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Abstract

In this paper we investigate the POD discretisation method for linear second order evolution
equations. We present error estimates for two different choices of snapshot sets, one
consisting of solution snapshots only and one consisting of solution snapshots and their
derivatives up to second order. We show that the results of [7] for parabolic equations can be
extended to linear second order evolution equations and that the derivative snapshot POD
method behaves better than the classical one for small time steps. Numerical comparisons
of the different approaches are presented underlining the theoretical results.

1 Introduction

Simulation of industrial problems like flow or heat transfer often requires the solution of
large linear or nonlinear systems consisting of several ten thousands degrees of freedom
[5]. Problems of such high dimensions can be handled by using powerful computers with
large storage capabilities. Additionally, in some applications, these simulations need to
be repeated several times with slightly different input, like in general controller design
problems or in the durability simulation of wind turbines [9]. Often even real-time
applicability is required, like in multibody dynamics with hardware-in-the-loop or human-
in-the-loop systems. In these cases, simulation time becomes an important issue.
Over the years, various methods of model reduction for both linear and nonlinear systems
have been developed [11]. These methods allow the construction of low-dimensional
reduced models conserving the essential properties and features of the large model.
Whereas the most popular reduction methods such as balanced truncation, moment
matching or analysis of eigenforms only seem to be suitable for linear problems, the method
of proper orthogonal decomposition (POD) can also be applied to nonlinear systems. Its
flexibility in application is based on analysing a given data set to provide the reduced
model as described in Section 2 of this paper. Originating from fluid dynamic applications
including turbulence and coherent structures [2], the method has also proved useful for
certain problems in optimal control [6] and in circuit simulations [14].
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To justify the method mathematically, Kunisch and Volkwein [7, 8] proved error bounds
for POD-Galerkin approximations of linear and nonlinear parabolic equations, respectively.
Lead by their numerical analysis they proposed to include also derivative information
into the snapshot set and proved the superiority of this modified POD approach over the
classical one both theoretically and numerically. In [6], the second author and Volkwein
extended this analysis to optimal control problems using POD-surrogate models.
In Section 3 of this work we derive error estimates for POD Galerkin approximations to
the linear second order evolution equations based on time discretization with Newmark’s
scheme. Similar to [7] and [8], we show that convergence can be guaranteed for the
derivative approach and for the classical method if the time step size and the dimension
of the POD subspace are coupled accordingly. Our numerical experiments for the wave
equation described in Section 4 show that the error behaviour of both methods strongly
depends on the eigenvalues of the correlation matrix.

2 POD for linear second order evolution equations

The linear wave equation is a simple example for a partial differential equation of second
order. In this section, we want to outline the mathematical framework required to handle
such problems. Furthermore, we describe the discretisation by Newmark’s method and the
POD scheme.

2.1 Problem description

Let V and H be real, separable Hilbert spaces for which we require [4, 7]

V ↪→ H = H ′ ↪→ V ′

where V ′ denotes the dual of V . Each embedding is assumed to be dense and continuous.
Further, let a : V × V → R be a continuous, coercive and symmetric bilinear form, i.e.,
there exist constants β, κ ≥ 0 such that

‖a(φ, ψ)‖ ≤ β ‖φ‖V ‖ψ‖V , (1)

κ ‖φ‖2
V ≤ a(φ, φ), (2)

for all φ, ψ ∈ V .
As a simple example for a second order evolution equation, we chose the linear wave
equation expressed in weak formulation:

〈ẍ(t), φ〉H +D〈ẋ(t), φ〉H + a (x(t), φ) = 〈f(t), φ〉H (3a)

for all φ ∈ V and t ∈ [0, T ],

〈x(0), ψ〉 = 〈x0, ψ〉H for all ψ ∈ H, (3b)

〈ẋ(0), ψ〉 = 〈ẋ0, ψ〉H for all ψ ∈ H, (3c)
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where f(t) ∈ H is a given external force and x(t) ∈ V denotes the sought deformation
over time t ∈ [0, T ]. Note that a damping term is incorporated which corresponds to a
Rayleigh-type damping matrix C which is D times the mass matrix [3, 4].
Concerning the existence of a unique solution we have the following result available [3].

Proposition 1 For f ∈ L2((0, T );H) and x0, ẋ0 ∈ H, problem 3 admits a unique weak
solution.

2.2 POD-Newmark scheme

For the time discretisation of (3) we divide the time interval [0, T ] into m subintervals of
equal size Δt = T/m and use Newmark’s structure mechanics time integration scheme [4],
i.e., we seek a sequence (Xk) ⊂ V, k = 0, . . . ,m, satisfying the following equations at
each time level tk = k ·Δt:

〈∂∂Xk, φ〉H +D〈∂Xk, φ〉H + a (Xk, φ) = 〈f(tk), φ〉H (4a)

for all φ ∈ V and k = 1, . . .m,

〈X0, ψ〉 = 〈x0, ψ〉H for all ψ ∈ V, (4b)

〈∂X0, ψ〉 = 〈∂x0, ψ〉H for all ψ ∈ V. (4c)

Here we use the derivative approximations

∂Xk+1 =
2

Δt
Xk+1 − 2

Δt
Xk − ∂Xk, (5a)

∂∂Xk+1 =
4

Δt2
Xk+1 − 4

Δt2
Xk − 4

Δt
∂Xk − ∂∂Xk, (5b)

for k = 1, . . . ,m.

Remark 1 The case k = 0 is covered by the initial conditions x0 and ∂x0 for deformation
X0 and velocity ∂X0, which yield the acceleration ∂∂X0 by solution of the equilibrium
equation.

Like any Galerkin-type method, proper orthogonal decomposition is a spatial discretisation
scheme approximating the solution Xk by a linear combination of basis vectors ϕi ∈ V ,

Xk =
l∑

i=1

ϕi · pi(tk) for k = 1 . . .m, (6)

where pi denotes the time-dependent participation factor of the basis vector i in the
solution. Setting V l = span{ϕ1, . . . , ϕl} ⊂ V , the POD-Newmark scheme for the wave
equation consists in finding a sequence {Xk}k=0,...,m ⊂ V l which satisfies

〈∂∂Xk, φ〉H +D〈∂Xk, φ〉H + a (Xk, φ) = 〈f(tk), φ〉H (7a)

for all φ ∈ V l and k = 1, . . . ,m,

〈X0, ψ〉 = 〈x0, ψ〉H for all ψ ∈ V l, (7b)

〈∂X0, ψ〉 = 〈∂x0, ψ〉H for all ψ ∈ V l. (7c)
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The unique solvability of these equations follows from the following result [3].

Proposition 2 Under the above assumptions there exists a unique solution Xk ∈ V l to
problem (7) for each time level k = 1, . . . ,m.

The essential step of the snapshot POD method [12] is the construction of the subspace
V l. Here, we use the snapshot POD method which consists in taking snapshots Xk, k =
1, . . . ,m, of the previously computed solution of problem (4). The subspace V l is chosen
as the best approximation of the snapshot set {Xk} in a least squares sense [10]. In
this paper we consider POD subspaces built from two different snapshot sets: set I
consisting of deformation snapshots {x(tk)} at all time instances, and set II consisting
of deformations and derivative approximations {x(tk), ∂x(tk), ∂∂x(tk)}. These sets yield
the snapshot matrices YI and YII defined by:

YI = [x(t0), . . . , x(tm)] and (8)

YII = [x(t0), . . . , x(tm), ∂x(t1), . . . , ∂x(tm), ∂∂x(t1), . . . , ∂∂x(tm−1)] (9)

Note that the derivative approximations ∂x(tk) and ∂∂x(tk) are elements of the space V .
Furthermore, their inclusion does not change the dimension of the snapshot set, since they
can be expressed as linear combinations of the deformation snapshots

∂Xk+1 + ∂Xk =
2

Δt
(Xk+1 −Xk) ,

∂∂Xk+1 + 2∂∂Xk + ∂∂Xk−1 =
4

Δt2
(Xk+1 − 2Xk +Xk−1) .

We write YI,II = [y0, . . . , yd] with either d = m or d = 3m − 1. In both cases, we follow
the regular POD recipe (see [13]) by constructing the correlation matrix C from scalar
products of the snapshots yi

Cij = 〈yi, yj〉X , i, j = 1, . . . , d,

solving the eigenvalue problem Cvk = λkv
k,

and defining the POD basis vectors by ϕk = Y · vk,

with X = V or X = H. Each eigenvector vk of the correlation matrix defines a basis
vector ϕk of the POD subspace. Depending on the number of basis vectors used for the
subspace V l = span{ϕ1, . . . , ϕl}, the projection error for

P ly :=
l∑

j=1

〈y, ϕj〉X · ϕj

can be expressed as

1

n

n∑
k=1

∥∥∥∥∥yk −
l∑

j=1

〈yk, ϕj〉X · ϕj

∥∥∥∥∥
2

X

=
d∑

j=l+1

λj. (10)
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The integer d < n shall denote the dimension of the snapshot set Y and l < d is the number
of POD basis vectors used for the projection.
The ”optimal basis” consists of the eigenvectors corresponding to the l largest eigenvalues
and spans the subspace V l with the smallest projection error of all possible l-dimensional
subspaces V̂ l ⊂ V . This set of basis vectors is often called the Karhunen-Loève basis [11].

3 Error estimates

The error of the POD-Newmark scheme is defined as the difference between the numerical
solution X(t) of (7) and the analytical solution x(t) of (3). Our goal consists in proving a
bound for the H-Norm of the solution difference.

Theorem 1 Let x(t) be the regular solution of (3) and Xk, k = 1, . . . ,m, be the solution
of (7) on each time level tk. Let the POD subspace V l be constructed from snapshot set
YI or YII ,respectively. Then there exist constants CI and CII depending on T , D, x(3) and
x(4), but not on Δt, m or l, such that it holds for Δt ≤ 1 that:

1

m

m∑
k=1

∥∥Xk − x(tk)
∥∥2

H
≤

≤ CI

(∥∥X0 − P lx(t0)
∥∥2

H
+

∥∥X1 − P lx(t1)
∥∥2

H
+ Δt

∥∥∂X0 − P lẋ(t0)
∥∥2

H

+ Δt
∥∥∂X1 − P lẋ(t1)

∥∥2

H
+ Δt4 +

(
1

Δt4
+

1

Δt
+ 1

) d∑
j=l+1

λIj

)
(11)

for snapshots constructed via YI and

1

m

m∑
k=1

∥∥Xk − x(tk)
∥∥2

H
≤

≤ CII

(∥∥X0 − P lx(t0)
∥∥2

H
+

∥∥X1 − P lx(t1)
∥∥2

H
+ Δt

∥∥∂X0 − P lẋ(t0)
∥∥2

H

+ Δt
∥∥∂X1 − P lẋ(t1)

∥∥2

H
+ Δt4 +

d∑
j=l+1

λIIj

)
(12)

for snapshots constructed via YII .

Remark 2 These estimates are constructed in a similar way as the ones given in [7] and
[8]. In analogy to [7, Lemma 2] we have: For all x ∈ V it holds

‖x‖H ≤
√
‖M‖2 · ‖K−1‖2 · ‖x‖V for all x ∈ V l, (13)

‖x‖V ≤
√
‖K‖2 · ‖M−1‖2 · ‖x‖H for all x ∈ V l, (14)

with Mij = 〈Φi,Φj〉H , Kij = 〈Φi,Φj〉V , (15)
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where ‖·‖2 denotes the spectral norm for symmetric matrices. M and K are called the
system’s mass and stiffness matrix, respectively.
These inequalities allow us to set up an error estimate in the H-norm and also to control
the error in the V -norm as long as ‖M‖2, ‖M−1‖2, ‖K‖2 and ‖K−1‖2 are bounded. Hence,
we restrict ourselves to the H-norm in the following.

Remark 3 Note that the eigenvalues λIj and λIIj are not identical. The weighting of
snapshots is changed by inclusion of the derivative approximations, which leads to different
choices of basis vectors for the subspaces V l

I and V l
II . In both cases, the snapshot correlation

matrix C is generally not invertible, so the sum of the eigenvalues remains finite.

Proof of Theorem 1:
Let Xk be the solution of the POD system (7) for the time instances tk = k · Δt, k =
0, . . . ,m, and x(tk) be the corresponding solution of the original system (4). In order to
estimate

1

m

m∑
k=1

∥∥Xk − x(tk)
∥∥2

H
(16)

we decompose the local error into a projection part ρ and a part ϑ arising from the numerical
discretisation procedure:

Xk − x(tk) = Xk − P lx(tk)︸ ︷︷ ︸
=:ϑk

+P lx(tk)− x(tk)︸ ︷︷ ︸
=:ρk

, (17)

which yields
1

m

m∑
k=1

∥∥Xk − x(tk)
∥∥2

H
≤ 2

m

m∑
k=1

‖ϑk‖2
H +

2

m

m∑
k=1

‖ρk‖2
H . (18)

For an estimate of ‖ρk‖2
H we use the error bound (10). Case I is constructed in the

”classical” way and simply yields the POD projection error ([13])

1

m+ 1

m∑
k=0

∥∥∥∥∥xk −
l∑

j=1

〈xk, φj〉X · φj

∥∥∥∥∥
2

X

=
d∑

j=l+1

λIj. (19)

Here, xk denotes the snapshot x(tk).
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For later use we derive

m−1∑
k=1

∥∥∥∥∥∂ (xk+1 + 2xk + xk−1)−
l∑

j=1

〈∂ (xk+1 + 2xk + xk−1) , φj〉X · φj

∥∥∥∥∥
2

X

=

=
m−1∑
k=1

1

Δt4
∥∥xk+1 − 2xk + xk−1 − P lxk+1 + 2P lxk − P lxk−1

∥∥2

X

≤ 4

Δt2

m−1∑
k=1

2
(∥∥xk+1 − P lxk+1

∥∥2

X
+

∥∥xk−1 − P lxk−1

∥∥2

X

)
≤ 16

Δt2

m∑
k=0

∥∥xk − P lxk

∥∥2

X

≤ 16

Δt2
(m+ 1)

d∑
j=l+1

λIj (20)

and

m−1∑
k=1

∥∥∥∥∥∂∂ (xk+1 + 2xk + xk−1)−
l∑

j=1

〈∂∂ (xk+1 + 2xk + xk−1) , φj〉X · φj

∥∥∥∥∥
2

X

=

=
m−1∑
k=1

16

Δt4
∥∥xk+1 − 2xk + xk−1 − P lxk+1 + 2P lxk − P lxk−1

∥∥2

X

≤ 16

Δt4

m−1∑
k=1

4
(∥∥xk+1 − P lxk+1

∥∥2

X
+

∥∥2xk − 2P lxk

∥∥2

X
+

∥∥xk−1 − P lxk−1

∥∥2

X

)
≤ 384

Δt4

m∑
k=0

∥∥xk − P lxk

∥∥2

X

≤ 384

Δt4
(m+ 1)

d∑
j=l+1

λIj. (21)
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For the second case, the POD error is analogously defined for the sum over all snapshots
(solution x and derivatives ∂x and ∂∂x):

1

3m

m∑
k=0

∥∥∥∥∥xk −
l∑

j=1

〈xk, φj〉X · φj

∥∥∥∥∥
2

X

+

+
1

3m

m∑
k=1

∥∥∥∥∥∂xk −
l∑

j=1

〈∂xk, φj〉X · φj

∥∥∥∥∥
2

X

+

+
1

3m

m−1∑
k=1

∥∥∥∥∥∂∂xk −
l∑

j=1

〈∂∂xk, φj〉X · φj

∥∥∥∥∥
2

X

=
d∑

j=l+1

λIIj, (22)

which yields

1

m

m∑
k=1

‖ρk‖2
X =

1

m

m∑
k=1

∥∥∥∥∥xk −
l∑

j=1

〈xk, φj〉X · φj

∥∥∥∥∥
2

X

≤ 3 ·
d∑

j=l+1

λIIj,

1

m

m∑
k=1

∥∥∥∥∥∂xk −
l∑

j=1

〈∂xk, φj〉X · φj

∥∥∥∥∥
2

X

≤ 3 ·
d∑

j=l+1

λIIj,

1

m

m−1∑
k=1

∥∥∥∥∥∂∂xk −
l∑

j=1

〈∂∂xk, φj〉X · φj

∥∥∥∥∥
2

X

≤ 3 ·
d∑

j=l+1

λIIj.

Hence, we get the estimate

m−1∑
k=1

∥∥∥∥∥∂ (xk+1 + 2xk + xk−1)−
l∑

j=1

〈∂ (xk+1 + 2xk + xk−1) , φj〉X · φj

∥∥∥∥∥
2

X

≤ 24
m−1∑
k=1

∥∥∥∥∥∂xk −
l∑

j=1

〈∂xk, φj〉X · φj

∥∥∥∥∥
2

X

≤ 72m ·
d∑

j=l+1

λIIj, (23)
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and an analogous estimate holds for the second derivatives

m−1∑
k=1

∥∥∥∥∥∂∂ (xk+1 + 2xk + xk−1)−
l∑

j=1

〈∂∂ (xk+1 + 2xk + xk−1) , φj〉X · φj

∥∥∥∥∥
2

X

≤ 24
m−1∑
k=1

∥∥∥∥∥∂∂xk −
l∑

j=1

〈∂∂xk, φj〉X · φj

∥∥∥∥∥
2

X

≤ 72m ·
d∑

j=l+1

λIIj. (24)

For an estimate of ‖ϑk‖2
H =

∥∥Xk − P lx(tk)
∥∥2

H
we state the following idenity:

〈∂∂ϑk, ψ〉H +D〈∂ϑk, ψ〉H + a (ϑk, ψ) =

= 〈∂∂Xk, ψ〉H − 〈∂∂P lx(tk), ψ〉H +D · 〈∂Xk, ψ〉H −D · 〈∂P lx(tk), ψ〉H +

+ a (Xk, ψ)− a
(
P lx(tk), ψ

)
= 〈f(tk), ψ〉H − a

(
P lx(tk), ψ

)− 〈∂∂P lx(tk), ψ〉H −D〈∂P lx(tk), ψ〉H
= 〈f(tk), ψ〉H − a (x(tk), ψ)− 〈∂∂P lx(tk), ψ〉H −D〈∂P lx(tk), ψ〉H
= 〈ẍ(tk), ψ〉H +D〈ẋ(tk), ψ〉H − 〈∂∂P lx(tk), ψ〉H
= 〈(ẍ(tk)− ∂∂P lx(tk)

)
+D

(
ẋ(tk)− ∂P lx(tk)

)
, ψ〉H

=: 〈vk, ψ〉H , (25)

which holds for all ψ ∈ V l.
Hence, that the sequence ϑk can be regarded as the solution of a linear, damped wave
equation with the ”force term” vk. In analogy to the centered scheme described in [4], the
Newmark scheme for this equation can be written as:

1

Δt2
〈ϑk+1 − 2ϑk + ϑk−1, ψ〉H +

2D

Δt
〈ϑk+1 − ϑk−1, ψ〉H+

+
1

4
a (ϑk+1 + 2ϑk + ϑk−1, ψ) =

1

4
〈vk+1 + 2vk + vk−1, ψ〉H

For notational convenience we define γk = vk+1+2vk+vk−1. Choosing ψ = ϑk+1−ϑk−1 ∈ V l

as a test function in (25) we get

1

Δt2
〈ϑk+1 − 2ϑk + ϑk−1, ϑk+1 − ϑk−1〉H︸ ︷︷ ︸

=:T1

+
2D

Δt
‖ϑk+1 − ϑk−1‖2

H︸ ︷︷ ︸
=:dk≤0

+

+
1

4
a (ϑk+1 + 2ϑk + ϑk−1, ϑk+1 − ϑk−1)︸ ︷︷ ︸

=:T2

=
1

4
〈γk, ϑk+1 − ϑk−1〉H︸ ︷︷ ︸

=:W k

.
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Further, it holds

T1 =
1

Δt2
〈ϑk+1 − 2ϑk + ϑk−1, ϑk+1 − ϑk−1〉H =

=
1

Δt2
〈(ϑk+1 − ϑk)− (ϑk − ϑk−1), (ϑk+1 − ϑk) + (ϑk − ϑk−1)〉H =

=
1

Δt2
(‖ϑk+1 − ϑk‖2

H − ‖ϑk − ϑk−1‖2
H

)
and

T2 =
1

4
a (ϑk+1 + 2ϑk + ϑk−1, ϑk+1 − ϑk−1) =

=
1

4
a ((ϑk+1 + ϑk) + (ϑk + ϑk−1), (ϑk+1 + ϑk)− (ϑk + ϑk−1))

=
1

4
[a (ϑk+1 + ϑk, ϑk+1 + ϑk)− a (ϑk + ϑk−1, ϑk + ϑk−1)] .

This yields

Ek+1 + dk = Ek +W k

with Ek+1 :=

∥∥∥∥ϑk+1 − ϑk

Δt

∥∥∥∥2

H

+
1

4
a (ϑk+1 + ϑk, ϑk+1 + ϑk) .

Due to the coercivity of the bilinear form a we have∥∥∥∥ϑk+1 − ϑk

Δt

∥∥∥∥2

H

≤ Ek+1 (26)
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and

Ek+1 + dk = E1 +
k∑

i=1

W i = E1 +
1

4

k∑
i=1

〈γi, ϑi+1 − ϑi−1〉H

= E1 +
1

4

k∑
i=1

〈γi, (ϑi+1 − ϑi) + (ϑi − ϑi−1)〉H

= E1 +
1

4

k∑
i=1

〈γi, ϑi+1 − ϑi〉H +
1

4

k∑
i=1

〈γi, ϑi − ϑi−1〉H

= E1 +
1

4

(
k−1∑
i=1

〈γi, ϑi+1 − ϑi〉H + 〈γk, ϑk+1 − ϑk〉H
)

+

+
1

4

(
k−1∑
p=1

〈γp+1, ϑp+1 − ϑp〉H + 〈γ1, ϑ1 − ϑ0〉H
)

= E1 +
1

4
〈γk, ϑk+1 − ϑk〉H +

1

4
〈γ1, ϑ1 − ϑ0〉H +

+
1

4

k−1∑
i=1

〈γi+1 + γi, ϑi+1 − ϑi〉H .

Using Young’s inequality and Δt ≤ 1 we get∥∥∥∥ϑk+1 − ϑk

Δt

∥∥∥∥2

H

≤ E1 +
Δt

32
‖γ1‖2

H +
Δt

2

∥∥∥∥ϑ1 − ϑ0

Δt

∥∥∥∥2

H

+
Δt

32
‖γk‖2

H +
Δt

2

∥∥∥∥ϑk+1 − ϑk

Δt

∥∥∥∥2

H

+

+
k−1∑
i=1

Δt

32
‖γi+1 + γi‖2

H +
k−1∑
i=1

Δt

2

∥∥∥∥ϑi+1 − ϑi

Δt

∥∥∥∥2

H

≤ E1 +
Δt

32
‖γ1‖2

H +
Δt

2

∥∥∥∥ϑ1 − ϑ0

Δt

∥∥∥∥2

H

+
Δt

32
‖γk‖2

H +
1

2

∥∥∥∥ϑk+1 − ϑk

Δt

∥∥∥∥2

H

+

+
k−1∑
i=1

Δt

32
‖γi+1 + γi‖2

H +
k−1∑
i=1

Δt

2

∥∥∥∥ϑi+1 − ϑi

Δt

∥∥∥∥2

H

.

This yields∥∥∥∥ϑk+1 − ϑk

Δt

∥∥∥∥2

H

≤ 2 · E1 +
Δt

16
‖γ1‖2

H + Δt

∥∥∥∥ϑ1 − ϑ0

Δt

∥∥∥∥2

H

+
Δt

16
‖γk‖2

H +

+
k−1∑
i=1

Δt

16
‖γi+1 + γi‖2

H +
k−1∑
i=1

Δt

∥∥∥∥ϑi+1 − ϑi

Δt

∥∥∥∥2

H

≤ 2 · E1 + Δt

∥∥∥∥ϑ1 − ϑ0

Δt

∥∥∥∥2

H

+
k∑

i=1

Δt

4
‖γi‖2

H +
k−1∑
i=1

Δt

∥∥∥∥ϑi+1 − ϑi

Δt

∥∥∥∥2

H

11



We use the discrete Gronwall lemma [1], which yields

k∑
i=1

Δt

∥∥∥∥ϑi+1 − ϑi

Δt

∥∥∥∥2

H

≤

≤ (1 + Δt)k
k∑

i=1

(1 + Δt)−i

(
2 · E1 + Δt

∥∥∥∥ϑ1 − ϑ0

Δt

∥∥∥∥2

H

+
i−1∑
j=1

Δt

4
‖γj‖2

H

)

≤ eT ·
(

2 · E1 + Δt

∥∥∥∥ϑ1 − ϑ0

Δt

∥∥∥∥2

H

)
+

k∑
i=1

Δt

4
‖γi‖2

H +
k∑

i=2

i−1∑
j=1

Δt

4
‖γj‖2

H

≤ eT ·
(

2 · E1 + Δt

∥∥∥∥ϑ1 − ϑ0

Δt

∥∥∥∥2

H

)
+

k∑
i=1

Δt

4
‖γi‖2

H +
Δt

4

k∑
i=2

(k − i) ‖γi‖2
H

≤ eT ·
(

2 · E1 + Δt

∥∥∥∥ϑ1 − ϑ0

Δt

∥∥∥∥2

H

+
Δt

4

k∑
i=1

‖γi‖2
H

)
.

Therefore,

Δt
m∑

i=1

∥∥∥∥ϑi+1 − ϑi

Δt

∥∥∥∥2

H

≤ eT ·
(

2 · E1 + Δt

∥∥∥∥ϑ1 − ϑ0

Δt

∥∥∥∥2

H

+
Δt

4

m∑
i=1

‖γi‖2
H

)
,

which depends only on the initial conditions ϑ0 and ϑ̇0 and on the sequence (γk).
Further, we have

‖ϑk+1‖2
H ≤

∥∥∥∥∥ϑ1 +
k−1∑
i=1

(ϑi+1 − ϑi)

∥∥∥∥∥
2

H

≤ 2 ‖ϑ1‖2
H + 2k

k∑
i=1

‖ϑi+1 − ϑi‖2
H

≤ 2 ‖ϑ1‖2
H + 2mΔt

m∑
i=1

∥∥∥∥ϑi+1 − ϑi

Δt

∥∥∥∥2

H

≤ 2 ‖ϑ1‖2
H + 2TeT

(
2 · E1 + Δt

∥∥∥∥ϑ1 − ϑ0

Δt

∥∥∥∥2

H

+
Δt

4

m∑
i=1

‖γi‖2
H

)
,

which yields for the averaged sum

1

m

m∑
k=0

‖ϑk‖2
H ≤ 2 ‖ϑ1‖2

H + 2TeT

(
2 · E1 + Δt

∥∥∥∥ϑ1 − ϑ0

Δt

∥∥∥∥2

H

+
Δt

4

m∑
i=1

‖γi‖2
H

)
.

12



In the following we construct a bound for the right hand side terms which are dominated
by the sum over ‖γk‖2

H . Again, this sequence ‖γk‖2
H = ‖vk+1 + 2vk + vk−1‖2

H is separated
into two terms, a ”projection” and a ”discretisation” part:

vk = ẍ(tk)− ∂∂P lx(tk) +D
(
ẋ(tk)− ∂P lx(tk)

)
= ẍ(tk)− ∂∂x(tk)︸ ︷︷ ︸

=:wk

+ ∂∂x(tk)− ∂∂P lx(tk)︸ ︷︷ ︸
=:zk

+D

⎛⎝ẋ(tk)− ∂x(tk)︸ ︷︷ ︸
=: ewk

+ ∂x(tk)− ∂P lx(tk)︸ ︷︷ ︸
=:ezk

⎞⎠ ,

yielding finally

‖γk‖2
H ≤ 4 ‖wk+1 + 2wk + wk−1‖2

H + 4 ‖zk+1 + 2zk + zk−1‖2
H +

+ 4 ‖w̃k+1 + 2w̃k + w̃k−1‖2
H + 4 ‖z̃k+1 + 2z̃k + z̃k−1‖2

H .

Due to Taylor’s theorem we have

‖wk+1 + 2wk + wk−1‖2
H

= ‖ẍ(tk+1) + 2ẍ(tk) + ẍ(tk−1)− (∂∂x(tk+1) + 2∂∂x(tk) + ∂∂x(tk−1))‖2
H

=

∥∥∥∥ẍ(tk+1) + 2ẍ(tk) + ẍ(tk−1)− 4

Δt2
(x(tk+1)− 2x(tk) + x(tk−1))

∥∥∥∥2

H

≤ KΔt4,

where K is independent of Δt, m and l, which leads to:

m−1∑
k=1

‖wk+1 + 2wk + wk−1‖2
H ≤ KΔt3.

Accordingly, we find for w̃

m−1∑
k=1

‖w̃k+1 + 2w̃k + w̃k−1‖2
H ≤ KΔt3,

where K > 0 is independent of Δt, m and l. The estimates for zk = ∂∂x(tk)− ∂∂P lx(tk)
and z̃k = ∂x(tk) − ∂P lx(tk) depend on the particular choice of the POD subspace, see
equations (20), (21), resp. (23) and (24) : For case I we have

m−1∑
k=1

‖zk+1 + 2zk + zk−1‖2
X ≤ 24

Δt4
(m+ 1)

d∑
j=l+1

λIj

and
m−1∑
k=1

‖z̃k+1 + 2z̃k + z̃k−1‖2
X ≤ 16

Δt2
(m+ 1)

d∑
j=l+1

λIj.

13



For case II we get

m−1∑
k=1

‖zk+1 + 2zk + zk−1‖2
X ≤ 72m ·

d∑
j=l+1

λIIj

and
m−1∑
k=1

‖z̃k+1 + 2z̃k + z̃k−1‖2
X ≤ 72m ·

d∑
j=l+1

λIIj.

Combining the estimates for zk , z̃k, wk and w̃k we have

‖γk‖2
H = ‖vk+1 + 2vk + vk−1‖2

H

≤ 4 ‖wk+1 + 2wk + wk−1‖2
H + 4 ‖zk+1 + 2zk + zk−1‖2

H +

+ 4D ‖w̃k+1 + 2w̃k + w̃k−1‖2
H + 4D ‖z̃k+1 + 2z̃k + z̃k−1‖2

H .

We get for case I:
m∑

i=1

‖γi‖2
H ≤ K1Δt

2 +K2
m+ 1

Δt4

d∑
j=l+1

λIj

and for case II:
m∑

i=1

‖γi‖2
H ≤ K3Δt

3 +K4m

d∑
j=l+1

λIIj.

In conclusion, the error estimate for case I can be written as:

1

m

m∑
k=1

∥∥Xk − x(tk)
∥∥2

H
≤

≤ 4
d∑

j=l+1

λIj + 4 ‖ϑ1‖2
H +

+ 4TeT

(
2 · E1 + Δt

∥∥∥∥ϑ1 − ϑ0

Δt

∥∥∥∥2

H

+KΔt4 +

(
12

Δt3
+

4D

Δt

)
(m+ 1)

d∑
j=l+1

λIj

)
.

The term E1 contains the expression (ϑ1 − ϑ0)/Δt which can be regarded as an extended
initial condition for the velocities (∂ϑ1 + ∂ϑ0)/2 due to Newmark’s scheme (5a). Hence,
we get

1

m

m∑
k=1

∥∥Xk − x(tk)
∥∥2

H
≤

≤ CI

(∥∥X0 − P lx(t0)
∥∥2

H
+

∥∥X1 − P lx(t1)
∥∥2

H
+ Δt

∥∥∂X0 − P lẋ(t0)
∥∥2

H

+ Δt
∥∥∂X1 − P lẋ(t1)

∥∥2

H
+ Δt4 +

(
1

Δt4
+

1

Δt
+ 1

) d∑
j=l+1

λIj

)
,
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with CI independent of Δt and m.
Case II yields the following estimate:

1

m

m∑
k=1

∥∥Xk − x(tk)
∥∥2

H
≤

≤ 6
d∑

j=l+1

λIIj + 4 ‖ϑ1‖2
H +

+ 4TeT

(
2 · E1 + Δt

∥∥∥∥ϑ1 − ϑ0

Δt

∥∥∥∥2

H

+KΔt4 + 36T (1 +D) ·
d∑

j=l+1

λIIj

)
,

which can similarly be interpreted as

1

m

m∑
k=1

∥∥Xk − x(tk)
∥∥2

H
≤

≤ CII

(∥∥X0 − P lx(t0)
∥∥2

H
+

∥∥X1 − P lx(t1)
∥∥2

H
+ Δt

∥∥∂X0 − P lẋ(t0)
∥∥2

H

+ Δt
∥∥∂X1 − P lẋ(t1)

∥∥2

H
+ Δt4 +

d∑
j=l+1

λIIj

)
, (27)

where CII is independent of Δt and m.

�

In both cases, we find terms that are independent of the time step Δt. Both cases also
contain terms that depend on Δt in the numerator. These terms vanish as Δt goes to zero.
In case I, which only uses the deformation snapshots, the error estimate additionally
contains a term that carries Δt in the denominator. For this particular choice of the POD
subspace the error bound tends to infinity with Δt → 0. This means that convergence
cannot be assured formally, if a snapshot set consisting of deformations only is used. If
velocities and accelerations are added into the set, convergence can be deduced from (27).

4 Numerical results

For a numerical comparison of the different POD techniques discussed above, a simple test
model was set up in MATLAB. The example shows a one-dimensional linear wave equation
on the interval Ω = (0, L) with homogeneous Dirichlet boundary conditions, which can be
regarded as a vibrating string fixed at both ends.
Mathematically, our model problem is described by the following initial-boundary value
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Figure 1: Decay of eigenvalues of the snap-
shot correlation matrix, for ai = 1

Figure 2: Decay of eigenvalues of the snap-
shot correlation matrix, for ai = 1 + rand

problem:

μ · ẍ(s, t)− S · x′′(s, t) = f(s, t) in (0, L)× (0, T ), (28a)

x(s, 0) = x0 in (0, L), (28b)

ẋ(s, 0) = ẋ0 in (0, L), (28c)

x(s, t) = 0 on ∂Ω = {0, L} for all t ∈ (0, T ). (28d)

We chose L = 1, S = 1, μ = 1 and T = 2 and the initial deformation x0 is a weighted sum
of sinus shapes

x0 = x(t0) =
n∑

i=1

ai · sin
(
i · π s

L

)
,

with weights ai ∈ R.
Furthermore, we set the external force f(t) to zero, yielding the analytical solution and its
derivatives:

x(s, t) =
n∑

i=1

ai · sin
(
iπ
s

L

)
· cos

(
iπ
c

L
t
)
, (29)

ẋ(s, t) =
n∑

i=1

−ai · sin
(
iπ
s

L

)
· sin

(
iπ
c

L
t
)
· iπ c

L
, (30)

ẍ(s, t) =
n∑

i=1

−ai · sin
(
iπ
s

L

)
· cos

(
iπ
c

L
t
)
· i2π2 c

2

L2
, with c =

√
S

μ
. (31)

The POD method was realized using snapshots at m + 1 uniformly distributed points
in time. To observe the error behaviour with decreasing time step, we investigate three

16



Figure 3: Error norms for deformation snap-
shot set, ai = 1

Figure 4: Error norms for derivative snap-
shot set, ai = 1

different step sizes dividing the interval into m = 400, 2000 and 20000 sub intervals. With
this setup, we use Newmark’s method for the time integration. The spatial discretisation
is done by a linear Finite Element approach consisting of 500 elements.
For the case of only including the displacements into the POD set, the snapshots are
simply {x(tk)}k=0,...,m. In the second case, where deformations, velocities and accelerations
were taken into account, the snapshot set was built using the resulting quantities from the
analytical solution: x(t0), . . . , x(tm), ẋ(t0), . . . , ẋ(tm), ẍ(t0), . . . , ẍ(tm).

Remark 4 Note that when using unweighted snapshots, the eigenvalues of the derivative
set differ from the ones of the deformation set by a factor of 108 (Figure 1). This
observation originates from the fact that the velocities and accelerations are about 2,
respectively 3, orders of magnitude larger than the deformations. This difference leads
not only to large eigenvalues but also to an overrating of the derivatives in the correlation
matrix. For this reason, the derivative snapshots were divided by the respective maximum
over space and time.

Furthermore, to investigate the influence of the eigenvalues of the correlation matrix,
we compare two different initial conditions: one consisting of uniformly weighted sinus
shapes (ai = 1), and one additionally containing small random numbers (ai = 1 +
rand, max(rand) = 0.05). The former yields a nearly constant distribution of eigenvalues
up to the dimension of a, whereas the eigenvalues for the latter set decay linearly (Figures
1 and 2). Note that for problems including damping, the eigenvalues usually decay
exponentially.
Figures 3 and 4 compare the norms of the relative global errors for the case ai = 1. In this
setup, the classical snapshot POD method shows no improvement with decreasing time
step size whereas the one which uses derivative snapshots performs significantly better.
In the case of a random distribution of sinus weights, both methods show a diminishing
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Figure 5: Error norms for deformation snap-
shot set, ai = 1 + rand

Figure 6: Error norms for derivative snap-
shot set, ai = 1 + rand

error for smaller time steps (Figures 5 and 6). One possible reason is the influence of the
eigenvalue decay on the error norm which dominates the error in this case.

Remark 5 Note that in all cases mentioned above the absolute values of the error norms
are still high (> 10%). The dimension of the model corresponds to the dimension of a
(here: dim(a) = 21). As soon as a larger number of POD vectors is used, the error drops
instantly. This behaviour is also seen in the eigenvalue distribution, yielding λi = 0 for
i > dim(a). Therefore, a setup with such weighting of modes actually forces the user to
work with all occurring eigenvalues as every neglected basis vector still has a considerable
influence on the solution. In this case, dimension reduction is risky and the example shall
only be seen as a constructed model to demonstrate the error behaviour.

As a second example, we use a non-smooth initial condition u0 (Figure 7) on the same setup
as above and compare the POD methods with the classical eigenmode method frequently
used for linear systems. Furthermore, we set the damping factor d = 10.
In the case of high damping, we get an exponential decay of eigenvalues (Figure 8). A fast
eigenvalue decay leads to a small error in subspace approximation of the snapshot set (see
(10)). This yields a better condition for the POD method than in the example above.
Figure 9 shows a comparison of the relative global errors of both POD and the eigenmode

methods. The errors are computed in the H-norm 1
m

∑m
k=1

∥∥Xk − x(tk)
∥∥2

H
. In this case,

the derivative POD method performs slightly worse than the classical one. The errors for
the eigenmode method range between the ones of both POD methods.
If we measure the error in the V -norm, we find that both POD methods perform better
than the eigenmodes (Figure 10).
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Figure 7: Initial condition for the linear wave
equation

Figure 8: Decay of eigenvalues for the POD
snapshot sets, Δt = 10−3

Figure 9: Error norms for POD and eigen-
mode analysis, H-norm, Δt = 10−3

Figure 10: Error norms for POD and eigen-
mode analysis, V -norm, Δt = 10−3

5 Conclusion

We study the POD method for the linear wave equation comparing two different choices
of snapshot sets. Set I consists of deformation snapshots, and set II additionally contains
velocities and accelerations. As for parabolic problems, there is no convergence guarantee
for simple deformation snapshots. Only the incorporation of additional derivative
snapshots yields an error bound which is diminishing for small time steps.
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