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1. Introduction
The subject of this report is the finite element approximation of optimal control
problems with constraints on the gradient of the state. A typical example is the op-
timization of a cooling process in which the temperature acts as the state variable
and large temperature gradients are prohibited in order to avoid possible damage
in the material. We shall restrict ourselves to a model problem which involves the
optimal control of a linear elliptic partial differential equation in the presence of
pointwise bounds on the gradient of the state, while the control variable can be
both constrained or unconstrained. In order to discretize this problem it is common
to approximate the underlying objective functional by a sequence of functionals
which are obtained by discretizing the state equation with the help of a finite el-
ement method. Natural choices in this step are continuous, piecewise linear finite
elements but also the lowest order Raviart–Thomas mixed finite element. The con-
trol variable can be handled in two ways: either by variational discretization (see
[11]), which means that the first order optimality conditions give rise to an implicit
discretization in terms of the discrete adjoint state; another possibility consists in
discretizing the control explicitly, typically by piecewise constant functions.
This report focusses on the a-priori error analysis for the abovementionedapproaches.
Apart from reviewing results that have been obtained in [5, 8, 12] we prove a new
bound in the case in which the control variable is unconstrained and the objective
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functional contains an Lr–norm (r > 2). In the remaining part of the paper we
present a number of test calculations.

Let us close this section with a short survey of related publications. Elliptic op-
timal control problems with gradient constraints in nonsmooth polygonal domains
are considered by Wollner in [16, 17]. While [16] is concerned with the existence of
solutions, first order conditions and regularity, [17] derives a-priori error bounds
for a finite element discretization. A general Moreau–Yosida framework for the
treatment of elliptic optimal control problems with state and gradient constraints
is presented by Hintermüller and Kunisch in [9]. Interior point approaches are in-
vestigated by Schiela and Wollner in [13]. In [15] Wollner presents an a-posteriori
error analysis for an interior point approach to elliptic optimal control problems with
general state constraints, including the case of pointwise bounds on the gradient of
the state. A residual based adaptive approach to elliptic optimal control problems
with pointwise gradient state constraints is presented by Hintermüller et al. in [10].

2. Mathematical setting
Let Ω ⊂ Rd (d = 2, 3) be a bounded domain with a C 1,1-boundary and consider the
differential operator

Ay := −
d∑

i, j=1
∂x j

(
ai jyxi

)
+ a0y,

where for simplicity the coefficients ai j and a0 are assumed to be smooth functions
on Ω̄. In what follows we assume that ai j = a ji, a0 ≥ 0 in Ω and that there exists
c0 > 0 such that

d∑
i, j=1

ai j(x)ξiξ j ≥ c0|ξ|2 for all ξ ∈ Rd and all x ∈ Ω.

We consider the elliptic boundary value problem

Ay = u in Ω
y = 0 on ∂Ω. (2.1)

It is well–known that for every 1 < p < ∞ (2.1) has a unique solution y ∈ W 2,p(Ω)∩
W1,p

0 (Ω) with
‖y‖W2,p ≤ C‖u‖Lp . (2.2)

Here ‖ · ‖Lp and ‖ · ‖Wk,p denote the usual Lebesgue and Sobolev norms. If p = 2 we
simply write ‖ · ‖ = ‖ · ‖L2 .
We consider the following optimal control problem:

min
u∈K

J(u) =
1
2

∫
Ω

|y − y0|2 +
α

r

∫
Ω

|u|r

where y solves (2.1) and ∇y ∈ C.
(2.3)

Here, α > 0 and y0 ∈ L2(Ω) are given, while

C = {z ∈ C0(Ω̄)d | |z(x)| ≤ δ, x ∈ Ω̄},
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for some given δ > 0 and | · | denotes the Euclidian norm in R d. Furthermore, we
consider the following two possible choices for K and r:

(I) K = {u ∈ L∞(Ω) | a ≤ u ≤ b a.e. in Ω}, r = 2, where a < b are given constants.

(II) K = Lr(Ω) for some r > d.

Note that in both cases a well–known embedding result implies that ∇y ∈ C 0(Ω̄)d

for the solution of (2.1), so that the condition ∇y ∈ C in (2.3) makes sense.
Existence of solutions, first order conditions as well as the structure and regularity
of multipliers for control problems with pointwise constraints on the gradient of the
state were investigated by Casas and Fernández in [4]. The authors allow a semi-
linear state equation and rather general constraints on the control and the gradient
of the state. The above choices (I) and (II) fit into the framework of [4]. In order
to formulate the first order optimality conditions we introduce the space of regular
Borel measures M(Ω̄), which is the dual space of C0(Ω̄). The norm on M(Ω̄) is
given by

‖μ‖M(Ω̄) = sup
f∈C0 (Ω̄),| f |≤1

∫
Ω̄

f dμ.

In case (I) we assume in addition that the following Slater condition holds:

∃û ∈ K |∇ŷ(x)| < δ, x ∈ Ω̄, where ŷ solves (2.1) with u = û. (2.4)

Note that in case (II) one may simply choose û = 0 to satisfy this condition.

Theorem 2.1. An element u ∈ K is a solution of (2.3) if and only if there exist
μ ∈ M(Ω̄)d and p ∈ Lt(Ω) (t < d

d−1 ) such that∫
Ω

pAz −
∫
Ω

(y − y0)z −
∫
Ω̄

∇z · dμ = 0 ∀z ∈ W2,t′ (Ω) ∩W1,t′
0 (Ω), (2.5)

∫
Ω

(p + α|u|r−2u)(ũ − u) ≥ 0 ∀ũ ∈ K, (2.6)
∫
Ω̄

(z − ∇y) · dμ ≤ 0 ∀z ∈ C. (2.7)

Here, y is the solution of (2.1) and 1
t +

1
t′ = 1.

Proof. see, [4, Theorem 3] and [4, Corollary 1]. �

Remark 2.2. We may infer from (2.6) that in case

(I) u(x) = Proj[a,b]
(
−

p(x)
α

)
a.a. x ∈ Ω,

(II) u(x) = −α−
1

r−1 |p(x)|
2−r
r−1 p(x) a.a. x ∈ Ω.

In the latter case it is shown in [12, Corollary 5] that this relation together with (2.5)

implies that u ∈ W
1− d

r −ε
r−1 ,r(Ω) for any ε > 0. An embedding result (see [14, 4.6.1])

then yields u ∈ Lpε (Ω), where pε = r−1
1− 1

d+ε
for any ε > 0.
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3. Finite element discretization
Let Th be a triangulation of Ω with maximum mesh size h := maxT∈Th diam(T ). We
suppose that Ω̄ is the union of the elements of Th; boundary elements are allowed to
have one curved face. In addition, we assume that the triangulation is quasi-uniform
in the sense that there exists a constant κ > 0 (independent of h) such that each
T ∈ Th is contained in a ball of radius κ−1h and contains a ball of radius κh.

3.1. Piecewise linear approximation of the state
Let us recall the definition of the space of linear finite elements,

Xh := {vh ∈ C0(Ω̄) | vh is a linear polynomial on each T ∈ Th}
and let Xh0 := Xh ∩ H1

0(Ω). For a given function u ∈ L2(Ω) we denote by yh ∈ Xh0
the solution of∫

Ω

A∇yh · ∇vh +

∫
Ω

a0yhvh =

∫
Ω

uvh for all vh ∈ Xh0. (3.1)

Here, we have abbreviated A(x) =
(
ai j(x)

)d
i, j=1. Let us define

Ch := {ch : Ω̄→ Rd | ch |T is constant and |ch |T | ≤ δ, T ∈ Th}. (3.2)
We approximate (2.3) by the following control problem depending on the

mesh parameter h:

min
u∈K

Jh(u) :=
1
2

∫
Ω

|yh − y0|2 +
α

r

∫
Ω

|u|r

subject to yh solves (3.1) and ∇yh ∈ Ch.

(3.3)

Note that the control variable is not discretized. Problem (3.3) represents a
convex infinite–dimensional optimization problem of similar structure as problem
(2.3), but with only finitely many constraints on the state.The following first order
conditions yield an implicit discretization of the control variable in terms of the
discrete adjoint state. Using (2.4) it is not difficult to see that a Slater condition
holds for (3.3) provided that 0 < h ≤ h 0.

Lemma 3.1. Problem (3.3) has a unique solution uh ∈ K. For 0 < h ≤ h0 there are
μT ∈ Rd, T ∈ Th and ph ∈ Xh0 such that∫
Ω

(A∇vh · ∇ph + a0vh ph) −
∫
Ω

(yh − y0)vh −
∑
T∈Th

∇vh|T · μT = 0 ∀vh ∈ Xh0, (3.4)

∫
Ω

(ph + α|uh|r−2uh)(ũ − uh) ≥ 0 ∀ũ ∈ K, (3.5)
∑
T∈Th

(
ch |T − ∇yh|T

)
· μT ≤ 0 ∀ch ∈ Ch. (3.6)

Here, yh ∈ Xh0 is the solution of (3.1) with right hand side uh.

Proof. see [4, Theorem 7] with the choices U = Lr(Ω), K ⊂ U, Ch ⊂ Z := RNh ,
where Nh is the number of triangles in Th. �
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Remark 3.2. Similar to Remark 2.2 we deduce from (3.5) that for

(I) uh(x) = Proj[a,b]
(
−

ph(x)
α

)
a.a. x ∈ Ω,

(II) uh(x) = −α−
1

r−1 |ph(x)|
2−r
r−1 ph(x) a.a. x ∈ Ω,

so that in both cases the discrete control is expressed implicitly in terms of the
piecewise linear discrete costate ph, the relation however being nonlinear.

For the unconstrained case (II), the following error bound has been proved in
[8, Theorem 2.5]:

Theorem 3.3. Let u and uh be the solutions of (2.3) and (3.3) in case (II) respec-
tively. Then there exists h0 > 0 such that

‖u − uh‖Lr ≤ Ch
1
r (1− d

r ), ‖y − yh‖ ≤ Ch
1
2 (1− d

r )

for all 0 < h ≤ h0.

The proof relies on a careful combination of the information given by the pri-
mal and adjoint equations and we present the main ideas in the following section
for a mixed finite element discretization of the state equation. The bounds in The-
orem 3.3 are still satisfied if one employs a discretization of the control variable
by piecewise constant functions on Th, see [8, Theorem 2.8]. We also remark that
the above results are obtained by Ortner and Wollner in [12] without making use
of adjoint information by working directly with the functionals J and J h. Such a
technique was previously used in [6] for the numerical analysis of elliptic optimal
control problems with pointwise bounds on the state.
In general, both the control u and the adjoint variable p have low regularity even
allowing jumps. For this reason, piecewise linear, continuous finite elements are not
ideally suited for the discretization as they tend to develop oscillations near discon-
tinuities. In the next section we present an alternative approach on the basis of a
mixed finite element approach of lowest order for the state equation. This approach
leads in particular to piecewise constant approximations for the state, costate and
control and therefore seems to be better suited to handle discontinuities.

3.2. Mixed finite element approximation of the state
As already mentioned we now use a mixed formulation in order to approximate the
solution of (2.1). Let us introduce

H(div,Ω) := {w ∈ L2(Ω)d | divw ∈ L2(Ω)}

and write (y, v) = G(u), where v = A∇y and y is the solution of (2.1).
We use a mixed finite element method based on the lowest order Raviart–Thomas
element. Let

Vh := RT0(Ω,Th) := {wh ∈ H(div,Ω) |wh|T ∈ RT0(T ) for all T ∈ Th},

where RT0(T ) = {w : T → Rd |w(x) = a + βx, a ∈ Rd, β ∈ R}. Furthermore, let

Yh := {zh ∈ L2(Ω) | zh is constant on each T ∈ Th}.
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For a given function u ∈ Lr(Ω) the discrete solution (yh, vh) ∈ Yh × Vh is given by∫
Ω

A−1vh · wh +

∫
Ω

yh divwh = 0 ∀wh ∈ Vh (3.7)
∫
Ω

zh divvh −
∫
Ω

a0yh zh +

∫
Ω

u zh = 0 ∀zh ∈ Yh. (3.8)

Introducing Gh(u) = (yh, vh) ∈ Yh × Vh as an approximation of G it is well–known
([3]) that the following error estimate holds:

‖y − yh‖ + ‖v − vh‖ ≤ Ch
(
‖y‖H1 + ‖A∇y‖H1

)
≤ Ch‖y‖H2 ≤ Ch‖u‖ (3.9)

by (2.2). In what follows it will be crucial to control the error between v and v h in
L∞(Ω).

Lemma 3.4. Let d < p < ∞, u ∈ Lp(Ω) and (y, v) = G(u), (yh, vh) = Gh(u). Then
there exists h0 > 0 such that for 0 < h ≤ h0

‖v − vh‖L∞ ≤ Ch1− d
p | log h|1−

2
p ‖u‖Lp .

Proof. Let us denote by T the linear operator which assigns to u the error v − v h.
We deduce from (3.9) that

‖T ‖L2→L2 ≤ Ch.

On the other hand we infer from [7, Corollary 3] that there exists h 0 > 0 so that for
0 < h ≤ h0

‖v − vh‖L∞ ≤ Ch| log h| ‖u‖L∞

for all u ∈ L∞(Ω), so that
‖T ‖L∞→L∞ ≤ Ch| log h|.

The Riesz convexity theorem then implies that

‖T ‖Lp→Lp ≤ ‖T ‖
2
p

L2→L2‖T ‖
1− 2

p
L∞→L∞

and hence

‖v − vh‖Lp ≤ Ch
2
p
(
h| log h|

)1− 2
p ‖u‖Lp = h| log h|1−

2
p ‖u‖Lp

for all u ∈ Lp(Ω). Denoting by Ih the usual Lagrange interpolation operator we de-
duce with the help of standard interpolation estimates, (2.2) and an inverse estimate
that

‖v − vh‖L∞ ≤ ‖v − Ihv‖L∞ + ‖Ihv − vh‖L∞

≤ ch1− d
p ‖v‖W1,p + ch−

d
p ‖Ihv − vh‖Lp

≤ ch1− d
p ‖u‖Lp + ch−

d
p ‖v − Ihv‖Lp + ch−

d
p ‖v − vh‖Lp

≤ ch1− d
p ‖u‖Lp + ch1− d

p | log h|1−
2
p ‖u‖Lp

which yields the result. �
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Similarly to (3.3) we now consider the following discrete control problem:

min
u∈K

Jh(u) :=
1
2

∫
Ω

|yh − y0|2 +
α

r

∫
Ω

|u|r

subject to (yh, vh) = Gh(u) and
(�

T
A−1vh

)
T∈Th
∈ Ch,

(3.10)

where Ch is as in (3.2) and
�
T · =

1
|T |

∫
T ·. We note that the control again is not

discretized and that the gradient of the state variable is only constrained on average
on each element. Similar to Lemma 3.1 and Remark 3.2 one has

Lemma 3.5. Problem (3.10) has a unique solution u h ∈ K. There exists 0 < h1 ≤ h0
such that for 0 < h < h1 there are μT ∈ Rd, T ∈ Th and (ph, χh) ∈ Yh ×Vh such that
with (yh, vh) = Gh(uh) we have∫

Ω

A−1χh · wh +

∫
Ω

ph divwh +
∑
T∈Th

μT ·
�

T
A−1wh = 0 ∀wh ∈ Vh, (3.11)

∫
Ω

zh divχh −
∫
Ω

a0ph zh +

∫
Ω

(yh − y0) zh = 0 ∀zh ∈ Yh, (3.12)
∫
Ω

(ph + α|uh|r−2uh)(ũ − uh) ≥ 0 ∀ũ ∈ K, (3.13)
∑
T∈Th

μT ·
(
ch |T −

�
T

A−1vh
)
≤ 0 ∀ch ∈ Ch. (3.14)

Remark 3.6. The discrete control uh and the discrete adjoint state ph are related by

(I) uh(x) = Proj[a,b]
(
−

ph(x)
α

)
a.a. x ∈ Ω,

(II) uh(x) = −α−
1

r−1 |ph(x)|
2−r
r−1 ph(x) a.a. x ∈ Ω.

In particular, in both cases the discrete solution uh is piecewise constant on the
triangulation Th.

The following a–priori estimate is crucial for the convergence analysis.

Lemma 3.7. Let uh ∈ Lr(Ω) be the optimal solution of (3.10) with corresponding
state (yh, vh) ∈ Yh × Vh and adjoint variables (ph, χh) ∈ Yh × Vh, μT, T ∈ Th. Then

‖uh‖Lr + ‖yh‖ +
∑
T∈Th

|μT| ≤ C

for all 0 < h ≤ h1.

Proof. The proof is carried out in [5, Lemma 3.6] for case (I), but the analysis can
be adapted to case (II) in a straightforward way. �

The error analysis depends on the choice of the admissible set K and the struc-
ture of the objective functional. In case (I) the controls belong to L∞(Ω) leading to
better convergence properties in the state equation. We have the following result:
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Theorem 3.8. Let u and uh be the solutions of (2.3) and (3.10) in case (I) with
corresponding states y and yh respectively. Then

‖u − uh‖ + ‖y − yh‖ ≤ Ch
1
2 | log h|

1
2

for all 0 < h ≤ h1.

Proof. see [5, Theorem 4.1]. �

Let us next turn to case (II), for which Theorem 3.3 gives convergence rates
of O(h 1

r (1− d
r )) for the control and O(h 1

2 (1− d
r )) for the state if a piecewise linear ap-

proximation of the state is used. Adapting the corresponding proof to the case of
the Raviart–Thomas element it would be possible to derive the same convergence
rates. However, as observed in [12, Remark 2], these rates are not optimal since
u ∈ W

1− d
r −ε

r−1 ,r(Ω) for any ε > 0. The following result improves these bounds and
appears to be optimal as far as the control variable is concerned.

Theorem 3.9. Let u and uh be the solutions of (2.3) and (3.10) in case (II) with
corresponding states y and yh respectively. Then for every ρ > 0 there exists Cρ such
that

‖u − uh‖Lr ≤ Cρhα1−ρ, ‖y − yh‖ ≤ Cρhα2−ρ,

where α1 =
1− d

r
r−1 , α2 = (1 − d

r ) r
2(r−1) .

Proof. To begin, we note that for r ≥ 2

(|a|r−2a − |b|r−2b)(a − b) ≥ 22−r|a − b|r ∀a, b ∈ R.

Hence, using (2.6) and (3.13),

α22−r
∫
Ω

|u − uh|r ≤ α

∫
Ω

(
|u|r−2u − |uh|r−2uh

)
(u − uh)

=

∫
Ω

ph(u − uh) +
∫
Ω

p(uh − u) ≡ I + II. (3.15)

Let us introduce (ỹh, ṽh) = Gh(u) ∈ Yh × Vh. Using (3.8) and (3.11) we infer for the
first term

I = −
∫
Ω

phdiv
(
ṽh − vh

)
+

∫
Ω

a0 ph
(
ỹh − yh

)

=

∫
Ω

A−1χh ·
(
ṽh − vh

)
+
∑
T∈Th

μT ·
�

T
A−1(ṽh − vh

)
+

∫
Ω

a0 ph
(
ỹh − yh

)

=

∫
Ω

A−1χh ·
(
ṽh − vh

)
+
∑
T∈Th

μT ·
(
Pδ
(�

T
A−1ṽh

)
−
�

T
A−1vh

)

+

∫
Ω

a0 ph
(
ỹh − yh

)
+
∑
T∈Th

μT ·
(�

T
A−1ṽh − Pδ

(�
T

A−1ṽh
))
,

where Pδ denotes the orthogonal projection onto B̄δ(0) = {x ∈ Rd | |x| ≤ δ}. Note
that

|Pδ(x) − Pδ(x̃)| ≤ |x − x̃| ∀x, x̃ ∈ Rd. (3.16)
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Since by definition (
Pδ
(�

T
A−1ṽh

))
T∈Th
∈ Ch

we deduce from (3.14) that

I ≤
∫
Ω

A−1χh ·
(
ṽh − vh

)
+

∫
Ω

a0 ph
(
ỹh − yh

)

+max
T∈Th

∣∣∣
�

T
A−1ṽh − Pδ

(�
T

A−1ṽh

) ∣∣∣ ∑
T∈Th

|μT|.

In order to estimate the last term we note that ∇y ∈ C implies that
(�

T ∇y
)
T∈Th

=(�
T A−1v

)
T∈Th
∈ Ch. Using Lemma 3.4 with (y, v) = G(u), (ỹ h, ṽh) = Gh(u) we infer

‖ṽh − v‖L∞ ≤ Ch1− d
pε | log h|1−

2
pε ‖u‖Lpε = Cεh1− d

pε | log h|1−
2
pε , (3.17)

since u ∈ Lpε (Ω) with pε =
r − 1

1 − 1
d + ε

(ε > 0) in view of Remark 2.2. As a conse-

quence,
∣∣∣
�

T
A−1ṽh − Pδ

(�
T

A−1ṽh
)∣∣∣ ≤ ∣∣∣

�
T

A−1(ṽh − v)
∣∣∣ + ∣∣∣Pδ(

�
T

A−1(ṽh − v)
)∣∣∣

≤ C‖ṽh − v‖L∞ ≤ Cεh1− d
pε | log h|1−

2
pε

in view of (3.17). Combining this estimate with Lemma 3.7 we deduce

I ≤
∫
Ω

A−1χh ·
(
ṽh − vh

)
+

∫
Ω

a0 ph
(
ỹh − yh

)
+Cεh1− d

pε | log h|1−
2
pε .

The symmetry of A, (3.7) and (3.12) finally give

I ≤ −
∫
Ω

(
ỹh − yh

)
divχh +

∫
Ω

a0 ph
(
ỹh − yh

)
+ Cεh1− d

pε | log h|1−
2
pε

=

∫
Ω

(yh − y0)
(
ỹh − yh

)
+Cεh1− d

pε | log h|1−
2
pε . (3.18)

In order to analyze the second term in (3.15) we define (y h, vh) = G(uh). Recalling
(2.5) we have

II =

∫
Ω

p
(
Ayh −Ay

)

=

∫
Ω

(y − y0)(yh − y) +
∫
Ω̄

(
∇yh − ∇y

)
· dμ

=

∫
Ω

(y − y0)(yh − y) +
∫
Ω̄

(
Pδ(∇yh) − ∇y

)
· dμ +

∫
Ω̄

(
∇yh − Pδ(∇yh)

)
· dμ.

Since x �→ Pδ(∇yh(x)) ∈ C we infer from (2.7)

II ≤
∫
Ω

(y − y0)(yh − y) +max
x∈Ω̄
|∇yh(x) − Pδ(∇yh(x))| ‖μ‖M(Ω̄)d . (3.19)
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Let x ∈ Ω̄, say x ∈ T for some T ∈ Th. Since uh is feasible for (3.10) we have that�
T A−1vh ∈ B̄δ(0) so that (3.16) implies∣∣∣∇yh(x) − Pδ(∇yh(x))

∣∣∣
≤
∣∣∣∇yh(x) −

�
T

A−1vh
∣∣∣ + ∣∣∣Pδ(∇yh(x)) − Pδ

(�
T

A−1vh
)∣∣∣

≤ 2
∣∣∣∇yh(x) −

�
T

A−1vh
∣∣∣. (3.20)

Using a well–known interpolation estimate (cf. [2], Corollary (4.4.7)) and (2.2) we
obtain∣∣∣∇yh(x) −

�
T

A−1vh
∣∣∣ = ∣∣∣A−1(x)vh(x) −

�
T

A−1vh
∣∣∣

≤
∣∣∣A−1(x)(vh − v)(x) −

�
T

A−1(vh(x) − v)
∣∣∣

+
∣∣∣A−1(x)v(x) −

�
T

A−1v
∣∣∣ + ∣∣∣
�

T
A−1(vh − vh)

∣∣∣
≤ Ch1− d

r ‖vh − v‖W1,r +Ch1− d
pε ‖v‖W1,pε +C‖vh − vh‖L∞

≤ Ch1− d
r ‖uh − u‖Lr +Ch1− d

pε ‖u‖Lpε +C‖vh − vh‖L∞ .
Applying Lemma 3.4 with u − uh as well as (3.17) we infer

‖vh − vh‖L∞ ≤ ‖(vh − v) − (vh − ṽh)‖L∞ + ‖v − ṽh‖L∞

≤ Ch1− d
r | log h|1−

2
r ‖u − uh‖Lr + Cεh1− d

pε | log h|1−
2
pε ,

which combined with (3.20) yields

max
x∈Ω̄

∣∣∣∇yh(x) − Pδ(∇yh(x))
∣∣∣ ≤ Ch1− d

r | log h|1−
2
r ‖u − uh‖Lr +Cεh1− d

pε | log h|1−
2
pε .

Returning to (3.19) we have

II ≤
∫
Ω

(y − y0)(yh − y) +Ch1− d
r | log h|1−

2
r ‖u − uh‖Lr + Cεh1− d

pε | log h|1−
2
pε . (3.21)

If we insert (3.21) and (3.18) into (3.15) we finally obtain

α22−r‖u − uh‖rLr ≤
∫
Ω

(yh − y0)(ỹh − yh) +
∫
Ω

(y − y0)(yh − y)

+Ch1− d
r | log h|1−

2
r ‖uh − u‖Lr +Cεh1− d

pε | log h|1−
2
pε

= −
∫
Ω

|y − yh|2 +
∫
Ω

(
(y0 − yh)(y − ỹh) + (y − y0)(yh − yh)

)

+Ch1− d
r | log h|1−

2
r ‖uh − u‖Lr +Cεh1− d

pε | log h|1−
2
pε

≤ −‖y − yh‖2 +C
(
‖y − ỹh‖ + ‖yh − yh‖

)
+
α22−r

2
‖u − uh‖rLr +Ch(1− d

r ) r
r−1 | log h|(1−

2
r ) r

r−1 + Cεh1− d
pε | log h|1−

2
pε

by Young’s inequality. A simple calculation shows that

1 −
d
pε
= (1 −

d
r

)
r

r − 1
−
εd

r − 1
< (1 −

d
r

)
r

r − 1
,
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while 1 −
2
pε
< (1 −

2
r

)
r

r − 1
. In conclusion we obtain after another application of

(3.9)
‖u − uh‖rLr + ‖y − yh‖2 ≤ Cεh(1− d

r ) r
r−1−

εd
r−1 | log h|(1−

2
r ) r

r−1 ,

from which we deduce the result of the theorem. �

4. Numerical examples
We consider (2.3) with the choices Ω = B2(0) ⊂ R2, α = 1,

C = {z ∈ C0(Ω̄)2 | |z(x)| ≤
1
2
, x ∈ Ω̄}

as well as

y0(x) :=
{ 1

4 +
1
2 ln 2 − 1

4 |x|
2, 0 ≤ |x| ≤ 1,

1
2 ln 2 − 1

2 ln |x|, 1 < |x| ≤ 2.
In order to construct a test example we allow an additional right hand side f in the
state equation and replace (2.1) by

−Δy = f + u in Ω
y = 0 on ∂Ω,

where

f (x) :=
{

2, 0 ≤ |x| ≤ 1,
0, 1 < |x| ≤ 2.

In case (I) we consider K = {u ∈ L∞(Ω) | − 2 ≤ u ≤ 2 a.e. in Ω}, while in case
(II) we choose r = 4. The optimization problem then has in both cases the unique
solution

u(x) =
{
−1 , 0 ≤ |x| ≤ 1
0 , 1 < |x| ≤ 2

with corresponding state y ≡ y0. We note that in case (I) the bounds on the control
are not active, so that we obtain equality in (2.6), i.e. p = −u. Furthermore, the
action of the measure μ applied to a vectorfield φ ∈ C 0(Ω̄)2 is given by∫

Ω̄

φ · dμ = −
∫
∂B1(0)

x · φdS .

In what follows we frequently use the experimental order of convergence, which is
defined for an error functional E(h) by

EOC =
ln E(h1) − ln E(h2)

ln h1 − ln h2
.

For the numerical solution we use the routine fmincon contained in the Mat-
lab optimization toolbox. The actual calculations were carried out on a polygonal
approximation of B2(0). Note that while our analysis did not take into account the
approximation of the domain, the observed rates show that this error doesn’t domi-
nate.
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Figure 1. Control (left), and adjoint state (right) (variational discretization)

nt ‖u − uh‖L4(Ω) ‖u − uh‖ ‖y − yh‖

32 8.34633 · 10−1 1.36003 2.20346 · 10−1

128 5.88566 · 10−1 9.04770 · 10−1 7.97200 · 10−2

512 4.84191 · 10−1 5.82014 · 10−1 3.52102 · 10−2

0.54884 0.64041 1.59745
0.29263 0.66136 1.22499

Table 1. Errors (top) and EOCs for piecewise linears

4.1. Piecewise linears for the state with variational discretization
Many existing finite element codes employ continuous, piecewise linear finite ele-
ments, so that it is natural to use this element in order to discretize the state equation
in optimization problems for elliptic pdes. Numerical results for case (II) are re-
ported in [8] to which we refer for details. Table 1 shows the experimental order of
convergence for the error functionals

‖u − uh‖L4(Ω), ‖u − uh‖, and ‖y − yh‖.

Fig. 1 illustrates the optimal solution uh and the corresponding adjoint state ph
on a mesh consisting of nt = 512 triangles. Note that in view of the relation
uh(x) = −|ph(x)|− 2

3 ph(x) the variational control uh necessarily is a continuous func-
tion, while the exact control u has a jump. This inconsistency is reflected in the
appearance of oscillations near the set ∂B1(0) in Fig. 1, and also affects the perfor-
mance of the optimization solvers implemented within the fmincon package. We
conclude that variational discretization combined with continuous, piecewise linear
finite elements for the state approximation is not ideally suited to control problems
with gradient constraints on the state.

4.2. Mixed finite element approach with variational discretization.
The state equation is now approximated with the help of the lowest order Raviart–
Thomas element for which we used the implementation provided by [1]. Numerical
results for case (I) can be found in [5].
Let us report on the corresponding results for case (II). In Table 2 we display the
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NT ‖u − uh‖L4(Ω) ‖u − uh‖ ‖y − yh‖
32 6.85 · 10−1 1.10 3.00 · 10−1

128 6.77 · 10−1 8.70 · 10−1 1.51 · 10−1

512 6.05 · 10−1 6.04 · 10−1 7.25 · 10−2

2048 5.22 · 10−1 4.21 · 10−1 3.61 · 10−2

8192 4.44 · 10−1 2.96 · 10−1 1.80 · 10−2

0.01881 0.36245 1.08340
0.16899 0.54697 1.09552
0.21730 0.53219 1.02287
0.23488 0.51182 1.01139

Table 2. Errors and EOCs for the controls and the state with
Raviart–Thomas approximation of the state

NT
NT∑
i=1
|μT |

32 2.32
128 4.32
512 5.29

2048 5.79
8192 6.04

Table 3. Behaviour of the discrete multipliers

experimental order of convergence for the error functionals

‖u − uh‖L4(Ω), ‖u − uh‖ and ‖y − yh‖.

The errors show a similar behaviour as in the case of piecewise linear finite elements
and are slightly better than predicted by Theorem 3.9. Fig. 2 shows the optimal state
and the optimal control on a grid containing m = 1089 gridpoints. In Table 3 we
display the values of

∑
T∈Th |μT | which appear to converge to 2π, the total variation

of the measure μ. The modulus of μT , T ∈ Th as well as the set of elements T on
which μT � 0 is shown in Fig. 3. It can be seen that these elements concentrate
around |x| = 1.

References
[1] Bahriawati, C., Carstensen, C., Three Matlab Implementations Of The Lowest-Order

Raviart-Thomas MFEM With A Posteriori Error Control. Computational Methods
in Applied Mathematics 5 (2005), 333–361. Software download at www.math.hu-
berlin.de/cc/download/public/software/code/Software-4.tar.gz

[2] Brenner, S., Scott, R., The mathematical theory of finite elements. 2nd edition, Springer
New York, 2002.

[3] Brezzi, F., Fortin, M., Mixed and hybrid finite element methods. Springer Series in Com-
putational Mathematics 15, Springer–Verlag, New York, 1991.



14 Deckelnick and Hinze

−2

0

2

−2

−1

0

1

2
0

0.1

0.2

0.3

0.4

0.5

0.6

−2

0

2

−2
−1

0
1

2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Figure 2. Optimal state (left), and optimal control

−2

0

2

−2
−1

0
1

2
0

0.02

0.04

0.06

0.08

0.1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
μh

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Figure 3. |μT| (left), and support of μT

[4] Casas, E., Fernández, L., Optimal control of semilinear elliptic equations with pointwise
constraints on the gradient of the state. Appl. Math. Optimization 27 (1993), 35–56.

[5] Deckelnick, K., Günther, A., and Hinze, M., Finite element approximation of elliptic
control problems with constraints on the gradient. Numer. Math. 111 (2009), 335-350.

[6] Deckelnick, K., Hinze, M., Convergence of a finite element approximation to a state
constrained elliptic control problem. SIAM J. Numer. Anal. 45, No.5 (2007), 1937–
1953.

[7] Gastaldi, L., Nochetto, R.H., On L∞–accuracy of mixed finite element methods for sec-
ond order elliptic problems. Mat. Apl. Comput. 7 (1988), 13–39.

[8] Günther, A., Hinze, M., Elliptic Control Problems with Gradient Constraints - Varia-
tional Discrete Versus Piecewise Constant Controls. Comput. Optim. Appl. 49 (2011),
549-566.

[9] Hintermüller, M., Kunisch, K., PDE-constrained optimization subject to pointwise con-
straints on the control, the state, and its derivative. SIAM J. Optim. 20(3) (2009), 1133-
1156.

[10] Hintermüller, M., Hinze, M. and Hoppe, R.W.H., Weak-Duality based Adaptive Finite
Element Methods for PDE-Constrained Optimization with Pointwise Gradient State-
Constraints. J. Comp. Math. 30 (2012), 101-123.



FEM for control problems with gradient constraints 15

[11] Hinze, M., A variational discretization concept in control constrained optimization: the
linear-quadratic case. Comput. Optim. Appl. 30 (2005), 45–63.

[12] Ortner, C., Wollner, W., A Priori Error Estimates for Optimal Control Problems with
Pointwise Constraints on the Gradient of the State. Numer. Math. 118(3) (2011), 587-
600.

[13] Schiela, A., Wollner, W., Barrier methods for optimal control problems with convex
nonlinear gradient state constraints. SIAM J. Optim. 21(1) (2011), 269-286.

[14] Triebel, H., Interpolation theory, function spaces, differential operators.. 2nd edition,
Johann Ambrosius Barth, Heidelberg, 1995.

[15] Wollner, W., A posteriori error estimates for a finite element discretization of interior
point methods for an elliptic optimization problem with state constraints. Comput. Op-
tim. Appl. 47(1) (2010), 133-159.

[16] Wollner, W., Optimal Control of Elliptic Equations with Pointwise Constraints on the
Gradient of the State in Nonsmooth Polygonal Domains. SIAM J. Control Optim. 50(4)
(2012), 2117-2129.

[17] Wollner, W., A Priori Error Estimates for Optimal Control Problems with Constraints
on the Gradient of the State on Nonsmooth Polygonal Domains. In: Control and Op-
timization with PDE Constraints, Springer ISNM Series, Vol. 164, 193-215, Springer
Basel (2013).

Acknowledgment
The authors acknowledge support of the DFG Priority Program 1253 through grants
DFG HI689/5-1 and DFG DE611/4-2.

Klaus Deckelnick
Institut für Analysis und Numerik
Otto–von–Guericke–Universität Magdeburg
Universitätsplatz 2
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