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Funnel control for nonlinear functional differential-alg ebraic systems*

Thomas Bergér Achim lichmand and Timo Rei$

Abstract— We consider output regulation for a class of non- In the present paper we consider DAE systems (1.2) which
linear functional differential-algebraic systems. Funnécontrol,  may arise from different models or applications, i®is not
that is a static nonlinear proportional output error feedback, is necessarily a solution operator as in the motivation abave b

applied to achieve tracking of a reference signal by the outpt . .
signal with prescribed transient behavior. some causal operator with a bounded input, bounded output

Index Terms— Differential-algebraic equations, nonlinear ~Property, see Section Il for details.

systems, functional differential equations, funnel contol. We consider output regulation for systems (1.2). It is the
aim of the present paper to prove that the application of the
|_ INTRODUCT|ON funnel ContrO”er

Differential-algebraic equations (DAEs) are an apprdpria u(t) = —k(t)e(t), where e(t) = y(t) = yret(t),
tool to model systems coming from applications such as k (1.3)
multibody dynamics [1] and electrical networks [2]. The dy- k(t) = W :
namics and constraints of the system are modeled as a set of 4 ] ) ]
differential and algebraic equations. If the internal dyis  (© the system (1.2) achieves tracking of the reference sig-
of the system are autonomous and the input does affect 8! ret DY the output signaly within the pre-specified
most the first derivative of the output (roughly speaking, thPerformance funnel
largest relative degree part is one), then the DAE model may Fpi={ (t,e) € Rsg x R™ | o(t)]le <1 }. (1.4)

be written in the form ™ y I I - .
. _ e concept of funnel control as a simple strategy for

Fy®) i) = Aly®) + f2(da(0). (1)) output regulation has been developed in [5] for ODEs, see
+f3(d2(t), 2(t)) u(t), (1.1)  also the survey [6] and the references therein. Funnel @ontr
Ja (x(t),y(t),dg(t)). for linear DAE systems has been investigated in the recent
papers [7], [8], [9], [10]. In the present paper we study
funnel control for nonlinear DAE systems. This generalizes
ti:f results for nonlinear ODE systems obtained in [5], [11]
and the results for linear DAE systems obtained in [9].
The paper is organized as follows: We introduce the
ass of systems (1.2) considered in the present paper and,

(t)
The functionsu : R — R™ andy : R — R™ are
calledinput andoutputof the system, resp., antl, d», and
ds are bounded disturbances. The second equation in (1
represents the internal dynamics, governed bystiage z :
R — RY. It is possible, that there are also algebraic variableﬁ
in the system which depend anandy and their derivatives, c : . )
but these do not affect the input-output behavior of th pqmcular, the Cla.SS.Of operatofs allowed in (1.2) in
system and hence we omit them in the model (1.1). Th ection Il. Two preliminary results for the proof of our

differentiable functionsf;, fo and f; are vector valuedfs gal? resll\J/Itt;] Theoremt4.f1f- arelprovldeld_ n ?e%uon (lj“' Ir:j
is scalar valued anfl is matrix valued; for more details see ection € concept ot funnel control 1S Introduced an

it is proved that the funnel controller achieves trackinghwi

Section II. ibed t ient behavi
If the internal dynamics of (1.1) are input-to-state stap|8"escroed transient behavior.
(ISS) [3], then system (1.1) can be rewritten, by the choice Il. SYSTEM CLASS

of an appropriate operatdf’ (which depends onfs, ds We study nonlinear functional DAEs (1.2), whefeis a
and the initial valuer(0)) explained in [4, Sect. 2.3], as a causal operator and;, d» are extraneous disturbances. We
nonlinear functional differential-algebraic multi-inpmulti-  extend a class of operators which has been introduced in [11]

output systems of the form Definition 2.1 (Operator clas§;, ,): For t > 0, w €
T(y®) o) = Ay@) + fa2(da(t), (Ty)(t)) @2 g]‘([g;(igiri?ﬁ;o;-t andé > 0, define the following set
+f3(da(t), (Ty)(t)) u(t). '
C(w;t,7,9)
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(i) Yt >0VweC(0,t;R™)I7>¢35>0
Jeco > 0Vu,v e C(w;t,,9):

max [|(Tu)(s)~(Te)(s)] < co maxe [us)—v(s)]|

(III) Ver >0de >0Ve € C(Rzo;Rm) :
sup |[[(Tv)(8)]| < c2,

tGRzo

sup [lu(s)l| <1 =
SGRZQ

(iv) 3he C(R™xR%RY) 3T: C(Rsg; R™) = C(Rx0; RY)
with Properties (i)—(iii)vVv € C(R>o; R™) V¢ > 0:

S(Tw)(t) = h(v(t), (Tv)(t)).

For a motivation of the properties of the operators within
the class7,, , see [11]. Compared to [11], we have adde

Definition 2.3 (System class,, ,,-): The functional
differential-algebraic  equation (1.2) is said to
define a system of classX,,,q», and we write
(T, f1, fa, f3,T,d1,d2) € Epn pq.r, If, and only if,

() IReR™" IG € C(R™;,R™™") Vy e R™:
G(y) >0 A T(y) = RG(y)R',

(i) f1 € CYR™;R™) and, for any basis matri¥< of
ker RT, it holds thatK " f{ K is bounded,

(iii) f2 € CL(RP x RY;R™),

(iv) f3 €CHRP x R;R) A Ja >0V (d,v) € RP x RY :
f3(d,v) > a,

V) T € Tnq

(Vi) di,ds € C1(R>o;RP) are bounded.

Linear ODE systems of the form (2.1) belong to

mm.m,m With T = B~1. Furthermore, the system class

. . ) p.q,r €Ncompasses even singular DAE systems (descrip-
tion (1.2) ha; parts_ V\.”th relative degree_ smallgr or equ 7;”[s))(/lsrtems). In (ii), the assumption on the derivative of
to zero - a differentiation of these parts is required for th(}1 is essential for the solvability of the closed-loop sys-

s_oIva_biIit_y of the closed_—lo_op s_ystem (1'2)’_ (1'3)2 Assumptem (1.2), (1.3). More precise, we will require thain (1.3)
tion (iv) is not very restrictive since usuall§y is an integral is larger than the infimum norm of<T f/K multiplied
operator or a solution operator of a differential equation. with |[(KTK)"|| and divided bya froml (iv) in order

Property (iv) which is needed for the case where equ%

Property (iii) of the operators iff;,, 4 is @ bounded-input,

bounded-output assumption and is the counterpart to tt]%
assumption of asymptotically stable zero dynamics used fgﬁ

linear systems e.g. in [6], [9].

Remark 2.2:Linear ODE minimum-phase systems with
positive definite high-frequency gain matrix can be writte

in the form

y(t) = p(t) + (Ty)(t) + Bu(t),

wherep € C1(R>o; R™), B € R™*™ satisfiesB = BT > 0
and

(Ty)(t) := Ary(t) + As / eM1=9) Agy(s)ds, (2.2)

0
where4; € R™*™, Ay € R™*P, A3 € RP*™ Ay € RP*P,

(2.1)

to guarantee invertibility ofakl — |[(KTK) YK f{K.

e latter is crucial for the explicit solution of the hidden
gebraic constraint on the output error in the closed-loop
system (1.2), (1.3), i.e., it guarantees that this system is
index-1, cf. [12], [13].

n

IIl. PRELIMINARY RESULTS

We show three lemmata which are important for the proof
of our main result.

Lemma 3.1:Let D € C(R™; R**!) be such thaD(y) > 0
for all y € R™ and letK' C R™ be compact. Then

38>0Vye K: mino(D(y)+ D(y)") > B.
Proof: Since D + DT is pointwise symmetric and
positive definite, there exists a pointwise eigenvalue deco

defines an operatdr which satisfies properties (i) and (ii) in position of the form

Definition 2.1. Property (iii) is satisfied ifly has spectrum
in the open left complex half plane. For property (iv) to hold

the equality
S(Ty)(t) = Arg(t) + Az Asy(t)
+ Ao Ay / eA1=9) Agy(s5) ds = h(y(2), (Ty) (1))

needs to be satisfied for somes C(R™ x R?;R?) and T :

D(y)+D(y)" =Vy)JyVy)',
J(y) = diag(M (y), ..., N(¥)),

whereV (y) is orthogonal and\;(y) > 0 forall: =1,...,1
and ally € R™. Seeking a contradiction, we assume that

VB>03ye K 3ie{l,....l}: N(y) <B.
Let 8 > 0 be arbitrary and choosge K andi € {1,...,1}

C(R>o; R™) — C(R>0; RY) with properties (i)—(iii) and for such that);(y) < 3. Definez(y) := V(y)e; and observe
ally € C(R>o;R™) and allt > 0. Hence, property (iv) holds that

if, and only if, Ay = 0. Therefore, the termi,y(¢) in the

definition of T has to be delegated into the functigi in
the formulation (1.2). Thef’ belongs to7,, ..

(D(y) + D(y) " aly) = V(y)J (y)e;

The above observation for linear ODE systems implies

that the initial points ofl"y are uniquely determined hy(0).

In the general case, by causality 6f € 7,, , there exists

j : R™ — R? such that

Vv e C(R>0;R™) : (Tw)(0) = j(v(0)).

(2.3)

This implies that
2(y) " (D(y) + D(y) " )z(y) = Nily) < B,
and, sincer(y) € S, = { x € R™ | ||z|]| =1 }, we have

VB>03yeK3IzeS,: ' (D(y) +Dy) )z <p.



We may hence choose sequen¢gs) € K and (z,,) €
(SE)YN such that
: T T _
nhﬁrrgo z, (D(yn) + D(yn) )xn =0.

. . . A
However, this contradicts the fact that the continuous map g j

R x R™ 3 (z,y) — 2 (D(y) + D(y)T)x

has a positive minimum on the compact §gt x K. [ ]
Lemma 3.2:Let D € R™*! be positive definite. Then

_ n(D+DT)
VieR: ;Tp1y» LoD D)
R e (DDT)
where o,in (D + DT) denotes the smallest eigenvalue o

D+ DT andoy.(DDT) denotes the largest eigenvalue of
DDT, which are both real and positive.
Proof: controller (1.3), the gairk(¢) increases if the norm of the

error |le(t)|| approaches the funnel boundatyy(t). The
control design (1.3) has two advantagkss non-monotone

2
121, Fig. 1: Error evolution in a funneF,, with boundaryl /o (t)

ffor t > 0 and a pole at = 0.

1
2" D71y = 5ZTD*T(D +D"YD !z

1 B and (1.3) is a simple static time-varying proportional auitp
> igmin(D + D)D" 2 feedback.

_ lo-min(D +DT):T(DDT) 12 Theorem 4.1 (Funnel control)tet the system
2 T (Faflaf%f?nTadladQ) € E1n,p,q,r be g|Ven, |et§0 e d
Omin(D + D )HZHQ_ define a performance funnéi,, and use the notation from

T 20max(DDT) Definition 2.3. Furthermore, laf..; € B'(R>o; R™) be any

m reference trajectoryk be a basis matrix oker R", and
Lemma 3.3:Let K € R™*" with tk K = ~ and M < assume that the initial gain satisfies

mxm _ T A
R such thatd = M " > 0. Then k >Oé_1H(KTK)_1H Suli)n ||KTf{(y)KH (4.1)
[(KTK + KTME)™| < |(KTK)™Y. ver
Proof: It follows from [14, Prop. 8.6.6] that Then, using the functior from (2.3), for any initial value
0<(K'K+K"MK)"'<(K'"K)™, 0 - KT (f1 (w) + f2(d1(0), j(w))
Yy EQW E . _ ,
and this implies the assertion of the lemma. ] —k f3(d2(0), j(w)) (w — yrcf(o))) =0
IV. FUNNEL CONTROL the application of the funnel controller (1.3) to (1.2J0) =

ryo’ yields a closed-loop initial-value problem that has a

In this section we prove the main result of the pape e d Ui b tended t lobal
the funnel controller (1.3) achieves tracking of a refegenc>C Uton and every solution can be extended 1o a globa
olution. Furthermore, for every global solutign

trajectory by the output signal with prescribed transient

behavior. Let (i) the corresponding tracking errer= y — y,.; evolves

B'(Rs0; R™):={n € C'(Rs0; R™) |n, 7 are bounded unifqrmlly within the performance funneF,; more
precisely,

and associate, for any functiam belonging to
Je>0Vt>0: |le®)| <o)t —¢. (4.2)

©(0) =0, p(s) >0 for all s > 0}

L 1 .
o= {cp € B (Rxo;R) | 20 lim infs o ¢(s) > 0

(i) the corresponding gain functiok given by (1.3) is

the performance funnef,, see (1.4) and Figure 1. bounded: .
The control objective is feedback control so that the k
) ) Vig>0: k()| < ,
tracking errore = y — y.r, Wherey,o¢ is the reference 0 f;?;' @l = 1—(1—eXy)?

signal, evolves withinF, and all variables are bounded.
More specific, the transient behavior is supposed to satisfy

VE> 0 fle(®)ll < /(). Step 1 We show existence of a local solution of the closed-
The bounded-input, bounded-output property of the ogoop system (1.2), (1.3). Set
eratorT € 7T,, can be exploited for an inherent high- = m1
gain property of the system (1.2) and hence to maintain D= {(tek) R xR ‘ pO)llel <1 }.
error evolution within the funnel: by the design of theThe closed-loop system (1.2), (1.3) may be written in the

where A, := inf;>+, @(t) > 0 for all t5 > 0.
Proof: We proceed in several steps.



form Observe that the derivative @fis given by

FL0(0) ~ KOS, TO) ) T
() (T00) PO, 2k()(( OO + I

K = k(=) 43) P02 (er()Ter(0) + ex(t) Te2(1))). (A7)

wherey = e + yrer. If T(y° — 12e£(0))) Were invertible, |ntroduce the set
then the solution theory of functional differential eqoaits

(see [11, Thm. B.1]) would guarantee the existence of a local D := {(t, k,e1,e2) € Rxg x [k, 00) x R x R™! ’

=
—~
<
—~
~~
~—
~
-
—~
~
~—
|

solution with (¢, e(t), k(t)) € D and(t,e(t)) € F, at initial
data ‘ O (lea]? + lea)?) < 1}
0_
(Z) (0) = (y %ref(0)> . (4.4) and define
£:Rso xREXR™ - R™,
T(€

In the present case, we need to decompose equation (4.3) (ter,e) = U (82) + Yrer (1),
into an ODE part and an algebraic constraint. By differenti-©; : C(R>¢; R!) x C(R>o;RY) —  C}(R>o;RY),
ating the algebraic constraint we may obtain an ODE in all (e1,e2) +— T(&(,e1(+),e2(4)),
system variables, the solution of which satisfies the akjebr ) ol ) 1 ™q
constraint. In this sense, equation (4.3) is an index-1 DAE,62 FC(R20:RT) X C(R>0: RT) - = CH(Ro; RY),
cf. [12], [13]. (e1,e2) = T(&(ei(),e2())),

. 1
Step 2 We will now rewrite (4.3) as an explicit functional 91 DX R = R, (1K, e1,e2,1) =

differential equation. Observe that, by the singular value [D(é.(taeheQ))il,O]U(fl (§(t,el,62)) +f2(d1(t),n))
decomposition, there exists an orthogonal malfix R™*"™ 1 .
such thatUR = [RT,0]T, where R € R*" has full row  — kf3(d2(t),n) D(E(t,ex,e2)) er(t) — [11, 0]Urer (t).

rank. This implies that, for allo € R™, Now, the first equation in (4.5) can be written as

UP(w)UT - [D(Ow) 8] » D(w) = RG(M)RT > 0. é1(t) = g (tu k(t)a61(75)7ez(t)79(€1762)(f))-

We introduce new variables; := [I;,0]Ue and e :=
[0,I,—i]Ue. Then (4.3) may be written, by the use of

le@I? = [Ue)|> = e @) + ea(t)|*, as the system A7 ;D x R — Glo,_u(R), (tk,e1, e2,1)
é1(t) = D(y(®) 00U (f1(y(®) + 2 (1 (1), (Ty)(0)) Foa (§(t 1, 2)) — k fo(da(t). ) (it

— k(1) f3(d2(2), (T) (1) D(y(1)) " ex(t) 20(1)2 (1 — () ([lex||? + ||62||2))*1eze;)
— (11, 0)U et (1),

Further define

and
0 = [0, Ln U (1 (5(0)) + fo(d2(8), (T9)1)))
—k(t)f3 (dQ(t), (Ty)(t)) ea(t), g2 Dx R x R x R — R™
KO = (1= o (la O] + lea0]?) (6 k. ex, 2.8, m,m) = P (£t en,2)) 1
(4.5) , d

Note that, sinceD is continuous, the map +— D(w)™* 10, In—)U f3 (e (2), 1) (h(g(t,ellfé)’m))
is cor]tinqous as well. Now, differentiation of the second / da (1)
equation in (4.5), and using —kea f3(da(t),m) (h(é(t,ehez),ng))

Fan(w) = [0, In-Ufi@)U (107, = 2k fy(da(t).m) (1= o(0)(llea]]* + fle2l]”)) ™

Foo(w) == [0, InnJU f1(w)U " [0, L], w € R™, x ()@@ ([ler]® + lle2l|?) + (t)2e] &1)es.
yields

If M is well defined, then inserting from (4.7) into (4.6)
0= F»n (y(t)) é1(t) + Fao (y(t)) és(t) and rearranging according t@ gives

+ [0, In—]U f3(da (1), (T)(1)) (h (1) ) M (t,k(t), e1(t), e2(t), O1(e1, €2) (1)) €a(t) =
(' d ( ) © QQ(t,k(t),el(t),eg(t),él(t),@1(61,62)(t),@2(61,62)(t)).
— k(t)ea(t) f5(da(t), (Ty)(t)) (h(y(t),z(fy)(t))) Now we show that)M is well defined, i.e., thatM is

i invertible everywhere on its domain. To this end,A&be the
— f3(da(t), (Ty)(t)) (k(t)ez(t) + k(t)é2(t))- (4.6) Dpasis matrix ofker RT as in the statement of the theorem.



SinceK = U"[0,1,,—,]" is another basis matrix dfer R,  operators with domair€(R>o;R) are considered, but the
there existsI’ € Gl,,,_;(R) such thatX = KT. We may generalization to domai6(R>q; R™*!) is straightforward),
now write which follows by invoking thaty,.; and,.¢ are bounded.

Imi =K' K=T"K'KT, It is clear thatg,, g» and gz are continuous and hendeé

é(er,eq) = UT(el,e;)T, el € Rl,eg c Rm_l, IS continuous.

ey = f{Té(e e2) = TTKTé(e es) Then [11, Thm. B.1] is applicable to the system (4.10)
T v ne (note that in [11] a domai® C Rx( x R is considered, but
the generalization to the higher dimensional case is only a

The matrix-valued function technicality) and we may conclude that

E:D — R™™ (t,e,k) — 2p(t)* (1 - gp(t)2||e|\2)71eeT (a) there exists a solution of (4.10), i.e., a functionc
C([0, p); R™*1) for somep € (0,00] such thatz is

is symmetric and positive semi-definite everywhere. Then we locally absolutely continuous;(0) — ¢, (¢, 2()) € D

have that forall ¢ € [0, p) and (4.10) holds for almost alle [0, p),
M(t, k,e1,e2,1) = TTKTf{ (§(t,e1,e2))KT (b) every solution can _be extended to a maximal sol_ution
z € C([0,w); R™*1), i.e.,z has no proper right extension
— kfs(da(t),n)T" (KTK + KT E(t,é(e1, e2), k)K)T that is also a solution,

(c) if z € C(]0,p); R™*1) is a maximal solution, then the

and clearly M is invertible everywhere if, and only closure ofgraph z is not a compact subset 61

if, 7-TMT~' is invertible everywhere. By Lemma 3.3
and (4.1) we obtain, for allt, k,e1, e2,m) € D x R, that  property (c) follows since is locally essentially bounded,

1 —1, T T . ~1 as it is continuous. Let € C([0,w); R™*!) be a maximal
IR f5(d2(2). m) ([i K + K1 E(t é(er, e2) k) K) solution of (4.10) and observe thats continuously differen-
x K'fi (§(t7€1,€2))KH tiable sinceF' is continuous. It is clear that is a maximal
<k Lo Y(KTK) YK S (&(t,er,e2)) K| < 1. solution of (4.8), (4.9) which leaves every compact subset
-~ of D.
This implies thatM is invertible everywhere. Now, with . . .
P yw Step 4 We show that there exists a maximal solution
G2 : DX RIX R R™ (K, e1,e,m1,m2) — of (4.3), (4.4) which evolves i and leaves every compact

subset of D. The solution (e, ez, k) € C([0,w); R™+1)

-1
M(t,k,ex,e2,m) " ga(t by 1, e2, 18 K ex, e2,m), 7, 12) of (4.8) in particular satisfies (4.6). Integration gives; &ll

and te0,w),
g5 : DX RIXRI 5 R, (tk, er,ezn1,n2) [0, Imfz]U(fl (y(t)) + fa(dr(t), (Ty)(t)))
2k (1= () (lex|* + lle2]) ™ (sO(t)sb(t)(Hel||2+Hez||2) — k(1) f3(d2(t), (Ty) (1)) ea(t)
+o(t)2(eT g1 (t, by er, e2,m)+ed Galt, k,el,eg,nl,ng))) - [Aoafm—l]U(fl (%) + f2 (dl(o)aj(yo)))
+ kf3(d2(0), () [0, n—1]U (¥° = tret (0)) = O,

we obtain the system

é1(t) = g1 (L, k(t), e1(t), ea(t), O1(er, e2)(t)) where y = e 4 ywr and j is from (2.3). Since

ker[0, I,,_;]JU = ker K it follows from the choice ofy°

é?(t) = G2(t, k(t), e1(t), ea(t), O1(e1, €2)(t), O2(e1,€2)(t))  that (e1,e0, k) satisfies the second equation in (4.5), and
k(t) = g3(t, k(t),e1(t), e2(t), O1(e1, e2)(t), Oa2(e1,e2)(t))  hence all equations in (4.5) are satisfied[onw). This leads
(4.8) to a maximal solution(e,k) € C'([0,w);R"™!) of (4.3)

with graph (e, k) C D. Note that the solution is maximal,
since the existence of a right extension would lead to a right
(k,e1,e2)(0) = (}%, U(y® — yref(o))) =:( (4.9) extension ofz, a contradiction. Furthermore, by (c) we have

with initial data

Step 3 We show existence of a maximal local solution e ¢losure oraph (e, k) is not a compact subset @f.

of (4.8), (4.9) which evolves ifD and leaves every compact (4.11)
subset ofD. We may write (4.8), (4.9) for appropriat€ : Step 5 We show that: is bounded. Seeking a contradic-
D x R?7 — R™*! in the form tion, assume thakt(t) — oo for t — w.
2(t) = F(t,2(t), (S2)(1)), 2(0) =, (4.10) Step 5a We show thates(t) — 0 for ¢ — w. Seeking a
contradiction, assume that there exist- 0 and a sequence
where Sz = (@1(61,62)T,@2(€1,€2)T)T and S (tn) - RZO with ¢, /( w such thatHeg(tn)H > x for all

C(Rs0; R™ 1) — C'(Rx0; R%7) is an operator with the n € N. Let H(t) := [0, 1,,_iJU f2(d1(t), (Ty)(t)), t > 0,
properties as in [11, Def. 2.1] (note that in [11] onlyand fi(y) := [0, I,,—]U fi(y), v € R™. Then, from (4.5)



we obtain, for allt > 0,
IE®I = 1f1(5(0) = k() fs (d2(8), (Ty)®) ea(®)]
> (1A ) | = k) s (da(6), (Ty)(0) ea(0)]|.

Sincey is bounded andf; is continuous, there existg >
0 such thatsup,s [|fi(y(t))| < 7. Since k(t) — oo,
le2(ta)]l > & and f3(dz(tn), (Ty)(tn)) > o, we find that
for n € N large enough

suppose that
dt; € [6,&)) :
Then for

e(t) ™! = [lex(tr)] <e.

to = max{ te[o,t1) ‘ o)t = |ler(t)]| =€ }
we have for allt € [to, ;] that

e —les(®)| < and

7 A
11 (y(t) | < k(tn) f3(d2(tn), (Ty)(tn)) lle2(tn) | lex®ll 2 0(t) " —e2 A2 2

and hence and

|H (t,)| > arkk(t,) — 8 — oo for n — oo. ; i

k(t) = >

However, this contradicts the fact that is bounded, asl; ®) L—p()?le®)]]? = 1 —@(t)?|ler(t)]?
andT'y are bounded (the latter follows from boundedness of E i Ak
y and Property (iii) in Definition 2.1). = A= oD ler N+ o@le (¢ 2 2o = 2%

Step 5b Now, if [ = 0 thene = ey and we have ( pDllex () #Olles(®)] ()
lim¢., [le(t)]| = 0, which implies, by boundedness of Now we have, for alt € [to, 1],

@, lime, (t)2]le(®)]|2 = 0, hencelim;_,, k(t) = k, a lﬁ”e O = e ()T ex(t)
contradiction. Hence, in the following we assume that0. g drll™1 ! !

Let 6 € (0,w) be arbitrary but fixed and\ := 4.5 _ T —1 T
infie0,w) o)™t > 0. Since ¢ is bounded and < pller®ll = ak(t)er(t) D(y(t)) er(t)
1iminftﬂoo (,O(t) > O we f|nd that % (p|[5,oo) (')71 iS (4<12) MHel( )” _ Akaﬁl H 1(t)H2
bounded and hence there exists a Lipschitz boling 0 B2

of <P|[5
D(-), D(- ) s continuous as well and singe Ty, d; and
ref @re bounded, the number

0l (1(y(t))
+ fada(0) <Ty><t>)) — 11,010 res(8)|

is well defined. Moreover, Lemma 3.1 implies
31> 0Vt e[0,w): mino(D(y(t) +D(y()") = pi.
Continuity of D and boundedness gf give

382 >0Vt € [0,w): maxa(D(y(t))D(y(1)") < Ba.

We may now conclude from Lemma 3.2 that

W= sup H
te[0,w)

Vie[0,w)VzeR : 2TD(y(t) 'z > _||z|\2 (4.12)
Define R
yo— )\Qkaﬁl
: 35,
Now, chooses > 0 small enough so that
e <min{ 2, min (p(t)" = lex(®)])
- 27 1€[0,0) 14 !
and y
L< —pu+ ~ (4.13)
We show that
Vie (0,w): o)™ — et > e (4.14)

(-)~!. Furthermore, observe that by continuity ofTp;g yields that

13)

SSla®l? < (=) el <~ Lliea o)

Therefore, using

L4

saller®I* = lex @l g lle O

we find that

t1 1 B
llex(t)]] — llex(to)ll = / ler®l taller®)]? at
to

< =Lty — to) < —|p(t1) ™" = ¢(to) |
< (t) ™t —p(to) ™,
and hence
= p(to) ™ — ller(to)ll < @(t1) ™" = llex(tr)]l <,

a contradiction.

Therefore, (4.14) holds and as(t) — 0 there exists €
[0, )such that|es(t)|| < ¢ for all t € [t,w). Then, invoking
e < 4, we obtain for allt € [t,w)

le@®1* = lex()1? + lle2()]|* <
< o(t)”
This implies boundedness &f a contradiction.

Step 6 We show thatv = oco. First note that by Step 2
and Step 3 we have thét, k) : [0,w) — R™*! is bounded.
Further noting that boundedness lofis equivalent to (4.2)
(for ¢t € [0,w)), the assumptiony < oo implies existence of

()™ —e)* +¢&°
2 2eN+2e2 < p(t) 2 — 267

By definition ofe this holds on(0, §]. Seeking a contradiction a compact subséf C D such thagraph (1, e, 3, k) C K.



This contradicts (4.11).
Step 7 It remains to show (ii). This follows from

Vi>0: k(t) = k+ k(t)p)?|le)]?

L h ket (0t) ™ — ) = k+ k(01— pt)e)?.

This completes the proof of the theorem. [ ]

We like to stress again that the condition (4.1) in Theo-

(4]

(5]
(6]
(7]

A. lichmann, E. P. Ryan, and C. J. Sangwin, “Systems oftrcdied
functional differential equations and adaptive trackinGlAM J.
Control Optim, vol. 40, no. 6, pp. 1746-1764, 2002. [Online].
Available: http://link.aip.org/link/?SJC/40/1746/1

——, “Tracking with prescribed transient behaviougSAIM: Control,
Optimisation and Calculus of Variationsol. 7, pp. 471-493, 2002.
A. lichmann and E. P. Ryan, “High-gain control withoutidtification:
a survey,"GAMM Mitt., vol. 31, no. 1, pp. 115-125, 2008.

T. Berger, A. lichmann, and T. Reis, “Zero dynamics anchriel
control of linear differential-algebraic systemdfath. Control Signals
Syst, vol. 24, no. 3, pp. 219-263, 2012.

rem 4.1 is sufficient for the closed-loop system to be index-1jgj ___ «Normal forms, high-gain, and funnel control for &ar
It is an open problem as to whether (4.1) is also necessary
for the index-1 property, although it seems that this is the

case.

differential-algebraic systems,” irControl and Optimization with
Differential-Algebraic Constraintsser. Advances in Design and Con-
trol, L. T. Biegler, S. L. Campbell, and V. Mehrmann, Eds. |&el-
phia: SIAM, 2012, vol. 23, pp. 127-164.

Remark 4.2:It is only a technicality to extend the proof [9] T. Berger, “Zero dynamics and funnel control of generaledr
of Theorem 4.1 to incorporate disturbances and the operator
dependency i, i.e., on the left hand side of (1.2) we havey;q

F(y(t)v (Ty) (t)7 dy (t)) y(t)

Furthermore, one could allow fof; to be matrix valued,

incorporate disturbances jfy and replace:(t) by fs (u(t)+
d5(t)) for some appropriate functiofy and disturbances.
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