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Abstract

We study some topological aspects in time-frequency analysis in the context
of dimensionality reduction using C∗-algebras and noncommutative topology. Our
main objective is to propose and analyze new conceptual and algorithmic strategies
for computing topological features of datasets arising in time-frequency analysis.
The main result of our work is to illustrate how noncommutative C∗-algebras and
the concept of Morita equivalence can be applied as a new type of analysis layer in
signal processing. From a conceptual point of view, we use groupoid C∗-algebras
constructed with time-frequency data in order to study a given signal. From a
computational point of view, we consider persistent homology as an algorithmic tool
for estimating topological properties in time-frequency analysis. The usage of C∗-
algebras in our environment, together with the problem of designing computational
algorithms, naturally leads to our proposal of using AF-algebras in the persistent
homology setting. Finally, a computational toy example is presented, illustrating
some elementary aspects of our framework. Due to the interdisciplinary nature
of this work, we include a significant amount of introductory material on recent
developments in groupoid theory and persistent homology.

Keywords: time-frequency analysis, groupoids C∗-algebras, Morita equivalence,
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1 Introduction

A crucial problem in modern developments of signal and data analysis is to construct
precise and efficient methods for extracting, decomposing, and manipulating a signal.
Time-frequency analysis is a fundamental strategy in signal processing, and at the core
of its philosophy lies the concept of partitioning a signal f in segments xb = fgb, using
gb(t) = g(t− b) for a window function g. Wavelet analysis, Gabor transforms and a large
number of variations of these concepts have appeared over the last decades, illustrating
the importance of the time-frequency philosophy. However, despite the success of these
developments, modern problems in engineering fields are increasingly demanding more
accurate and flexible tools for dealing with the ever increasing complexity of dynamical
systems, signals, and datasets arising in many applications domains.

Over the last few years a new range of tools in pure and applied mathematics have
emerged for the analysis of geometrical and topological structures. On the one hand,
in application and engineering fields, there has been an important development of new
strategies for the analysis of datasets X = {xi}mi=1 ⊂ Rn embedded in high-dimensional
spaces. In this context, new algorithms have been proposed for manifold learning and
dimensionality reduction, some of them using concepts from differential geometry and
spectral decompositions. From a topological perspective, a dataset X = {xi}mi=1 can
now be analyzed with the powerful tools of persistent homology, which has emerged as
an important subfield of computational topology. On the other hand, the vast universe
of noncommutative geometry and noncommutative topology has investigated for several
decades the relations between spaces X and C∗-algebras, and the large range of ideas in
these developments has shown its potential in various applications fields.

Our main motivation in this project is to study a particular type of interaction of these
topics, where our main concept is to study a signal f using the geometrical and topological
properties of datasets Xf = {xi}, arising from time-frequency representations. Our
research direction differs substantially from modern developments in signal processing,
as our main objective is to consider the interplay of topological and algebraic properties
of spaces Xf in order to understand a signal f .

Our contributions in this paper are both conceptual and computational perspectives,
and can be summarized as follows. From a conceptual point of view, we define the
notion of a functional cloud Xf = {xi}mi=1 (that we also denote by Mf = {xi} for non
necessarily discrete cases) which can be considered as a geometrical/topological summary
of the functional chunks xi of a signal f . This concept encodes information of a signal
f in a time-frequency framework, and we study a special version defined as a quotient
space MG

Vψf
= FVψf/G for FVψf the graph of Vψf |suppVψf , a time-frequency transform of f

(wavelet, Gabor, etc), and G a groupoid (a powerful concept that generalizes the notion
of equivalence relations, groups, group actions, etc). When considering a functional cloud
MG

Vψf
as a quotient space, we can study its structure in the framework of noncommutative

topology. A main result of our work is to illustrate how noncommutative C∗-algebras,
and the concept of Morita equivalence, can be applied as a new type of analysis layer in
signal processing. The basic idea can be summarized as (Theorem 2.6):

for a signal f =
∑k

i=1fi we have C0(M
G
Vψf

)
m∼Aolt,r G,

with A =
{

[hij] ∈Mk(C0(FVψf )), hij ∈ C0(FVψfi ∩FVψfj)
}

a noncommutative C∗-algebra.
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In this situation, we consider the signal f ∈ H, as an element of a Hilbert space H, and
its time-frequency representation is described abstractly as a voice transform Vψf . This
concept generalizes many time-frequency operations (wavelets, Gabor analysis, etc) using
Vψf : G → C for Vψf(x) = 〈f, π(x)(ψ)〉, with a group representation π : G → U(H),
and ψ ∈ H. The functional cloud MG

Vψf
= FVψf/G for FVψf = graph(Vψf |suppVψf ), is

constructed with a groupoid G acting on FVψf , and we are interested in the analysis
of the C∗-algebra C0(M

G
Vψf

), the space of continuous functions vanishing at infinity on

MG
Vψf

. As it turns out, C0(M
G
Vψf

) is Morita equivalent (denoted by
m∼) to Aolt,r G. The

C∗-algebra A olt,r G is a crossed product encoding the groupoid C∗-dynamical system
represented by the action of the groupoid G on C0(FVψf ). A great advantage of the
noncommutative C∗-algebra A olt,r G, is that it expose and reveals information on the

time-frequency dynamics of the mixing process f =
∑k

i=1 fi, contrary to the C∗-algebra
C0(M

G
Vψf

) which completely ignores this information. Here, the crucial noncommutativity
structure of A olt,r G reveals also how to understand the time-frequency interferences
between the different signal components fi, i = 1, . . . , k. Our results are based on recent
developments in operator algebras and groupoid theory. In particular, we use a recent
generalization by J.H. Brown [5, 6] of the work of P. Green [29] and M. Rieffel [51],
together with the Renault’s equivalence theorem as explained by P.S. Muhly, J. Renault,
and D. Williams in [45, 46]. Additionally, a description of noncommutative C∗-algebras
related to open coverings of a manifold, as explained by A. Connes in [12, 13], plays a
basic role in our setting.

A second main contribution of our work is inspired by the need to implement and
apply, in computationally feasible algorithms, the concepts we have just developed for
signal analysis via C∗-algebras. Here, our proposal (Section 3.2) is to use the frame-
work of persistent homology, designed to analyze topological properties of finite datasets
X = {xi}mi=1. For this task, we use AF-algebras as an important family of C∗-algebras,
particularly useful for studying finite structures, as required in applications of signal pro-
cessing and data analysis. The core idea of our proposal is to construct an AF-algebra for
each simplicial complex present in a filtration arising in the persistent homology algorithm.
Here, we follow the large body of work prepared, in the setting of noncommutative ge-
ometry, on the analysis of AF-algebras, poset structures and Bratteli diagrams, as explained
by G. Landi and his collaborators [3, 20, 19, 37]. The basic question is to investigate the
feasibility of combining these tools with the framework of persistent homology for the
analysis of geometrical and topological features of finite datasets. We remark that posets
are truly noncommutative spaces and, therefore, the noncommutative features plays again
an important role in our setting.

The outline of this paper is as follows. In Sections 1.1, and 1.2 we present the main
motivations of our work, where we discuss the importance of combining dimensionality
reduction methods with signal transforms. In Section 2.1 we present the basic concepts
of our framework, together with several examples motivating our definitions. Due to the
relative lack of prevalence of groupoid theory in signal processing, we present an overview
of these concepts in Section 2.2. In Section 2.3 we present our basic results illustrating
the usage of C∗-algebra structures in signal analysis. In Section 3 we describe basic ideas
on persistent homology, together with our proposal of integrating AF-algebras technology
in this setting. Finally, in Section 4, we discuss a toy example illustrating a (very) limited
set of features of our theoretical developments.
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1.1 Motivations and Objectives

A basic motivation in our environment are time-frequency representations where a signal
f is analyzed by considering a partition in chunks xb = fgb, using gb(t) = g(t − b) for a
window function g, This is typical scenario in the short term Fourier transform (STFT),
where a signal f ∈ L2(R) is analyzed using

Vgf(b, ω) = 〈f, gb,ω〉 =

∫
f(t)gb,ω(t) dt where gb,ω(t) = g(t− b)e2πiωt.

In the last decades, this fundamental procedure has been generalized to a large frame-
work including wavelet theory and modern discrete methods of frame decompositions.
However, despite the voluminous research activity in this area, many signals in modern
applications fields remain difficult to analyze. Just to mention one example, an accurate
separation or characterization of polyphonic acoustic signals in speech or music analysis
still remains a very challenging task. Part of the problem lies in the fact that it is still
difficult to cleanly characterize (e.g. with a few amount of wavelet coefficients) many
realistic signals with modern frame decomposition methods. In our setting, we consider
each signal (or family of signals) as en entity that can be analyzed with a combination of
standard time-frequency transforms with geometrical and topological invariants.

The procedure we follow is to consider the dataset of chunks Xf , constructed with
the time-frequency segmentation, as a main object of study. For instance, in the case of
finite signals with have a finite set of the form

Xf = {xi}mi=1 for xi = (f(tk(i−1)+j))
n−1
j=0 ∈ Rn

for k ∈ N being a fixed hop-size. Here, the regular sampling grid {t`}km−k+n−1`=0 ⊂ [0, 1] is
constructed with considering the Nyquist-Shannon theorem for f . Notice that Xf may
be embedded in a very high-dimensional ambient space Rn, even though the dimension
of Xf itself may be small. For instance, in audio analysis, for 44kHz signals, n = 1024 is
commonly used, and therefore, in the case of signals whose time-frequency representations
are not sparse, the usage of dimensionality reduction methods could be of interest. With
this particular scheme, the STFT of f can be interpreted as a transformation of the set
Xf by taking the (windowed) Fourier transform of each xi.

A second family of examples (similar in spirit to time-frequency analysis) arises in
image processing. One strategy would be to consider a dataset Xf = {xi}mi=1 constructed
from a grayscale image f : [0, 1]2 → [0, 1], along with a finite covering of small squares
(each containing n pixels) {Oi ⊂ [0, 1]2}mi=1, centered at pixels positions {ki}mi=1 ⊂ [0, 1]2.
As in the previous situation, when considering band-limited images, the domain [0, 1]2

can be sampled uniformly and the dataset can then be defined as

Xf = {f(Oi) ∈ Rn}mi=1,

where n is the size of the squares Oi, and m denotes the number of pixels ki. As be-
fore, our aim is to analyze the geometry of the image data Xf to gain useful informa-
tion about the properties of the image f . For instance, we consider a grayscale image
f : [0, 1]2 → [0, 1] using a covering with small squares, or patches, {Oi ⊂ [0, 1]2}mi=1,
each containing n pixels. In this toy example we assume that the corresponding point
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cloud data Xf = {f(Oi) ∈ Rn}mi=1 lies in some manifold M ⊂ Rn. If an image f is
composed of an homogeneous texture, the dataset Xf is a cluster whose elements have
similar geometrical characteristics. In a simplified scenario, the idea would be to use a
representative patch φ ∈ Rn in order to generate all elements of Xf . The main task is
to find a family of transformations (the modulation maps) s(α) : Rn → Rn, parametrized
by a low dimensional space Ω, such that for any patch y ∈ Xf , there is some α ∈ Ω
with y = s(α)φ. We remark that several methods in image processing have recently been
proposed with a loosely related philosophy (see e.g. the patch-based texture analysis as
part of classical texture synthesis methods [36]).

1.2 Dimensionality Reduction and Signal Analysis

In dimensionality reduction [38], we study a point cloud data defined as a finite fam-
ily of vectors X = {xi}mi=1 ⊂ Rn embedded in an n-dimensional Euclidean space. The
fundamental assumption is that X lies inM, a (low dimensional) space (manifold or topo-
logical space i.e. CW-complex, simplicial complex) embedded in Rn. We have therefore,
X ⊂M ⊂ Rn with p := dim(M)� n. An additional key concept is the consideration of
a ideal model representingM, and denoted by Ω, embedded in a low dimensional space Rd

(with d < n), together with a homeomorphism (diffeomorphism) A : Rd ⊃ Ω→M⊂ Rn.
The space Ω represents an ideal representation ofM that could be used for analysis pro-
cedures in a low-dimensional environment. For instance, in the case of M being the
well-know Swiss roll dataset, the space Ω is a rectangle. However, in practice, we can
only try to approximate Ω with a dimensionality reduction map P : Rn ⊃M→ Ω′ ⊂ Rd,
where Ω′ is an homeomorphic copy of Ω.

Now we discuss the interactions of dimensionality reduction tools with signal transfor-
mations. A basic characteristic of short term Fourier analysis is the high dimensionality
of the Euclidean space where the time-frequency data is embedded. In this context, for
many applications, a combination with dimensionality reduction methods could be useful
for improving the quality of the data analysis. Our motivation examples in time-frequency
analysis can be naturally related to the dimensionality reduction framework by consider-
ing Xf to be a subset ofM, a (low dimensional) space, embedded in the high dimensional
Euclidean space Rn. We have therefore, Xf ⊂ M ⊂ Rn with p := dim(M) � n. We
recall that there is a well-known framework for studying properties of sets Xf in the
context of nonlinear time series and dynamical systems (see e.g. [34]). But in our situa-
tion, we are additionally considering a close interaction with signal processing transforms
T , together with dimensionality reduction techniques P (Principal component analysis,
Isomap, LTSA, etc). The construction of time-frequency data can be described as the
application of a map T :M ⊃ Xf → T (Xf ) ⊂ MT , where MT := T (M), and T (xi) is
the signal transformation of xi (Fourier transform, wavelet, etc). The following diagram
shows the basic situation:

Rd ⊃ Ω M⊃ Xf ⊂ Rn

Rd ⊃ Ω′ MT ⊃ T (Xf ) ⊂ Rn

A

T

P
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2 Functional Clouds and C∗-Algebras

Our objective is to design tools for signal processing using properties of spaces constructed
from a signal, in the same spirit as the construction of time-frequency data. As we will
also shortly explain, a similar construction occur also in the setting of nonlinear time
series and the Taken’s theorem. We present in this section basic definitions, where a core
idea is to study the segmentation of a signal f , as classically performed in wavelet or
short term Fourier transforms. Two basic concepts are the notions of a functional cloud
Mf of a signal f , and its related foliated partition Ff . The information encoded in these
structures contains the interplay between local and global properties of f , and our plan
is to use geometrical and topological tools for their analysis. An additional notion of a
modulation map provides the interaction with the dimensionality reduction and manifold
learning framework. Some basic properties of a functional cloud and a foliated partition
are discussed in Section 2.3, where we study their topology by applying elementary notions
of C∗-algebras and their K-theory. For instance, in Proposition 2.3 we consider the case
of a signal decomposition f =

∑
fi, and a simplified scenario illustrating the topological

interaction between the spaces Mf , {Mfi}i, and Ff .

2.1 Motivating and Defining Functional Clouds

Time-frequency transforms are fundamental tools in modern developments of harmonic
analysis. An important task in this field is to construct adequate strategies for decom-
posing a function in order to study their time-frequency behavior. The basic procedure
is to split a signal f in consecutive segments (sometimes denominated patches or chunks)
that can be used to perform a global analysis of the function f . We now introduce an
abstraction of these ideas by denoting (for lack of better names), a functional cloud and a
foliated partition as our basic objects of study. Given a real function in a locally compact
group, we construct a functional cloud as a quotient space of a foliated partition with an
adequate equivalence relation. We will also generalize the equivalence relation to a more
powerful concept of groupoid in order to use the rich theory readily available in this field,
as well as preparing the terrain for new potential application problems.

Definition 2.1 (Functional cloud and foliated partition of a function). Given a locally
compact group G, and a continuous function F : G → C, we define the functional cloud
for F and a measurable compact set A with 0 ∈ A ⊂ G, as the set MF ,A ⊂ L1(A) with

MF ,A :=
⋃
x∈G

{
Fx : A→ C

}
,

for Fx(y) := F(x + y), ∀ y ∈ A. The related foliated partition is defined as the corre-
sponding disjoint union:

FF ,A :=
⊔
x∈G

{
Fx : A→ C

}
.

We will abuse the notation, and we use also FF ,A for the disjoint union of the graphs of
the functions Fx:

FF ,A :=
⊔
x∈G

Fx ⊂ G × A× C, Fx := graph(Fx) = {(y,Fx(y)), y ∈ A} ⊂ A× C.
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Remark 2.1 (Notational comments). Note that in the set MF ,A, no repeated elements
are taken into account. Namely, only one representative Fx is used for different elements
x1 6= x2 where Fx1(y) = Fx2(y), ∀ y ∈ A. In contrast, in the disjoint union FF ,A we
keep track of repeated elements Fx for different values x ∈ G. An obvious interaction can
be established using an adequate equivalence relation R and a quotient space MF ,A =
FF ,A/R. As we will see later on, our main object of study is an important generalization
of this construction using MG

F ,A = FF ,A/G for a groupoid G acting on FF ,A. To avoid
clutter the notation, we denote MF ,A by MF and FF ,A by FF when no confusion arises.
We also remark that we use both notations XF and MF to denote a functional cloud of
F , but XF is mostly preferred for the case of finite signals.

Remark 2.2 (Motivations). The idea of functional cloud captures a basic time-frequency
strategy by segmenting a function f ∈ L2(R) in chunks fx, constructed with the trans-
lations Ax = {x + y, y ∈ A} of a set A that can be defined as the support of a given
window function. For instance, the standard wavelet procedure for computing the prod-
uct 〈f, ψa,b〉, with a wavelet ψ, can be considered as a local analysis of f in a region
defined by ψa,b. Remember that the region of influence of ψa,b is defined by the scale a
and the translation factor b. In the concept of a functional cloud of f , the set A can be
related to the support of ψ, but it also plays a generalization role for the scale factor a.
The objective is to consider Mf as a set which encodes the local behavior of f (using the
set A as a measuring tool) and whose geometrical properties are of interest.

Notice that in this particular concept, we do not take into account different resolution
scales, as a single set A is used for constructing Mf . Currently, our main focus is to
study a single scale level, and we leave for future work the analysis of geometrical and
topological interactions between clouds Mf,A with different scales A.

The conceptual motivation of a functional cloud is also in close relation to the concepts
of a phase space and attractors in dynamical systems, as seen in the setting of the Taken’s
theorem (Example 2.5). Here, we use the term functional cloud in order to stress the
relation to the concept of a point cloud data as used in dimensionality reduction. In the
standard philosophy of time series analysis, as seen in dynamical systems, the interactions
with classical Fourier analysis are usually not that taken into consideration. Here, we
want to consider situations where a combination of these techniques could be of interest.
We now present a family of examples where the concept of a cloud plays a significant
role.

Example 2.1 (Cloud of a discrete 1d signal). A typical example of a finite functional
cloud is the point cloud dataset constructed by drawing samples from a signal f . More
precisely, we consider, for a bandlimited signal f ∈ L2(R), the set of signal patches
Xf = {xi}mi=1 ⊂ Rn, xi = (f(tk(i−1)+j))

n−1
j=0 ∈ Rn. The construction of this cloud Xf

involves the set of integers A = {0, . . . , n − 1}, and the identification C(A,R) = Rn,
and we can see A as a subset indexing the values `. Here, the regular sampling grid
{t`}km−k+n−1`=0 is constructed when considering the Nyquist-Shannon theorem for f .

Example 2.2 (Cloud of an Image). A straightforward generalization of the previous
example applies for the case of an image f : [0, 1]2 → [0, 1]. Here, the cloud Mf depends
on a set of pixels represented by a representative patch A. In this particular example, the
usefulness of a topological analysis of Mf lies, for instance, in the study of its connectivity
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(e.g. clustering aspects) for estimating qualitative as well as quantitative differences
between different regions in the image f .

Example 2.3 (Cloud of a sinusoid). Let f : T→ R with f(x) = sin(x), x ∈ T = R/2πZ
and let A = {x mod (2π),−ε < x < ε}. If 0 < ε < 2π the functional cloud Mf

is homeomorphic to a circle. This can be seen by considering the map φ : Mf → T,
φ(fx) = x. Notice that fx(z) − fx+δ(z) = δ cos(ξ), for ξ ∈]z + x, z + x + δ[, and we
can ensure that φ is continuous, with the uniform norm in the space C(A,R) using the
estimation ‖fx − fx+δ‖∞ ≤ |δ|. When considering the inverse function φ−1(x) = fx, we
can use the computation fx+δ(z)− fx(z) = f(z + x+ δ)− f(z + x) for x− ε < z < x+ ε,
and as f is continuous, we have limδ→0 fx+δ(z) = fx(z), and as fx is continuous we have
φ−1 continuous. Finally, notice that φ is bijective only for the cases 0 < ε < 2π.

Example 2.4 (Cloud of a modulated path). Consider an embedded manifold Ω ⊂
[−1, 1]d, and a path φ : [0, 1]→ Ω. We construct f : [0, 1]→ R as

f(x) =
d∑
i=1

sin
(∫ x

0

(αic + γφi(t)) dt
)
,

such that the entries of the vector αc = (αic)
d
i=1 ∈ Rd are center frequencies where a

number of d frequency bands are located, and the value γ plays the role of a bandwidth
parameter. The notation φi(x) refers to the i-th coordinate of φ(x). A basic question in
this example is, given an open set A, what are the conditions for the path φ such that the
functional cloud Mf ⊂ C(A,R) “approximates” an homeomorphic copy of Ω. Here, the
meaning of approximation can be considered, for instance, in the context of persistent
homology. If the functional cloud of f is a path in C(A,R) the question would be, given
an adequate finite sampling of Mf , whether its persistent homology corresponds to the
persistent homology of a finite sampling of Ω.

Another point of view for comparing the homology of Ω with a finite sampling of Mf

can be expressed with conditions for approximating the homology of submanifolds with
high confidence from random samples (see the work of Niyogi, Smale and Weinberger
[47]). For this setting, the question would be to ask if a given finite sampling of Mf

fulfills the conditions in [47] for reconstructing the homology of an homeomorphic copy
of Ω in C(A,R).

Example 2.5 (Time series and dynamical systems). In dynamical systems and time
series analysis, a similar segmentation procedure for a signal is implemented as in the
functional cloud concept. In the framework of the celebrated Taken’s theorem [52], we
consider a dynamical system φ ∈ Diff(M), defined as a diffeomorphism φ of a manifold
M , a smooth function h : M → R, and a delay coordinate map F (h, φ) : M → Rn,
constructed by drawing consecutive samples from a time series:

F (h, φ)(x) := (h(x), h(φ(x)), h(φ2(x)), . . . , h(φn−1(x))), x ∈M.

The main result is that under suitable conditions, the map F (h, φ) is an embedding. Given
a signal f(k) = h(φk(x)), k ∈ Z, the Taken’s theorem provides a conceptual framework
that justifies the estimation of geometrical and topological properties of M using the
signal f . The key notion in this construction turns out to be a functional cloud Mf,A for
A an n-dimensional set.
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Example 2.6 (Voice transform, wavelets and short term Fourier analysis). In time-
frequency analysis and voice transforms, a crucial component is the way a locally compact
group G acts in a Hilbert space of functions H. This action is an irreducible and unitary
group representation, π : G → U(H), (for U(H) unitary operators in H) that fulfills
square integrable conditions. With this representation the voice transform is constructed
as [10, Formula 17.3, p387]:

Vψ : H → C(G) with Vψf(x) = 〈f, π(x)(ψ)〉, f, ψ ∈ H, x ∈ G.

The short term Fourier transform (STFT) and wavelet transforms are typical examples
where ψ corresponds to a window function for the former and to a wavelet for the latter.
These transforms represent an interplay between H and C(G), that allows to analyze the
function f , by porting its information to a setting defined by G. Another way to rephrase
this procedure is that the transformation Vψ “unfolds” data present in f , using G as an
analysis environment. In the case of the STFT transform, the Weyl-Heisenberg group
represents the time-frequency background to which information from f is translated. In
the case of the wavelet transform, the affine group provides a time-scale representation of
a function. In these situations, a fundamental objective is to understand the components
of f , using G and Vψ as observation tools. Discretization aspects of these transforms have
been designed in the setting of coorbit theory and frames of a Hilbert space H [22, 23, 24].
Recall that a frame of H is a collection of vectors F = {fi}i∈I ⊂ H, such that there exist
two constants 0 < A ≤ B, with A‖f‖2 ≤

∑
i∈I |〈f, fi〉|2 ≤ B‖f‖2, for any f ∈ H.

In the particular case of Gabor analysis, the voice transform is defined as

Vgf(b, w) =

∫
R
f(t)g(t− b)e−2πitwdt,

f ∈ L2(R) and we can define two basic functional clouds in this setting. The cloud
Xf = {xb}b is defined with chunks xb = fgb by splitting the function f , and using
gb(t) = g(t− b) for a window function g. We can also define a cloud of the corresponding
spectral view using

XVgf = {Vgf(b, .)}b.

Due to the orthogonality property of the Fourier transform, the geometrical and topo-
logical properties of Xf = {xb}b, are the same as the ones of the set XVgf = {Vgf(b, .)}b
(i.e. Xf and XVgf are isometric spaces). But it is crucial to notice that highly nontrivial
geometrical and topological changes can occur in XVgf when applying time-frequency
operations to the function f (e.g. filters and convolution operations). The interplay be-
tween the geometry of XVgf and the time-frequency properties of f is a main topic in our
research (a toy-example of this interaction will be discussed in Section 4, and can also be
found in [31] and its corresponding simulation).

Studying Mf with Ff

In order to study the functional cloud Mf , the foliated partition Ff is used for estimating
its geometrical and topological properties. The motivation for this strategy is based on
standard procedures of noncommutative geometry. A prototypical situation is to study
the geometry of a quotient space X = Y/ ∼ using a C∗-algebra constructed with the
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equivalence relation ∼. The relation between a foliated partition and a function cloud
can be interpreted as quotient space using an equivalence relation (and more generally a
groupoid). These conceptual interactions will be the main topic we will investigate.

The basic idea of a foliated partition Ff is to study each segment fx of the function
f , by keeping track their relationship with respect to the parameter x ∈ G. This is in
contrast with the construction of a functional cloud Mf , where we study the interactions
between the vectors fx, irrespectively of their positions x. Basic standard procedures
in time-frequency analysis are related to this concept. For instance, when studying the
time-frequency representation of a signal f , an important objective is to keep track to the
time evolution of different frequency components of f . For example, the topic of partial
tracking is a classical signal processing task which keeps track of harmonic information in
a signal. Speech analysis is a typical example, where vocal information is represented in
the time-frequency plane by varying harmonical components. The time-frequency data
in this context is obtained by considering the Fourier transform of each segment fx in the
foliated partition. We now describe an important particular scenario that justifies the
terminology foliated partition.

Proposition 2.1 (Foliated partition as a foliated manifold). Let Ff be a foliated partition
for a continuous function f : G → R, where G is a finite dimensional Hilbert space, and
A an open set with 0 ∈ A ⊂ G. The set Ff is a manifold of dimension 2 dim(G), and it
has a foliation structure of dimension dim(G).

Proof. This easily follows by considering the graph of the function φ : G × A → R,
φ(x, y) = fx(y). As f is continuous and fx(y) = f(x + y), φ is a continuous function.
The graph of φ can be identified with {(x, y, fx(y), (x, y) ∈ G × A}, and therefore it
is also identified with the foliated partition Ff . The map φ exhibits a chart from the
open set G × A to Ff , which actually relates these two sets homeomorphically, and we
obtain a manifold structure for Ff . As G × A is an open subset of G × G, the dimension
of Ff is therefore equal to 2 dim(A). The foliation structure of Ff is a straightforward
consequence of its construction, where the leaves are given by Fx, x ∈ G, and their
dimension is dim(G).

Example 2.7 (Foliated partition for the sinusoidal example). In our previous Example
2.3 of the function f(x) = sin(x), x ∈ T = R/Z with A = {x mod (2π),−ε < x < ε},
the foliated partition Ff can be identified with a surface (dim(Ff ) = 2 ) described by the
graph of the function φ : T×]− ε, ε[→ R, φ(x, y) = sin(x+ y), and for the corresponding
leaves we have dim(Fx) = 1.

Remark 2.3 (Relating Ff and Mf ). There is an obvious relation between a foliated
partition Ff and a functional cloud Mf . If we define an equivalence relation in Ff ,
as R = {(u, v) ∈ Ff × Ff , d(p(u), p(v)) = 0}, for the projection map p : Ff → Mf ,
p((x, y, fx(y)) = fx, and d is the metric induced by the uniform norm in C(A,R), we
have an identification (as sets) between Ff/R and Mf . This remark has important
implications when using the foliated partition Ff for studying the geometry and topology
of Mf . Indeed, the relations between a space X and a quotient X/R for an equivalence
relation R (or more generally with a groupoid G) is an important source of examples in
the noncommutative geometry world. In this field, there is a very important machinery
for studying quotients X/R using C∗-algebras defined on the spaces X and R. This
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framework provides important tools for studying pathological quotients, sometimes called
“bad quotients” (e.g. X/R non Hausdorff while X being Hausdorff). A prototypical
example is the noncommutative torus, defined as the quotient of the 2-torus T2 = R2/Z2

with the Kronecker foliation constructed from the differential equation dy = θdx [12].
But it is very important to remark that the tools from noncommutative geometry are
also useful for studying objects in the commutative world.

Before describing the application of this strategy in our setting of foliated partitions
and functional clouds, we describe an important related concept which makes more ex-
plicit the interaction of these problems with modern tools from manifold learning and
dimensionality reduction.

Definition 2.2 (Modulation Maps [32, 30, 31, 33]). Let {φk}dk=1 ⊂ H be a set of vectors
in an Euclidean space H, and {sk : Ω → CH(H)}dk=1 a family of smooth maps from a
space Ω to CH(H) (the continuous functions from H into H). We say that M ⊂ H is a
{φk}dk=1-modulated space if

M =

{
d∑

k=1

sk(α)φk, α ∈ Ω

}
.

In this case, the map A : Ω→M, α 7→
∑d

k=1 sk(α)φk, is denoted modulation map.

The concept of a modulation map, summarizes the well-known concept of modulation
in signal processing, using a geometrical and topological language. The fundamental
objective of a modulation map is to construct spacesM using generating functions {φk}
and a parametrization space Ω. This concept is a related, but different component in
the machinery of a functional cloud and foliated partitions. An explicit example of this
concept is given by a frequency modulation map, which considers φ(t) = sin(t) and a
modulation with the coordinates of points in some manifold Ω [32, 30, 31]. Our previous
example of the cloud of a sinusoid also fits in this setting.

Example 2.8 (Cloud of a sinusoid as a modulated space). We use again our previous
example for the cloud of a sinusoid to show a modulated space with f(x) = sin(x), x ∈
T = R/2πZ and B =] − ε, ε[ mod (T). Here, the map φ is a modulation map when
0 < ε < 2π, and for this case, the functional cloud Mf is homeomorphic to a circle.
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2.2 Basics on Groupoids Crossed Products and C∗-Dynamical Systems

In noncommutative geometry, the fundamental interplay between locally compact Haus-
dorff topological spaces and (commutative) C∗-algebras as explained in the Gelfand-
Naimark theory [25, 54] has been extended to an important framework using noncommu-
tative C∗-algebras [37, 28, 12]. The multiple conceptual and application developments
over the last decades is a evident indication of its breath and increasing importance in
mathematics. A basic example of a noncommutative space, is the noncommutative torus
[12, 13], which can be defined as a crossed product C∗-algebra Aθ = C1(S1) oRθ Z, for a
rotation Rθ(x) = (x + θ) mod1, x ∈ T. In this construction, the algebra C1(S1) can be
replaced with other algebras depending on the type of analysis and resolution required:
for geometrical, topological and measure theoretical properties, the spaces that can be
used are C∞(S1) ⊂ C1(S1) ⊂ L1(S1), respectively. The noncommutative torus is just
one particular example in the world of noncommutative geometry, and it belongs to the
general theory of spaces of leaves of foliations. But an even more general setting can be
described with the powerful theory of groupoids. The important application of groupoids
in noncommutative geometry is given by the concept of noncommutative quotients, and a
particular example is the analysis of quotient spaces X = Y/ ∼ of an equivalence relation
∼ in Y . We remark that there is an important family of C∗-algebras (the AF-algebras)
particularly useful for studying finite structures, as required in applications of signal pro-
cessing and data analysis. We now introduce some basic tools from groupoid theory we
need for our setting.

Groupoids C∗-algebras

A groupoid G can be defined as a small category where each morphism has an inverse
[12, 15]. More explicitly, we say that a groupoid over a set X is a set G together with
two maps r, s : G → X, called the range and source maps, and a composition law (or
product) ◦ : G(2) → G denoted γ ◦ η = γη, where

G(2) = {(γ, η) ∈ G×G, r(γ) = s(η)},

and r(γη) = r(γ), s(γη) = s(η), γ(ηξ) = (γη)ξ. We additionally have an embedding
e : X → G and an inversion map i : G → G with e(r(γ)) = γ = γe(s(γ)), and i(γ)γ =
e(s(γ)), γi(γ) = e(r(γ)). We have an hierarchy of sets defined as G(0) = e(X) ' X (the
unit space), G(1) = G, and G(2) as previously defined. For u ∈ G(0) we define Gu = s−1(u)
and Gu = r−1(u).

An alternative way to introduce a groupoid is to start with a subset G(2) of G×G as
the set of composable pairs, an inverse operation G → G, γ 7→ γ−1 for each γ ∈ G, and
define the maps r and s with r(γ) = γγ−1, s(γ) = γ−1γ. From the axioms, the maps r, s
have a common image G(0) as the unit space, meaning that γs(γ) = r(γ)γ = γ, for each
γ ∈ G [7, Section 2.1].

The isotropy group for a unit u ∈ X is defined as

Gu
u = {γ ∈ G, s(γ) = r(γ) = u} = s−1(u) ∩ r−1(u),

and in general, we define Gu
v = r−1(u) ∩ s−1(v). The isotropy group bundle is defined as

G′ = {γ ∈ G, s(γ) = r(γ)}. When the groupoid is seen as a category, the set of objects
is Ob(G) = G(0), and the morphisms are identified with G itself [35, Definition 2.1].
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An homomorphism of groupoids G and Γ is a map φ : G→ Γ, such that (γ, η) ∈ G(2),
then (φ(γ), φ(η)) ∈ Γ(2), and φ(xy) = φ(x)φ(y). We have, in particular, φ(γ−1) =
(φ(γ))−1, and φ(G(0)) ⊂ Γ(0) [7, p73].

We will consider groupoids where both G(0) and G(1) have topologies such that the
maps (γ, η) 7→ γη from G(2) → G, and γ 7→ γ−1 from G to G are continuous [26,
Definition 1.8]. In the following, we denote by G a second countable locally compact
Hausdorff groupoid.

Important examples of groupoids are equivalence relations, groups, and group actions.
For instance, with an equivalence relation R ⊂ X×X, we define a groupoidG = G(1) = R,
G(0) = X, r(x, y) = x, s(x, y) = y. For a group Γ, we can define the groupoid G = Γ,
G(0) = {e} (the unit of Γ), and the groupoid composition is the group product. For a
group Γ acting on a set X, we can define G = X×Γ, G(0) = X, r(x, g) := x, s(x, g) := xg,
for all (x, g) ∈ X × Γ, and the product is defined as (x, g)(xg, h) = (x, gh). Another
important example of groupoid is a group bundle defined as a disjoint union of groups
{Γi}i∈U indexed by a set U . The composition between two elements is defined by the
corresponding group composition if the elements are in the same group. A groupoid is a
group bundle if d(x) = r(x) for all x ∈ G, and for this case, the groupoid G equals its
isotropy group bundle G′ (see [7, 2.3 p76]).

Definition 2.3 (Haar Systems for Groupoids [7, Section 2.4]). The concept of a Haar
system generalizes, to groupoids, the notion of a Haar measure for locally compact groups.
A Haar system is family {λu}u∈G(0) of Radon Measures on G with supp(λu) = Gu, and
u 7→

∫
f(γ)dλu(γ) is a continuous function from G(0) to C for all f ∈ Cc(G) (the space

of complex-valued continuous functions with compact support). Additionally, we require∫
f(η)dλr(γ)(η) =

∫
f(γη)dλs(γ)(η),

for all f ∈ Cc(G), and all γ ∈ G.

Remark 2.4 (Hilbert bundles and direct integrals). In groupoid theory and groupoid
representations, the concept of Hilbert bundles has the same fundamental role as the
concept of Hilbert space in group representations [7, Section 2.6]. A Hilbert bundle is
constructed with a family of Hilbert spaces H = {H(x)}x∈X indexed by X, which can be
more precisely denoted as a disjoint family X ∗H := {(x, χ), χ ∈ H(x)} (see [44, Chapter
3]). In general, for X1, X2, two spaces with maps τi : Xi → T, i = 1, 2, one defines [5]

X1 ∗X2 := {(x, y) ∈ X1 ×X2 : τ1(x) = τ2(y)}.

If X is an analytic Borel space, then X ∗H is denominated a analytic Borel Hilbert bundle
with the natural projection π : X ∗ H → X, and the corresponding set of Borel sections
is denoted as B(X ∗ H) [5, Definition 3.61 p109].

The concept of a direct integral of the spaces {H(x)}x∈X is defined for an analytic
Borel Hilbert bundle X ∗ H, and µ a measure in X, as (see [5, Definition 3.80 p118], [7,
p83])

L2(X ∗ H, µ) = {f ∈ B(X ∗ H),

∫
X

||f(x)||2H(x)dµ(x) <∞}.

The space L2(X ∗ H, µ), denoted also as
∫ ⊕
X
H(x)dµ(x), is a Hilbert space with the

product 〈f, g〉 =
∫
〈f(x), g(x)〉H(x)dµ(x). When X is a discrete space

∫ ⊕
X
H(x)dµ(x) is
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just
⊕

x∈X H(x), and in general case, if the H(x)’s are the fibers of the vector bundle H,

the direct integral
∫ ⊕
X
H(x)dµ(x) is the space of sections that are square integrable with

respect to µ [25, p223].
Given a Borel bundle X ∗ H are constructed with a Borel field of operators defined

with a family of bounded linear maps T (x) : H(x)→ H(x), which can be used to define
the operator

∫ ⊕
X
T (x)dµ(x), also denoted as T ∈ B(L2(X ∗ H, µ)), and denominated

the direct integral of T (x) (see [5, Definition 3.88 p120, Proposition 3.91]). Recall that
in harmonic analysis, the direct integral plays a basic concept in the decomposition of
representations of groups. For instance, in the case of locally compact Abelian groups,
a unitary representation is equivalent to a direct integral of irreducible representations,
and in more general situations, as locally compact groups, a similar mechanism (the
Plancherel theorem) is implemented for the regular representation [25, Theorem 7.36,
Section 7.5].

Remark 2.5 (Isomorphism groupoid for a Borel Hilbert bundle and groupoid represen-
tations). Given a Borel Hilbert bundle, its fibred structure gives rise to an isomorphism
groupoid that will be used to define unitary groupoid representations. The isomorphism
groupoid for an analytic Hilbert bundle X ∗ H is Iso(X ∗ H) = {(x, V, y), V : H(y) →
H(x) unitary}, with composable pairs Iso(X ∗ H)(2) = {((x, V, y), (w,U, z)) ∈ Iso(X ∗
H)× Iso(X ∗H), y = w}, and the composition is defined as (x, V, y)(y, U, z) = (x, V U, z),
(x, V, y)−1 = (y, V ∗, z) [5, Definition 3.67 p111], [7, p83].

Definition 2.4 (Groupoid representation). A groupoid representation of a locally com-
pact Hausdorff groupoid G is a triple (µ,G(0) ∗ H, L) with µ a quasi invariant measure
in G(0), G(0) ∗H is an analytic Borel Hilbert bundle, and L : G→ Iso(G(0) ∗ H) a Borel
groupoid homomorphism with L(γ) = (r(γ), Lγ, s(γ)), for a unitary Lγ : H(y) → H(x)
[5, Definition 3.76 p117], [7, p83].

Definition 2.5 (Groupoid C∗-algebra). Given a Haar system {λu}u∈G(0) of a locally
compact Hausdorff groupoid G, we define, for f, g ∈ Cc(G), the convolution as

(f ∗ g)(γ) =

∫
f(γη)g(η−1) dλs(γ)(η) =

∫
f(η)g(η−1γ) dλr(γ)(η)

and the involution by f ∗(x) = f(x−1). With these operations, Cc(G) is a topological
∗-algebra (see [7, Section 3.1] and [49]). In order to define a C∗-algebra with Cc(G), we
can select several norms giving rise to the full and reduced C∗-algebras for the groupoid
G. The basic step for constructing these norms, is to consider a representation of Cc(G),
defined as a ∗-homomorphism from Cc(G) into B(H), the bounded operators for some
Hilbert space H. Every groupoid representation (µ,G(0) ∗ H, L) can be related to a
representation of Cc(G) with H =

∫ ⊕
G(0) H(x)dµ(x), for H = {H(x)}x∈G(0) [7, p87].

The analogue in groupoid theory of the regular representation of a group is a repre-
sentation of Cc(G) given by an operator Indµ in L2(G) with Indµ(f)ξ(x) = (f ∗ ξ)(x).
The reduced norm is constructed as ‖f‖red = ‖Indµ(f)‖, making Cc(G) into a C∗-algebra
(see [7, p87] for details).
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Groupoids actions and orbit spaces

The concept of a groupoid action G on X generalizes the concept of a group action by
considering partially defined maps on pairs (γ, x) ∈ G×X. This is a natural consequence
of the partially defined multiplication in a groupoid [26, Section 1.2].

Definition 2.6 (Groupoid action). A (left) action of a groupoid G in a set X is a
surjection rX : X → G(0), together with a map

G ∗X = {(γ, x) ∈ G×X, s(γ) = rX(x)} → X, (γ, x) 7→ γx,

with the following three properties (see [44, Chapter 2] and [26, Definition 1.55]):

1- r(γx) = r(γ) for (γ, x) ∈ G ∗X.

2- If (γ1, x) ∈ G ∗X and (γ2, γ1) ∈ G(2), then (γ2γ1, x), (γ2, γ1x) ∈ G ∗X and

γ2(γ1x) = (γ2γ1)x.

3- rX(x)x = x for all x ∈ X.

With these conditions, we say that X is a (left) G-space. We can define in a similar way
right actions and right G-spaces by denoting with sX the map from X to G(0), and using
X ∗G = {(x, γ) ∈ X ×G : sX(x) = r(γ)} instead of G ∗X.

The action of a groupoid in a set defines an equivalence relation that can be used to
construct the orbit space, which represents a main object to study.

Definition 2.7 (Orbit space for groupoid actions). Given a left G-space X, we define
the orbit equivalence relation on X defined by G with x ∼ y if and only if there exist
a γ ∈ G, with γ · x = y, and the corresponding quotient space is the orbit space, and
denoted by X/G with elements G ·x or [x]. The same notation is used for right G-spaces,
but in situations where X is both a left G-space and right H-space, the orbit space with
respect to the G-action is denoted G\X and the orbit space with respect to the H-action
is denoted by X/H [26, Definition 1.67].

In the particular case where X = G(0), the equivalence relation can be defined as
u ∼ v iff Gu

v 6= ∅. The orbits [u] for u ∈ G(0) are the corresponding equivalence classes
and the orbit space is denoted by G(0)/G. The graph of the equivalence relation can be
described as R = {(r(γ), s(γ)), γ ∈ G}. We say that the subset A ⊂ G(0) is saturated
if it contains the orbits of its elements, and we say that the groupoid G is transitive or
connected if it has a single orbit. Alternatively, we say that G is transitive or connected
if there is a morphism between any pair of elements in G(0) [35, Example 2.2.2, p50] [42,
p20] For each orbit [u] of a groupoid G, the set G|[u] is a transitive groupoid denominated
transitive component of G. An important property is that each groupoid is a disjoint
union of its transitive components (see [7, p73] for details). In a similar topic we also
mention that, seen as a category, each groupoid is equivalent (but not isomorphic) to a
category of disjoint union of groups (see [16, Appendix A] for a very short but nice survey
on this topic).

We can now state some basic results we need on the characterization of a C∗-algebra
of a transitive groupoid:

15



Theorem 2.1 (Muhly-Renault-Williams: Transitive Groupoids and their C∗-algebras
[45, 7]). Let G be a transitive, locally compact, second countable and Hausdorff groupoid,
then the (full) C∗-algebra of G is isomorphic to C∗(H) ⊗ K(L2(µ)), where H is the
isotropy group Gu

u at any unit u ∈ G(0), and µ a measure on G(0), C∗(H) denotes the
group C∗-algebra of H, and K(L2(µ)) denotes the compact operators on L2(µ).

Definition 2.8 (Free and proper groupoid actions). The action of a groupoid G in a set
X is free if the map Φ : G ∗ X → X × X, (γ, x) 7→ (γx, x), is injective [5, Conventions
1.1]. This can also rephrased by saying that γx = x implies γ is a unit (γ ∈ G(0)) [26,
Definition 1.83]. The action is proper if the map Φ is proper (meaning that the inverse
images of compact sets are compact). A main property for proper actions is that the orbit
space X/G is locally compact and Hausdorff if G acts property on the locally compact
space Hausdorff space X [26, Proposition 1.85].

Groupoid dynamical systems and groupoid crossed products

A natural consequence of the fibred properties of a groupoid is the usage of fibred C∗-
algebras when generalizing the concept of dynamical systems to the groupoid language.

Remark 2.6 (C0(X)-algebras and C∗-bundles). A C0(X)-algebra is a C∗-algebra with
a nondegenerate homomorphism ΦA from C0(X) (the space of continuous functions van-
ishing at infinity on X) into Z(M(A)), where M(A) denotes the multiplier algebra of A,
and Z(A) denotes the center of A. Here, ΦA is nondegenerate when ΦA(C0(X)) · A =
span{ΦA(f)a, f ∈ C0(X), a ∈ A} is dense in A (see [56] for details).

Remember that the multiplier algebra M(A) of A is the maximal C∗-algebra contain-
ing A as an essential ideal (see [4, Chapter 4]). For instance, if A is unital, M(A) = A.
If A = C0(X), the continuous functions with compact support in a locally compact
Hausdorff space, then M(A) = Cb(X), the continuous functions bounded on X. If A
is the space of compact operators on a separable Hilbert space H, M(A) = B(H), the
C∗-algebra of all bounded operators on H. Recall also that the center of an algebra A
is the commutative algebra Z(A) = {x ∈ A, xa = ax ∀a ∈ A}. This concept plays a
crucial role as, for instance, in the theory of Von Neumann algebras (algebras of bounded
operators on a Hilbert space). Von Neumann algebras with a trivial center are called
factors, and these are basic building blocks for general Von Neumann algebras via direct
integral decompositions.

An upper semicontinuous C∗-bundle over X, a locally compact Hausdorff space, is
a topological space A with a continuous open surjection pA = p : A → X such that
the fiber A(x) = p−1(x) is a C∗-algebra with the following conditions. First, the map
a 7→ ‖a‖ is upper-continuous from A to R+ (i.e. for all ε > 0, the set {a ∈ A , ‖a‖ < ε}
is open). The operations sum, multiplication, scalar multiplication, and involution in the
algebra A are continuous. Finally, if {ai} is a net in A with p(ai) → x, and ‖ai‖ → 0,
then ai → 0x, with 0x the zero element of A(x).

Two fundamental properties of C0(X)-algebras are the fact that there is a one to one
correspondence between C0(X)-algebras and upper-semicontinuous bundles C∗-bundles
[5, Definition 3.12 p91], and that the primitive ideal space of a C0(X)-algebra is fibred
over X [5, p93].
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The interaction between C0(X)-algebras and upper-semicontinuous bundles C∗-bundles
is given by the fact that the C∗-algebra A = Γ0(X,A ) of continuous sections of A vanish-
ing at infinity, is a C0(X)-algebra, as we now explicitly rephrase in the following example.

Example 2.9 (C0(X)-algebras). A basic example of a C0(X)-algebra is given by A =
C0(X,D), where D is any C∗-algebra, X is a locally compact Hausdorff space, and
ΦA(f)(a)(x) = f(x)a(x), for f ∈ C0(X), a ∈ A. For this example, each fiber A(x) is
identified with D. [26, Example 3.16, p91]

As previously mentioned, a fundamental example of a C0(X)-algebra is A = Γ0(X,A ),
for a A upper-semicontinuous C∗-bundle, with ΦA(φ)f(x) = φ · f(x) = φ(x)f(x), for
φ ∈ C0(X), and f ∈ A. [26, Example 3.18, p91]

Definition 2.9 ((A , G, α) Groupoid dynamical system). If G is a groupoid with Haar
system {µu}u∈G(0) , and A is an upper-semicontinuous C∗-bundle over G(0). An action α of
G on A = Γ0(X,A ) is a family of ∗-isomorphisms {αγ}γ∈G with αγ : A(s(γ))→ A(r(γ)),
for all γ ∈ G, αγη = αγαη for all (γ, η) ∈ G(2), and the map G ∗A → A , (γ, a) 7→ αγ(a)
is continuous. With these conditions, the triple (A , G, α) is a groupoid dynamical system
(see [5, Definition 2.2]).

Example 2.10 ((CX , G, lt) Groupoid dynamical system). A basic example of a groupoid
dynamical system is (CX , G, lt), where G is a groupoid acting on a second countable
locally compact Hausdorff space X, and the upper semi-continuous C∗-bundle CX =
G(0) ∗ {C0(r

−1
X (u))}u∈G(0) is associated with the C0(G

(0))-algebra C0(X). The action of
G on X induces an action of G on CX by left translation [6, Example 3.30, Proposition
3.31, p25],

ltγ(f) : C0(r
−1
X (s(γ)))→ C0(r

−1
X (r(γ))), x 7→ f(γ−1 · x).

Remark 2.7 (Reduced crossed product of a groupoid dynamical system). With a groupoid
dynamical system (A , G, α), we can construct a convolution algebra that can be com-
pleted to the reduced crossed product, which is one possible generalization of the concept
of a crossed product. An important tool for this task is the pullback bundle r∗A of a
bundle A over X, with bundle map pA : A → X. The pullback bundle is defined as

r∗A := {(γ, a), r(γ) = pA (a)},

for r : G→ X. The corresponding bundle map for r∗A is q : r∗A → G, with q(γ, a) = γ
[26, Definition 3.33 p97].

The first step for constructing the groupoid crossed product is a property [5, Propo-
sition 2.4] ensuring that, given a groupoid G with Haar system {λu}u∈G(0) , the set of
continuous compactly supported sections of r∗A , denoted by Γc(G, r

∗A ), is a ∗-algebra
with respect to the operations

(f ∗ g)(γ) :=

∫
G

f(η)αη(g(η−1γ))dλr(λ)(η), f ∗(γ) := αγ(f(γ(−1))∗).

The second step we consider here is to complete Γc(G, r
∗A ) with the reduced norm

‖f‖r = sup{‖Indπ(f)‖, π is aC0(G
(0)) linear representation ofA} (see [5, p4] for details).

We define the completion of Γc(G, r
∗A ) with the norm ‖‖r as the reduced crossed product

of the dynamical system (A , G, α), and we denoted it with A oα,r G. Notice that
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this procedure is the important strategy of using representations of an algebra in order
to construct a meaningful norm that leads to a C∗-algebra construction denominated
enveloping C∗-algebra (see [28, Definition 12.2, p523]).

Remark 2.8 (Morita equivalence). Representation theory plays a crucial role in the inter-
play between topological spaces and algebraic structures. The Gelfand-Naimark theorem
identifies a locally compact Hausdorff spaceX with a commutative C∗-algebra A = C0(X)
(continuous functions vanishing at infinity) by considering an homeomorphism between
X and the set of characters Â identified with the set of unitary equivalence classes of
irreducible ∗-representations [37, 54]. The set Â is also known as the structure space and,
for commutative C∗-algebras, it coincides with the primitive spectrum Prim(A), defined
as the space of kernels of irreducible ∗-representations of A [37, Section 2.3]. The set of
characters of a Banach algebra A is also known as the Gelfand spectrum, also denoted by
sp(A) (see [28, Definition 1.3, p5]).

This conceptual interaction between representation theory, commutative C∗-algebras
and topological spaces has its origins in the Morita theory, as described in the context
of representation theory of rings [1, Chapter 6] [48]. Recall that modules are intimately
related to representations of rings, and this fact motivates the concept of Morita equiva-
lence relation between two rings R and S, defined as an equivalence of categories between

RM and SM , (the categories of modules over R and S, respectively).
These ideas can be extended to the context of C∗-algebras, but for this task, we

require more subtle procedures, and a crucial role is played by the landmark ideas of
M. Rieffel who introduced the concept of strong Morita equivalence. Given two C∗-
algebras, A and B, the basic concept behind a Morita equivalence is the notion of a
A − B equivalence bimodule M (also known as imprimitivity bimodule), defined as a
A − B bimodule such that M is a full left Hilbert A-module and full right Hilbert B-
module, and we have an associativity formula A〈x, y〉z = x〈y, z〉B, for x, y, z ∈ M (see
[35, Definition 2.4.3], [48, Chapter 3]). A right Hilbert B-module for a C∗-algebra B is a
right B-module M with a B-valued inner product 〈·, ·〉 : M×M → B, with corresponding
generalizations of the standard notion of inner product (see [35, Definition 2.4.1]). With
these notions, we say that two C∗-algebras A and B, are (strongly) Morita equivalent
(A

m∼B) if there exist an equivalence A−B bimodule (see also [28, Definition 4.9, p162]).
We follow the explanations of [48, Remark 3.15], and we will usually omit the word
strongly for this Morita equivalence concept. Many important properties are conserved
under this equivalence relation. In particular, a crucial fact is that the structure space Â
is homeomorphic to the structure space B̂ when A and B are (strong) Morita equivalent
(see [28, p167]).

Remark 2.9 (Open covers of manifolds). A basic example in noncommutative geometry
is given by the open covers of manifolds (see [12, Chap 2, Example 2α] and [35, Example
2.5.3, p81]). Here, a Morita equivalence relation is established between the (noncom-
mutative) C∗-algebra C∗(R) and the (commutative) C∗-algebra C0(M), for a locally
compact manifoldM, where the equivalence relation R is defined in the set V =

⊔
Ui for

a finite covering
⋃
Ui = M, with z

R∼ z′ iff p(z) = p(z′), using the canonical projection
p : V →M. This example will be fundamental in our framework, as this Morita equiv-
alence will be used to exploit the configuration introduced by an open cover in order to
analyze the particular type of manifolds (the foliated partitions Ff ) we are interested in.
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Proper groupoid dynamical systems

A fundamental result used in noncommutative geometry is a property proposed by Green
[29], which constructs a Morita equivalence relation between the C∗-algebra C0(H\X)
on the quotient space H\X of a group H acting on X, and the corresponding crossed
product C0(X) olt H.

Theorem 2.2 (Green 1977 [29, Corollary 15], [6, Theorem 4.1, p61]). If H is a locally
compact Hausdorff group acting freely and properly on a locally compact Hausdorff space
X, then C0(X) olt H is Morita equivalent to C0(H\X).

An important generalization of this property has been prepared by Rieffel [51] which
considers the action of a group G in a (noncommutative) C∗-algebra. We describe now a
generalization of this machinery in the setting of groupoid actions as prepared by Brown
in [5].

Definition 2.10 (Proper dynamical system [5, Definition 3.1]). Let (A , G, α) be a
groupoid dynamical system and A = Γ0(G

(0),A ) its associated C0(G
(0))-algebra. We

say that (A , G, α) a proper dynamical system if there exist a dense ∗-subalgebra A0 ⊂ A
with the following two conditions.

1- we construct functions E〈a, b〉 that will generate a dense subspace E of A oα,r G
(see Theorem 2.3). For this step, we require that, for each a, b ∈ A0, the function

E〈a, b〉 : γ → a(r(γ))αγ(b(s(γ))∗), γ ∈ G, is integrable (see also [6, Section 4.1.1,
p62]). Notice that with this requirement we use the sections a, b (in Γ0(G

(0),A )) to
construct sections E〈a, b〉 defined in the groupoid G and considered in Γc(G, r

∗A ).

2- We set a requirement for constructing the fixed point algebra Aα (see Theorem 2.3)
by defining

M(A0)
α = {d ∈M(A), A0d ⊂ A0, αγ(d(s(γ))) = d(r(γ))}.

We define now 〈a, b〉D ∈ M(A0)
α such that for all c ∈ A0, (c · 〈a, b〉D)(u) =∫

G
c(r(γ))αγ(a

∗b(s(γ)))dλu(γ).

We can now state the main result in [5, Theorem 3.9], generalizing to the groupoid
language the property of Rieffel [51, Section 2] which generalizes to (non necessarily
commutative) C∗-algebras the result of Green [29, Corollary 15].

Theorem 2.3 (Morita equivalence in proper dynamical systems [5, Theorem 3.9]). Let
(A , G, α) be a proper dynamical system with respect to A0, and let D0 = span{〈a, b〉D, a, b ∈
A0} is a dense subalgebra of Aα = D0, the fixed point algebra which is the completion of
D0 in M(A). Let also E0 = span{E〈a, b〉, a, b ∈ A0} be a dense subalgebra of E = E0, the
completion of E0 in A oα,r G.

With these conditions, A0 is a E0 − D0 pre-imprimitivity bimodule, which can be
completed to a E − Aα imprimitivity bimodule. As a consequence, the generalized fixed
point algebra Aα is Morita equivalent to a subalgebra E of the reduced crossed product
A oα,r G.
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Saturated groupoid dynamical systems

We now present a basic tool we need, as developed by J.H. Brown [5, 6], generalizing to
the setting of groupoid theory, the results of Rieffel [51]. The core concept is the notion
of saturated groupoid dynamical systems (Definition 2.11), whose requirements can be
ensured when considering principal and proper groupoids (Definition 2.12). The main
Theorem 2.4 considers the case of a general groupoid dynamical system (A , G, α), but
our main current interest is the particular case where A = C0(G

(0)), as described in the
Theorem 2.5.

Definition 2.11 (Saturated Groupoid Dynamical System [5, Definition 5.1]). A dynam-
ical system (A , G, α), is saturated if E0A0D0

completes to a A oα,rG−Aα imprimitivity
bimodule.

Definition 2.12 (Principal groupoid and proper groupoid). Given a groupoid G with its
unit space G(0) = X, if the natural action of G in X, γs(γ) = r(γ), is free (see Definition
2.8), we say that G is principal, and we say that G is proper if this action is proper (see
Definition 2.8 and [5, Conventions 1.1]).

Theorem 2.4 (Principal and proper groupoids, saturated actions, and Morita Equiva-
lence [5, Theorem 5.2]). Let (A , G, α) be a groupoid dynamical system and A = Γ0(G

(0),A )
the associated C0(G

(0))-algebra. Then, if G is principal and proper, the action of G on
A is saturated with respect to the dense subalgebra Cc(G

(0)) ·A. Therefore, Aα is Morita
equivalent to A oα,r G.

Theorem 2.5 (Case A = C0(G
(0)) [5, Theorem 5.9]). If the groupoid G is principal and

proper, then, the dynamical system (C0(G
(0)), G, lt) is saturated with respect to the dense

subalgebra Cc(G
(0)). As a consequence, we have the following Morita equivalence:

C0(G\G(0))
m∼ C∗r (G) for C∗r (G) := C0(G

(0)) olt,r G.

Renault’s equivalence for groupoid crossed products

A fundamental additional property we need in our framework is the concept of Morita
equivalent dynamical systems which is helpful to ensure when two groupoid crossed prod-
ucts are Morita equivalent. Two dynamical systems (A , G, α), (B, G, β) are Morita
equivalent if there is a A −B imprimitivity bimodule H over G(0) and a G action on
H with adequate compatibility conditions (see [46, Definition 9.1, p54]).

Remark 2.10 (Renault’s equivalence of groupoid crossed products). An important con-
sequence of the Renault’s equivalence for groupoid crossed products (see [46, Theorem
5.5, p27], [50]) is the fact that a Morita equivalence between dynamical systems (A , G, α),
and (B, G, β) implies that the corresponding crossed products are Morita equivalent:

A oα,r G
m∼ B oβ,r G.
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2.3 Functional Clouds and Some Basic Properties

The concept of a functional cloud Mf can be described as the set of possible local states of
a signal f : G → R, where the local properties are measured with respect to a set A ⊂ G
as a basic analysis unit. We now want to study the topology of Mf in order to analyze
the different types of local components present in f . An important scenario is to consider
the case where f is a combination of different signals f =

∑
fi. Here, the objective is

to use tools from C∗-algebras and their K-theory in order to study how the topology of
Mf is assembled from the pieces {Mfi}i. A very simplified scenario for this situation is
presented in Proposition 2.3. The strategy we use for the analysis of the spaces Mf and
Ff is to study the C∗-algebras of spaces MG

f = Ff/G, using groupoids G with G(0) = Ff .
We use the Theorem 2.1 to describe simple geometrical relationships between Ff and Mf .

Notice that the space MG
f = Ff/G considers a generalization of the equivalence rela-

tion used to define Mf . A main advantage of this strategy is that we can directly apply
the large body of work already available in groupoid theory and operator algebras. Addi-
tionally, this method prepares the terrain for addressing more complex problems crucial
in concrete applications of signal processing.

The groupoid C∗-algebra of G contains information related to Mf , and the space
MG

f = Ff/G is in relation to Prim(C∗(G)), the primitive spectrum of the algebra A,
used as a basic tool in the Gelfand-Naimark theory [37, 25]. The following property
includes these ideas, and it is inspired by the basic strategy presented in [35, Example
2.2.2].

Proposition 2.2. Let Mf be a functional cloud, Ff the related foliated partition, and G a

groupoid with G(0) = Ff . If G is as a finite disjoint union G =
⊔k
i=1Gi, for Gi transitive

groupoids, and MG
f := Ff/G is locally compact and Hausdorff, then by denoting with Hi

the isotropry group at any unit u ∈ G(0)
i , we have for the K-theory of MG

f :

K0(MG
f ) ' K0(C0(Ff ) olt,r G) with K0(C

∗(G)) '
k⊕
i=1

K0(C
∗(Hi)).

Proof. This is a direct application of the characterization of the C∗-algebra of a transitive
groupoid in Theorem 2.1. For each transitive groupoid Gi we have the isomorphism
C∗(Gi) ' C∗(Hi) ⊗ K(L2(µi)), for a measure µi on Hi, and C∗(Gi), C

∗(Hi), the C∗-
algebras of Gi and Hi respectively. Therefore, given G =

⊔k
i=1Gi, we have

C∗(G) '
k⊕
i=1

C∗(Gi)) '
k⊕
i=1

C∗(Hi)⊗K(L2(µi)).

The K-theory can now be computed using the stability of the functor K0, that is
K0(C

∗(Hi) ⊗ K(L2(µi))) ' K0(C
∗(Hi)) (see [4, Corollary 6.2.11 p118]). With the re-

lation between the topological and algebraic K-theory we can conclude that K0(MG
f ) '

K0(C0(M
G
f )) (see [28, Corollary 3.21, p101] and the corresponding generalization to lo-

cally compact spaces in [28, p103]). Now, as

C0(M
G
f )

m∼C∗r (G) for C∗r (G) := C0(Ff ) olt,r G
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(due to the Theorem 2.5), and using the result from Exel [28, Theorem 4.30, p165], [21,
Theorem 5.3] (ensuring that Morita equivalent C∗-algebras have isomorphic K-theory
groups) we have

K0(MG
f ) ' K0(C0(M

G
f )) ' K0(C0(Ff ) olt,r G).

Remark 2.11 (noncommutative algebra Mk(A)). In the following we use the standard
notation Mk(A) for the noncommutative algebra of k × k matrices with entries in an
algebra A. Recall also that Mk(A) = Mk(C)⊗ A.

Remark 2.12 (The discrete setting for groupoid algebras). The Proposition 2.2 is par-
tially inspired by the description of a groupoid algebra in a discrete setting (see [35,
Example 2.2.2]). By denoting with CG the ∗-algebra with multiplication and ∗ operation
as declared in Definition 2.5 (and ignoring for now its C∗ properties), we can describe its
structure using a canonical decomposition G =

⊔
iGi for Gi transitive groupoids as:

CG '
⊕
i

CHi ⊗Mni(C),

where Hi is the isotropy group of a unit in G
(0)
i (whose isomorphism class is independent

of the chosen unit), and Mni(C) is the noncommutative algebra of ni × ni matrices with
complex entries. Each transitive groupoids Gi is assumed to be finite, and its cardinality
is denoted by ni.

Remark 2.13 (Relations to Persistent Homology). In the previous constructions, we
considered the groupoid as a generalized equivalence relation, but with these construc-
tions in groupoid theory we can include more complex situations as required by ap-
plications. An important additional aspect to consider is the generalization of the
groupoid construction used in the previous Example 2.12. If we consider the groupoid
Gε = {(u, v) ∈ Ff × Ff , d(p(u), p(v)) < ε}, we can study the family {MGε

f,A}ε>0 as a
filtration in the context of persistent homology (see Section 3). As we will see in the
following Section, the framework of persistent homology can also be adapted to handle
C∗-algebra structures.

Function decompositions, clouds and their K-theory

We now present a basic property where we study how the topology of the functional
cloud of f =

∑n
i=1 fi interacts with the topology of the functional clouds of fi. The long

term objective is to design signal analysis and separation algorithms using topological or
geometrical invariants of the functional clouds of fi.

The next Proposition 2.3 represents just a first glance on how to study the topological
interactions between Mf and {Mfi}i. Here, the mechanism is based on the simplified
assumption that a group G is acting in Ff , and the study of the quotient Ff/G represents
an approximation for Mf . There are two different, but interrelated aspects occurring.
On the one hand, we have the group G acting on Ff , and on the other hand we have the
decomposition of Ff with an open cover originated from the consideration of the function
decomposition f =

∑
fi.
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Proposition 2.3. Let f : G → R be a continuous function, Mf a functional cloud and

Ff its related foliated partition. Let f =
∑k

i=1 fi with supp(fi) ⊂ Ui, for {Ui}ki=1 an open
cover of G, and define

Vi :=
⊔
x∈Ui

Fx, Fx = {(y, fx(y)), y ∈ A},

for fx : A → R with fx(y) = f(x + y), x ∈ G, y ∈ A. If a locally compact group G is
acting on Ff then for the K-theory of MG

f := Ff/G we have:

K0(MG
f ) ' K0(A⊗ C∗(G)), A :=

{
[hij] ∈Mk(C0(Ff )), hij ∈ C0(Vi ∩ Vj)

}
.

Proof. The proof is a simple application of two basic facts concerning the C∗-algebra of a
quotient space given by a group action and the mechanism for studying quotients of open
covers of a manifold (see Remark 2.9). First, recall that a group action α : G×Ff → Ff
induces an action in the algebra C0(Ff ), and the resulting dynamical system can be
encoded in a cross product denoted as C0(Ff ) oα G, and, seen as a vector space, it can
be written as

C0(Ff ) oα G = C0(Ff )⊗ C∗(G).

The corresponding product defined for this algebra is given by (a⊗g)(b⊗h) = ag(b)⊗gh
(see [35, Example 2.2.7]). As a consequence of Theorem 2.2 (see also [35, Theorem 2.5.1,
p78]), we have C0(M

G
f )

m∼C0(Ff ) oα G. On the other hand, the open cover property
(see Remark 2.9) ensures that the C∗-algebra C0(Ff ) is Morita equivalent to A when
considering the open cover {Vi}ki=1 of Ff . By combining these two properties, together
with the result from Exel in [28, Theorem 4.30, p165], [21, Theorem 5.3] ensuring that
Morita equivalent C∗-algebras have isomorphic K-theory groups, we have

K0(MG
f ) ' K0(C0(M

G
f,A)) ' K0(C0(Ff )⊗ C∗(G)) ' K0(A⊗ C∗(G)).

The simplified scenario of this proposition is just a first step where more general
situations should consider not just a group G acting on Ff but a groupoid (see the
Remark 2.13) for capturing more accurately the interactions between the components fi.
This is particularly important in applications, as illustrated in Example 2.4, where Mf

is actually just an intermediate structure, and the principal goal is to understand the
geometry and topology of the underlying parameter set Ω (see the Example 2.4).

Example 2.11 (Image Segmentation). A typical application which illustrates the ob-
jectives in Proposition 2.3 is to consider an grayscale image f : [0, 1]2 → [0, 1], where
different areas Ui ⊂ [0, 1]2 correspond to different regions in the image. The main task is
to understand how the topology of Mf is assembled from the different regions fi = f(Ui)
and their clouds Mfi . This requires not only to study the regions themselves, but also
their contours or edges represented by f(Ui∩Uj), i 6= j. The combination and interaction
between these topologies is encoded in the algebra A together with the partition of Ff
with the group G (in a more general setting, crucial for applications, a groupoid structure
G defined in Ff should be considered, as explained in the previous paragraph).
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Voice transforms and groupoids crossed products

We now consider a more general situation using the abstract machinery of time-frequency
analysis represented by the theory of voice transforms. A crucial advantage of this setting
is the fact that multiple time-frequency transforms (e.g. wavelets, Gabor analysis, etc)
are represented in a single abstract environment. Additionally, we consider signals as
vectors in an abstract Hilbert space, allowing a clean, general, and powerful environment
for expressing our problems and the solutions strategies.

Given a mixture of signals f =
∑k

i=1 fi ∈ H, for a Hilbert space H, the following
property is an initial step in understanding the interaction between the functional clouds
MG

Vψf
and the components fi of the signal f . One possible analogy for this scenario is to

consider each signal fi as a measurement originated from a particular physical event i,
and f is the mixture of signals encoding the interactions of all k events.

Theorem 2.6. Let f =
∑k

i=1 fi ∈ H, for a Hilbert space H and Vψ : H → C(G), a
voice transform for a locally compact group G. Let G be a principal and proper groupoid
with unit space G(0) = FVψf := graph(Vψf |suppVψf ), and consider an open cover {Ui}ki=1

of G. If supp(Vψfi) ⊂ Ui, for i = 1, . . . , k, then the following Morita equivalence holds
for MG

Vψf
:= FVψf/G,

C0(M
G
Vψf

)
m∼Aolt,r G, A :=

{
[hij] ∈Mk(C0(FVψf )), hij ∈ C0(FVψfi ∩ FVψfj)

}
.

Proof. This follows directly from a combination of properties on Morita equivalence for
groupoid C∗-algebras as discussed in the previous sections. First, notice that for a proper
and principal groupoid G with G0 = FVψf we have a Morita equivalence

C0(FVψf/G)
m∼C∗r (G) for C∗r (G) := C0(FVψf ) olt,r G,

using the Theorem 2.5. We have also a Morita equivalence C0(FVψf )
m∼A for an open

cover of the manifold FVψf , as explained in Remark 2.9. Notice that for any f ∈ H, FVψf
is indeed a manifold as defined for a voice transform (see Example 2.6 and Proposition
2.1). These two relations can be combined with the Renault’s equivalence property, as
discussed in Remark 2.10, in the following computation:

C0(M
G
Vψf

) = C0(FVψf/G)
m∼C0(FVψf ) olt,r G (Morita equivalence: Theorem 2.5 )
m∼Aolt G, (Renault’s equivalence: Remark 2.10 )

using C0(FVψf )
m∼A (Open cover property: Remark 2.9).

Remark 2.14 (Interpreting the Theorem 2.6). There are several ways in which the
Theorem 2.6 can be interpreted. Broadly speaking, one can see this property as an initial
step for understanding how one can analyze and encode, with the noncommutative C∗-
algebra Aolt,r G, the interaction of different phenomenon, measured with the signals fi,
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and occurring at different time-frequency regions FVψfi . In special cases, the signals fi can
be seen as measurements from different dynamical systems whose phase spaces contain the
sets MVψfi , as explained in the setting of the Taken’s theorem (see the Example 2.5). With

the rule f =
∑k

i=1 fi, the spaces MVψfi are combined in a single structure MVψf whose
construction depends on two main properties encoded in the C∗-algebra Aolt,rG. As we
will now explain, these properties are clearly visible in the noncommutative C∗-algebra
Aolt,rG, but they are completely ignored in the commutative C∗-algebra C0(M

G
Vψf

). This
feature illustrates the usefulness of the Morita equivalence property as a new analysis layer
(constructed on top of the time-frequency machinery) for studying hidden features of a
signal.

In order to explain the previous remark, we consider the particular case of Gabor
analysis Vgf(b, w) =

∫
R f(t)g(t− b)e−2πitwdt, f ∈ L2(R), and the cloud Mf = {xb}b with

chunks xb = fgb using gb(t) = g(t − b) for a window function g. We consider also the
cloud MVgf = {Vgf(b, .)}b (isometric to Mf ) in the corresponding Fourier view (see the
Example 2.6).

Now, the two main properties encoded in the C∗-algebra Aolt,r G, can be described
as the time-domain pattern for the function f represented with an adequate groupoid
G, and the time-frequency relations between the signals fi encoded with the C∗-algebra
A. A time-domain pattern encoded in a groupoid G takes into account the way different
vectors xb = fgb are repeated at different time positions b ∈ R. Recall that the cloud
Mf is the quotient Mf = Ff/R, for an adequate equivalence relation R = {(u, v) ∈
Ff × Ff , p(u), p(v) = 0} and the projection map p : Ff → Mf , p((x, y, fx(y)) = fx. (see
Remark 2.3). We use the important generalization MG

Vψf
= FVψf/G for a groupoid G with

G(0) = FVψf , and the groupoid G can be used to encode the similarities and repetitions
between the vectors xb as the time parameter b changes, in order to construct a meaningful
quotient space MG

Vψf
. The second important property encoded in the C∗-algebra Aolt,rG

is the relationship between the time-frequency regions corresponding to each signal fi,
captured by the algebra A =

{
[hij] ∈ Mk(C0(FVψf )), hij ∈ C0(FVψfi ∩ FVψfj)

}
. The

influence of each signal fi in the whole system is encoded in a C∗-algebra C0(FVψfi) stored
in a diagonal entry of A. The time-frequency interference between different phenomenon
measured with fi and fj is encoded in a C∗-algebra C0(FVψfi ∩ FVψfj) located in the
off-diagonal entries of the noncommutative C∗-algebra A.

Remember that the time-frequency analysis machinery “unfolds” the information of
a function f in order to understand its internal properties. In this context, in contrast
to the usage of C0(M

G
Vψf

), the consideration of the (larger) Morita equivalent C∗-algebra
A olt,r G, can be used as a further analysis level for understanding the features of the
function f and its internal structure.

Remark 2.15 (Towards an application example of the Theorem 2.6). In the Example
2.4, we have defined a cloud of a modulated path Mf constructed with an embedded
manifold Ω ⊂ [−1, 1]d, a continuous path φ : [0, 1] → Ω, and the construction of a

real function f(x) =
∑d

i=1 sin
( ∫ x

0
(αic + γφi(t)) dt

)
, for a fixed center frequency vector

αc = (αic)
d
i=1 ∈ Rd, bandwidth parameter γ, and the i-th coordinate of φ(x) denoted

as φi(x). Given the function f , the main problem is to use a functional cloud Mf,A in
order to estimate geometrical and topological features of Ω. Notice that in this example,
Mf = Mf,A ⊂ C(A,R) is a curve, but under adequate conditions, we can construct
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a groupoid G with G(0) = FVψf = graph(Vψf |suppVψf ), such that the quotient space
MG

Vψf
= FVψf/G can be used to compute topological features of Ω.

More precisely, one strategy is to consider a topological approximation scheme as
explained in [37, Section 3.1, p23], where a covering U = {Ui} of Ω is used to construct
an equivalence relation R, defined as

x
R∼ y if and only if x ∈ Ui ⇔ y ∈ Ui, ∀ Ui ∈ U .

As explained in [37, Section 3.2, p27], topological features of the space Ω can computed
with the approximation PU(Ω) = Ω/R, and in the limit, using finer coverings, the whole
space Ω can be approximated [37, Section 3.3, p30]. Now, broadly speaking, by design-
ing a groupoid G (with G(0) = FVψf = graph(Vψf |suppVψf )) mirroring the properties of
a covering U = {Ui} of Ω, we can construct an approximation space MG

Vψf
/G with sim-

ilar topological features as PU(Ω) = Ω/R. With this scenario, we can now conjecture
the feasibility of using MG

Vψf
= FVψf/G for estimating topological features of Ω together

with adequate groupoid G with G(0) = FVψf , and adequate conditions on the density of
Image(φ) ⊂ Ω. We also notice that a main motivation for studying the topological fea-
tures of the cloud MG

Vψf
is to understand the parameter space Ω seen in the dimensionality

reduction context. The Theorem 2.6 delivers a strategy for this task using the C∗-algebra
A olt C(G) in order to study the properties of MG

Vψf
with respect to the components fi

and Ωi.
Now, given a family of manifolds {Ωi}ki=1, Ωi ⊂ [−1, 1]d, and paths φi : [0, 1]→ Ω with

corresponding functions fi (defined as in the previous paragraph), the sum f =
∑k

i=1 fi
leads to the study of a space Mf (resp. Ff ) resulting from a particular type of combination
of the spaces Mfi (resp. Ffi). The analysis of Mf can be performed with the Theorem
2.6, which provides an explicitly understanding of the assembling process of the spaces
FVψfi into a single structure MG

Vψf
, and whose topological properties can be studied with

Aolt,rG. We will see very preliminary initial steps for such an setting in the toy example
presented in section 4.
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3 Persistence Homology and AF-Algebras

We need to study now the problem of implementing, in a practical and computationally
feasible environment, the concepts we have developed for signal analysis with groupoid
crossed products. For this task, we need to apply basic ideas of C∗-algebras for the
analysis of finite structures. As we will see, we consider for this problem, the theory
of AF-algebras, which has a rich and well developed theoretical framework. Another
basic component in our strategy is persistent homology, which will be another crucial
theoretical and algorithmic tool, with a readily available efficient computational setting.

First, we recall basic concepts on persistent homology as a important new development
in computational topology for extracting qualitative information from a point cloud data
X = {xi}. As we have already discussed, our interest lies mostly on datasets arising from
signal processing problems. The concepts of functional clouds, foliated partitions, and
modulation maps have formalized this signal processing setting. As as we have seen, an
important strategy for studying these geometrical objects is the setting of C∗-algebras,
K-theory, and the corresponding philosophy of noncommutative geometry and topology.
In order to implement these ideas in a computational framework we need to adapt the
tools of persistent homology using the setting of C∗-algebras. We use the theory of
posets and AF-algebras for the implementation, in the context of persistent homology, a
framework for point cloud data analysis with C∗-algebras and K-theory.

Simplicial and persistent homology

We first recall elementary concepts on simplicial homology as a basic homology theory
used for constructing algebraic data from topological spaces (see [27] for similar material).

Remark 3.1 (Simplicial complexes). A basic component in this context is a (finite)
abstract simplicial complex which is a nonempty family of subsets K of a vertex set
V = {vi}mi=1 such that V ⊆ K (here we simplify the notation and we identify the vertex v
with the set {v}) and if α ∈ K, β ⊆ α, then β ∈ K. The elements of K are denominated
faces, and their dimension is defined as their cardinality minus one. Faces of dimension
zero and one are called vertices and edges respectively. A simplicial map between sim-
plicial complexes is a function respecting their structural content by mapping faces in
one structure to faces in the other. These concepts represent combinatorial structures
capturing the topological properties of many geometrical constructions. Given an ab-
stract simplicial complex K, an explicit topological space is defined by considering the
associated geometric realization or polyhedron, denoted by |K|. These are constructed by
thinking of faces as higher dimensional versions of triangles or tetrahedrons in a large di-
mensional Euclidean spaces and gluing them according to the combinatorial information
in K.

Remark 3.2 (Homology groups). A basic analysis tool of a simplicial complex K, is
the construction of algebraic structures for computing topological invariants, which are
properties of |K| that do not change under homeomorphisms and even continuous defor-
mations. From an algorithmic point of view, we compute topological invariants of K by
translating its combinatorial structure in the language of linear algebra. For this task, a
basic scenario is to consider the following three steps. First, we construct the groups of

27



k-chains Ck, defined as the formal linear combinations of k-dimensional faces of K with
coefficients in a commutative ring R (with e.g. R = Z, or R = Zp). We then consider
linear maps between the group of k-chains by constructing the boundary operators ∂k,
defined as the linear transformation which maps a face σ = [p0, · · · pn] ∈ Cn into Cn−1 by
∂nσ =

∑n
k=0(−1)k[p0, · · · , pk−1, pk+1, · · · pn]. As a third step, we construct the homology

groups defined as the quotient Hk := ker(∂k)/im(∂k+1). Finally, the concept of number of
k-dimensional holes are defined using the rank of the homology groups, βk = rank(Hk)
(Betti numbers). For instance, in a sphere we have zero 1-dimensional holes, and one
2-dimensional hole. In the case of a torus, there are two 1-dimensional holes, and one
2-dimensional hole.

3.1 Basics on Persistent Homology

In many application problems a main objective is to analyze experimental datasets
X = {xi}mi=1 ⊂ Rn and understand their content by computing qualitative informa-
tion. Topological invariants are important characteristics of geometrical objects, and
their properties would be fundamental tools for understanding experimental datasets.
The major problem when computing topological invariants of datasets are their finite
characteristics and the corresponding inherent instability when computing homological
information. Indeed, minor variations (e.g. noise and error in measurements) on how topo-
logical structures are constructed from X, could produce major changes on the resulting
homological information. Persistent homology [8, 18, 17] is an important computational
and theoretical strategy developed over the last decade for computing topological invari-
ants of finite structures. We now describe its motivations, main principles, and theoretical
background.

Motivations

A major problem when using tools from simplicial homology for studying a dataset X =
{xi}mi=1 ⊂ Rn is the fact that we do not have a simplicial complex structure at hand. If we
assume that X is sampled from a manifold (e.g. X ⊂ M, with M being a submanifold
of Rn), a main objective would be to compute homological information of M using only
the dataset X. We remark that more generalized settings, where M is not necessarily a
manifold, are fundamental cases for many applications and experimental scenarios. But
we can discuss, for illustration purposes, the simplified situation ofM being a manifold.
We also notice that the crucial problem of finding density conditions for X to be a
meaningful sampling set of a manifold M has been recently addressed in [47], and we
discuss these issues later in this report.

Attempting to construct a simplicial complex structure from X can be a very difficult
problem. A simple strategy would be to consider the homology of the spaces

Xε = ∪mi=1B(xi, ε),

where a ball B(xi, ε) of radius ε is centered around each point of X. A naive approach
would be to try to find an optimal εo such that the homology of Xεo corresponds to the
homology of M. But this approach is highly unstable, as different homological values
might be obtained when considering small perturbations of εo.
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In proposal in persistent homology is to consider topological information for all ε >
0 simultaneously, and not just a single value εo. The key concept is that a general
homological overview for all values ε > 0 is a useful tool when studying the topology of
finite datasets. From a computational point of view, estimating homological data for all
continuous values ε > 0 might sound unreasonable, but there are two crucial remarks
for implementing these ideas in an efficient computational framework. On the one hand,
despite the fact that we are considering a continuous parameter ε > 0, it can be verified
that for a given dataset X, there is actually only a finite number of non-homeomorphic
simplicial complexes

K1 ⊂ K2 ⊂ · · · ⊂ Kr

(which is the concept of a filtration to be explicitly defined later on) that can be con-
structed from {Xε, ε > 0}. On the other hand, another crucial property is that the
persistent homology framework includes efficient computational procedures for calculat-
ing homological information of the whole family K1 ⊂ K2 ⊂ · · · ⊂ Kr, [57].

We also remark that, given a parameter ε with corresponding set Xε, there are various
topological structures useful for studying homological information of X. In particular,
an efficient computational construction is given by the Vietoris-Rips complexes Rε(X),
defined with X as the vertex set, and setting the vertices σ = {x0, . . . , xk} to span a k-
simplex ofRε(X) if d(xi, xj) ≤ ε for all xi, xj ∈ σ. For a given εk the Vietoris-Rips complex
Rεk(X) provides an element of the filtration K1 ⊂ K2 ⊂ · · · ⊂ Kr, with Kk = Rεk(X). In
conclusion, there is only a finite set of positive values {εi}ri=1, that describe homological
characteristics of X, each of which generate a Vietoris Rips complex {Ki}mi=1 representing
the topological features of the family {Xε, ε > 0}. Therefore, the topological analysis of a
point cloud data X boils down to the analysis of a filtration K1 ⊂ K2 ⊂ · · · ⊂ Kr, which
is the main object of study in persistent homology. We now describe the main conceptual
ingredients in this framework.

Conceptual setting

The input in the persistent homology framework is a filtration of a simplicial complex
K, defined as a nested sequence of subcomplexes ∅ = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kr = K.
Given a simplicial complex K, we recall that the boundary operators ∂k connect the chain
groups Ck, and define a chain complex, denoted by C∗, and depicted with the diagram:

. . . Ck+1
∂k+1−−→ Ck

∂k−→ Ck−1 → . . . .

Recall that given a chain complex C∗ one defines the k-cycle groups and the k-boundary
groups as Zk = ker ∂k, and Bk = im∂k+1 respectively. As we have nested subgroups
Bk ⊆ Zk ⊆ Ck, the k-homology group Hk = Zk/Bk is well defined.

There are several basic definitions required for the setting of persistent homology. A
persistent complex is defined as a family of chain complexes {Ci

∗}i≥0 over a commutative
ring R, together with maps

f i : Ci
∗ → Ci+1

∗ related as C0
∗

f0−→ C1
∗

f1−→ C2
∗

f2−→ . . . ,
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or more explicitly, described with the following diagram

...
...

...

C0
2 C1

2 C2
2 . . .

C0
1 C1

1 C2
1 . . .

C0
0 C1

0 C2
0 . . .

0 0 0 . . .

f0

f0

f0

f0

f1

f1

f1

f1

f2

f2

f2

f2

∂3 ∂3 ∂3

∂2 ∂2 ∂2

∂1 ∂1 ∂1

∂0 ∂0 ∂0

We remark that, due to the applications we have in mind, we will assume that chain
complexes are trivial in negative dimensions. Given a filtration of a simplicial complex
K, a basic example of a persistent complex is given by considering the functions f i as
the inclusion maps between each simplicial complex in the nested sequence ∅ = K0 ⊂
K1 ⊂ K2 ⊂ · · · ⊂ Kr = K. Another fundamental concept is a persistent module, defined
as a family of R-modules M i and homomorphisms φi : M i → M i+1. We say that the
persistent module is of finite type if each M i is finitely generated, and the maps φi are
isomorphisms for i ≥ k and some integer k. The basic example of a persistent module
is given by the homology of the simplicial complexes of a filtration. We now define the
p-persistent homology group of Ki as the group

H i,p
k = Zi

k/(B
i+p
k ∩ Zi

k),

where Zi
k and Bi

k stand respectively for the k-cycles and k-boundaries groups in Ci.
This group can also be described in terms of the inclusions Ki ⊂ Ki+p, their induced
homomorphisms f i,pk : H i

k → H i+p
k , and the corresponding relation

im(f i,pk ) ∼= H i,p
k .

These persistent homology groups contain homology classes that are stable in the interval
i to i+ p: they are born before the “time” index i and are still alive at i+ p. Persistent
homology classes alive for large values of p, are stable topological features of X, while
classes alive only for small values of p are unstable or noise-like topological components.
We will see, in the following paragraphs, alternative views for explaining generalized
versions of persistent objects as functors between special categories.

The output of the persistent homology algorithm are representations of the evolution,
with respect to the parameter ε > 0, of the topological features of X. These represen-
tations are depicted with persistent diagrams indicating, for each homology level k, the
amount and stability of the different k-dimensional holes of the point cloud X. We now
present a more precise explanation of the concepts related to persistent diagrams and
some of its properties.

The main task we now describe is the analysis of persistent homology groups by
capturing their properties in a single algebraic entity represented by a finitely generated
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module. Recall that a main objective of persistent homology is to construct a summary of
the evolution (with respect to ε) of the topological features of X using the sets {Xε, ε > 0}.
This property is analyzed when constructing, with the homology groups of the complexes
Ki, a module over the polynomial ring R = F[t] with a field F. The general setting for this
procedure is to consider a persistent module M = {M i, φi}i≥0 and construct the graded
module α(M) =

⊕
i≥0M

i over the graded polynomial ring F[t], defined with the action of
t given by the shift t·(m0,m1, . . . ) = (0, φ0(m0), φ1(m1), . . . ). The crucial property of this
construction is that α is a functor that defines an equivalence of categories between the
category of persistent modules of finite type over F, and the category of finitely generated
non-negatively graded modules over F[t]. In the case of a filtration of complexes K0 to Kr,
this characterization of persistent modules provides the finitely generated F[t] module:

α(M) = Hp(K0)⊕Hp(K1)⊕ · · · ⊕Hp(Kr).

These modules are now used in a crucial step that defines and characterizes the output
of persistent homology. The main tool is the well-know structure theorem characterizing
finitely generated modules over principle ideal domains (this is why we need F to be a
field). This property considers a finitely generated non-negatively graded module M, and
ensures that there are integers {i1, . . . , im}, {j1, . . . , jn}, {l1, . . . , ln}, and an isomorphism:

M ∼=
m⊕
s=1

F[t](is)⊕
n⊕
r=1

(F[t]/(tlr))(jr).

This decomposition is unique up to permutation of factors, and the notation F[t](is)
denotes an is shift upward in grading. The relation with persistent homology is given by
the fact that when a persistent homology class τ is born at Ki and dies at Kj it generates
a torsion module of the form F[t]τ/tj−i(τ). When a class τ is born at Ki but does not
die, it generates a free module of the form F[t]τ .

We can now explain the concept of persistent diagrams using an additional charac-
terization of F[t]-modules. We first define a P -interval as an ordered pair (i, j) where
0 ≤ i < j for i, j ∈ Z ∪ {∞}. We now construct the function Q mapping a P -
interval as Q(i, j) = (F[t]/tj−i)(i), Q(i,∞) = F[t](i), and for a set of P -intervals S =
{(i1, j1), . . . , (in, jn)}, we have the F[t]-module

Q(S) =
n⊕
`=1

Q(i`, j`).

This map Q turns out to be a bijection between the sets of finite families of P -intervals
and the set of finitely generated graded modules over F[t].

Now, we can recap all these results by noticing that the concept of persistent dia-
grams can be described as the corresponding set of P -intervals associated to the finitely
generated graded module over F[t], constructed with the functor α from a given filtration
∅ = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kr = K. There are several graphical representations
for persistent diagrams, and two well known examples are the so called barcodes, and
triangular regions of index-persistent planes.

Remark 3.3 (Stability of persistent diagrams). A crucial property in persistent homology
is the concept of stability of persistent diagrams. We recall that for a topological space X,
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and a map h : X → R, we say that h is tame if the homology properties of {Xε, ε > 0},
for Xε = h−1(] −∞, ε[), can be completely described with a finite family of sets Xa0 ⊂
Xa1 ,⊂ · · · ⊂ Xar , where the positive values {ai}ri=0 are homology critical points. If we
denote the persistent diagram for X and h : X → R, as dgmn(h), we have a summary of
the stable and unstable holes generated by the filtration

Xa0 ⊂ Xa1 ,⊂ · · · ⊂ Xar

(see [17]). With these concepts, the stability of persistent diagrams is a property indicating
that small changes in the persistent diagram dgmn(h) can be controlled with small changes
in the tame function h : X → R (see [11] for details on the stability properties of persistent
diagrams).

An important theoretical and engineering problem to investigate is the sensibility
of the persistent homology features of Xf when applying signal transformations to f .
This is in relation to the question of finding useful signal invariants using the persistent
diagram of Xf . For instance, in the case of audio analysis, a crucial task is to understand
the effects in the persistent diagram of Xf when applying audio transformations to f
as, for instance, delay filters or convolution transforms (e.g room simulations). This task
requires both theoretical analysis and numerical experiments. For a conceptual analysis, a
possible strategy is to consider these recent theorems explaining the stability of persistent
diagrams.

Generalizations with functorial properties

In order to design useful generalizations of persistent homology, it is important to under-
stand its setting in a deeper conceptual level. A recent formulation, providing the core
features of persistent homology, has been presented in [8], and describes this concept as
a functor between well chosen categories. Indeed, a crucial aspect of persistent homology
is the association from an index set to a sequence of homology groups constructed from
a filtration ∅ = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kr = K. An important generalization of
this construction considers a general partially ordered set P as an index set which we
associate to a family of objects in a given category C. Notice that we can consider the
partially ordered set P as a category P, whose objects are P , and a morphism from x to
y is defined whenever x ≤ y. With this setting, a P -persistent object in C is defined as
a functor Φ : P→ C, described also as a family of objects {cx}x∈P in C, and morphisms
φxy : cx → cy, when x ≤ y.

These concepts are of fundamental importance for extending the main ideas of persis-
tent homology in more general situations. Notice that in standard persistent homology
we use the partial ordered sets P = N or P = R, but important extensions have been
recently developed in the context of multidimensional persistence. Here, we consider
multidimensional situations where the partial ordered sets are, for instance, P = Nk or
P = Rk, k > 1. These developments are motivated by multiple practical considerations,
such as the analysis of point cloud using both density estimations and the Vietoris Rips
Complex construction.
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3.2 AF-Algebras in the Persistent Homology Framework

The objective now is to use some basic ideas on C∗-algebras discussed in Section 2 in
combination with the framework of persistent homology. The main task is to use the
basic input of persistent homology, a filtration K1 ⊂ K2 ⊂ · · · ⊂ Kr, and construct
an associated sequence of C∗-algebras. Given a simplicial complex, there are several
strategies for constructing an associated C∗-algebra. We follow the method, presented in
[37, 53], which consists of building a poset structure, together with its associated Bratelli
diagram and AF-algebra. We remark that other alternatives are available, for instance,
the concept of noncommutative simplicial complex has been introduced in [14].

There are two basic steps for implementing this program. First, we remark that there
is a close interaction between the concept of simplicial complex and a poset [55]. Given a
poset P , a simplicial complex K(P ) (the order complex), is constructed by considering the
set of vertices as the elements of P , and its faces as the totally ordered subsets (chains) of
P . Inversely, given a simplicial complex K, we can build a poset P (K) (the face poset) by
considering the nonempty faces ordered by inclusion (see [55] for additional details). The
second step is to construct a Bratelli diagram from a poset, as discussed in [37], which
represents an AF-algebra containing all information from a topological space encoded in
an algebraic structure.

The framework of AF-algebras and posets can be considered as a finitary version of
basic ideas in noncommutative geometry [37]. Recall that A is an approximately finite
(AF) dimensional algebra if there exist an increasing sequence

A0 A1 . . . An . . .
I0 I1 In−1 In

of finite dimensional C∗-subalgebras of A, with Ik injective ∗-morphisms and A =
⋃
nAn.

Any finite dimensional C∗-algebras is of the form ⊕iMni , where Mni is the full ni × ni
matrix algebra. The complete structure of an AF-algebra includes the matrix algebras
Ak and the injective morphisms Ik, and can be encoded in a representation denominated
Bratelli diagram (see [37]). We can now describe the interaction between simplicial
complexes, posets, and their Bratelli diagrams in the framework of persistent homology.
The following diagram is a summary of the three basic components:

Simplicial Complexes: K0 K1 . . . Kn

Face Posets: P (K0) P (K1) . . . P (Kn)

AF-Algebras: A0 A1 . . . An

Each horizontal arrow is an injective inclusion, and the vertical arrows represent the two
main constructions: first we build posets from simplicial complexes, and then AF-algebras
are computed from posets (using Bratelli diagrams as a main tool). Each AF-algebra Ak,
has its own decomposition with finite dimensional matrix algebras Aki , and injective ∗-
morphisms Iki :

Ak0 Ak1 . . . Akn . . .
Ik0 Ik1 Ikn−1 Ikn
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4 A Computational Toy Example

We present now an illustrative example of a filtering procedure and its interaction with
topological measurements of a dataset Xf [31]. This toy example only shows a very
limited amount of aspects of our conceptual developments, but the goal is to provide
an initial sketch illustrating basic features of our setting. We consider the function f =
(1−α)g+αh, α ∈ [0, 1] to be a sum of two functions g and h, where the datasets Xg and
Xh are sampled from spaces homeomorphic to a sphere S2 and a torus T2 respectively.

f = (1− α)g + αh

α = 0.00
Cloud P (Xf )Frequency Bands 1rst Homology Level 2nd Homology Level

Figure 1: f = g, and Xf ⊂M with M homeomorphic to S2

We construct Xg and Xh, as described in our examples on modulation maps in Section
1.2. For instance, in Fig. 1, each element x of the point cloud data Xf is a signal whose
main frequency content is located in three frequency bands depicted in the second plot in
the Fig. 1. We additionally design each element x ∈ Xg and y ∈ Xh such that that their
frequency content do not overlap. For example, in Fig. 2, the second diagram shows the
six different frequency bands for the signal x+ y: the first three bands corresponding to
a typical element x ∈ Xg, and the other bands correspond to elements y ∈ Xh.

f = (1− α)g + αh

α = 0.50
Cloud P (Xf )Frequency Bands 1rst Homology Level 2nd Homology Level

Figure 2: f = (g + h)/2, and Xf as an intermediate structure

For these examples, the variations of the parameter α corresponds to a filtering pro-
cess, where we selectively remove (or add) the component g (or h) from the signal f .
The topological effects can be seen by studying the persistent homology diagrams of Xf .
For each Figure 1, 2, and 3, we have diagrams representing the first and second homol-
ogy level. With this information we have an estimation for the number of one and two
dimensional holes in Xf .
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f = (1− α)g + αh

α = 1.00
Cloud P (Xf )Frequency Bands 1rst Homology Level 2nd Homology Level

Figure 3: f = h, and Xf ⊂M with M homeomorphic to T2

In the case of Fig. 1, the persistent diagram for Xf shows a clear stable two dimen-
sional hole, and only noise like one dimensional holes. As previously mentioned, this
corresponds to a spherical structure for Xf . For the Fig. 3, we have two, closely related,
one dimensional holes, and additionally two 2-dimensional holes, which (approximately)
corresponds to a torus structure. The persistent homology diagrams for the intermediate
structure X(g+h)/2 is depicted in Fig. 2, where several two dimensional holes are present.

Conclusions and Future Work

Our main property, described in Theorem 2.6, explains basic conceptual interactions
between a functional cloud MG

Vψf
= FVψf/G for an element f in a Hilbert space H, and

its components f =
∑k

i=1 fi. In this property, we use a groupoid G with G(0) = FVψf :=
graph(Vψf |suppVψf ), and Vψf the voice transform of f (e.g. wavelet, Gabor analysis,
etc). These results are a first step in our strategy for using noncommutative C∗-algebras
in time-frequency analysis. Among the many questions to analyze, an important issue
is the consideration of other algebras, besides C0(FVψfi), for capturing different type of
features. Recall that the spaces C∞(FVψfi) ⊂ C0(FVψfi) ⊂ L1(FVψfi) can be used to encode
geometrical, topological, and measure theoretical properties, respectively. The general
framework prepared in the Theorem 2.4 could be a way to address these possibilities.
We remark that new results have been recently achieved in the setting of AF-algebras
and spectral triples, which is a fundamental tool for accessing geometrical data using
C∗-algebras (see [12] for the concept of spectral triples, and [9] for its interaction with
AF-algebras).

We also remark that related developments have been recently achieved in the integra-
tion of time-frequency analysis and noncommutative geometry as explained in [39, 41, 40].
These novel research directions are complementary to the ones we follow, but the same
tools from noncommutative geometry and noncommutative topology are considered. We
also remark that there is another important trend of research developments studying the
interactions between operator algebras and wavelet theory with a particular focus on
multiresolution analysis (see e.g. [2]).

We also notice that new developments in pattern classification are investigating new
type of invariants based on algebraic criteria (see e.g. [43]). Our framework is designed
to consider these directions, and the basic tool is to exploit the flexibility of C∗-algebras
for representing interactions between geometrical/topological and algebraic structures.
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We finally remark that the fundamental domain of time-frequency transforms in har-
monic analysis, and the new developments in persistent homology and dimensionality
reduction, have shown powerful perspectives in their own domains. However, an ade-
quate integration of these tools is necessary in order to resolve modern application and
theoretical problems in signal processing and data analysis. We argue that concepts based
on noncommutative C∗-algebras can play a role in this interaction.
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