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zur Angewandten Mathematik

Algebraic Medical Image Reconstruction from
Scattered Radon Data by Positive Definite Kernel

Stefano De Marchi, Armin Iske, Amos Sironi

Nr. 2012-08
June 2012





Algebraic Medical Image Reconstruction

from Scattered Radon Data by Positive Definite Kernels

Stefano De Marchi
Department of Mathematics, University of Padua, Italy

demarchi@math.unipd.it

Armin Iske
Department of Mathematics, University of Hamburg, Germany

iske@math.uni-hamburg.de

Amos Sironi
CVLab, EPFL, Lausanne, Switzerland

amos.sironi@epfl.ch

June 1, 2012

Abstract

Computerized tomography requires customized numerical methods for the approximation of
a bivariate target function f from a finite set of discrete Radon data, each of whose data samples
represents one line integral of f . In standard reconstruction methods, specific assumptions
concerning the distribution of the sample lines are usually made, e.g. by parallel line geometry.
In relevant applications of medical image reconstruction, however, such assumptions are often
too restrictive. In this case, one would rather prefer to work with reconstruction methods
allowing for arbitrary distributions of scattered sample lines.

In this paper, we propose a novel kernel-based algebraic reconstruction method for medi-
cal image reconstruction from scattered Radon data. Our reconstruction relies on generalized
Hermite-Birkhoff interpolation by positive definite kernel functions in combination with a suit-
able regularization of the Radon transform. This leads to a very flexible reconstruction method
for medical images, whose good performance is supported by numerical examples and compari-
sons with classical Fourier-based methods relying on the filtered back projection formula.

Keywords: Medical image reconstruction, computerized tomography, algebraic reconstruction
techniques, Hermite-Birkhoff interpolation, positive definite kernel functions.

1 Introduction

Computed Axial Tomography (CAT or CT) is a powerful technique to generate (medical) images
from measurements of X-ray scans. One X-ray scan typically consists of several million of data
samples, each of which corresponds to an X-ray beam passing through the computational domain,
traveling from an emitter to a detector. The sensors of the operational CT scanner (positioned at
the emitter and at the detector) then measures, for each X-ray beam, the loss of energy, resulting
from the X-ray beam passing through the medium. The loss of energy reflects the ability of the
medium to absorb energy, and so it depends on its specific structure and material properties.
The amount of absorption can be described as a function of the computational domain Ω, termed
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attenuation coefficient function, f : Ω→ [0,∞). The primary goal of medical image reconstruction
from CT scans is to reconstruct the unknown attenuation coefficient function f from given X-ray
scans in order to generate clinically useful medical images. This in turn requires robust numerical
algorithms to reconstruct characteristic features of medical images at sufficiently high accuracy,
on the one hand, and at sufficiently small computational costs, on the other hand. For details
concerning the acquisition of X-ray scans, their underlying mathematical models, and standard
computational methods for medical image reconstruction, we refer to the textbook [7] of Feeman.

To describe the mathematical problem of medical image reconstruction from X-ray scans, let
us first regard the Radon transform Rf of f , given by

Rf(t, θ) =

∫
R
f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds for t ∈ R and θ ∈ [0, π), (1)

where we assume that f : Ω→ R is a bivariate function on a compact domain Ω ⊂ R2, or, in other
words, we assume that f is compactly supported on R2, where we extend f to R2 by letting f ≡ 0
outside Ω. In many relevant application scenarios, we may assume that the image domain Ω is the
unit square, i.e., Ω = [0, 1]2, but this restriction is rather immaterial for our following discussion.
We will merely assume f ∈ L1, so that for any pair of t ∈ R and θ ∈ [0, π) the Radon integral in
(1) is well-defined.

We remark that the Radon transform Rf(t, θ) gives, for any fixed pair (t, θ) ∈ R × [0, π), a
line integral for f over a specific straight line ` ≡ `t,θ. In order to see this, let `t,θ ⊂ R2 denote
the unique straight line, which is perpendicular to the unit vector ~n = (cos(θ), sin(θ)) and which
passes through the point p = (t cos(θ), t sin(θ)). In this case, the line `t,θ can be parameterized as

(x(s), y(s)) = p+ s~v = (t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) for s ∈ R, (2)

where we let ~v = (− sin θ, cos θ), so that ~v ⊥ ~n. By this specific choice for a parameterization of
`t,θ in (2), we immediately see that∫

`t,θ

f(x1, x2) dx1 dx2 =

∫
R
f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds = Rf(t, θ)

for any t ∈ R and θ ∈ [0, π), and so the line integral of f over `t,θ coincides with the Radon
transform (1) of f at (t, θ).

On the other hand, any straight line ` in the plane can be described by a unique pair (t, θ) of
a radial parameter t ∈ R and an angular parameter θ ∈ [0, π) satisfying ` ≡ `t,θ. In this way, the
Radon transform Rf of f can be viewed as a transformation, which maps any bivariate function
f ∈ L1 (in Cartesian coordinates) onto a bivariate function Rf (in polar coordinates), where the
image Rf contains all line integrals of f over the set of straight lines in the plane.

Due the seminal work [14] of Johann Radon (in 1917), any (sufficiently regular) function f can
be reconstructed from its Radon transform Rf . The inversion of the Radon transform is given by
the filtered back projection (FBP) formula (see [7, Chapter 6]),

f(x1, x2) =
1

2
B
{
F−1 [|S|F(Rf)(S, θ)]

}
(x1, x2), (3)

where F is, for any fixed angle θ, the univariate Fourier transform w.r.t. the radial variable t, and
so is F−1 the univariate inverse Fourier transform w.r.t. the frequency variable S. Moreover, the
back projection B is, for any function h ≡ h(t, θ) (in polar coordinates), given by the average

Bh(x1, x2) =
1

π

∫ π

0
h(x1 cos(θ) + x2 sin(θ), θ) dθ for (x1, x2) ∈ R2

2



of h(t, θ) over the angular variable θ, where we let t = x1 cos(θ) + x2 sin(θ) according to the
one-to-one relation between the Cartesian coordinates (x1, x2) and the polar coordinates (t, θ), as
described above along with the parameterization of the lines `t,θ in (2). For basic details concerning
the derivation of the filtered back projection formula, we refer to [7], and for a more comprehensive
mathematical treatment of the Radon transform and its inversion, we refer to the textbooks [9, 12].

In practical application scenarios, however, only a finite set of Radon data,

RL(f) = {Rf(tk, θk)}mk=1, (4)

given as integrals of f over a finite set of m pairwise distinct lines,

L = {`tk,θk : (tk, θk) ∈ R× [0,∞) for k = 1, . . . ,m},

is available. In this case, an approximate reconstruction of f from Radon data RLf is sought.
In standard techniques of medical imaging, the reconstruction of f is accomplished by using a
suitable discretization of the FBP in (3). For this class of Fourier-based reconstruction methods,
the discrete lines in L, over which the line integrals of f are known, are usually required to be
regularly spaced in the plane, e.g. by assuming parallel beam geometry or fan beam geometry (see [7]
for details concerning these particular assumptions on the geometry of L).

In many clinical scenarios of data acquisition, however, we may face a limited range of angles
(e.g. in mammography), or a limited dosage of X-ray expositions, so that the Radon data are
partly corrupt or incomplete. In such relevant cases, the Radon data in (4) are typically scattered,
i.e., the lines in L are scattered, in which case standard Fourier methods do no longer apply. This
may also be relevant in situations, where sensitive regions, e.g. optical nerves or the spinal column,
are being scanned, or when it comes to scanning regions of the body containing artifact inducting
materials, such as stainless steel hips. In all such possible application scenarios, we are essentially
concerned with the approximation of f from scattered (Radon) data RLf .

One way for doing so is to first compute an interpolation to the Radon data in (4), before a
Fourier-based FBP discretization is applied, as this has recently been suggested by Beatson and
zu Castell in [2]. Other possible reconstruction methods are relying on wavelets (e.g. [3, 6]).

Algebraic reconstruction techniques (ART) [8] are fundamentally different from Fourier-based
(or wavelet-based) reconstructions. In the setting of ART, one fixes a suitable set S = {sj}nj=1 of
basis functions beforehand to solve the reconstruction problem

RL(s) = RL(f) (5)

by using a linear combination

s =
n∑
j=1

cjsj

of the basis functions in S, where n may be the number of pixels in the image representation. This
ansatz amounts to solving the linear system

Ac = b (6)

for the unknown coefficients c = (c1, . . . , cn)T ∈ Rn of s, where the m× n matrix A has the form

A = (Rsj(tk, θk))k=1,...,m;j=1,...,n ∈ Rm×n

and the right hand side b is given by the m Radon observations bk = Rf(tk, θk), for k = 1, . . . ,m.
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Unless the number m of Radon samples coincides with the number n of coefficients, the linear
system in (6) is either overdetermined, for m > n, or underdetermined, for n > m. In case of an
overdetermined system, the classical method of linear least squares approximation [4] is applied
to minimize the residual (Euclidean) norm ‖Ac− b‖, whereas for an underdetermined system the
iterative method of Kaczmarz [7, Section 9.3] is a standard tool to compute an approximate solution
c satisfying Ac ≈ b. We remark that in either case the linear system in (6) is not guaranteed to
have a unique solution, not even in the rare case, where m = n. In fact, the latter is due to the
Mairhuber theorem [5, Chapter 1] from multivariate approximation theory.

In this paper, we propose a kernel-based algebraic reconstruction method, whose solution is
always unique. To this end, we use positive kernel functions to obtain a square system of the form
(6) with a symmetric and positive definite matrix A, where the basis functions in S = {sj}nj=1 do
essentially depend on the given Radon functionals RL. Our proposed reconstruction scheme relies
on the general theory of kernel-based multivariate interpolation from generalized Hermite-Birkhoff
data [10], where we adapt this particular interpolation scheme to the special case of reconstruction
from scattered Radon data. But in order to ensure well-defined entries in the reconstruction matrix
A, we need to apply weighted Radon transforms for the purpose of regularization, as explained
later in this paper. This way we obtain a well-posed reconstruction scheme, which works for
arbitrary scattered Radon data.

The outline of this paper is as follows. In the following Section 2, we briefly review the solution
to the generalized Hermite-Birkhoff interpolation problem, where we show how to adapt that
scheme to the special case of reconstruction from scattered Radon data. This is followed by a
discussion in Section 3 concerning the regularization of the Radon transform, where we work with
weighted Radon transforms. In Section 4, numerical results are finally provided for illustration.
Our numerical experiments of Section 4 include comparisons between Fourier-based reconstructions
relying on the FBP formula and the kernel-based ART proposed in this paper, where we apply
the two different reconstructions to commonly used phantoms.

2 Generalized Hermite-Birkhoff Interpolation

To solve the reconstruction problem (5), we consider applying Hermite-Birkhoff interpolation [10].
To explain the general framework of this particular interpolation method, let Λ = {λ1, . . . , λn}
denote a set of linearly independent linear functionals. Moreover, suppose we are given a vector
fΛ = (λ1(f), . . . , λn(f))T ∈ Rn of samples taken from an unknown function f . Now the solution
of the general Hermite-Birkhoff reconstruction problem requires finding a function s satisfying the
interpolation conditions sΛ = fΛ, i.e.,

λk(s) = λk(f) for all k = 1, . . . , n. (7)

Note that this general framework covers our reconstruction problem when the linear functionals
λk are defined as

λk(f) := Rf(tk, θk) for k = 1, . . . , n. (8)

By the interpolation conditions in (7), we obtain n linear equations of the form

n∑
j=1

cjλk(sj) = λk(f) for k = 1, . . . , n,

corresponding to the linear system in (6). But by the choice of our particular ansatz, the number
of data matches the number of basis functions, i.e., we have n = m.
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Now in order to obtain a well-posed interpolation scheme, we require that the basis functions
sj are of the form

sj(x) = λyjK(x, y) for j = 1, . . . , n, (9)

where λyjK(x, y) denotes action of the functional λj to K w.r.t. variable y. Moreover, the kernel
function K ≡ K(x, y) is required to be symmetric and positive definite. For a more recent account
to the construction and characterization of positive definite kernels, we refer the reader to [11].
For the purposes of this paper, it is sufficient to say that K is a symmetric and positive definite
kernel, iff the matrix

A =
(
λxjλ

y
kK(x, y)

)
1≤j,k≤n ∈ Rn×n

is symmetric and positive definite for any set Λ = {λj}nj=1 of linearly independent functionals λj .
To make relevant examples for positive definite kernels, we resort to radially symmetric kernels,

in which case K is assumed to have the form

K(x, y) = φ(‖x− y‖) for x, y ∈ Rd,

where φ : [0,∞)→ R is radial w.r.t. the Euclidean norm ‖ · ‖.
Example 1. The Gaussian function

φε(r) = e−(εr)2 for r ∈ [0,∞) and ε > 0

is for any ε > 0 positive definite, i.e., K(x, y) = exp(−(ε‖x− y‖)2) is positive definite.

Example 2. The inverse multiquadric

φε(r) =
(
1 + (εr)2

)−1/2
for r ∈ [0,∞) and ε > 0

is for any ε > 0 positive definite, i.e., K(x, y) = 1/
√

1 + (ε‖x− y‖)2 is positive definite.

Example 3. The compactly supported radial characteristic functions of Askey [1],

φε(r) = (1− εr)β+ =

{
(1− εr)β for r < 1/ε

0 for r ≥ 1/ε
for r ∈ [0,∞) and ε > 0,

are for any β > 3/2 positive definite on R2.

For all three choices of functions φε, from Examples 1-3, the resulting linear system has a
symmetric and positive definite reconstruction matrix

A =
(
λxjλ

y
kK(x, y)

)
1≤j,k≤n ∈ Rn×n,

where we have tacitly assumed that all entries λxjλ
y
kK(x, y) in A are well-defined. This assumption,

however, may be too sloppy, especially when the input data λk(f) in (8) are generated by Radon
transforms. We describe and address the resulting problems in the following section.

3 Regularization by Weighted Radon Transforms

The Hermite-Birkhoff interpolation method from Section 2 can, in general, not be applied to the
reconstruction from scattered Radon data. In fact, at least two problems may occur, that we can
describe and solve as follows.
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Problem 1: Singular basis functions. Note that the Radon transform

RyK(x, y)(t, θ) =

∫
R
K(x, (t cos(θ)− s sin(θ), t sin(θ) + s cos(θ))) ds (10)

of the basis functions in (9) may be undefined for specific choices of (t, θ) ∈ R× [0, π) and x ∈ R2.
To make one example, we regard the inverse multiquadric

K(x, y) = (1 + (ε‖x− y‖)2)−1/2 = O(‖y‖−1) for ‖y‖ → ∞

In this case, we have

K(x, (t cos(θ)− s sin(θ), t sin(θ) + s cos(θ))) = O(s−1) for s→ ±∞,

so that the integral in (10) is singular for any (t, θ) ∈ R× [0, π) and x ∈ R2.

Solution 1: To solve this problem, we apply a Gabor transform, with window function

Gσ(r) =
1√
2πσ

exp

(
− r2

2σ2

)
for σ > 0,

to the kernel K(x, y) = φε(‖x − y‖), i.e., we replace the radial kernel φε in the reconstruction
scheme of Section 2 by the windowed inverse multiquadric kernel

φε,σ(r) := φε(r)Gσ(r),

where the width 2σ > 0 of the Gabor window Gσ is chosen to match the diameter of the computa-
tional domain, i.e., we let σ := diam(Ω)/2. Note that φε,σ is positive definite, since each factor, φε
and Gσ, is positive definite, i.e., φε,σ is for any ε, σ > 0 a positive definite radial kernel function.
In this way, we obtain a well-defined integral (10), since the integrand

K(x, y) = φε,σ(‖x− y‖) =
1√
2πσ

exp
(
−‖x−y‖

2

2σ2

)
√

1 + (ε‖x− y‖)2

is for any x ∈ R2 in L1(R2) w.r.t. variable y ≡ y(s) = (t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)).

Note that for the other two choices of kernel functions, i.e., for the Gaussians (Example 1)
and for the radial characteristic functions (Example 3), this problem does not occur. Indeed, in
either of these two cases, we have φε(r) ∈ L1([0,∞)), so that the function K(x, ·) = φε(‖x − ·‖)
is, for any ε > 0 and x ∈ R2, integrable over R2. In particular, the integral in (10) is in this case
well-defined for any combination of (t, θ) ∈ R× [0, π) and x ∈ R2. We have computed their basis
functions in [16] as follows.

Example 4. The basis functions sj in (9) from the Gaussian kernel (of Example 1) are given as

(RyK(x, y))(tj , θj) =

√
π

ε
e−ε

2(tj−x·~nj)2 for ~nj = (cos(θj), sin(θj)).

Details on our computations can be found in [16, Section 5.1.3].

Example 5. The basis functions sj in (9) from the compactly supported kernel φε(r) = (1− εr)2
+

(of Example 3 for β = 2) are given as

(RyK(x, y))(tj , θj) =

{
g(tj − x · ~nj) for |tj − x · ~nj | ≤ 1/ε,

0 for |tj − x · ~nj | > 1/ε,

6



where ~nj = (cos(θj), sin(θj)), and where

g(t) =

 2
ε

[√
1−(εt)2

3 (2(εt)2 + 1)− (εt)2acosh(ε−1|t|−1)

]
for t 6= 0,

2
3ε for t = 0.

Details on our computations can be found in [16, Section 5.4.1].

Problem 2: Singular entries in the reconstruction matrices. Even if we may assume
that the basis functions sj = (RyK(·, y))(tj , θj) in (9) are well-defined for (tj , θj) ∈ R × [0, π),
their Radon transforms Rx[(RyK(x, y))(tj , θj)](tk, θk) may be undefined, in which case individual
entries

akj = Rx[(RyK(x, y))(tj , θj)](tk, θk)

in the reconstruction matrix A = (akj)1≤j,k≤n may be undefined. To make one example, consider
the basis functions from the Gaussian kernel (see Example 4) . In this case, the matrix entries are
given as

akj =

{
π

ε2 sin (θk−θj)
for θk 6= θj ,

+∞ for θk = θj ,

cf. our computation in [16, Section 5.1]. Therefore, all diagonal entries ajj , 1 ≤ j ≤ n, are singular.

Solution 2: We solve this problem by the application of standard regularization techniques.
To this end, we multiply the basis functions sj(x) = RyK(x, y)(tj , θj) by a non-negative weight
function w(x) satisfying

R[sj(x)w(x)](t, θ) <∞ for all (t, θ) ∈ R× [0, π)

for all 1 ≤ j ≤ n. Note that this corresponds to a regularization of the Radon operator R. In other
words, we replace, for fixed weight function w ≡ w(x), the Radon transform R by the weighted
Radon transform Rw, defined as

Rwf(t, θ) := R(fw)(t, θ) =

∫
`t,θ

f(x)w(x) dx for all (t, θ) ∈ R× [0, π). (11)

We remark that the weighted Radon transform arises in relevant applications of single photon
emission computed tomography (SPECT), where Rw is called attenuated Radon transform [13].

The application of the proposed regularization leads us to the modified reconstruction problem

Rws(tk, θk) = Rf(tk, θk) for all k = 1, . . . , n,

with assuming (9) for the form of the basis functions sj , so that

s(x) =
n∑
j=1

cjsj(x) =
n∑
j=1

cj(RyK(x, y))(tj , θj)

gives the form of the reconstruction s. The unknown coefficients c = (c1, . . . , cn)T ∈ Rn of s are
given by the solution of the linear system (6), but now with the regularized reconstruction matrix

A ≡ Aw = (Rwsj(tk, θk))1≤j,k≤n ∈ Rn×n. (12)

Now let us finally turn to the choice of the weight function w. The weight w is usually a
function of variables x and θ. But in our case, it will be convenient to assume that w does only
depend on the Euclidean norm of variable x, i.e., w ≡ w(‖x‖). In our numerical experiments, we
have considered using two families of weight functions wν , where ν is a positive scale parameter:
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• the Gaussian weight function

wν(x) = exp(−(ν‖x‖)2) for x ∈ R2, (13)

• the compactly supported weight function

wν(x) = (1− (ν‖x‖)2)+ =

{
1− (ν‖x‖)2 for ‖x‖ < 1/ν,

0 for ‖x‖ ≥ 1/ν,
for x ∈ R2. (14)

By our choices of kernels (from Examples 1-3) and weight functions (13)-(14), we can com-
pute the weighted Radon transforms Rw(sj) in (11) analytically. In this way, we obtain explicit
expressions for the entries of the reconstruction matrix A in (12). For the Gaussian kernel φε of
Example 1, for instance, we apply the Gaussian weight function wν(x) = exp(−(ν‖x‖)2), in which
case we can compute the entries in A as

akj = Rwsj(tk, θk) =
π exp

[
−ν2

(
t2k +

(εβkj)
2

(εαkj)2+ν2

)]
ε
√

(εαkj)2 + ν2
,

where we let βkj = tk−tj cos (θk − θj) and αkj = sin (θk − θj). Details on our computations can be
found in [16, Section 5], where also other relevant combinations of kernels φε and weight functions
wν are covered.

4 Numerical Results

We have implemented the proposed kernel-based reconstruction scheme for the three kernels φε
from Examples 1-3 in combination with the Radon transform’s regularization, by using the two
weight functions wν in (13)-(14). We have performed quite comprehensive numerical experiments
for various possible combinations of kernels φε and weights wν , a small selection of which we
present here for the purpose of illustration.

In our series of numerical experiments concerning the popular phantoms bull’s eye, the crescent-
shaped phantom, and the Shepp-Logan phantom, we found that the Gaussian kernel (Example 1)
performs much better than the inverse multiquadric (Example 2) and the compactly supported
kernel φε(r) = (1 − εr)2

+ (Example 3 for β = 2), where the performance of the latter two kernels
is comparable. This is supported by our numerical example in Figure 5. Indeed, we obtained the
best numerical results – in terms of the reconstructions’ visual quality and the root mean square
error (RMSE) in (15) – for the Gaussian kernel φε(r) = exp(−(εr)2) in combination with the
Gaussian weight function wν(x) = exp(−(ν‖x‖)2), provided that the shape parameters ε and ν
were properly chosen.

In fact, we found that the performance of the Gaussian reconstruction method is quite sensitive
to the choice of the method parameters ε and ν. Therefore, we decided to perform a ”fine-tuning”
of the Gaussian parameters ε and ν, whose numerical results are presented in Subsection 4.2.
Moreover, in Subsection 4.3 we provide numerical comparisons with Fourier-based reconstruc-
tions, relying on the filtered back projection formula, for Radon data on parallel beam geometry.
In Subsection 4.4, we present numerical results concerning Gaussian reconstruction from scattered
Radon data, and in Subsection 4.5 from regular Radon data (on parallel beam geometry), where we
also provide a comparison between different kernels. Comparisons concerning Gaussian reconstruc-
tion on regular Radon data vs scattered Radon data are provided in the following Subsection 4.1.
For a more comprehensive documentation on our numerical experiments, we refer to [16].
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4.1 Gaussian Reconstruction of the Crescent-Shaped Phantom

Let us first regard the popular test case crescent-shaped phantom, given by the function

f(x, y) =


1.0 for (x, y) ∈ Ω,
0.5 for (x, y) ∈ Di,
0.0 for (x, y) ∈ R2 \Do,

on the unit square Ω = [0, 1]2, where

Di = {(x, y) ∈ R2 : (x− 1/8)2 + y2 ≤ 9/64} and Do = {(x, y) ∈ R2 :x2 + y2 ≤ 1/4},

as shown in Figure 1 (a).
Figures 1 (b),(c) show the reconstruction of the crescent-shaped phantom obtained with the

Gaussian kernel φε and the Gaussian weight function wν for parameters ε = 40 and ν = 0.7,
and for n = 3888 different Radon lines. The Radon samples were taken on a set of n regularly
distributed lines generated by parallel beam geometry, and on a set of n scattered Radon lines.
In either case, the crescent-shaped phantom f is localized and reconstructed fairly well by the
proposed kernel-based reconstruction scheme. But the quality of the reconstruction on parallel
beams, Figure 1 (b), is superior to that on scattered lines, Figure 1 (c). This is due to the uniform
coverage of the Radon lines over the computational domain Ω. The geometry of the Radon lines are
visible in the display of the reconstructions in Figures 1 (b),(c), especially between the boundary
of the domain Ω and the phantom’s boundary.

(a) crescent-shaped phantom (b) parallel beam geometry (c) scattered Radon data

Figure 1: Crescent-shaped phantom. (a) Original phantom; (b)-(c) reconstruction of crescent-
shaped phantom using the Gaussian kernel φε with ε = 40 and the Gaussian weight function wν
with ν = 0.7 from n = 3888 Radon samples taken on (b) regularly spaced Radon lines (parallel
beam geometry), (c) scattered Radon lines.

4.2 On the Selection of the Gaussian Shape Parameters

In this subsection, we discuss the variation of the method parameters ε (for the Gaussian kernel
φε) and ν (for the Gaussian weight function wν), where we use the phantom bull’s eye, whose
radially symmetric test function is given as

f(x, y) =


1/2 iff x2 + y2 ≤ 1/16;
1/4 iff 1/16 < x2 + y2 ≤ 1/4;
1 iff 1/4 < x2 + y2 ≤ 9/16;
0 iff 9/16 < x2 + y2.
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The phantom bull’s eye is displayed in Figure 5, second row, first column. In our numerical
experiments, we have analyzed the behaviour of the Gaussian reconstruction error as a bivariate
function of parameters ε and ν. For the error measure, we consider using the standard root mean
square error

RMSE =

√√√√ 1

J

J∑
j=1

(fj − f̂j)2, (15)

where J is the size of the image (i.e., the number of pixels) and {fj}Jj=1, {f̂j}Jj=1 are the greyscale
values at the pixels of the original image bull’s eye and of the reconstructed image, respectively.

Let us first consider the variation of the shape parameter ε of the Gaussian kernel φε. In our
numerical experiments, we have fixed the weight parameter at ν = 0.7. For different choices of N
and M , we have used parallel beam geometry with N angles and 2M + 1 parallel lines per angle,
resulting in a number of n = N × (2M + 1) Radon samples for each numerical experiment. With
the variation of the shape parameter ε, we have recorded an ”optimal” value ε∗, where, according
to our numerical observations, the RMSE is minimal. The following Table 1 reflects our results.
Note that the ”optimal” value ε∗ increases with the number n of Radon data taken. This is not
too surprising insofar as in plain kernel-based interpolation, the shape parameter of the Gaussian
kernel is recommended to be proportional to the density of the sample points: the higher the
density of points, the larger ε should be chosen. In our numerical experiments, the sample density
increases with the number n of lines, which explains the monotonicity of ε∗ in Table 1.

N 36 54 72 90 108 126 144 162 180

M 20 30 40 50 60 70 80 90 100

n 1,476 3,294 5,832 9,090 13,068 17,766 23,184 29,322 36,180

ε∗ 21.05 28.42 37.36 48.42 59.47 72.10 84.21 90.52 97.37

Table 1: Parameter-tuning for Gaussian kernel φε. Reconstruction of phantom bull’s eye by
Gaussian kernel φε, with variation of the kernel parameter ε. For fixed weight parameter ν = 0.7,
and for different choices of N angles θ and 2M+1 lines per angle in a parallel beam geometry. For
each experiment, the ”optimal” shape parameter ε∗, whose resulting RMSE is minimal, is shown.

Figure 2: Parameter-tuning for Gaussian weight function wν. Reconstruction of phantom
bull’s eye by the Gaussian kernel φε(r) = exp(−(εr)2) for ε = 30. The graph of the RMSE as a
function of the weight parameter ν is shown.
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Next we consider the variation of the shape parameter ν for the Gaussian weight function wν
in (13). Figure 2 shows the RMSE as a function of ν, for constant kernel shape parameter ε = 30
and for a fixed number n = 1230 of Radon lines (on a parallel beam geometry). We have observed
that the minimal RMSE is attained at ν∗ = 0.4522 (cf. Figure 2). Note that the graph in Figure 2
illustrates the dependence between the RMSE and the weight parameter ν quite well.

We have further performed a series of rather extensive numerical experiments concerning the
phantoms bull’s eye, the crescent-shaped phantom, and the Shepp-Logan phantom, where our
reconstructions were computed on a parallel beam geometry with N = 30 angles and 2M + 1 = 41
lines per angle, so that the number of Radon samples is n = 1230. The following Table 2 shows
”optimal” combinations of values ε∗ for the Gaussian kernel and ν∗ for the Gaussian weight, whose
resulting RMSE ≡ RMSE(ε, ν) is minimal.

Phantom Gaussian kernel φε Gaussian weight wν
crescent-shaped phantom ε∗ = 19.6552 ν∗ = 0.5067

bull’s eye ε∗ = 15.5172 ν∗ = 0.4522

Shepp-Logan phantom ε∗ = 18.2759 ν∗ = 2.0558

Table 2: ”Optimal” shape parameters for Gaussian kernel and Gaussian weight. Fine-
tuning of shape parameter ε∗ and weight parameter ν∗ for three different phantoms by Gaussian
reconstruction on parallel beam geometry (for N = 30 angles and 2M + 1 = 41 lines per angle).

We have used these ”optimal” parameters ε∗ and ν∗ for the numerical comparisons in Figure 5.

4.3 Comparison of the Kernel-based and the Fourier-based Reconstruction

Now let us compare our kernel-based reconstruction method with Fourier-based reconstructions,
relying on the filtered back projection formula. We have studied the behaviour of the RMSE as a
function of the number n of Radon samples for a parallel beam geometry. Figure 3 illustrates the
performances of the reconstruction by the Gaussian kernel and by a Fourier-based reconstruction,
for a sequence of data comprising between n = 210 and n = 4050 Radon samples, taken from the
crescent-shaped phantom. On the basis of our numerical results [16], we can conclude that our
kernel-based reconstruction method is competitive to the Fourier-based reconstruction method.

Figure 3: Reconstruction of crescent-shaped phantom on parallel beam geometry.
RMSE as a function of n Radon samples for a Gaussian kernel and a Fourier-based reconstruction.
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4.4 Kernel-based Reconstruction from Scattered Radon Data

Let us finally turn to the reconstruction from scattered Radon data. Figure 4 shows a sequence
of reconstructions for the phantom bull’s eye and for the crescent-shaped phantom, each obtained
by applying the Gaussian kernel. Note that the features of the two phantoms are captured fairly
well by our kernel-based reconstruction method. Not too surprisingly, the reconstruction quality
can be improved by increasing the number n of Radon samples. Particular attention, however,
should be paid to the conditioning of the reconstruction matrix A in (12). In fact, the spectral
condition number κ(A) of A may grow quite rapidly with the number n of samples, especially for
scattered Radon data. This in turn affects the stability of the proposed reconstruction algorithm,
where the intrinsic correlation between the geometry of the lines in L and the size of the spectral
condition number κ(A) is related to Schaback’s uncertainty principle [15] for plain interpolation.
Yet it remains to describe the spectral condition number κ(A) as a function of the line geometry.

Figure 4: Scattered data reconstruction by Gaussian kernel. For the test cases bull’s
eye (first row) and crescent-shaped phantom (second row), a sequence of scattered Radon
data is taken. The figure shows the corresponding reconstructions for an increasing number
n = 2000, 5000, 10000, 20000 of scattered Radon samples (from left to right).

4.5 Comparison of Kernel-based Reconstructions on Parallel Beam Geometry

We have used the ”optimal” Gaussian parameters ε∗ and ν∗ from Table 2 for the numerical results
shown in Figure 5, where a comparison between different kernel functions is made: inverse multi-
quadric (second column), compactly supported (third column), Gaussian kernel (fourth column).
The original phantoms are shown in the first column of Figure 5.
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Figure 5: Kernel-based reconstructions on parallel beam geometry. The reconstructions
are obtained from n = 1230 Radon samples, on a parallel beam geometry with N = 30 angles
and 2M + 1 = 41 lines per angle. The original phantoms (1st col), their reconstruction by inverse
multiquadric (2nd col), by the compactly supported kernel (3rd col), and by the Gaussian kernel
(4th col) are shown. The ”optimal” values for the Gaussian parameters ε and ν are in Table 2.

On our numerical results of Figure 5 we can conclude that the reconstruction quality obtained
from the Gaussian kernel is clearly superior to those obtained from the compactly supported and
the inverse multiquadric kernel, provided that the Gaussian method parameters ε and ν are well-
chosen. Note that the performance of the compactly supported kernel and the inverse multiquadric
kernel is comparable. This complies with our numerical results, as they are documented in [16].

5 Final Remarks and Future Work

We have developed a kernel-based method for (medical) image reconstruction from scattered Radon
data. The proposed reconstruction method relies on Hermite-Birkhoff interpolation by positive
definite kernel functions, in combination with a weighted regularization of the Radon transform.
Our kernel-based reconstruction is very flexible, since it can unconditionally be applied to arbitrary
scattered Radon data, unlike classical Fourier-based reconstructions. The behaviour of the shape
parameters for the kernel and for the weight function is analyzed in numerical experiments. Our
kernel-based reconstruction method is shown to be competitive with Fourier-based reconstructions.
On the basis of our numerical results, we give preference to the Gaussian kernel. But the selection
of the kernel’s shape parameter and the weight parameter requires particular care. Further inves-
tigations along these lines should lead to choices of (optimal) kernel shape parameters depending
on the geometrical coverage of the Radon lines over the computational domain.
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