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Abstract: In this paper we study the a priori error estimates for the finite element approxi-
mations of parabolic equations with measure data, especially we consider problems with separate
measure data in time and space, respectively. The solutions of this kind of problems exhibit low
regularities due to the existence of measure data, this introduces some difficulties in both theo-
retical and numerical analysis. For both cases we use standard piecewise linear and continuous
finite elements for the space discretization and derive the a priori error estimates for the semi-
discretization problems, while the backward Euler method is then used for time discretization and
a priori error estimates for the fully discrete problems are also derived. Numerical results are
provided at the end of the paper to confirm our theoretical findings.
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1. Introduction

The aim of this paper is to analyze the finite element approximations of parabolic equations
with measure data. Let ΩT = Ω × (0, T ], ΓT = ∂Ω × (0, T ], Ω is an open bounded domain in Rd

(d = 2 or 3) with boundary Γ = ∂Ω. We consider the following parabolic problems

(1.1)


∂ty +Ay = µ in ΩT ,

y = 0 on ΓT ,

y(·, 0) = y0 in Ω,

where ∂ty = ∂y
∂t , the operator A is assumed to be a second order elliptic partial differential operator,

y0 ∈ L2(Ω) and T > 0 are fixed.
Here we consider two kinds of problems with measure data. At first, we consider problem (1.1)

with measure data in time, i.e., µ = gω, g and ω are given functions such that g ∈ C([0, T ];L2(Ω))
and ω ∈ M[0, T ], where M[0, T ] is the space of the real and regular Borel measures in [0, T ], which
can be defined as the dual space of C[0, T ] with its natural norm

∥µ∥M[0,T ] = sup
{∫ T

0

vdµ : v ∈ C[0, T ] and ∥v∥C[0,T ] 6 1
}
.

One of the most important applications for parabolic equations with measure data in time is
related to the first order optimality conditions of parabolic optimal control problems with pointwise
state constraints. Optimal control problems governed by parabolic PDE reads as:

min J(y, u) = 1
2∥y − yd∥2L2(ΩT ) +

α
2 ∥u∥

2
L2(ΩT )(1.2)

subject to

(1.3)


∂ty +Ay = u in ΩT ,

y = 0 on ΓT ,

y(·, 0) = y0 in Ω,
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where y denotes the state variable and u denotes the control (see, e.g., [18]). If we impose state
constraints pointwise in time, for example (see, e.g., Example 2.3 in [6] and [22])∫

Ω

g(x, t, y(x, t))dx 6 b(t) ∀ t ∈ [0, T ](1.4)

with given function b(t), then the adjoint state p associated to the first order optimality conditions
satisfies

(1.5)


−∂tp+A∗p = y − yd + µΩT

in ΩT ,

p = µΣT on ΣT ,

p(·, T ) = µT in Ω

in the sense of distributions (see, e.g., [6], [10] and [22]). In general, the Lagrange multiplier µ
associated to the state constraints for parabolic optimal control problems with pointwise state
constraints belongs to M(ΩT ), where M(ΩT ) is the space of regular Borel measures on ΩT ,
µΩT := µ|ΩT , µΓT := µ|ΓT and µT := µ|Ω×{T}. However, in this case where only pointwise in

time state constraints are imposed, the Lagrange multiplier µ associated to the state constraints
(1.4) appears to be a measure only in time, and can be decomposed as µ = gω, g and ω are
given functions such that g ∈ C([0, T ];L2(Ω)) and ω ∈ M[0, T ]. Thus the associated (to the state)
adjoint equation exhibits the similar structure of (1.1).

Then, we consider problems with measure data in space, i.e., µ = gω, g and ω are given functions
such that g ∈ L2(0, T ; C(Ω)) and ω ∈ M(Ω). Here M(Ω) is the space of the real and regular Borel
measures on Ω, and can be defined as the dual space of C(Ω) with its natural norm

∥µ∥M(Ω) = sup
{∫

Ω

vdµ : v ∈ C(Ω) and ∥v∥C(Ω) 6 1
}
.

The problems of form (1.1) with measure data in space can be used to model the potential of
an electric field with an electric charge distribution µ (see [5]). This kind of problems also arise
in other different applications, for instance, modeling of acoustic monopoles, transport equations
for effluent discharge in aquatic media (see [1]). In the design and management of waste-water
treatment systems, mainly the disposal of sea outfalls discharging polluting effluent from a sewerage
system (see [21] for details), the problem can be formulated as an optimal control problem with
pointwise state and control constraints and pointwise control, while the governing state equation
of which is of form (1.1) with measure data in space

(1.6)


yt +Ay =

m∑
i=1

ui(t)δXi in ΩT ,

y(x, t) = 0 on ΓT ,

y(x, 0) = y0(x) in Ω,

where δXi represents the Dirac measure concentrated at Xi, i = 1, 2, · · · ,m. Some other kind of
optimal control problems with state equation of form (1.6), for example, problems with pointwise
control, can be found in, e.g., [11], [14] and [25].

The existence of solutions for quasi-linear elliptic and parabolic equations involving measure
data has been studied by Boccardo and Gallouët in [4], Casas studied linear parabolic problems
and improved the results of [4] by exploiting the linearity of the equation in [6]. The finite element
method for elliptic equation with measure data has been extensively studied (see, e.g., [2], [5], [28]

and [29]). Casas gave an optimal error estimate of order O(h2−
d
2 ) in [5], where h is the mesh size of

space triangulation and d is the dimension of Ω. Araya et al. obtained a posteriori error estimates
for elliptic problems with Dirac delta source terms in [1]. However, there seems to be no such kind
of contributions to finite element approximations of parabolic equations with measure data. To
the best of our knowledge this paper is among the few contributions on this topic.

In this paper we study the finite element approximations of parabolic equations with measure
data, especially we consider problems with separate measure data in time and space, respectively.

2



We use standard piecewise linear and continuous finite elements for the space discretization and
derive the a priori error estimates for the semidiscretization problems, while the backward Euler
method is then used for time discretization and a priori error estimates for the fully discrete
problems are also derived.

We denote by k the step size in the temporal discretization and by h the maximum element size
of the spatial mesh. Then the main results of this paper are as follows. For parabolic equations
with measure data in time, we obtain the following estimates of the error between the solution y
of the continuous problem and the solution yh of the semidiscretization one:

∥y − yh∥L2(0,T ;L2(Ω)) 6 Ch
(
∥g∥L∞(0,T ;L2(Ω))∥ω∥M[0,T ] + ∥y0∥0,Ω

)
and the estimates of the error between the solution y of the continuous problem and the solution
Yh of the fully discrete one:

∥y − Yh∥L2(0,T ;L2(Ω)) 6 C(h+ k
1
2 )
(
∥g∥L∞(0,T ;L2(Ω))∥ω∥M[0,T ] + ∥y0∥0,Ω

)
.

For parabolic equations with measure data in space, we obtain the following estimates of the error
between the solution y of the continuous problem and the solution yh of the semidiscretization one:

∥y − yh∥L2(0,T ;L2(Ω)) 6 Ch2−
d
2

(
∥g∥L2(0,T ;L∞(Ω))∥ω∥M(Ω) + ∥y0∥0,Ω

)
and the estimates of the error between the solution y of the continuous problem and the solution
Yh of the fully discrete one:

∥y − Yh∥L2(0,T ;L2(Ω)) 6 C(h2−
d
2 + k

1
2 )
(
∥g∥

H
1
2 (0,T ;L∞(Ω))

∥ω∥M(Ω) + ∥y0∥0,Ω
)
.

Numerical results are provided at the end of the paper to confirm our theoretical findings.
The rest of this paper is organized as follows. In Section 2 we give some notations and present

the parabolic equations with measure data in time and space, and analyze the existence results
for the unique solution. In Section 3 we establish the continuous time semi-discrete finite element
approximation schemes for above two kinds of problems and derive a priori error estimates. Then
the fully discrete finite element approximation based on the backward Euler method is introduced
and a priori estimate for the discretization error is derived in Section 4. We also carry out some
numerical experiments in Section 5 to confirm our theoretical findings. At the end of the paper we
give a conclusion and discuss the future work.

2. Parabolic equations with measure data

2.1. Notation. Assume that Ω ⊂ Rd, d = 2 or 3 is a convex polygonal or polyhedral domain, or
domain with a C1,1 boundary. We denote by Wm,p(Ω) the usual Sobolev space of order m > 0,
1 6 p <∞ with norm ∥ · ∥m,p,Ω and seminorm | · |m,p,Ω, and the standard modification for p = ∞.
For p = 2 we denote Wm,p(Ω) by Hm(Ω) and ∥ · ∥m,Ω = ∥ · ∥m,2,Ω, which is a Hilbert space. Note
that H0(Ω) = L2(Ω) and H1

0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}.
For p ∈ [1,∞), the interval [0, T ] ⊂ R and the Banach space A with norm ∥ · ∥A, we denote by

Lp(0, T ;A) the set of measurable functions y : [0, T ] → A such that
∫ T

0
∥y∥pAdt 6 ∞. The norm on

Lp(0, T ;A) is defined by

∥y(t)∥Lp(0,T ;A) =


(∫ T

0

∥y∥pAdt
) 1

p

1 6 p <∞,

ess sup
t∈[0,T ]

∥y(t)∥A p = ∞.

We denote D(ΩT ) the set of C∞(ΩT ) functions with compact support in ΩT . Let Hs,r(ΩT ) =
L2(0, T ;Hs(Ω)) ∩Hr(0, T ;L2(Ω)) equipped with the norm

∥w∥s,r =
(∫ T

0

∥w(·, t)∥2sdt+
∫
Ω

∥w(x, ·)∥2r,[0,T ]dx
) 1

2

,
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where ∥ · ∥r,[0,T ] denotes the norm on Hr([0, T ]). We set

W (0, T ) := L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)),

it is straightforward that W (0, T ) ↪→ C([0, T ];L2(Ω)) (see [19]). We also set

X(0, T ) := L2(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩H1(0, T ;L2(Ω)) ↪→ C([0, T ];H1

0 (Ω)).

We denote the L2-inner products on L2(Ω) and L2(ΩT ) by

(v, w) =

∫
Ω

vwdx ∀ v, w ∈ L2(Ω)

and

(v, w)ΩT =

∫
ΩT

vwdxdt ∀ v, w ∈ L2(ΩT ),

respectively. The operator A is assumed to be a second order elliptic partial differential operator
of the form

Ay = −
d∑

i,j=1

∂xj (aij∂xiy) + a0y,

where a0 ∈ L∞(Ω), a0(x, t) > 0 for all (x, t) ∈ ΩT , aij (1 6 i, j 6 d) is Lipschitz continuous on ΩT

and satisfies the following uniform ellipticity condition:

d∑
i,j=1

aijξiξj > c|ξ|2, c > 0 ∀ ξ ∈ Rd, x ∈ Ω.

Moreover, ∂nnnA
=

n∑
i,j=1

aij∂xjni and nnn is the unit outer normal to ∂Ω. We will denote by A∗ the

adjoint operator of A:

A∗y = −
d∑

i,j=1

∂xj (aji∂xiy) + a0y.

In addition, c and C denote generic positive constants.
We introduce the following bilinear forms associated with A on Ω and ΩT :

a(v, w) =

d∑
i,j=1

∫
Ω

(aij∂xiv∂xjw + a0vw)dx ∀ v, w ∈ H1(Ω)

and

a(v, w)ΩT
=

d∑
i,j=1

∫
ΩT

(aij∂xiv∂xjw + a0vw)dxdt ∀ v, w ∈ L2(0, T ;H1(Ω)).

For f ∈ L2(ΩT ), we assume that ϕ and ψ are the solutions of following forward and backward
in time parabolic problems:

(2.1)


∂tϕ+Aϕ = f in ΩT ,

ϕ = 0 on ΓT ,

ϕ(0) = 0 in Ω

and

(2.2)


−∂tψ +A∗ψ = f in ΩT ,

ψ = 0 on ΓT ,

ψ(T ) = 0 in Ω.

Then the following standard stability estimates can be found in, e.g. [19].
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Lemma 2.1. Let ϕ and ψ denote the solutions of problem (2.1) and (2.2), respectively. Then for
v = ϕ or v = ψ there holds v ∈ L2(0, T ;H2(Ω)∩H1

0 (Ω))∩H1(0, T ;L2(Ω)) ↪→ C([0, T ];H1(Ω)) and
satisfies

(2.3) ∥v∥L2(0,T ;H2(Ω)) + ∥vt∥L2(0,T ;L2(Ω)) 6 C∥f∥0,0,

and

(2.4) ∥ϕ(T )∥1,Ω 6 C∥f∥L2(0,T ;L2(Ω)), ∥ψ(0)∥1,Ω 6 C∥f∥L2(0,T ;L2(Ω)).

2.2. Parabolic equations with measure data in time. At first, we consider the following
parabolic equations with measure data in time:

(2.5)


∂ty +Ay = µ = gω in ΩT ,

y = 0 on ΓT ,

y(·, 0) = y0 in Ω,

where g ∈ C([0, T ];L2(Ω)) and ω ∈ M[0, T ]. The weak solution of problems (2.5) can be defined
by transposition techniques (see Lions and Magenes [19]). In the following theorem we will give
the results on the existence and uniqueness as well as regularity of the solution to problem (2.5).

Theorem 2.2. With the assumption that µ = gω, g and ω are given functions such that g ∈
C([0, T ];L2(Ω)) and ω ∈ M[0, T ], problem (2.5) admits a unique solution y ∈ L2(0, T ;H1

0 (Ω)) ∩
L∞(0, T ;L2(Ω)) such that

−(y, ∂tv)ΩT + a(y, v)ΩT = ⟨µ, v⟩ΩT + (y0, v(·, 0)) ∀ v ∈W (0, T )(2.6)

with v(·, T ) = 0 and

∥y∥L2(0,T ;H1
0 (Ω)) + ∥y∥L∞(0,T ;L2(Ω)) 6 C

(
∥g∥L∞(0,T ;L2(Ω))∥ω∥M[0,T ] + ∥y0∥0,Ω

)
.(2.7)

Here

⟨µ, v⟩ΩT =

∫
ΩT

vdµ =

∫ T

0

(∫
Ω

g(x, t)v(x, t)dx
)
dω(t), ∀ v ∈ C([0, T ];L2(Ω)).

Proof. The proof follows the idea of [6], here we sketch the proof for completeness. Since the
problem is linear, it suffices to consider either y0 ≡ 0 or µ ≡ 0.

If µ ≡ 0, y0 ∈ L2(Ω), it is obvious that problem (2.5) admits a unique solution y ∈ L2(0, T ;H1
0 (Ω))∩

L∞(0, T ;L2(Ω)) satisfying (see Lions and Magenes [19])

∥y∥L2(0,T ;H1
0 (Ω)) + ∥y∥L∞(0,T ;L2(Ω)) 6 C∥y0∥0,Ω.

Now we suppose y0 ≡ 0, let {ωn}n ⊂ C[0, T ] be the sequence converging weakly-* to ω in M[0, T ]
and satisfy

∥ωn∥L1[0,T ] 6 ∥ω∥M[0,T ].

Let yn be the solutions of

(2.8)


∂tyn +Ayn = gωn in ΩT ,

yn = 0 on ΓT ,

yn(·, 0) = 0 in Ω,

then we have yn ∈ L2(0, T ;H2(Ω)∩H1
0 (Ω))∩H1(0, T ;L2(Ω)). For f ∈ D(ΩT ), let ψ be the solution

of problem

(2.9)


−∂tψ +A∗ψ = f in ΩT ,

ψ = 0 on ΓT ,

ψ(·, T ) = 0 in Ω,
5



thus we have ψ ∈ C(ΩT ) from the regularity theory of parabolic equation. Then from (2.8) we
have ∫

ΩT

fyndxdt =

∫
ΩT

(−∂tψ +A∗ψ)yndxdt

=

∫
ΩT

gωnψdxdt

6 C∥g∥L∞(0,T ;L2(Ω))∥ωn∥L1[0,T ]∥ψ∥C([0,T ];L2(Ω))

6 C∥g∥L∞(0,T ;L2(Ω))∥ω∥M[0,T ]∥ψ∥C([0,T ];L2(Ω)).

Standard estimates give (see, e.g., [19])

∥ψ∥C([0,T ];L2(Ω)) 6 C∥f∥L1([0,T ];L2(Ω))(2.10)

and

∥ψ∥C([0,T ];L2(Ω)) 6 C∥f∥L2(0,T ;H−1(Ω)).(2.11)

We can conclude from (2.10) that the solution sequence {yn}n is bounded in the space L∞(0, T ;L2(Ω)),
while {yn}n is also bounded in the space L2(0, T ;H1

0 (Ω)) from (2.11). Thus we can take a subse-
quence such that yn → y weakly in L2(0, T ;H1

0 (Ω)) ∩ L∞(0, T ;L2(Ω)) and (2.7) is satisfied.
Then we prove (2.6). Let ψ ∈ W (0, T ) and ψ(·, T ) = 0, multiplying (2.8) by ψ and integrating

by parts we have ∫ T

0

(

∫
Ω

g(x, t)ψ(x, t)dx)ωn(t)dt

= −
∫
ΩT

yn∂tψdxdt+

∫
ΩT

( d∑
i,j=1

aij∂xiyn∂xjψ + a0ynψ
)
dxdt,(2.12)

passing to the limit in (2.12) we get (2.6).
Finally, we note that uniqueness holds since the only solution for zero data of (2.5) is y = 0. �

2.3. Parabolic equations with measure data in space. Now we turn to the following parabolic
equations with measure data in space:

(2.13)


∂ty +Ay = µ = gω in ΩT ,

y = 0 on ΓT ,

y(0) = y0 in Ω,

where g ∈ L2(0, T ; C(Ω)) and ω ∈ M(Ω). Similarly, the weak solution of problems (2.13) can
be defined by transposition techniques. The following theorem gives the results concerning the
existence, uniqueness and regularity of the solution to problem (2.13).

Theorem 2.3. With the assumption that y0 ∈ L2(Ω), µ = gω, g and ω are given functions
such that g ∈ L2(0, T ; C(Ω)) and ω ∈ M(Ω), problem (2.13) admits a unique solution y ∈
L2(0, T ;L2(Ω)) in the sense that

−(y, ∂tv)ΩT
+ (y,A∗v)ΩT

= ⟨µ, v⟩ΩT
+ (y0, v(·, 0)) ∀ v ∈ X(0, T )(2.14)

with v(·, T ) = 0, here

⟨µ, v⟩ΩT =

∫
ΩT

vdµ =

∫
Ω

(∫ T

0

g(x, t)v(x, t)dt
)
dω(x) ∀ v ∈ L2(0, T ; C(Ω)).

Besides, there exist a constant C only depending on data, such that

∥y∥L2(0,T ;L2(Ω)) 6 C
(
∥g∥L2(0,T ;L∞(Ω))∥ω∥M(Ω) + ∥y0∥0,Ω

)
.(2.15)

Moreover, we have y ∈ L1(0, T ;W 1,p(Ω)) ∩ C([0, T ];W 1,q(Ω)′) and ∂ty ∈ L1(0, T ;W 1,q(Ω)′) and

∥y∥L1(0,T ;W 1,p(Ω)) 6 C
(
∥g∥L2(0,T ;L∞(Ω))∥ω∥M(Ω) + ∥y0∥0,Ω

)
,(2.16)
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where p ∈ [1, d
d−1 ) and q is the conjugate number of p such that 1

p + 1
q = 1.

Proof. Similarly as in the proof of Theorem 2.2, we assume that y0 ∈ L2(Ω) and g ∈ L2(0, T ; C(Ω)).
For µ ≡ 0 the assertion is obvious. We set y0 ≡ 0 and let {ωn}n ⊂ C(Ω) be the sequence converging
weakly-* to ω in M(Ω) and satisfy

∥ωn∥L1(Ω) 6 ∥ω∥M(Ω).

Let yn be the solutions of (2.8) with righthand side gωn, then we have yn ∈ X(0, T ). For f ∈ D(ΩT ),
let ψ be the solution of problem (2.9), thus we have ψ ∈ C(ΩT ) from the regularity theory of
parabolic equation. We deduce from (2.8) that∫

ΩT

fyndxdt =

∫
ΩT

(−∂tψ +A∗ψ)yndxdt

=

∫
ΩT

gωnψdxdt

6 C∥g∥L2(0,T ;C(Ω))∥ωn∥L1(Ω)∥ψ∥L2(0,T ;C(Ω))

6 C∥g∥L2(0,T ;C(Ω))∥ω∥M(Ω))∥ψ∥L2(0,T ;C(Ω)).

From embedding theorem we have L2(0, T ;H2(Ω)) ↪→ L2(0, T ; C(Ω))). Standard estimates give
(see, e.g., [19])

∥ψ∥L2(0,T ;H2(Ω)) 6 C∥f∥L2(0,T ;L2(Ω)).(2.17)

We can conclude from (2.17) that the solution sequence {yn}n is bounded in the space L2(0, T ;L2(Ω)).
Thus we can take a subsequence such that yn → y weakly in L2(0, T ;L2(Ω)) and (2.15) is satisfied.
The rest of the proof is standard.

Furthermore, the second part of this theorem has been proved in [6], see also [21]. Actually,
Theorem 6.3 in [6] implies the existence of a unique solution y ∈ L1(0, T ;W 1,p(Ω)) for all p ∈
[1, d

d−1 ) and ∂ty ∈ L1(0, T ;W 1,q(Ω)′) in the sense of (2.14), such that (2.16) is satisfied, hence we

have y ∈ C([0, T ];W 1,q(Ω)′) after a modification on a set of zero measure. �

Remark 2.4. If d = 1, the function µ = g(x, t)ω(x) belongs to L2(0, T ;H−1(Ω)), this property
implies in turn that (see [14])

y ∈ L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)),
∂y

∂t
∈ L2(0, T ;H−1(Ω)).

However, we don’t proceed with this issue and consider only cases when d = 2 or 3.

3. Error estimates for the continuous time Galerkin approximations

Let us consider the continuous time finite element approximations of the problems (2.6) and
(2.14). To this aim, we consider a family of triangulation T h of Ω, such that Ω =

∪
τ∈T h τ . We

suppose that Ω is the union of the elements of T h so that element edges lying on the boundary
may be curved. This triangulation is supposed to be regular in the usual sense. For each element
τ ∈ T h we associate two parameters ρ(τ) and σ(τ), where ρ(τ) denotes the diameter of the element
τ and σ(τ) is the supremum of the diameters of all circles contained in τ . Define the size of the
mesh by h = max

τ∈T h
ρ(τ). We suppose that the following regularity assumptions are satisfied: There

exists a positive constant C such that

ρ(τ)

σ(τ)
6 C,

h

ρ(τ)
6 C(3.1)

hold for all τ ∈ T h and all h > 0.
Here we consider only n-simplex elements, as they are among the most widely used ones. As-

sociated with T h is a finite dimensional subspace V h of C(Ω), such that χ|τ are polynomials of
7



order m (m > 1) for ∀ χ ∈ V h and τ ∈ T h. Here we only consider piecewise linear elements, i.e.,
m = 1. We also set V h

0 = V h ∩H1
0 (Ω).

Note that the regular assumption (3.1) guarantees the following inverse properties for vh ∈ V h:

∥vh∥s,Ω 6 Chl−s∥vh∥l,Ω 0 6 l 6 s 6 1(3.2)

and

∥vh∥0,∞,Ω 6 Ch−
d
2 ∥vh∥0,Ω.(3.3)

Let Πh : C(Ω) → V h denote the standard Lagrange interpolation operator, then interpolation
error estimate implies that for y ∈ H2(Ω) (see, e.g., [8])

∥y −Πhy∥0,Ω + h∥y −Πhy∥1,Ω 6 Ch2∥y∥2,Ω,(3.4)

and

∥y −Πhy∥0,∞,Ω 6 Ch2−
d
2 ∥y∥2,Ω.(3.5)

Let Ph be the L2(Ω)-projection operator defined from L2(Ω) to V h:

(Phy, vh) = (y, vh) ∀ vh ∈ V h(3.6)

and Rh : H1
0 (Ω) → V h

0 denote the Ritz projection operator defined as

a(Rhy, vh) = a(y, vh) ∀ vh ∈ V h
0 .(3.7)

Then we have the following error estimates (see, e.g., [8] and [26])

Lemma 3.1. Let Ph and Rh be the L2-projection operator and Ritz projection operator defined
above. Then there holds:

∥y −Phy∥−1,Ω + h∥y −Phy∥0,Ω 6 Ch2∥y∥1,Ω,(3.8)

∥y −Rhy∥0,Ω + h∥y −Rhy∥1,Ω 6 Ch2∥y∥2,Ω.(3.9)

Moreover, we have

∥y −Rhy∥0,∞,Ω 6 Ch2−
d
2 ∥y∥2,Ω.(3.10)

Proof. Here we only prove ∥y − Phy∥−1,Ω. From the definition of L2-projection we have

∥y −Phy∥−1,Ω = sup
v∈H1(Ω)

(y − Phy, v)

∥v∥1,Ω

= sup
v∈H1(Ω)

(y − Phy, v − Phv)

∥v∥1,Ω

6 sup
v∈H1(Ω)

Ch2∥y∥1,Ω∥v∥1,Ω
∥v∥1,Ω

6 Ch2∥y∥1,Ω.
�

Since the solutions of problems (2.6) and (2.14) have low regularities, it seems to be natural
to estimate the error between the solutions of continuous problem and semidiscretization problem
under the norm L2(0, T ;L2(Ω)). To achieve this we need to use duality argument. Thus, we
introduce the semi-discrete finite element approximation of the backward parabolic problem (2.2):

(3.11)

{
−(∂tψh, vh)ΩT

+ a(ψh, vh)ΩT
= (f, vh)ΩT

∀ vh ∈ V h
0 ,

(ψh(T ), wh) = 0 ∀ wh ∈ V h
0 ,

where ψh(t) ∈ H1(0, T ;V h
0 ).

At first, we need to derive the error estimates for the solutions of the backward parabolic
problem (2.2) and its semidiscretization approximation (3.11) under the norms L2(0, T ;L∞(Ω))
and L∞(0, T ;L2(Ω)), which will play a crucial role in the derivation of our main results.
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Lemma 3.2. Let ψ ∈ X(0, T ) ↪→ C([0, T ];H1(Ω)) and ψh ∈ H1(0, T ;V h
0 ) be the solutions of

problem (2.2) and (3.11), respectively. Then we have the following uniformly in time and space
error estimate:

∥ψ − ψh∥L∞(0,T ;L2(Ω)) 6 Ch
(
∥ψ∥L2(0,T ;H2(Ω)) + ∥ψt∥L2(0,T ;L2(Ω))

)
(3.12)

and

∥ψ − ψh∥L2(0,T ;L∞(Ω)) 6 Ch2−
d
2

(
∥ψ∥L2(0,T ;H2(Ω)) + ∥ψt∥L2(0,T ;L2(Ω))

)
.(3.13)

Proof. Actually, we need to prove the error estimates under the regularity conditions stated in
this lemma, and the techniques are different from the standard proof for the semidiscrete error
estimates which requires higher regularity, see, e.g., [30]. Using the similar arguments as in [7] it
is not difficult to prove following a priori error estimates for the backward parabolic equations

∥ψ(t)− ψh(t)∥0,Ω + ∥ψ − ψh∥L2(0,T ;H1(Ω))

6 Ch
(
∥ψ∥L2(0,T ;H2(Ω)) + ∥ψt∥L2(0,T ;L2(Ω))

)
(3.14)

and

∥ψ − ψh∥L2(0,T ;L2(Ω)) 6 Ch2
(
∥ψ∥L2(0,T ;H2(Ω)) + ∥ψt∥L2(0,T ;L2(Ω))

)
.(3.15)

The key ingredient of the proof is the introduction of L2-projection instead of the Ritz-projection
used in the other literatures.

Error estimate (3.12) is a direct consequence of (3.14). To prove (3.13), let Πhψ be the piecewise
linear interpolation of ψ defined above, then from (3.5) we have

∥ψ − ψh∥L2(0,T ;L∞(Ω)) 6 ∥ψ −Πhψ∥L2(0,T ;L∞(Ω)) + ∥Πhψ − ψh∥L2(0,T ;L∞(Ω))

6 Ch2−
d
2 ∥ψ∥L2(0,T ;H2(Ω)) + Ch−

d
2 ∥Πhψ − ψh∥L2(0,T ;L2(Ω))

6 Ch2−
d
2 ∥ψ∥L2(0,T ;H2(Ω)) + Ch−

d
2 ∥ψ − ψh∥L2(0,T ;L2(Ω)),(3.16)

where we have used the standard interpolation error estimate and inverse estimate (3.3). This
together with (3.15) implies (3.13).

�

3.1. Finite element approximations to parabolic equations with measure data in time.
We now turn to defining the continuous time finite element approximation scheme for problems
(2.6). Based on the weak form stated in Theorem 2.2, we can define the following semi-discrete
finite element approximation of (2.6):

(3.17) −(yh, ∂tvh)ΩT
+ a(yh, vh)ΩT

= ⟨µ, vh⟩ΩT
+ (yh0 , vh(·, 0)) ∀ vh ∈ H1(0, T ;V h

0 )

with vh(·, T ) = 0, where yh(t) ∈ L2(0, T ;V h
0 ), and yh0 ∈ V h

0 is an approximation of y0. We set
yh0 = Phy0 be the L2-projection of y0. Here

⟨µ, vh⟩ΩT
=

∫
ΩT

vhdµ =

∫ T

0

(

∫
Ω

g(x, t)vh(x)dx)dω(t) ∀ vh ∈ V h.

Now we are in a position to state our main result of this subsection, i.e., the estimates of the error
between the solution y of the continuous problem (2.6) and the solution yh of the semidiscretization
one (3.17).

Theorem 3.3. Assume that µ = gω, g and ω are given functions such that g ∈ C([0, T ];L2(Ω))
and ω ∈ M[0, T ]. Let y ∈ L2(0, T ;H1

0 (Ω))∩L∞(0, T ;L2(Ω)) and yh ∈ L2(0, T ;V h
0 ) be the solutions

of problem (2.6) and (3.17), respectively. Then we have the following error estimate:

∥y − yh∥L2(0,T ;L2(Ω)) 6 Ch
(
∥g∥L∞(0,T ;L2(Ω))∥ω∥M[0,T ] + ∥y0∥0,Ω

)
.(3.18)
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Proof. Let ψ be the solution of problem (2.2) with f ∈ L2(0, T ;L2(Ω)). Then from (2.6), (3.17)
and orthogonality property we have∫

ΩT

(y − yh)fdxdt =

∫ T

0

∫
Ω

(y − yh)(−∂tψ +A∗ψ)dxdt

= (y,−∂tψ)ΩT
+ a(y, ψ)ΩT

+ (yh, ∂tψ)ΩT
− a(yh, ψ)ΩT

= ⟨µ, ψ⟩ΩT
+ (y0, ψ(0)) + (yh, ∂tψh)ΩT

− a(yh, ψh)ΩT

= ⟨µ, ψ⟩ΩT + (y0, ψ(0))− ⟨µ, ψh⟩ΩT − (Phy0, ψh(0))

=

∫
ΩT

(ψ − ψh)dµ+ (y0, ψ(0)− ψh(0))

=

∫ T

0

(∫
Ω

g(x, t)(ψ − ψh)dx
)
dω(t) + (y0, ψ(0)− ψh(0))

6 C
(
∥g∥L∞(0,T ;L2(Ω))∥ω∥M[0,T ] + ∥y0∥0,Ω

)
∥ψ − ψh∥L∞(0,T ;L2(Ω)).

Lemma 2.1 and Lemma 3.2 yield∫
ΩT

(y − yh)fdxdt 6 C
(
∥g∥L∞(0,T ;L2(Ω))∥ω∥M[0,T ] + ∥y0∥0,Ω

)
∥ψ − ψh∥L∞(0,T ;L2(Ω))

6 Ch
(
∥g∥L∞(0,T ;L2(Ω))∥ω∥M[0,T ] + ∥y0∥0,Ω

)(
∥ψ∥L2(0,T ;H2(Ω))

+∥∂tψ∥L2(0,T ;L2(Ω))

)
6 Ch

(
∥g∥L∞(0,T ;L2(Ω))∥ω∥M[0,T ] + ∥y0∥0,Ω

)
∥f∥L2(0,T ;L2(Ω)),

then from the definition of L2(ΩT ) norm we have

∥y − yh∥L2(0,T ;L2(Ω)) = sup
f∈L2(0,T ;L2(Ω)),f ̸=0

(f, y − yh)ΩT

∥f∥L2(0,T ;L2(Ω))

6 Ch
(
∥y0∥0,Ω + ∥g∥L∞(0,T ;L2(Ω))∥ω∥M[0,T ]

)
,

which completes the proof. �

3.2. Finite element approximations to parabolic equations with measure data in space.
Similarly, based on the results of Theorem 2.3 we can define the semi-discrete finite element ap-
proximation of (2.14) as follows:

(3.19) −(yh, ∂tvh)ΩT
+ a(yh, vh)ΩT

= ⟨µ, vh⟩ΩT
+ (yh0 , vh(·, 0)) ∀ vh ∈ H1(0, T ;V h

0 )

with vh(·, T ) = 0, where yh(t) ∈ L2(0, T ;V h
0 ), and yh0 ∈ V h

0 is an approximation of y0. We set
yh0 = Phy0 be the L2-projection of y0. Here

⟨µ, vh⟩ΩT
=

∫
ΩT

vhdµ =

∫ T

0

(

∫
Ω

g(x, t)vh(x)dω(x))dt ∀ vh ∈ V h.

With above preparations now we can state our main result in the follwing theorem.

Theorem 3.4. Assume that g and ω are given functions such that g ∈ L2(0, T ; C(Ω)) and ω ∈
M(Ω), y0 ∈ L2(Ω). Let y ∈ L2(0, T ;L2(Ω)) and yh ∈ L2(0, T ;V h

0 ) be the solutions of problem
(2.13) and (3.19), respectively. Then we have the following error estimate:

∥y − yh∥L2(0,T ;L2(Ω)) 6 Ch2−
d
2

(
∥g∥L2(0,T ;L∞(Ω))∥ω∥M(Ω) + ∥y0∥0,Ω

)
.(3.20)
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Proof. Let ψ be the solution of problem (2.2) with f ∈ L2(0, T ;L2(Ω)). Then from (2.14) , (3.19),
orthogonality property and proceeding as in the proof of Theorem 3.3 we have∫

ΩT

(y − yh)fdxdt =

∫ T

0

∫
Ω

(y − yh)(−∂tψ +A∗ψ)dxdt

=

∫
ΩT

(ψ − ψh)dµ+ (y0, ψ(·, 0)− ψh(·, 0))

=

∫ T

0

(∫
Ω

g(x, t)(ψ − ψh)dω(x)
)
dt+ (y0, ψ(·, 0)− ψh(·, 0))

6 C
(
∥g∥L2(0,T ;L∞(Ω))∥ω∥M(Ω)∥ψ − ψh∥L2(0,T ;L∞(Ω))

+∥y0∥0,Ω∥ψ − ψh∥C([0,T ];L2(Ω))

)
.

It now follows from Lemma 2.1 and Lemma 3.2 that∫
ΩT

(y − yh)fdxdt 6 C
(
h2−

d
2 ∥g∥L2(0,T ;L∞(Ω))∥ω∥M(Ω) + Ch∥y0∥0,Ω

)
(
∥ψ∥L2(0,T ;H2(Ω)) + ∥∂tψ∥L2(0,T ;L2(Ω))

)
6 Ch2−

d
2

(
∥g∥L2(0,T ;L∞(Ω))∥ω∥M(Ω) + ∥y0∥0,Ω

)
∥f∥L2(0,T ;L2(Ω)),

which proves (3.20) from the definition of L2(ΩT ) norm. �

Remark 3.5. The a priori error estimate we obtained in Theorem 3.4, which is of order O(h2−
d
2 ),

seems to be optimal compared with the results presented in [5], where finite element approximation

for elliptic equations with measure data is studied and a priori error estimate of order O(h2−
d
2 ) is

derived.

4. Error estimates for fully discrete finite element approximations

We next consider the fully discrete approximations for above semidiscrete problems by using
the backward Euler scheme in time. We consider a partitioning of the time interval I = [0, T ] as

I = {0} ∪ I1 ∪ I2 ∪ · · · ∪ IN
with subintervals Ii = (ti−1, ti] of size ki and time points

0 = t0 < t1 < · · · < tN−1 < tN = T.

We define the discretization parameter k as a piecewise constant function by setting k|Ii = ki for
i = 1, 2, · · · , N . For i = 1, 2, · · · , N , construct the finite element spaces V h

i ∈ H1(Ω) (similar to
V h) with the mesh T h

i . For simplicity we consider equal partition in time, i.e., ki ≡ k, where k
denotes the time step size, and the same finite element space on each time step. For our error
analysis in the following we set k = O(hd) throughout the paper.

4.1. Fully discrete approximations of parabolic equations with measure data in time.
Now we are in a position to define the fully discrete approximations to parabolic equations with
measure data in time. The fully discrete approximation scheme of (3.17) is to find Y i

h ∈ V h
0 , i =

1, 2, · · · , N , such that (
Y i
h − Y i−1

h

k
,wh) + a(Y i

h , wh) = ⟨µ,wh⟩Ii , ∀ wh ∈ V h
0 , i = 1, · · · , N,

Y 0
h (x) = yh0 (x), x ∈ Ω.

(4.1)

Here

⟨µ, vh⟩Ii =
1

k

∫
Ω×(ti−1,ti]

vhdµ =
1

k

∫ ti

ti−1

(

∫
Ω

g(x, t)vh(x)dx)dω(t), ∀ vh ∈ V h.
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In the following we denote Yh the fully discrete finite element approximation of y, it is obvious
that Yh is piecewise constant in time and piecewise linear in space on each time interval.

Then we can derive following stability estimate for numerical scheme (4.1) of problem (2.5).

Lemma 4.1. Let Y i
h ∈ V h

0 , i = 1, 2, · · · , N be the solutions of fully discrete scheme (4.1), yh0 =
Phy0 and assume that k 6 Chd, then there exists a constant C independent of h, k and the data
(g, ω, y0) such that

N∑
i=1

∥Y i
h − Y i−1

h ∥20,Ω + k∥Y N
h ∥21,Ω 6 C

(
∥y0∥20,Ω + ∥g∥2L∞(0,T ;L2(Ω))∥ω∥

2
M[0,T ]

)
(4.2)

and

∥Y N
h ∥20,Ω +

N∑
i=1

k∥Y i
h∥21,Ω 6 C

(
∥y0∥20,Ω + ∥g∥2L∞(0,T ;L2(Ω))∥ω∥

2
M[0,T ]

)
.(4.3)

Proof. Let wh = k(Y i
h − Y i−1

h ) in (4.1) we get

(Y i
h − Y i−1

h , Y i
h − Y i−1

h ) + ka(Y i
h , Y

i
h − Y i−1

h ) = k⟨µ, Y i
h − Y i−1

h ⟩Ii ,

thus we have

∥Y i
h − Y i−1

h ∥20,Ω + k∥Y i
h∥21,Ω

6 ka(Y i
h , Y

i−1
h ) +

∫ ti

ti−1

(g(t), Y i
h − Y i−1

h )dω(t)

6 1

2
k∥Y i

h∥21,Ω +
1

2
k∥Y i−1

h ∥21,Ω + ∥Y i
h − Y i−1

h ∥0,Ω
∫ ti

ti−1

∥g(t)∥0,Ωdω(t)

6 1

2
k∥Y i

h∥21,Ω +
1

2
k∥Y i−1

h ∥21,Ω + C
(∫ ti

ti−1

∥g(t)∥0,Ωdω(t)
)2

+
1

2
∥Y i

h − Y i−1
h ∥20,Ω.(4.4)

Summing the above equations over i from 1 to N we obtain

N∑
i=1

∥Y i
h − Y i−1

h ∥20,Ω + k∥Y N
h ∥21,Ω 6 k∥Phy0∥21,Ω + C

N∑
i=1

(

∫ ti

ti−1

∥g(t)∥0,Ωdω(t))2

6 k∥Phy0∥21,Ω + C(

∫ T

0

∥g(t)∥0,Ωdω(t))2

6 C∥y0∥20,Ω + C∥g∥2L∞(0,T ;L2(Ω))∥ω∥
2
M[0,T ],(4.5)

where we have used the inverse estimate k∥Phy0∥21,Ω 6 kh−2∥Phy0∥20,Ω 6 C∥y0∥20,Ω. This proves

(4.2). Similarly, by setting vh = kY i
h in (4.1) we can prove (4.3). �

With the above preparations we are ready to estimate the error between the solution y of
continuous problem (2.6) and the solution Yh of the fully discrete problem (4.1), which is the main
result of this paper. Instead of the standard approaches based on Ritz-projection, see, e.g, [30],
we use duality argument to carry out the error analysis, and the stability results stated in Lemma
4.1 for numerical scheme (4.1) play an important role.

Theorem 4.2. Assume that µ = gω, g and ω are given functions such that g ∈ C([0, T ];L2(Ω))
and ω ∈ M[0, T ]. Let y ∈ L2(0, T ;H1

0 (Ω))∩L∞(0, T ;L2(Ω)) be the solution of problem (2.6), and
Yh be the solution of problem (4.1), then we have

∥y − Yh∥L2(0,T ;L2(Ω)) 6 C(h+ k
1
2 )
(
∥g∥L∞(0,T ;L2(Ω))∥ω∥M[0,T ] + ∥y0∥0,Ω

)
.(4.6)
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Proof. Let ψ be the solution of problem (2.2) with f ∈ L2(0, T ;L2(Ω)). It follows from (2.6) that∫
ΩT

(y − Yh)fdxdt =

∫ T

0

∫
Ω

(y − Yh)(−∂tψ +A∗ψ)dxdt

= −(y, ∂tψ)ΩT
+ a(y, ψ)ΩT

+
N∑

n=1

∫
In

((Y n
h , ∂tψ)− a(Y n

h , ψ))dt

= ⟨µ, ψ⟩ΩT + (y0, ψ(0)) +

N∑
n=1

∫
In

(k−1(Y n
h , ψ

n − ψn−1)− a(Y n
h , ψ))dt

= ⟨µ, ψ⟩ΩT + (y0, ψ(0))−
N∑

n=1

∫
In

(k−1(Y n
h − Y n−1

h , ψn−1) + a(Y n
h , ψ))dt

+(Y N
h , ψN )− (Y 0

h , ψ(0))

= −
N∑

n=1

∫
In

(k−1(Y n
h − Y n−1

h , ψn−1) + a(Y n
h , ψ))dt

+⟨µ, ψ⟩ΩT
+ (y0 − Y 0

h , ψ(0))

with ψn := ψ(:, tn). Note that from (4.1) we have

N∑
n=1

(k−1(Y n
h − Y n−1

h , Rhψ) + a(Y n
h , Rhψ)) =

N∑
n=1

⟨µ,Rhψ⟩In ,

where Rhψ ∈ V h is defined on In as follows:

Rhψ = Rhψ
n =

1

k

∫
In

Rhψ(·, t)dt, n > 0,(4.7)

and Rhψ
N = Rhψ(T ). Here and in what follows we denote ψ the average of ψ in In as defined in

(4.7) for all ψ ∈ L1(In). It is straightforward to see that∫
In

(ψ − ψ)dt = 0.(4.8)

Therefore we have∫
ΩT

(y − Yh)fdxdt = ⟨µ, ψ⟩ΩT
−

N∑
n=1

∫
In

⟨µ,Rhψ⟩In

−
N∑

n=1

∫
In

(k−1(Y n
h − Y n−1

h , ψn−1) + a(Y n
h , ψ))dt

+(y0 − Y 0
h , ψ(0)) +

N∑
n=1

∫
In

(k−1(Y n
h − Y n−1

h , Rhψ) + a(Y n
h , Rhψ))dt

= −
N∑

n=1

∫
In

(k−1(Y n
h − Y n−1

h , ψn−1 −Rhψ) + a(Y n
h , ψ −Rhψ))dt

+⟨µ, ψ⟩ΩT −
N∑

n=1

∫
In

⟨µ,Rhψ⟩In + (y0 − Y 0
h , ψ(0))

= E1 + E2 + E3.(4.9)
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Note that we have

|E2| =
∣∣∣⟨µ, ψ⟩ΩT −

N∑
n=1

∫
In

⟨µ,Rhψ⟩In
∣∣∣

=
∣∣∣ N∑
n=1

∫ tn

tn−1

(∫
Ω

g(x, t)(ψ −Rhψ)(x)dx
)
dω(t)

∣∣∣
6 C∥g∥L∞(0,T ;L2(Ω))∥ω∥M[0,T ]∥ψ −Rhψ∥L∞(0,T ;L2(Ω)).(4.10)

Note that

∥ψ −Rhψ∥L∞(0,T ;L2(Ω)) 6 ∥ψ − ψ∥L∞(0,T ;L2(Ω)) + ∥ψ −Rhψ∥L∞(0,T ;L2(Ω))

6 Ck
1
2 ∥ψ∥H1(0,T ;L2(Ω)) + Ch∥ψ∥L∞(0,T ;H1(Ω))

6 C(k
1
2 + h)∥ψ∥2,1,(4.11)

where standard error estimates were used in above equation. Thus

|E2| 6 C(k
1
2 + h)∥ψ∥2,1∥g∥L∞(0,T ;L2(Ω))∥ω∥M[0,T ]

6 C(k
1
2 + h)∥g∥L∞(0,T ;L2(Ω))∥ω∥M[0,T ]∥f∥L2(0,T ;L2(Ω)).(4.12)

We also have

|E3| = |(y0 − Y 0
h , ψ(0))| 6 ∥y0 −Phy0∥−1,Ω∥ψ(0)∥1,Ω

6 Ch∥y0∥0,Ω∥f∥L2(0,T ;L2(Ω)).(4.13)

Then it remains to estimate E1. Application of the Cauchy-Schwarz inequality gives

|E1| 6 F1 · F2,(4.14)

where

F1 =
( N∑

n=1

(∥Y n
h − Y n−1

h ∥20,Ω + ka(Y n
h , Y

n
h ))

) 1
2

and

F2 =
( N∑

n=1

(∥ψn−1 −Rhψ∥20,Ω + ka(ψ −Rhψ,ψ −Rhψ))
) 1

2

.

Lemma 4.1 gives

F1 6 C
(
∥y0∥0,Ω + ∥g∥L∞(0,T ;L2(Ω))∥ω∥M[0,T ]

)
.(4.15)

Standard error estimates yield

∥ψn−1 −Rhψ∥0,Ω 6 ∥ψn−1 − ψ∥0,Ω + ∥ψ −Rhψ∥0,Ω
6 ∥ψn−1 − ψ∥0,Ω + Ch2∥ψ∥2,Ω(4.16)

and

∥ψn−1 − ψ∥0,Ω 6 k
1
2 ∥ψt∥L2(tn−1,tn;L2(Ω)).(4.17)

From Lemma 3.1 we also have that

a(ψ −Rhψ,ψ −Rhψ) 6 Ch2∥ψ∥2,Ω.(4.18)

It is straightforward to show that

∥ψ∥2,Ω 6 k−
1
2 ∥ψ∥L2(tn−1,tn;H2(Ω)).(4.19)
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Then from (4.16)-(4.19) we can conclude that

|F2| 6 C
( N∑

n=1

((h4 + kh2)∥ψ∥22,Ω + k∥ψt∥2L2(tn−1,tn;L2(Ω)))
) 1

2

6 C
( N∑

n=1

((h4 + kh2)k−1∥ψ∥2L2(tn−1,tn;H2(Ω)) + k∥ψt∥2L2(tn−1,tn;L2(Ω)))
) 1

2

6 C(h+ k
1
2 )∥ψ∥2,1,(4.20)

thus

|E1| 6 C(h+ k
1
2 )∥ψ∥2,1

(
∥y0∥0,Ω + ∥g∥L∞(0,T ;L2(Ω))∥ω∥M[0,T ]

)
6 C(h+ k

1
2 )∥f∥L2(0,T ;L2(Ω))

(
∥y0∥0,Ω + ∥g∥L∞(0,T ;L2(Ω))∥ω∥M[0,T ]

)
.(4.21)

It follows from (4.9), (4.12), (4.13) and (4.21) that

∥y − Yh∥L2(0,T ;L2(Ω)) = sup
f∈L2(0,T ;L2(Ω)),f ̸=0

(f, y − Yh)ΩT

∥f∥L2(0,T ;L2(Ω))

6 C(h+ k
1
2 )
(
∥y0∥0,Ω + ∥g∥L∞(0,T ;L2(Ω))∥ω∥M[0,T ]

)
,

which completes the proof. �
Remark 4.3. In Theorem 3.3 we obtain a priori error estimates of order O(h) for the semidis-
cretization finite element approximation of parabolic equations with measure data in time, and
the same result with respect to space discretization is derived for fully discrete approximation in
Theorem 4.2. The order O(h) seems to be optimal in view of the regularity of solution y, which
belongs to L2(0, T ;H1(Ω)) as presented in Theorem 2.2. The convergence order with respect to

time discretization is O(k
1
2 ), which should also be optimal.

4.2. Fully discrete approximations of parabolic equations with measure data in space.
This subsection is devoted to the fully discrete approximations of parabolic equations with measure
data in space. The fully discrete approximation scheme of (3.19) is to find Y i

h ∈ V h
0 , i = 1, 2, · · · , N ,

such that  (
Y i
h − Y i−1

h

k
,wh) + a(Y i

h , wh) = ⟨µ,wh⟩Ii , ∀ wh ∈ V h
0 , i = 1, · · · , N,

Y 0
h (x) = yh0 (x) x ∈ Ω.

(4.22)

Here

⟨µ, vh⟩Ii =
1

k

∫
Ω×(ti−1,ti]

vhdµ =
1

k

∫ ti

ti−1

(

∫
Ω

g(x, t)vh(x)dω(x))dt ∀ vh ∈ V h.

Also we denote Yh the fully discrete finite element approximation of y.
Then we can derive following stability estimate for numerical scheme (4.22) of problem (2.13).

Lemma 4.4. Assume that g and ω are given functions such that g ∈ L2(0, T ; C(Ω)) and ω ∈ M(Ω),
y0 ∈ L2(Ω). Let Y i

h ∈ V h
0 , i = 1, 2, · · · , N be the solutions of fully discrete scheme (4.22),

yh0 = Phy0 and assume that k 6 Chd, then there exists a constant C independent of h, k and the
data (g, ω, y0) such that

N∑
i=1

∥Y i
h − Y i−1

h ∥20,Ω + k∥Y N
h ∥21,Ω 6 C

(
∥y0∥20,Ω + ∥g(t)∥2L2(0,T ;L∞(Ω))∥ω∥

2
M(Ω)

)
(4.23)

and

∥Y N
h ∥20,Ω +

N∑
i=1

k∥Y i
h∥21,Ω 6 C

(
∥y0∥20,Ω + ∥g(t)∥2L2(0,T ;L∞(Ω))∥ω∥

2
M(Ω)

)
.(4.24)
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Proof. The proof is similar to Lemma 4.1. Let wh = k(Y i
h − Y i−1

h ) in (4.22) we get

(Y i
h − Y i−1

h , Y i
h − Y i−1

h ) + ka(Y i
h , Y

i
h − Y i−1

h ) = k⟨µ, Y i
h − Y i−1

h ⟩Ii ,

thus we have

∥Y i
h − Y i−1

h ∥20,Ω + k∥Y i
h∥21,Ω

6 ka(Y i
h , Y

i−1
h ) +

∫ ti

ti−1

(

∫
Ω

g(x, t)(Y i
h − Y i−1

h )dω(x))dt

6 1

2
k∥Y i

h∥21,Ω +
1

2
k∥Y i−1

h ∥21,Ω +

∫ ti

ti−1

∥Y i
h − Y i−1

h ∥0,∞,Ω∥g(t)∥0,∞,Ω∥ω∥M(Ω)dt

6 1

2
k∥Y i

h∥21,Ω +
1

2
k∥Y i−1

h ∥21,Ω + C∥g(t)∥2L2(ti−1,ti;L∞(Ω))∥ω∥
2
M(Ω)

+
1

2
∥Y i

h − Y i−1
h ∥20,Ω,(4.25)

where we have used the following inverse estimate:

√
k∥Y i

h − Y i−1
h ∥0,∞,Ω 6 C

√
kh−

d
2 ∥Y i

h − Y i−1
h ∥0,Ω

6 C∥Y i
h − Y i−1

h ∥0,Ω.

Summing the above equations over i from 1 to N and using inverse estimate we get

N∑
i=1

∥Y i
h − Y i−1

h ∥20,Ω + k∥Y N
h ∥21,Ω 6 k∥Y 0

h ∥21,Ω + C

N∑
i=1

∥g(t)∥2L2(ti−1,ti;L∞(Ω))∥ω∥
2
M(Ω)

6 k∥Phy0∥21,Ω + C∥g(t)∥2L2(0,T ;L∞(Ω))∥ω∥
2
M(Ω)

6 C∥y0∥20,Ω + C∥g(t)∥2L2(0,T ;L∞(Ω))∥ω∥
2
M(Ω),(4.26)

which proves (4.23). Similarly, by setting vh = kY i
h in (4.22) we can prove (4.24).

�

Now we are in a position to estimate the error between the solutions of problem (2.14) and
(4.22), which is one of the main results of this paper.

Theorem 4.5. Assume that g and ω are given functions such that g ∈ L2(0, T ; C(Ω))∩H 1
2 (0, T ;L∞(Ω))

and ω ∈ M(Ω), y0 ∈ L2(Ω). Let y ∈ L2(0, T ;L2(Ω)) be the solution of problem (2.14), and Yh be
the solution of problem (4.22), then we have

∥y − Yh∥L2(0,T ;L2(Ω)) 6 C(h2−
d
2 + k

1
2 )
(
∥g∥

H
1
2 (0,T ;L∞(Ω))

∥ω∥M(Ω) + ∥y0∥0,Ω
)
.(4.27)

Proof. Again, we use duality argument to prove this theorem. Let ψ be the solution of problem
(2.2) with f ∈ L2(0, T ;L2(Ω)). Note that ψ = 0 on ∂Ω, ψN = ψ(T ) = 0, it follows from (2.14)

16



that

∫
ΩT

(y − Yh)fdxdt =

∫ T

0

∫
Ω

(y − Yh)(−∂tψ +A∗ψ)dxdt

= −(y, ∂tψ)ΩT
+ (y,A∗ψ)ΩT

+
N∑

n=1

∫
In

((Y n
h , ∂tψ)− a(Y n

h , ψ))dt

= ⟨µ, ψ⟩ΩT + (y0, ψ(·, 0)) +
N∑

n=1

∫
In

(k−1(Y n
h , ψ

n − ψn−1)− a(Y n
h , ψ))dt

= ⟨µ, ψ⟩ΩT + (y0, ψ(·, 0))−
N∑

n=1

∫
In

(k−1(Y n
h − Y n−1

h , ψn−1) + a(Y n
h , ψ))dt

+(Y N
h , ψN )− (Y 0

h , ψ(·, 0))

= −
N∑

n=1

∫
In

(k−1(Y n
h − Y n−1

h , ψn−1) + a(Y n
h , ψ))dt

+⟨µ, ψ⟩ΩT
+ (y0 − Y 0

h , ψ(·, 0)).

Note that from (4.22) we have

N∑
n=1

(k−1(Y n
h − Y n−1

h , Rhψ) + a(Y n
h , Rhψ)) =

N∑
n=1

⟨µ,Rhψ⟩In ,

where Rhψ ∈ V h
0 is defined in (4.7). Thus

∫
ΩT

(y − Yh)fdxdt = ⟨µ, ψ⟩ΩT
−

N∑
n=1

∫
In

⟨µ,Rhψ⟩In

+
N∑

n=1

∫
In

(k−1(Y n
h − Y n−1

h , Rhψ) + a(Y n
h , Rhψ))dt

−
N∑

n=1

∫
In

(k−1(Y n
h − Y n−1

h , ψn−1) + a(Y n
h , ψ))dt+ (y0 − Y 0

h , ψ(0))

= −
N∑

n=1

∫
In

(k−1(Y n
h − Y n−1

h , ψn−1 −Rhψ) + a(Y n
h , ψ −Rhψ))dt

+⟨µ, ψ⟩ΩT
−

N∑
n=1

∫
In

⟨µ,Rhψ⟩In + (y0 − Y 0
h , ψ(0))

= Ẽ1 + Ẽ2 + Ẽ3.(4.28)
17



From (4.8) we deduce

|Ẽ2| =
∣∣∣⟨µ, ψ⟩ΩT

−
N∑

n=1

∫
In

⟨µ,Rhψ⟩In
∣∣∣

=
∣∣∣ N∑
n=1

∫
Ω

(∫ tn

tn−1

g(x, t)(ψ −Rhψ)(x, t)dt
)
dω(x)

∣∣∣
=

∣∣∣ N∑
n=1

∫
Ω

(∫ tn

tn−1

(g(x, t)ψ(x, t)− g(x, t)Rhψ(x, t))dt
)
dω(x)

∣∣∣
6

∣∣∣ N∑
n=1

∫
Ω

(∫ tn

tn−1

ψ(x, t)(g(x, t)− g(x, t))dt
)
dω(x)

∣∣∣
+
∣∣∣ N∑
n=1

∫
Ω

(∫ tn

tn−1

g(x, t)(ψ −Rhψ)(x, t)dt
)
dω(x)

∣∣∣
6 C∥g − g∥L2(0,T ;L∞(Ω))∥ω∥M(Ω)∥ψ∥L2(0,T ;L∞(Ω))

+C∥g∥L2(0,T ;L∞(Ω))∥ω∥M(Ω)∥ψ −Rhψ∥L2(0,T ;L∞(Ω)).(4.29)

Standard error estimates yield

∥g − g∥L2(0,T ;L∞(Ω)) 6 Ck
1
2 ∥g∥

H
1
2 (0,T ;L∞(Ω))

(4.30)

and

∥ψ −Rhψ∥L2(0,T ;L∞(Ω)) 6 Ch2−
d
2 ∥ψ∥L2(0,T ;H2(Ω)).(4.31)

Thus we have

|Ẽ2| 6 C(k
1
2 + h2−

d
2 )∥ω∥M(Ω)∥g∥H 1

2 (0,T ;L∞(Ω))
∥f∥L2(0,T ;L2(Ω)).(4.32)

Similar to (4.13) we also have

|Ẽ3| 6 Ch∥y0∥0,Ω∥f∥L2(0,T ;L2(Ω)).(4.33)

Then it remains to estimate Ẽ1. Cauchy-Schwarz inequality gives

|Ẽ1| 6 F̃1 · F̃2,(4.34)

where

F̃1 =
( N∑

n=1

(∥Y n
h − Y n−1

h ∥20,Ω + ka(Y n
h , Y

n
h ))

) 1
2

and

F̃2 =
( N∑

n=1

(∥ψn−1 −Rhψ∥20,Ω + ka(ψ −Rhψ,ψ −Rhψ))
) 1

2

.

From Lemma 4.4 we have

F̃1 6 C
(
∥y0∥0,Ω + ∥g∥L2(0,T ;L∞(Ω))∥ω∥M(Ω)

)
.(4.35)

Similar to (4.20) we can conclude from (4.16)-(4.19) that

|F̃2| 6 C(h2−
d
2 + k

1
2 )∥ψ∥2,1,(4.36)

thus

|Ẽ1| 6 C(h2−
d
2 + k

1
2 )∥ψ∥2,1

(
∥y0∥0,Ω + ∥g∥L2(0,T ;L∞(Ω))∥ω∥M(Ω)

)
6 C(h2−

d
2 + k

1
2 )∥f∥L2(0,T ;L2(Ω))

(
∥y0∥0,Ω + ∥g∥L2(0,T ;L∞(Ω))∥ω∥M(Ω)

)
.(4.37)
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Then from (4.28), (4.32), (4.33) and (4.37) we have

∥y − Yh∥L2(0,T ;L2(Ω)) = sup
f∈L2(0,T ;L2(Ω)),f ̸=0

(f, y − Yh)ΩT

∥f∥L2(0,T ;L2(Ω))

6 C(h2−
d
2 + k

1
2 )
(
∥y0∥0,Ω + ∥g∥

H
1
2 (0,T ;L∞(Ω))

∥ω∥M(Ω)

)
,

which completes the proof.
�

5. Numerical Examples

In this section we will carry out some numerical experiments to confirm our theoretical findings.
For the computation the software package AFEPack ([17]) has been used. To validate the estimates
developed in the previous section, we show the convergence order by separating the discretization
errors. At first we consider the behavior of the error for a sequence of discretizations with different
mesh sizes and a fixed time steps. Then we show the behavior of the error for different time steps
but a fixed spatial triangulation.

In the following numerical examples, we define an error functional to show the experimental
order of convergence by

rate =
logE(h1)− logE(h2)

log h1 − log h2
,

where E(h) denotes the error on triangulation with mesh size h or time step k. Then it is easy to
see that “rate = γ” means that “error = O(hγ)”.

5.1. Parabolic equations with measure data in time. At first we consider the following
parabolic equation with Dirac righthand side in time:

∂ty −∆y = gω in ΩT ,

y = 0 on ΓT ,

y(·, 0) = y0 in Ω,

where g(x, t) ∈ C([0, T ];L2(Ω)) and ω(t) ∈ M[0, T ]. For ease of constructing examples we may
admit some additional regular parts to appear in the righthand side.

Example 5.1. The first example is a modification from the example presented in [22]. Let ΩT =
B(0, 1)× [0, 1], where B(0, 1) is the unit circle centered at zero with radius 1, γ ∈ (0, 1) and λ ∈ R.
Let

ϵ(t) = (e−λt − e−
λ
2 ),

we take the exact solution as

y(x, t) = sin(π|x|2) eλt

λ(1− γ)
·


ϵ(0)1−γ , t > 1

2
;

ϵ(0)1−γ − ϵ(t)1−γ , t <
1

2
.

After simple calculation we have

µ(x, t) = sin(π|x|2)δ(t) + (sin(π|x|2) · eλt

1− γ
+ (−4π cos(π|x|2) +

4π2|x|2 sin(π|x|2)) eλt

λ(1− γ)
) ·


ϵ(0)1−γ , t > 1

2
;

ϵ(0)1−γ − ϵ(t)1−γ , t <
1

2
,
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Table 1. Error of y for Example 5.1 with λ = 1.

Dofs ∥y − Yh∥L2(ΩT ) rate N ∥y − Yh∥L2(ΩT ) rate
25 1.805765645861 \ 3 0.229100247225 \
81 0.479593557806 1.9127 9 0.197363792883 0.1357
289 0.119994521144 1.9988 27 0.131680471328 0.3683
1089 0.031089301244 1.9485 81 0.080625762381 0.4465
4225 0.010045681219 1.6298 243 0.048726635543 0.4584
16641 0.006520318504 0.6236 729 0.029977569575 0.4422

Table 2. Error of y for Example 5.1 with λ = 2.

Dofs ∥y − Yh∥L2(ΩT ) rate N ∥y − Yh∥L2(ΩT ) rate
25 2.405100524743 \ 3 0.283293492668 \
81 0.636075956291 1.9188 9 0.157102357581 0.5367
289 0.158595488032 2.0038 27 0.106189907672 0.3565
1089 0.041037524463 1.9503 81 0.067208827352 0.4164
4225 0.013412438652 1.6134 243 0.041682864989 0.4348
16641 0.008934235708 0.5862 729 0.026138785274 0.4248

Table 3. Error of y for Example 5.1 with λ = 10.

Dofs ∥y − Yh∥L2(ΩT ) rate N ∥y − Yh∥L2(ΩT ) rate
25 788.214049388618 \ 3 2421.450238197359 \
81 200.611180708993 1.9742 9 614.302084069153 1.2485
289 48.311558519598 2.0540 27 162.023290177949 1.2131
1089 11.935206551992 2.0171 81 48.670234674881 1.0947
4225 2.934940200289 2.0238 243 14.900101550467 1.0774
16641 0.885011153476 1.7296 729 5.036596568855 0.9873

where

δ(t) =


0, t > 1

2
;

ϵ(t)−γ , t <
1

2
.

To confirm our theoretical results we test the convergence order with respect to space discretiza-
tion and time discretization, respectively. To investigate the convergence order with respect to the
space discretization we fixed the time discretization with N = 33333 for λ = 1, 2 and N = 3333
for λ = 10, while the space discretization is fixed with 16641 Dofs to investigate the convergence
order with respect to the time discretization, the results for λ = 1, λ = 2 and λ = 10 are listed in
Table 1, 2 and 3, respectively.

We can see from Table 1-3 that the convergence order with respect to the spatial discretization
is almost 2, which is optimal and better than our predicted order O(h). While the convergence

order with respect to the time discretization is almost O(k
1
2 ) for the cases λ = 1 and λ = 2, which

is consistent with our theoretical results. The convergence order for the time discretization is O(k)
for larger λ, as presented in Table 3.

Example 5.2. The second example is constructed inspired by Example 4.2 of [9]. Let ΩT =
B(0, 1)× [0, 1], and we take the exact solution as

y(x, t) = sin(π|x|2) ·

{
t2, t < 0.5;

t2 + 2t, t > 0.5.
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Table 4. Error of y for Example 5.2.

Dofs ∥y − Yh∥L2(ΩT ) rate N ∥y − Yh∥L2(ΩT ) rate
25 1.003408828629 \ 2 0.067209558965 \
81 0.265418710871 1.9186 4 0.033600480166 1.0002
289 0.065958680971 2.0086 8 0.016860913555 0.9948
1089 0.016567151789 1.9932 16 0.008466148990 0.9939
4225 0.004146042659 1.9985 32 0.004286813653 0.9818
16641 0.001034571264 2.0027 64 0.002276249156 0.9132

We know that ∂ty = sin(π|x|2) · δt( 12 ) + sin(π|x|2) · γ(t), where δt(z) denotes the Dirac measure
with respect to the variable t concentrated at t = z, and

γ(t) =

{
2t, t < 0.5;

2t+ 2, t > 0.5.

Thus, after simple calculation we have

µ(x, t) = sin(π|x|2) · δt(
1

2
) + sin(π|x|2) · γ(t)

+(−4π cos(π|x|2) + 4π2|x|2 sin(π|x|2)) ·

{
t2, t < 0.5;

t2 + 2t, t > 0.5.

At first we fixed the time discretization with 4096 time steps to investigate the behavior of error
with respect to the spatial discretization, then the space discretization is fixed with 16641 Dofs to
investigate the convergence order with respect to the time discretization. The results are listed in
Table 4. From Table 4 we found that the convergence orders with respect to the spatial and time
discretization are O(h2) and O(k), respectively, both of them are higher than our predicted results

which are O(h) and O(k
1
2 ), respectively.

5.2. Parabolic equations with measure data in space. Since our theoretical results are also
valid for Neumann boundary conditions, we consider in this subsection the following parabolic
equation with Dirac source term in space and Neumann boundary condition:

yt −∆y + y = µ in ΩT ,

∂y

∂n
= 0 on ΓT ,

y(0) = y0 in Ω,

where µ = g(x, t)ω(x), g(x, t) ∈ L2(0, T ; C(Ω)) and ω(x) ∈ M(Ω). For ease of constructing
examples we also admit some additional regular parts to appear in the righthand side.

Example 5.3. The third example is a modification from Example 4.2 of [9]. Let ΩT = [0, 1]2×[0, 1],
we take the exact solution as

y(x, t) = (et + 1) ·

{
0.5− x21, x1 < 0.5,

0.25, x1 > 0.5,

since y does not depend on the spatial variable x2, we find that ∆y = ∆xxy = (δx1
( 12 ) − ψ(x1)) ·

(et + 1), where

ψ(x1) =

{
2, x1 < 0.5,

0, x1 > 0.5,
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Figure 1. The discrete solution Yh of Example 5.3 at time t = 0.5 with 22785 Dofs.

Table 5. Error of y for Example 5.3 with respect to space and time.

Dofs ∥y − Yh∥L2(ΩT ) rate N ∥y − Yh∥L2(ΩT ) rate
31 0.033467303580 \ 2 0.069700966171 \
105 0.007254281003 2.5066 4 0.030875705044 1.1747
385 0.002842650160 1.4421 8 0.014389164719 1.1015
1473 0.001350586630 1.1092 16 0.006927239146 1.0546
5761 0.000551335197 1.3139 32 0.003398471622 1.0274
22785 0.000194881287 1.5127 64 0.001688698129 1.0090

and δxi(z) denotes the Dirac measure with respect to the variable xi concentrated at xi = z. Then
after simple calculation we have

µ(x, t) = y(x, t)− (et + 1) · (δx1(
1

2
)− ψ(x1)) + et ·

{
0.5− x21, x1 < 0.5,

0.25, x1 > 0.5.

To investigate the convergence order with respect to the space discretization we fix the time
discretization with N = 2048, while the spatial discretization is fixed with 22785 Dofs to investigate
the convergence order with respect to the time discretization, the results are listed in Table 5 and
Figure 1 presents the numerical result at time t = 0.5 for a gird with 22785 Dofs. We can see from
Table 5 that the convergence order w.r.t the space discretization is almost 1, which is consistent
with our theoretical results. While the convergence order w.r.t the time discretization is 1, which
is better than our predicted result of order k

1
2 .

Example 5.4. The fourth example is a modification from Example 4.1 of [9], see also [1]. Let
ΩT = B(0, 1)× [0, 1], we take the exact solution as

y(x, t) = − 1

2π
log |x| · (et + 1),

then after simple calculation we have

µ(x, t) = (et + 1)δ0 + y(x, t)− 1

2π
log |x| · et,

where δ0 is the Dirac function at x = (0, 0).

To investigate the convergence order with respect to the space discretization we fixed the time
discretization with N = 2048, while the space discretization is fixed with 66049 Dofs to investigate
the convergence order with respect to the time discretization, the results are listed in Table 6 and
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Figure 2. The discrete solution Yh of Example 5.4 at time t = 0.5 with 66049 Dofs.

Table 6. Error of y for Example 5.4 with respect to space and time.

Dofs ∥y − Yh∥L2(ΩT ) rate N ∥y − Yh∥L2(ΩT ) rate
25 0.051725167740 \ 2 0.029719956266 \
81 0.026461768120 0.9670 4 0.013208571995 1.1700
289 0.013361104038 0.9859 8 0.006210402376 1.0887
1089 0.006716533360 0.9923 16 0.003085031620 1.0094
4225 0.003366984764 0.9963 32 0.001685293247 0.8723
16641 0.001685479572 0.9983 64 0.001112777391 0.5988

Figure 2 presents the numerical result at time t = 0.5 for a gird with 66049 Dofs. We can see from
Table 6 that the convergence order w.r.t the space discretization is 1, which is consistent with our
theoretical results. While the convergence order w.r.t the time discretization is also 1, which is
better than our predicted result of order k

1
2 .

6. Conclusion and future work

In this paper we study the a priori error estimates for the finite element approximations of
parabolic equations with measure data separately in time and space, respectively. The space
discretization is done using piecewise linear and continuous finite elements, whereas the time
discretization is based on the backward Euler method. We derive the a priori error estimates for
the semidiscretization problems and the fully discrete problems, respectively. Numerical results
are provided at the end of the paper to confirm our theoretical findings.

To the best of author’s knowledge, this paper is among the fewer contributions to finite element
method for partial differential equations involving measure data. Especially, the results obtained in
this paper constitute the crucial ingredients to derive the error estimates for some kind of parabolic
optimal control problems with state constraints. The traditional approach of error analysis for
parabolic optimal control problems with state constraints is to avoid the error estimates for adjoint
state equation, which is caused by the lack of error estimates for parabolic equations involving
measure data (see, e.g., [10], [15] and [22]). We believe that the results in this paper provide a
shortcut for the error analysis of such kind of problems.

Moreover, the results obtained in this paper can be viewed as the first step, but crucial step, for
the error analysis of the finite element approximation to parabolic optimal control problems with
pointwise control, where control acts on finitely many points of the domain. The state equation
has the form of (2.13) with righthand side µ = u(t)ω(x) (see (1.6)), where u(t) denotes the control
variable, the details can be found in [11], [14] and [25]. The finite element approximation of
such kind of problems and corresponding error analysis will be addressed in our future work. In
addition, as pointed out in the introduction, parabolic equations with measure data find many
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applications in optimal control theory. But generally the Lagrange multiplier µ associated to the
state constraints for parabolic optimal control problems with pointwise state constraints belongs
to M(ΩT ) (see (1.5)), so it is also very interesting to study the finite element approximation of
parabolic problems with measure data in both space and time (see [4] for the analytical setting),
the approaches developed in the current paper seems to be unapplicable for such extreme case.

On the other hand, since the solutions of parabolic problems involving measure data have
lower regularities, only reduced convergence order can be expected by standard finite element
approximation. Thus the a posteriori error estimate and adaptive finite element method for such
kind of problems are necessary and deserved further study. Araya et al. ([1]) have studied a
posteriori error estimates for elliptic problems with Dirac delta source terms, the applications of
their approaches to our setting will be postponed to our future work.
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