume that $A(x)=\left(a_{i j}(x)\right)_{i, j=1}^{n}$ satisfies $a_{i j} \in L^{\infty}(\Omega)$ and that there exists $a>0$ such that $\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \geq a|\xi|^{2}$ for all $\xi \in \mathbb{R}^{n}$ and a.a. $x \in \Omega$. Given $g \in H^{-1}(\Omega)$, the boundary value problem (1.1) then has a unique weak solution $y \in H_{0}^{1}(\Omega)$ in the sense that

$$
\begin{equation*}
\int_{\Omega} A \nabla y \cdot \nabla v d x=\langle g, v\rangle \quad \text { for all } v \in H_{0}^{1}(\Omega) \tag{1.2}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ denotes the duality pairing between $H^{-1}(\Omega)$ and $H_{0}^{1}(\Omega)$. Furthermore,

$$
\begin{equation*}
\|y\|_{H_{0}^{1}} \leq C\|g\|_{H^{-1}} \tag{1.3}
\end{equation*}
$$

with a constant C which only depends on a. We shall denote this solution by $y=T(A, g)$ in order to also emphasize its dependence on A.

[^0]In what follows we assume that measurements $\left(z^{(i)}, f^{(i)}\right) \in Z \times H^{-1}(\Omega), 1 \leq i \leq N$ $\left(Z=L^{2}(\Omega)\right.$ or $\left.Z=H_{0}^{1}(\Omega)\right)$ are available, from which we would like to reconstruct the diffusion matrix A. To do so, we employ a least squares approach together with a Tikhonov regularization, i.e. we consider

$$
\begin{equation*}
(P) \quad \min _{A \in \mathcal{M}} J(A):=\frac{1}{2} \sum_{i=1}^{N}\left\|y^{(i)}-z^{(i)}\right\|_{Z}^{2}+\frac{\gamma}{2}\|A\|^{2} \text { s.t. } y^{(i)}=T\left(A, f^{(i)}\right), 1 \leq i \leq N \tag{1.4}
\end{equation*}
$$

Here, $\gamma>0$ and we use the symbol $\|\cdot\|$ for the L^{2} norm on spaces of scalar, vector or matrixvalued functions, while the admissible set \mathcal{M} will be specified in Section 2. Our choice, motivated by the concept of H -convergence, guarantees the existence of a minimum of J. By discretizing (1.1) with the help of linear finite elements we obtain an approximation J_{h} of J. Our main result, Theorem 3.4, says that each sequence of minimizers $\left(A_{h}\right)_{h>0}$ of J_{h} has a subsequence that converges strongly in L^{2} to a minimum of J. In order to establish this result we shall adapt a discrete version of H -convergence, introduced by Eymard and Gallouët in [3] for finite volume schemes, to our setting. The above convergence result justifies the use of J_{h} in solving the identification problem. In practice we employ a projected steepest descent algorithm for minimizing J_{h}, see Section 4.
Let us review related work which is concerned with the identification of matrix-valued parameters in elliptic PDEs. In [1], Alt, Hoffmann and Sprekels obtain a reconstructed matrix by investigating the long time behaviour of a suitable dynamical system, see also [6]. In [10], Kohn and Lowe introduce a variational method that is based on a convex functional involving the variables y and $A \nabla y$ and investigate its stability properties. Stability results for the reconstruction of matrices of the form $A=\nabla p \otimes \nabla y$ can be found in [8]. In [13], Rannacher and Vexler prove a-priori estimates for a matrix-identification problem in which a finite number of unknown parameters is estimated from finitely many pointwise observations.
A lot of work has been devoted to the parameter estimation problem for a scalar diffusion coefficient. Identifiability results can e.g. be found in [2], [14] and [16]. A survey of numerical methods for parameter estimation problems can be found in [11]. Error estimates for a least squares approach have been obtained by Falk in [4] and more recently by Wang and Zou [17] for a functional involving a Tikhonov regularization. That paper also contains a long list of further contributions. Let us finally note that the concept of H -convergence has recently been used by Leugering and Stingl in [12] in order to treat problems in material design, in particular to identify strain tensors from displacements in linear elasticity.

2 Existence of a minimum

Let us denote by \mathcal{S}_{n} the set of all symmetric $n \times n$ matrices endowed with the inner product $A \cdot B=\operatorname{trace}(A B)$. We consider the subset

$$
K:=\left\{A \in \mathcal{S}_{n} \mid a \leq \lambda_{i}(A) \leq b, i=1, \ldots, n\right\}
$$

where $0<a<b<\infty$ are given constants and $\lambda_{1}(A), \ldots, \lambda_{n}(A)$ denote the eigenvalues of A. Since K is a convex and closed subset of \mathcal{S}_{n} we may introduce the orthogonal
projection $P_{K}: \mathcal{S}_{n} \rightarrow K$ for which we can derive a formula as follows: given $A \in \mathcal{S}_{n}$, let S be an orthogonal matrix such that $S A S^{t}=\operatorname{diag}\left(\lambda_{1}(A), \ldots, \lambda_{n}(A)\right)=$: D. If we let $\tilde{D}=\operatorname{diag}\left(P_{[a, b]}\left(\lambda_{1}(A)\right), \ldots, P_{[a, b]}\left(\lambda_{n}(A)\right)\right)$, where $P_{[a, b]}(x):=\max \{a, \min \{x, b\}\}, x \in \mathbb{R}$, then clearly $S^{t} \tilde{D} S \in K$ and we have for every $B \in K$
$\left(A-S^{t} \tilde{D} S\right) \cdot\left(B-S^{t} \tilde{D} S\right)=(D-\tilde{D}) \cdot\left(S B S^{t}-\tilde{D}\right)=\sum_{i=1}^{n}\left(\lambda_{i}(A)-P_{[a, b]}\left(\lambda_{i}(A)\right)\right)\left(\tilde{b}_{i i}-P_{[a, b]}\left(\lambda_{i}(A)\right)\right)$,
where $\tilde{B}=S B S^{t} \in K$. Hence $\tilde{b}_{i i} \in[a, b], i=1, \ldots, n$ which immediately yields

$$
\left(A-S^{t} \tilde{D} S\right) \cdot\left(B-S^{t} \tilde{D} S\right) \leq 0, \quad \text { for all } B \in K
$$

and therefore $P_{K}(A)=S^{t} \operatorname{diag}\left(P_{[a, b]}\left(\lambda_{1}(A)\right), \ldots, P_{[a, b]}\left(\lambda_{n}(A)\right)\right) S$.
Next, let us introduce the set

$$
\mathcal{M}:=\left\{A \in L^{\infty}(\Omega)^{n, n} \mid A(x) \in K \text { a.e. in } \Omega\right\}
$$

In proving the existence to problem (P) the following compactness result is crucial, see e.g. [15].

Theorem 2.1. Let $\left(A_{k}\right)_{k \in \mathbb{N}}$ be a sequence in \mathcal{M}. Then there exists a subsequence $\left(A_{k^{\prime}}\right)_{k^{\prime} \in \mathbb{N}}$ and an element $A \in \mathcal{M}$ such that for every $g \in H^{-1}(\Omega)$

$$
\begin{equation*}
T\left(A_{k^{\prime}}, g\right) \rightharpoonup T(A, g) \text { in } H_{0}^{1}(\Omega) \text { and } A_{k^{\prime}} \nabla T\left(A_{k^{\prime}}, g\right) \rightharpoonup A \nabla T(A, g) \text { in } L^{2}(\Omega)^{n} \tag{2.1}
\end{equation*}
$$

The sequence $\left(A_{k^{\prime}}\right)_{k^{\prime} \in \mathcal{M}}$ is then said to be H-convergent to A and one writes $A_{k^{\prime}} \xrightarrow{H} A$.
Lemma 2.2. Suppose that $\left(A_{k}\right)_{k \in \mathbb{N}}$ is a sequence in \mathcal{M} with $A_{k} \xrightarrow{H} A$ and $A_{k} \xrightarrow{*} A_{0}$ in $L^{\infty}(\Omega)^{n, n}$. Then $A(x) \leq A_{0}(x)$ a.e. in Ω and

$$
\begin{equation*}
\|A\|^{2} \leq\left\|A_{0}\right\|^{2} \leq \liminf _{k \rightarrow \infty}\left\|A_{k}\right\|^{2} \tag{2.2}
\end{equation*}
$$

Proof. The proof of Corollary 3.3 below will include an argument which shows in a similar setting that $A \leq A_{0}$ a.e. in Ω. Furthermore, from the Courant-Fischer minmax theorem we infer that $\lambda_{i}(A(x)) \leq \lambda_{i}\left(A_{0}(x)\right), i=1, \ldots, n$ and hence taking into account that $\lambda_{i}(A(x)) \geq 0$

$$
|A(x)|^{2}=\sum_{i=1}^{n} \lambda_{i}(A(x))^{2} \leq \sum_{i=1}^{n} \lambda_{i}\left(A_{0}(x)\right)^{2}=\left|A_{0}(x)\right|^{2} \quad \text { a.e. in } \Omega
$$

Integration over Ω together with the weak lower semicontinuity of the L^{2}-norm then implies (2.2) .

We are now in position to establish the existence of a solution to the minimization problem (1.4).

Theorem 2.3. Problem (P) has a solution $A \in \mathcal{M}$.

Proof. Let $\left(A_{k}\right)_{k \in \mathbb{N}} \subseteq \mathcal{M}$ be a minimizing sequence for problem (P) so that $J\left(A_{k}\right) \searrow$ $\inf _{A \in \mathcal{M}} J(A)$ as $k \rightarrow \infty$. Combining Theorem 2.1 with the fact that $\left(A_{k}\right)_{k \in \mathbb{N}}$ is bounded in $L^{\infty}(\Omega)^{n, n}$ we deduce that there exist $A \in \mathcal{M}, A_{0} \in L^{\infty}(\Omega)^{n, n}$ such that $A_{k^{\prime}} \xrightarrow{H} A$ and $A_{k^{\prime}} \stackrel{*}{\rightharpoonup} A_{0}$ in $L^{\infty}(\Omega)^{n, n}$ for some suitable subsequence. Letting $y_{k^{\prime}}^{(i)}=T\left(A_{k^{\prime}}, f^{(i)}\right), y^{(i)}=$ $T\left(A, f^{(i)}\right), 1 \leq i \leq N$, we therefore have $y_{k^{\prime}}^{(i)} \rightharpoonup y^{(i)}$ in $H_{0}^{1}(\Omega)$. Hence,

$$
\begin{aligned}
J(A) & =\frac{1}{2} \sum_{i=1}^{N}\left\|y^{(i)}-z^{(i)}\right\|_{Z}^{2}+\frac{\gamma}{2}\|A\|^{2} \leq \liminf _{k^{\prime} \rightarrow \infty} \frac{1}{2} \sum_{i=1}^{N}\left\|y_{k^{\prime}}^{(i)}-z^{(i)}\right\|_{Z}^{2}+\frac{\gamma}{2} \liminf _{k^{\prime} \rightarrow \infty}\left\|A_{k^{\prime}}\right\|^{2} \\
& \leq \liminf _{k^{\prime} \rightarrow \infty} J\left(A_{k^{\prime}}\right)=\inf _{A \in \mathcal{M}} J(A),
\end{aligned}
$$

where we also used (2.2).
Let us next derive a suitable form of the necessary first order optimality conditions for a solution of (P). To begin, it is not difficult to verify that J is Fréchet differentiable on \mathcal{M} with

$$
\begin{equation*}
J^{\prime}(A) H=\sum_{i=1}^{N}\left(y^{(i)}-z^{(i)}, w^{(i)}\right) Z+\gamma(A, H)_{L^{2}}, \quad H \in L^{\infty}(\Omega)^{n, n} \tag{2.3}
\end{equation*}
$$

where $y^{(i)}=T\left(A, f^{(i)}\right)$ and $w^{(i)}=D_{A} T\left(A, f^{(i)}\right) H \in H_{0}^{1}(\Omega), 1 \leq i \leq N$ is the partial derivative of T with respect to A in direction H which is given as the unique solution of

$$
\begin{equation*}
\int_{\Omega} A \nabla w^{(i)} \cdot \nabla v d x=-\int_{\Omega} H \nabla y^{(i)} \cdot \nabla v d x \quad \text { for all } v \in H_{0}^{1}(\Omega) . \tag{2.4}
\end{equation*}
$$

In order to rewrite (2.3) we introduce the functions $p^{(i)} \in H_{0}^{1}(\Omega), i=1, \ldots, N$ as the unique solutions of the following adjoint problems:

$$
\begin{equation*}
\int_{\Omega} A \nabla v \cdot \nabla p^{(i)} d x=\left(y^{(i)}-z^{(i)}, v\right)_{Z} \quad \text { for all } v \in H_{0}^{1}(\Omega) \tag{2.5}
\end{equation*}
$$

Abbreviating $(a \otimes b)_{k l}=\frac{1}{2}\left(a_{k} b_{l}+a_{l} b_{k}\right), k, l=1, \ldots, n$ for $a, b \in \mathbb{R}^{n}$ we then have

$$
\begin{equation*}
J^{\prime}(A) H=\int_{\Omega}\left(-\sum_{i=1}^{N} \nabla y^{(i)} \otimes \nabla p^{(i)}+\gamma A\right) \cdot H d x, \quad H \in L^{\infty}(\Omega)^{n, n} . \tag{2.6}
\end{equation*}
$$

Note that the above integral exists since $\nabla y^{(i)} \otimes \nabla p^{(i)} \in L^{1}(\Omega)^{n, n}$. In conclusion
Theorem 2.4. Let $A \in \mathcal{M}$ be a solution of (P). Then for every $\lambda>0$

$$
A(x)=P_{K}\left(A-\lambda\left(\gamma A-\sum_{i=1}^{N} \nabla y^{(i)}(x) \otimes \nabla p^{(i)}(x)\right)\right) \text { a.e. in } \Omega \text {. }
$$

Proof. The optimality of A implies that $J^{\prime}(A)(\tilde{A}-A) \geq 0$ for all $\tilde{A} \in \mathcal{M}$ which can be rewritten with the help of (2.6) as follows:

$$
\left.\int_{\Omega}\left(A-\lambda\left(\gamma A-\sum_{i=1}^{N} \nabla y^{(i)}(x) \otimes \nabla p^{(i)}(x)\right)-A\right) \cdot(\tilde{A}-A)\right) d x \leq 0 \quad \text { for all } \tilde{A} \in \mathcal{M}
$$

A localization argument shows that $A(x)$ is the orthogonal projection of

$$
A(x)-\lambda\left(\gamma A(x)-\sum_{i=1}^{N} \nabla y^{(i)}(x) \otimes \nabla p^{(i)}(x)\right)
$$

onto K a.e. in Ω which implies the result.

Let us note that the particular choice $\lambda=\frac{1}{\gamma}$ gives

$$
\begin{equation*}
A(x)=P_{K}\left(\frac{1}{\gamma}\left(\sum_{i=1}^{N} \nabla y^{(i)}(x) \otimes \nabla p^{(i)}(x)\right)\right) \text { a.e. in } \Omega . \tag{2.7}
\end{equation*}
$$

3 Finite element discretization

Let \mathcal{T}_{h} be a regular triangulation of Ω with maximum mesh size $h:=\max _{T \in \mathcal{T}_{h}} \operatorname{diam}(T)$ and suppose that $\bar{\Omega}$ is the union of the elements of \mathcal{T}_{h}; boundary elements are allowed to have one curved face. We define the space of linear finite elements,

$$
X_{h}:=\left\{v_{h} \in H_{0}^{1}(\Omega) \mid v_{h} \text { is a linear polynomial on each } T \in \mathcal{T}_{h}\right\}
$$

It is well known that there exists an interpolation operator $\Pi_{h}: H_{0}^{1}(\Omega) \rightarrow X_{h}$ such that

$$
\begin{equation*}
\Pi_{h} w \rightarrow w \text { in } H^{1}(\Omega) \text { as } h \rightarrow 0 \quad \text { for every } w \in H_{0}^{1}(\Omega) \tag{3.1}
\end{equation*}
$$

For given $A \in \mathcal{M}$ and $g \in H^{-1}(\Omega)$, the problem

$$
\int_{\Omega} A \nabla y_{h} \cdot \nabla v_{h} d x=\left\langle g, v_{h}\right\rangle \quad \text { for all } v_{h} \in X_{h}
$$

has a unique solution $y_{h}=T_{h}(A, g) \in X_{h}$. Furthermore, a standard argument yields the error bound

$$
\begin{equation*}
\left\|y-y_{h}\right\|_{H_{0}^{1}} \leq \frac{b}{a} \inf _{v_{h} \in X_{h}}\left\|y-v_{h}\right\|_{H_{0}^{1}}, \quad \text { where } y=T(A, g) \tag{3.2}
\end{equation*}
$$

In order to set up an approximation of (P) we use variational discretization as in [5] and consider

$$
\begin{equation*}
\left(P_{h}\right) \quad \min _{A \in \mathcal{M}} J_{h}(A):=\frac{1}{2} \sum_{i=1}^{N}\left\|y_{h}^{(i)}-z^{(i)}\right\|^{2}+\frac{\gamma}{2}\|A\|^{2} \text { s.t. } y_{h}^{(i)}=T_{h}\left(A, f^{(i)}\right), 1 \leq i \leq N \tag{3.3}
\end{equation*}
$$

Similar arguments as in Section 2 show that J_{h} is Fréchet differentiable and that for $A \in \mathcal{M}$

$$
\begin{equation*}
J_{h}^{\prime}(A) H=\int_{\Omega}\left(-\sum_{i=1}^{N} \nabla y_{h}^{(i)} \otimes \nabla p_{h}^{(i)}+\gamma A\right) \cdot H d x, \quad H \in L^{\infty}(\Omega)^{n, n} \tag{3.4}
\end{equation*}
$$

Since $\operatorname{dim} X_{h}<\infty$ it is straightforward to see that $\left(P_{h}\right)$ has a solution $A_{h} \in \mathcal{M}$. Furthermore, every solution A_{h} of $\left(P_{h}\right)$ satisfies

$$
\begin{equation*}
A_{h}(x)=P_{K}\left(\frac{1}{\gamma} \sum_{i=1}^{N} \nabla y_{h}^{(i)}(x) \otimes \nabla p_{h}^{(i)}(x)\right) \text { a.e. in } \Omega \tag{3.5}
\end{equation*}
$$

cf. (2.7). Here, $y_{h}^{(i)}=T_{h}\left(A_{h}, f^{(i)}\right)$ and $p_{h}^{(i)} \in X_{h}$ are the solutions of the adjoint problems

$$
\begin{equation*}
\int_{\Omega} A_{h} \nabla v_{h} \cdot \nabla p_{h}^{(i)} d x=\left(y_{h}^{(i)}-z^{(i)}, v_{h}\right)_{Z} \quad \text { for all } v_{h} \in X_{h}, 1 \leq i \leq N \tag{3.6}
\end{equation*}
$$

Remark 3.1. Let us note that in view of (3.5) A_{h} is piecewise constant so that a discretization of the set \mathcal{M} is not required. Variational discretization automatically yields solutions to (3.3) which allow a finite-dimensional representation.

In order to investigate the convergence of the approximate solutions we shall employ a discrete version of Theorem 2.1.

Theorem 3.2. Let $\left(A_{h}\right)_{h>0}$ be a sequence in \mathcal{M}. Then there exists a subsequence $\left(A_{h^{\prime}}\right)_{h^{\prime}>0}$ and $A \in \mathcal{M}$ such that for every $g \in H^{-1}(\Omega)$

$$
\begin{equation*}
T_{h^{\prime}}\left(A_{h^{\prime}}, g\right) \rightharpoonup T(A, g) \text { in } H_{0}^{1}(\Omega) \text { and } A_{h^{\prime}} \nabla T_{h^{\prime}}\left(A_{h^{\prime}}, g\right) \rightharpoonup A \nabla T(A, g) \text { in } L^{2}(\Omega)^{n} \tag{3.7}
\end{equation*}
$$

We then say that the sequence $\left(A_{h^{\prime}}\right)_{h^{\prime} \in \mathcal{M}} H d$-converges to A and write $A_{h^{\prime}} \xrightarrow{H d} A$.
Proof. The line of argument follows the corresponding proof in the continuous case (see [15]) and a similar result for a finite volume scheme, see [3]. We therefore only sketch the main steps.
Step 1: One first shows that there exists a subsequence, for ease of notation again denoted by $\left(A_{h}\right)_{h>0}$, and continuous linear operators $S: H^{-1}(\Omega) \rightarrow H_{0}^{1}(\Omega), R: H^{-1}(\Omega) \rightarrow L^{2}(\Omega)^{n}$ such that for every $g \in H^{-1}(\Omega)$

$$
\begin{equation*}
T_{h}\left(A_{h}, g\right) \rightharpoonup S(g) \text { in } H_{0}^{1}(\Omega), \quad A_{h} \nabla T_{h}\left(A_{h}, g\right) \rightharpoonup R(g) \text { in } L^{2}(\Omega)^{n} \quad \text { as } h \rightarrow 0 \tag{3.8}
\end{equation*}
$$

Step 2: We show that S is invertible. For $g \in H^{-1}(\Omega)$ denote by $w \in H_{0}^{1}(\Omega), w_{h} \in X_{h}$ the solutions of

$$
\int_{\Omega} \nabla w \cdot \nabla v d x=\langle g, v\rangle, \quad v \in H_{0}^{1}(\Omega), \quad \int_{\Omega} \nabla w_{h} \cdot \nabla v_{h} d x=\left\langle g, v_{h}\right\rangle, \quad v_{h} \in X_{h}
$$

Clearly, $\|w\|_{H_{0}^{1}}=\|g\|_{H^{-1}}$ and $w_{h} \rightarrow w$ in $H_{0}^{1}(\Omega)$ in view of (3.1). Setting $y_{h}=T_{h}\left(A_{h}, g\right)$ we have in addition that

$$
\int_{\Omega} A_{h} \nabla y_{h} \cdot \nabla v_{h} d x=\left\langle g, v_{h}\right\rangle=\int_{\Omega} \nabla w_{h} \cdot \nabla v_{h} d x, \quad v_{h} \in X_{h}
$$

from which we infer that $\left\|w_{h}\right\|_{H_{0}^{1}} \leq b\left\|y_{h}\right\|_{H_{0}^{1}}$ recalling the definition of \mathcal{M}. Combining this bound with (3.8) and using again the properties of \mathcal{M} we deduce that

$$
\begin{align*}
\|g\|_{H^{-1}}^{2} & =\|w\|_{H_{0}^{1}}^{2}=\lim _{h \rightarrow 0}\left\|w_{h}\right\|_{H_{0}^{1}}^{2} \leq b^{2} \liminf _{h \rightarrow 0}\left\|y_{h}\right\|_{H_{0}^{1}}^{2} \\
& \leq \frac{b^{2}}{a} \liminf _{h \rightarrow 0} \int_{\Omega} A_{h} \nabla y_{h} \cdot \nabla y_{h} d x=\frac{b^{2}}{a} \liminf _{h \rightarrow 0}\left\langle g, y_{h}\right\rangle=\frac{b^{2}}{a}\langle g, S(g)\rangle, \tag{3.9}
\end{align*}
$$

which implies that S is invertible.
Step 3: Let $C: H_{0}^{1}(\Omega) \rightarrow L^{2}(\Omega)^{n}$ be defined by $C v:=R S^{-1} v$. For a given $g \in H^{-1}(\Omega)$ the function $y_{h}=T_{h}\left(A_{h}, g\right)$ satisfies by definition

$$
\begin{equation*}
\int_{\Omega} A_{h} \nabla y_{h} \cdot \nabla v_{h} d x=\left\langle g, v_{h}\right\rangle \quad \text { for all } v_{h} \in X_{h} \tag{3.10}
\end{equation*}
$$

Sending $h \rightarrow 0$ and taking into account (3.8) and (3.1) we infer

$$
\begin{equation*}
\int_{\Omega} C y \cdot \nabla v d x=\langle g, v\rangle \quad \text { for all } v \in H_{0}^{1}(\Omega), \quad \text { where } y=S(g) \tag{3.11}
\end{equation*}
$$

Next, let $g, \tilde{g} \in H^{-1}(\Omega)$ be arbitrary and define $y=S(g), \tilde{y}=S(\tilde{g})$ as well as $y_{h}=$ $T_{h}\left(A_{h}, g\right), \tilde{y}_{h}=T_{h}\left(A_{h}, \tilde{g}\right)$. Recalling (3.10) we have for every $\varphi \in C_{0}^{\infty}(\Omega)$

$$
\int_{\Omega} \varphi A_{h} \nabla y_{h} \cdot \nabla \tilde{y}_{h} d x=\int_{\Omega} A_{h} \nabla y_{h} \cdot \nabla r_{h} d x+\left\langle g, \varphi \tilde{y}_{h}\right\rangle-\left\langle g, r_{h}\right\rangle-\int_{\Omega} A_{h} \nabla y_{h} \cdot \nabla \varphi \tilde{y}_{h} d x
$$

where we have abbreviated $r_{h}=\varphi \tilde{y}_{h}-I_{h}\left(\varphi \tilde{y}_{h}\right)$ and I_{h} denotes the Lagrange interpolation operator. A standard interpolation estimate implies

$$
\left\|\varphi \tilde{y}_{h}-I_{h}\left(\varphi \tilde{y}_{h}\right)\right\|_{H^{1}(T)} \leq C h\left\|D^{2}\left(\varphi \tilde{y}_{h}\right)\right\|_{L^{2}(T)} \leq C h\|\varphi\|_{H^{2, \infty}(T)}\left\|\tilde{y}_{h}\right\|_{H^{1}(T)}, \quad T \in \mathcal{T}_{h}
$$

so that $r_{h} \rightarrow 0$ in $H_{0}^{1}(\Omega)$ as $h \rightarrow 0$ since $\left\|\tilde{y}_{h}\right\|_{H^{1}} \leq C$. Observing in addition that $A_{h} \nabla y_{h} \rightharpoonup C y$ in $L^{2}(\Omega)^{n}, \varphi \tilde{y}_{h} \rightharpoonup \varphi \tilde{y}$ in $H_{0}^{1}(\Omega)$ and $\tilde{y}_{h} \rightarrow \tilde{y}$ in $L^{2}(\Omega)$ we obtain

$$
\lim _{h \rightarrow 0} \int_{\Omega} \varphi A_{h} \nabla y_{h} \cdot \nabla \tilde{y}_{h} d x=\langle g, \varphi \tilde{y}\rangle-\int_{\Omega} C y \cdot \nabla \varphi \tilde{y} d x
$$

which, combined with (3.11), yields

$$
\begin{equation*}
\lim _{h \rightarrow 0} \int_{\Omega} \varphi A_{h} \nabla y_{h} \cdot \nabla \tilde{y}_{h} d x=\int_{\Omega} \varphi C y \cdot \nabla \tilde{y} d x \tag{3.12}
\end{equation*}
$$

Similarly as in [3, Proof of Theorem 2] one now deduces from (3.11) and (3.12) that there exists $A \in \mathcal{M}$ such that

$$
\begin{equation*}
(C y)(x)=A(x) \nabla y(x) \quad \text { a.e. in } \Omega \tag{3.13}
\end{equation*}
$$

This completes the proof of the theorem.

Corollary 3.3. Suppose that $\left(A_{h}\right)_{h>0}$ is a sequence in \mathcal{M} with $A_{h} \xrightarrow{H d} A$ and $A_{h} \xrightarrow{*} A_{0}$ in $L^{\infty}(\Omega)^{n, n}$. Then $A \leq A_{0}$ a.e. in Ω and $\|A\|^{2} \leq\left\|A_{0}\right\|^{2} \leq \liminf _{h \rightarrow 0}\left\|A_{h}\right\|^{2}$.

Proof. We use the same notation as in the proof of Theorem 3.2. By Step 2 above there exists for every $y \in H_{0}^{1}(\Omega)$ an element $g \in H^{-1}(\Omega)$ such that $y=S(g)$. Defining $y_{h}=T_{h}\left(A_{h}, g\right)$ there holds $y_{h} \rightharpoonup y$ in $H_{0}^{1}(\Omega), A_{h} \nabla y_{h} \rightharpoonup A \nabla y$ in $L^{2}(\Omega)^{n}$. Furthermore, we have for any $\varphi \in C_{0}^{\infty}(\Omega), \varphi \geq 0$ that

$$
\begin{aligned}
0 & \leq \int_{\Omega} \varphi A_{h} \nabla\left(y_{h}-y\right) \cdot \nabla\left(y_{h}-y\right) d x \\
& =\int_{\Omega} \varphi A_{h} \nabla y_{h} \cdot \nabla y_{h} d x-2 \int_{\Omega} \varphi A_{h} \nabla y_{h} \cdot \nabla y d x+\int_{\Omega} \varphi A_{h} \nabla y \cdot \nabla y d x
\end{aligned}
$$

Recalling (3.12), (3.13) and the fact that $A_{h} \stackrel{*}{\longrightarrow} A_{0}$ in $L^{\infty}(\Omega)^{n, n}$ we obtain upon sending $h \rightarrow 0$

$$
0 \leq-\int_{\Omega} \varphi A \nabla y \cdot \nabla y d x+\int_{\Omega} \varphi A_{0} \nabla y \cdot \nabla y d x
$$

from which we infer that $A \nabla y \cdot \nabla y \leq A_{0} \nabla y \cdot \nabla y$ a.e. in Ω. Since $y \in H_{0}^{1}(\Omega)$ is arbitrary we deduce that $A \leq A_{0}$ a.e. in Ω. The remaining estimate is obtained in the same way as in the proof of Lemma 2.2.

We are now in position to prove a convergence result for a sequence $\left(A_{h}\right)_{h>0}$ of solutions of $\left(P_{h}\right)$.

Theorem 3.4. Let $A_{h} \in \mathcal{M}$ be a solution of $\left(P_{h}\right)$. Then there exists a subsequence $\left(A_{h^{\prime}}\right)_{h^{\prime}>0}$ and $A \in \mathcal{M}$ such that $A_{h^{\prime}} \rightarrow A$ in $L^{2}(\Omega)^{n, n}, T_{h^{\prime}}\left(A_{h^{\prime}}, f^{(i)}\right) \rightarrow T\left(A, f^{(i)}\right)$ in $Z, 1 \leq i \leq N$ and A is a solution of (P).

Proof. In view of Theorem 3.2 and Corollary 3.3 there exists a subsequence, again denoted by $\left(A_{h}\right)_{h>0}$, and $A \in \mathcal{M}$ such that $A_{h} \xrightarrow{H d} A$ and $A_{h} \xrightarrow{*} A_{0}$ in $L^{\infty}(\Omega)^{n, n}$ with $A \leq A_{0}$ a.e. in Ω. Let $y_{h}^{(i)}=T_{h}\left(A_{h}, f^{(i)}\right), y^{(i)}=T\left(A, f^{(i)}\right), 1 \leq i \leq N$. Then $y_{h}^{(i)} \rightharpoonup y^{(i)}$ in $H_{0}^{1}(\Omega)$, $A_{h} \nabla y_{h}^{(i)} \rightharpoonup A \nabla y^{(i)}$ in $L^{2}(\Omega)^{n}$, so that we may deduce similarly as in the proof of Theorem 2.3 that $J(A) \leq \liminf _{h \rightarrow 0} J_{h}\left(A_{h}\right)$. Next, Theorem 2.3 implies that (P) has a solution $\bar{A} \in \mathcal{M}$. Then we have

$$
J(\bar{A}) \leq J(A) \leq \liminf _{h \rightarrow 0} J_{h}\left(A_{h}\right) \leq \limsup _{h \rightarrow 0} J_{h}\left(A_{h}\right) \leq \limsup _{h \rightarrow 0} J_{h}(\bar{A})=J(\bar{A})
$$

where the last equality follows from (3.2) and (3.1). We deduce that

$$
\begin{equation*}
\lim _{h \rightarrow 0} J_{h}\left(A_{h}\right)=J(A)=J(\bar{A}) \tag{3.14}
\end{equation*}
$$

in particular, A is a minimum of J. Furthermore, we have

$$
\begin{aligned}
& \frac{1}{2} \sum_{i=1}^{N}\left\|y_{h}^{(i)}-y^{(i)}\right\|_{Z}^{2}+\frac{\gamma}{2}\left\|A_{h}-A\right\|^{2}=\frac{1}{2} \sum_{i=1}^{N}\left\|\left(y_{h}^{(i)}-z^{(i)}\right)-\left(y^{(i)}-z^{(i)}\right)\right\|_{Z}^{2}+\frac{\gamma}{2}\left\|A_{h}-A\right\|^{2} \\
&= \frac{1}{2} \sum_{i=1}^{N}\left\|y_{h}^{(i)}-z^{(i)}\right\|_{Z}^{2}-\sum_{i=1}^{N}\left(y_{h}^{(i)}-z^{(i)}, y^{(i)}-z^{(i)}\right)_{Z}+\frac{1}{2} \sum_{i=1}^{N}\left\|y^{(i)}-z^{(i)}\right\|_{Z}^{2} \\
&+\frac{\gamma}{2}\left\|A_{h}\right\|^{2}-\gamma\left(A_{h}, A\right)+\frac{\gamma}{2}\|A\|^{2} \\
&= J_{h}\left(A_{h}\right)+J(A)-\sum_{i=1}^{N}\left(y_{h}^{(i)}-z^{(i)}, y^{(i)}-z^{(i)}\right)_{Z}-\gamma\left(A_{h}, A\right) \\
& \rightarrow 2 J(A)-\sum_{i=1}^{N}\left\|y^{(i)}-z^{(i)}\right\|_{Z}^{2}-\gamma\left(A_{0}, A\right) \\
& \leq 2 J(A)-\sum_{i=1}^{N}\left\|y^{(i)}-z^{(i)}\right\|_{Z}^{2}-\gamma\|A\|^{2}=0
\end{aligned}
$$

where we have used (3.14) and the fact that $A \leq A_{0}$ a.e. in Ω. The theorem is proved.

4 Numerical examples

Let $\Omega:=(-1,1)^{2} \subset \mathbb{R}^{2}$. We consider a finite element approximation with piecewise linear, continuous functions defined on a triangulation containing 512 triangles, constructed with
the POIMESH environment of MATLAB. We take $N=1$ with data (z, f) given by $z=I_{h} y$ where

$$
y\left(x_{1}, x_{2}\right)=\left(1-x_{1}^{2}\right)\left(1-x_{2}^{2}\right) \text { and } f\left(x_{1}, x_{2}\right)=\left(1-x_{2}^{2}\right)\left(6 x_{1}^{2}+2\right)+2\left(1-x_{1}^{2}\right)
$$

Note that y is the solution of (1.1) when

$$
A\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
1+x_{1}^{2} & 0 \\
0 & 1
\end{array}\right]
$$

In the definition of K we have chosen $a=0.5$ and $b=10$. The discrete problem (3.3) is solved using the projected steepest descent method with Armijo step size rule, see e.g. [9]. In view of Remark 3.1 it is sufficient to iterate within the class of matrices in \mathcal{M} that are piecewise constant. Given such an A the new iterate is computed according to

$$
A^{+}=A(\tau) \text { with } \tau=\max _{l \in \mathbb{N}}\left\{\beta^{l} ; J_{h}\left(A\left(\beta^{l}\right)\right)-J_{h}(A) \leq-\frac{\sigma}{\beta^{l}}\left\|A\left(\beta^{l}\right)-A\right\|^{2}\right\}
$$

where $\beta \in(0,1)$ and

$$
A(\tau)_{\mid T}:=P_{K}\left(A_{\mid T}+\tau\left(\nabla y_{h \mid T} \otimes \nabla p_{h \mid T}-\gamma A_{\mid T}\right)\right), \quad T \in \mathcal{T}_{h}
$$

Here, $y_{h}=T_{h}(A, f)$ and p_{h} is the solution of the adjoint problem (3.6). In our calculations we chose $\gamma=0.001, \sigma=10^{-4}, \beta=0.5$ and as initial matrix

$$
A^{0}:=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
$$

The iteration was stopped if $\left\|A^{+}-A(1)\right\| \leq \tau_{a}+\tau_{r}\left\|A^{0}-A^{0}(1)\right\|$ or the maximum number of 5000 iterations was reached. For $\tau_{a}=10^{-3}$ and $\tau_{r}=10^{-2}$ we have $\left\|A^{0}-A^{0}(1)\right\|=$ $7.94 \times 10^{-2}, J_{h}\left(A^{0}\right)=2.18 \times 10^{-1}$ and the algorithm terminated after 400 iterations with \tilde{A} and $\tilde{y}_{h}=T_{h}(\tilde{A}, f)$ such that

$$
\left\|\tilde{y}_{h}-z\right\|=1.02 \times 10^{-2}, \quad\|A-\tilde{A}\|=2.05 \text { and } J_{h}(\tilde{A})=2.77 \times 10^{-2} .
$$

Note that we cannot expect the difference $A-\tilde{A}$ to become small since the diffusion matrix will not be determined uniquely by just one set of data. Performing 5000 iterations we obtained \tilde{A} and \tilde{y}_{h} such that

$$
\left\|\tilde{y}_{h}-z\right\|=8.22 \times 10^{-3}, \quad\|A-\tilde{A}\|=1.53 \text { and } J_{h}(\tilde{A})=2.32 \times 10^{-2}
$$

Fig. 1 from left to right shows \tilde{y}_{h}, z and $\tilde{y}_{h}-z$ after 400 iterations.
By combining the projected gradient method with a homotopy in the parameter γ we were also able to treat the case $\gamma=0$. We started with $\gamma=1$ and reduced γ by a factor of 0.8 after every ten iterations. Using the same notation as above we obtained after 5000 iterations

$$
\left\|\tilde{y}_{h}-z\right\|=9.61 \times 10^{-4}, \quad\|A-\tilde{A}\|=1.40
$$

and the corresponding results are displayed in Fig. 2. One observes that the difference between \tilde{y}_{h} and z is comparatively large in regions where ∇y is small which is in agreement with classical results on the identifiability of scalar diffusion coefficients, see e.g. [14].

Figure 1: Numerical solution, desired state, and error $\tilde{y}_{h}-z$ for $\gamma=1 . \times 10^{-3}$ after the stopping criterion of the projected steepest descent method is met.

Figure 2: Numerical solution, desired state, error $\tilde{y}_{h}-z$ for $\gamma=0$ after 5000 iterations of the steepest descent method.

Acknowledgements

The presentation of the numerical results is partly based on a MATLAB code developed by Ronny Hoffmann in his diploma thesis [7] written under the supervision of the second author. The authors gratefully acknowledge the support of the DFG Priority Program 1253 entitled Optimization With Partial Differential Equations.

References

[1] Alt, H.W., Hoffmann, K.H., Sprekels, J.: A numerical procedure to solve certain identification problems, Intern. Ser. Numer. Math. 68, 11-43 (1984).
[2] Chicone, C., Gerlach, J.: A note on the identifiability of distributed parameters in elliptic equations, SIAM J. Math. Anal. 18, 1378-1384 (1987).
[3] Eymard, R., Gallouët, T.: H-convergence and numerical schemes for elliptic problems, Siam J. Numer. Anal. 41, 539-562 (2003).
[4] Falk, R.S.: Error estimates for the numerical identification of a variable coefficient, Math. Comput. 40, 537-546 (1983).
[5] Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case, Comput. Optim. Appl. 30, 45-61 (2005).
[6] Hoffmann, K.H., Sprekels, J.: On the identification of coefficients of elliptic problems by asymptotic regularization. Numer. Funct. Anal. Optim. 7, 157-177 (1984/85).
[7] Hoffmann, R.: Entwicklung numerischer Methoden zur Schätzung matrixwertiger verteilter Parameter bei elliptischen Differentialgleichungen, Diploma thesis, TU Dresden, 2005.
[8] Hsiao, G.C., Sprekels, J.: A stability result for distributed parameter identification in bilinear systems, Math. Meth. Appl. Sciences 10, 447-456 (1988).
[9] Kelley, C.T.: Iterative Methods for Optimization. SIAM, 1999.
[10] Kohn, R.V., Lowe, B.D.: A variational method for parameter identification, RAIRO Modél. Math. Anal. Numér. 22, 119-158 (1988).
[11] Kunisch, K.: Numerical methods for parameter estimation problems, Inverse problems in diffusion processes (Lake St. Wolfgang, 1994), 199-216, SIAM, Philadelphia, PA, 1995.
[12] Leugering, G., Stingl, M.: PDE-constrained optimization for advanced materials. In Constrained Optimization and Optimal Control for Partial Differential Equations. Birkhäuser, G. Leugering et al. Eds., 2010.
[13] Rannacher, R., Vexler, B.: A priori estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements, SIAM J. Cont. Optim. 44, 1844-1863 (2005).
[14] Richter, G.R.: An inverse problem for the steady state diffusion equation, SIAM J. Appl. Math. 41, 210-221 (1981).
[15] Tartar, L.: Estimation of homegenized coefficients. Topics in the mathematical modelling of composite materials, page 9-20, Andrej Charkaev, Robert Kohn Eds., 1997.
[16] Vainikko, G., Kunisch, K.: Identifiability of the transmissivity coefficient in an elliptic boundary value problem, Z. Anal. Anwendungen 12, 327-341 (1993).
[17] Wang, L., Zou, J.: Error estimates of finite element methods for parameter identification problems in elliptic and parabolic systems, Discrete Contin. Dyn. Syst. Ser. B 14, 16411670 (2010).

[^0]: *Institut für Analysis und Numerik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
 ${ }^{\dagger}$ Schwerpunkt Optimierung und Approximation, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany.

