
Hamburger Beiträge
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Funnel control for nonlinear functional differential-alg ebraic systems*

Thomas Berger1, Achim Ilchmann2 and Timo Reis1

Abstract— We consider output regulation for a class of non-
linear functional differential-algebraic systems. Funnel control,
that is a static nonlinear proportional output error feedback, is
applied to achieve tracking of a reference signal by the output
signal with prescribed transient behavior.

Index Terms— Differential-algebraic equations, nonlinear
systems, functional differential equations, funnel control.

I. I NTRODUCTION

Differential-algebraic equations (DAEs) are an appropriate
tool to model systems coming from applications such as
multibody dynamics [1] and electrical networks [2]. The dy-
namics and constraints of the system are modeled as a set of
differential and algebraic equations. If the internal dynamics
of the system are autonomous and the input does affect at
most the first derivative of the output (roughly speaking, the
largest relative degree part is one), then the DAE model may
be written in the form

Γ
(

y(t)
)

ẏ(t) = f1
(

y(t)
)

+ f2
(

d1(t), x(t)
)

+f3
(

d2(t), x(t)
)

u(t),

ẋ(t) = f4
(

x(t), y(t), d3(t)
)

.

(1.1)

The functionsu : R → R
m and y : R → R

m are
called input andoutputof the system, resp., andd1, d2, and
d3 are bounded disturbances. The second equation in (1.1)
represents the internal dynamics, governed by thestatex :
R → R

q. It is possible, that there are also algebraic variables
in the system which depend onx andy and their derivatives,
but these do not affect the input-output behavior of the
system and hence we omit them in the model (1.1). The
differentiable functionsf1, f2 and f4 are vector valued,f3
is scalar valued andΓ is matrix valued; for more details see
Section II.

If the internal dynamics of (1.1) are input-to-state stable
(ISS) [3], then system (1.1) can be rewritten, by the choice
of an appropriate operatorT (which depends onf4, d3
and the initial valuex(0)) explained in [4, Sect. 2.3], as a
nonlinear functional differential-algebraic multi-input, multi-
output systems of the form

Γ
(

y(t)
)

ẏ(t) = f1
(

y(t)
)

+ f2
(

d1(t), (Ty)(t)
)

+f3
(

d2(t), (Ty)(t)
)

u(t).
(1.2)
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In the present paper we consider DAE systems (1.2) which
may arise from different models or applications, i.e.,T is not
necessarily a solution operator as in the motivation above but
some causal operator with a bounded input, bounded output
property, see Section II for details.

We consider output regulation for systems (1.2). It is the
aim of the present paper to prove that the application of the
funnel controller

u(t) = −k(t) e(t), where e(t) = y(t)− yref(t),

k(t) =
k̂

1− ϕ(t)2‖e(t)‖2
.

(1.3)

to the system (1.2) achieves tracking of the reference sig-
nal yref by the output signaly within the pre-specified
performance funnel

Fϕ := { (t, e) ∈ R≥0 × R
m | ϕ(t)‖e‖ < 1 } . (1.4)

The concept of funnel control as a simple strategy for
output regulation has been developed in [5] for ODEs, see
also the survey [6] and the references therein. Funnel control
for linear DAE systems has been investigated in the recent
papers [7], [8], [9], [10]. In the present paper we study
funnel control for nonlinear DAE systems. This generalizes
the results for nonlinear ODE systems obtained in [5], [11]
and the results for linear DAE systems obtained in [9].

The paper is organized as follows: We introduce the
class of systems (1.2) considered in the present paper and,
in particular, the class of operatorsT allowed in (1.2) in
Section II. Two preliminary results for the proof of our
main result - Theorem 4.1 - are provided in Section III. In
Section IV the concept of funnel control is introduced and
it is proved that the funnel controller achieves tracking with
prescribed transient behavior.

II. SYSTEM CLASS

We study nonlinear functional DAEs (1.2), whereT is a
causal operator andd1, d2 are extraneous disturbances. We
extend a class of operators which has been introduced in [11].

Definition 2.1 (Operator classTm,q): For t ≥ 0, w ∈
C([0, t];Rm), τ > t and δ > 0, define the following set
of extensions ofw:

C(w; t, τ, δ)

:=

{

v ∈ C([0, τ ];Rm)

∣

∣

∣

∣

v|[0,t] = w ∧ ∀ s ∈ [t, τ ] :

‖v(s)− w(s)‖ ≤ δ

}

.

An operatorT : C(R≥0;R
m) → C1(R≥0;R

q) is said to be
of classTm,q if, and only if,

(i) T is a causal operator,



(ii) ∀ t ≥ 0 ∀w ∈ C([0, t];Rm) ∃ τ > t ∃ δ > 0
∃ c0 > 0 ∀u, v ∈ C(w; t, τ, δ) :

max
s∈[t,τ ]

‖(Tu)(s)−(Tv)(s)‖ ≤ c0 max
s∈[t,τ ]

‖u(s)−v(s)‖,

(iii) ∀ c1 > 0 ∃ c2 > 0 ∀ v ∈ C(R≥0;R
m) :

sup
s∈R≥0

‖v(s)‖ ≤ c1 =⇒ sup
t∈R≥0

‖(Tv)(t)‖ ≤ c2,

(iv) ∃h∈ C(Rm×R
q;Rq) ∃ T̃ : C(R≥0;R

m)→C(R≥0;R
q)

with Properties (i)–(iii)∀ v ∈ C(R≥0;R
m) ∀ t ≥ 0 :

d
dt (Tv)(t) = h

(

v(t), (T̃ v)(t)
)

.

For a motivation of the properties of the operators within
the classTm,q see [11]. Compared to [11], we have added
Property (iv) which is needed for the case where equa-
tion (1.2) has parts with relative degree smaller or equal
to zero - a differentiation of these parts is required for the
solvability of the closed-loop system (1.2), (1.3). Assump-
tion (iv) is not very restrictive since usuallyT is an integral
operator or a solution operator of a differential equation.

Property (iii) of the operators inTm,q is a bounded-input,
bounded-output assumption and is the counterpart to the
assumption of asymptotically stable zero dynamics used for
linear systems e.g. in [6], [9].

Remark 2.2:Linear ODE minimum-phase systems with
positive definite high-frequency gain matrix can be written
in the form

ẏ(t) = p(t) + (Ty)(t) +Bu(t), (2.1)

wherep ∈ C1(R≥0;R
m), B ∈ R

m×m satisfiesB = B⊤ > 0
and

(Ty)(t) := A1y(t) +A2

∫ t

0

eA4(t−s)A3y(s) ds , (2.2)

whereA1 ∈ R
m×m, A2 ∈ R

m×p, A3 ∈ R
p×m, A4 ∈ R

p×p,
defines an operatorT which satisfies properties (i) and (ii) in
Definition 2.1. Property (iii) is satisfied ifA4 has spectrum
in the open left complex half plane. For property (iv) to hold,
the equality

d
dt (Ty)(t) = A1ẏ(t) +A2A3y(t)

+A2A4

∫ t

0

eA4(t−s)A3y(s) ds = h
(

y(t), (T̃ y)(t)
)

needs to be satisfied for someh ∈ C(Rm×R
q;Rq) and T̃ :

C(R≥0;R
m)→C(R≥0;R

q) with properties (i)–(iii) and for
all y ∈ C(R≥0;R

m) and allt ≥ 0. Hence, property (iv) holds
if, and only if, A1 = 0. Therefore, the termA1y(t) in the
definition of T has to be delegated into the functionf1 in
the formulation (1.2). ThenT belongs toTm,m.

The above observation for linear ODE systems implies
that the initial points ofTy are uniquely determined byy(0).
In the general case, by causality ofT ∈ Tm,q there exists
j : Rm → R

q such that

∀ v ∈ C(R≥0;R
m) : (Tv)(0) = j

(

v(0)
)

. (2.3)

Definition 2.3 (System classΣm,p,q,r): The functional
differential-algebraic equation (1.2) is said to
define a system of classΣm,p,q,r, and we write
(Γ, f1, f2, f3, T, d1, d2) ∈ Σm,p,q,r, if, and only if,

(i) ∃R ∈ R
m×r ∃G ∈ C(Rm;Rr×r) ∀ y ∈ R

m :
G(y) > 0 ∧ Γ(y) = RG(y)R⊤,

(ii) f1 ∈ C1(Rm;Rm) and, for any basis matrixK of
kerR⊤, it holds thatK⊤f ′

1K is bounded,
(iii) f2 ∈ C1(Rp × R

q;Rm),
(iv) f3 ∈ C1(Rp × R

q;R) ∧ ∃α > 0 ∀ (d, v) ∈ R
p × R

q :
f3(d, v) ≥ α,

(v) T ∈ Tm,q,
(vi) d1, d2 ∈ C1(R≥0;R

p) are bounded.
Linear ODE systems of the form (2.1) belong to

Σm,m,m,m with Γ = B−1. Furthermore, the system class
Σm,p,q,r encompasses even singular DAE systems (descrip-
tor systems). In (ii), the assumption on the derivative of
f1 is essential for the solvability of the closed-loop sys-
tem (1.2), (1.3). More precise, we will require thatk̂ in (1.3)
is larger than the infimum norm ofK⊤f ′

1K multiplied
with ‖(K⊤K)−1‖ and divided byα from (iv) in order
to guarantee invertibility ofαk̂I − ‖(K⊤K)−1‖K⊤f ′

1K.
The latter is crucial for the explicit solution of the hidden
algebraic constraint on the output error in the closed-loop
system (1.2), (1.3), i.e., it guarantees that this system is
index-1, cf. [12], [13].

III. PRELIMINARY RESULTS

We show three lemmata which are important for the proof
of our main result.

Lemma 3.1:Let D ∈ C(Rm;Rl×l) be such thatD(y) > 0
for all y ∈ R

m and letK ⊆ R
m be compact. Then

∃β > 0 ∀ y ∈ K : minσ
(

D(y) +D(y)⊤
)

≥ β.
Proof: Since D + D⊤ is pointwise symmetric and

positive definite, there exists a pointwise eigenvalue decom-
position of the form

D(y) +D(y)⊤ = V (y)J(y)V (y)⊤,

J(y) = diag(λ1(y), . . . , λl(y)),

whereV (y) is orthogonal andλi(y) > 0 for all i = 1, . . . , l
and ally ∈ R

m. Seeking a contradiction, we assume that

∀β > 0 ∃ y ∈ K ∃ i ∈ {1, . . . , l} : λi(y) < β.

Let β > 0 be arbitrary and choosey ∈ K andi ∈ {1, . . . , l}
such thatλi(y) < β. Define x(y) := V (y)ei and observe
that
(

D(y) +D(y)⊤
)

x(y) = V (y)J(y)ei

= λi(y)V (y)ei = λi(y)x(y).

This implies that

x(y)⊤
(

D(y) +D(y)⊤
)

x(y) = λi(y) < β,

and, sincex(y) ∈ S1
m = { x ∈ R

m | ‖x‖ = 1 }, we have

∀β > 0 ∃ y ∈ K ∃ x ∈ S1
m : x⊤

(

D(y) +D(y)⊤
)

x < β.



We may hence choose sequences(yn) ∈ KN and (xn) ∈
(S1

m)N such that

lim
n→∞

x⊤
n

(

D(yn) +D(yn)
⊤
)

xn = 0.

However, this contradicts the fact that the continuous map

R
l × R

m ∋ (x, y) 7→ x⊤
(

D(y) +D(y)⊤
)

x

has a positive minimum on the compact setS1
m ×K.

Lemma 3.2:Let D ∈ R
l×l be positive definite. Then

∀ z ∈ R
l : z⊤D−1z ≥

σmin(D +D⊤)

2σmax(DD⊤)
‖z‖2,

where σmin(D + D⊤) denotes the smallest eigenvalue of
D+D⊤ andσmax(DD⊤) denotes the largest eigenvalue of
DD⊤, which are both real and positive.

Proof:

z⊤D−1z =
1

2
z⊤D−⊤(D +D⊤)D−1z

≥
1

2
σmin(D +D⊤)‖D−1z‖2

=
1

2
σmin(D +D⊤)z⊤(DD⊤)−1z

≥
σmin(D +D⊤)

2σmax(DD⊤)
‖z‖2.

Lemma 3.3:Let K ∈ R
m×r with rkK = r and M ∈

R
m×m such thatM = M⊤ ≥ 0. Then

∥

∥(K⊤K +K⊤MK)−1
∥

∥ ≤
∥

∥(K⊤K)−1
∥

∥ .
Proof: It follows from [14, Prop. 8.6.6] that

0 < (K⊤K +K⊤MK)−1 ≤ (K⊤K)−1,

and this implies the assertion of the lemma.

IV. FUNNEL CONTROL

In this section we prove the main result of the paper:
the funnel controller (1.3) achieves tracking of a reference
trajectory by the output signal with prescribed transient
behavior. Let

B1(R≥0;R
m) :=

{

η ∈ C1(R≥0;R
m) | η, η̇ are bounded

}

and associate, for any functionϕ belonging to

Φ:=

{

ϕ ∈ B1(R≥0;R)

∣

∣

∣

∣

ϕ(0) = 0, ϕ(s) > 0 for all s > 0
and lim infs→∞ ϕ(s) > 0

}

the performance funnelFϕ, see (1.4) and Figure 1.
The control objective is feedback control so that the

tracking errore = y − yref , where yref is the reference
signal, evolves withinFϕ and all variables are bounded.
More specific, the transient behavior is supposed to satisfy

∀ t > 0 : ‖e(t)‖ < 1/ϕ(t).

The bounded-input, bounded-output property of the op-
erator T ∈ Tm,q can be exploited for an inherent high-
gain property of the system (1.2) and hence to maintain
error evolution within the funnel: by the design of the

λ
0 t

−λ

b

1/ϕ(t)
e(t)

Fig. 1: Error evolution in a funnelFϕ with boundary1/ϕ(t)
for t > 0 and a pole att = 0.

controller (1.3), the gaink(t) increases if the norm of the
error ‖e(t)‖ approaches the funnel boundary1/ϕ(t). The
control design (1.3) has two advantages:k is non-monotone
and (1.3) is a simple static time-varying proportional output
feedback.

Theorem 4.1 (Funnel control):Let the system
(Γ, f1, f2, f3, T, d1, d2) ∈ Σm,p,q,r be given, letϕ ∈ Φ
define a performance funnelFϕ, and use the notation from
Definition 2.3. Furthermore, letyref ∈ B1(R≥0;R

m) be any
reference trajectory,K be a basis matrix ofkerR⊤, and
assume that the initial gain satisfies

k̂ > α−1‖(K⊤K)−1‖ sup
y∈Rm

‖K⊤f ′
1(y)K‖. (4.1)

Then, using the functionj from (2.3), for any initial value

y0∈







w ∈ R
m

∣

∣

∣

∣

∣

∣

K⊤
(

f1(w) + f2
(

d1(0), j(w)
)

−k̂ f3
(

d2(0), j(w)
)(

w − yref(0)
)

)

= 0







,

the application of the funnel controller (1.3) to (1.2),y(0) =
y0, yields a closed-loop initial-value problem that has a
solution and every solution can be extended to a global
solution. Furthermore, for every global solutiony,

(i) the corresponding tracking errore = y − yref evolves
uniformly within the performance funnelFϕ; more
precisely,

∃ ε > 0 ∀ t > 0 : ‖e(t)‖ ≤ ϕ(t)−1 − ε . (4.2)

(ii) the corresponding gain functionk given by (1.3) is
bounded:

∀ t0 > 0 : sup
t≥t0

|k(t)| ≤
k̂

1− (1− ελt0)
2
,

whereλt0 := inft≥t0 ϕ(t) > 0 for all t0 > 0.

Proof: We proceed in several steps.

Step 1: We show existence of a local solution of the closed-
loop system (1.2), (1.3). Set

D̃ :=
{

(t, e, k) ∈ R≥0 × R
m+1

∣

∣ ϕ(t)‖e‖ < 1
}

.

The closed-loop system (1.2), (1.3) may be written in the



form

Γ
(

y(t)
)

ė(t) = f1
(

y(t)
)

− k(t)f3
(

d2(t), (Ty)(t)
)

e(t)

+f2
(

d1(t), (Ty)(t)
)

− Γ
(

y(t)
)

ẏref(t),

k(t) = k̂ (1− ϕ(t)2‖e(t)‖2)−1,
(4.3)

where y = e + yref . If Γ
(

y0 − yref(0))
)

were invertible,
then the solution theory of functional differential equations
(see [11, Thm. B.1]) would guarantee the existence of a local
solution with(t, e(t), k(t)) ∈ D̃ and(t, e(t)) ∈ Fϕ at initial
data

(

e
k

)

(0) =

(

y0 − yref(0)

k̂

)

. (4.4)

In the present case, we need to decompose equation (4.3)
into an ODE part and an algebraic constraint. By differenti-
ating the algebraic constraint we may obtain an ODE in all
system variables, the solution of which satisfies the algebraic
constraint. In this sense, equation (4.3) is an index-1 DAE,
cf. [12], [13].

Step 2: We will now rewrite (4.3) as an explicit functional
differential equation. Observe that, by the singular value
decomposition, there exists an orthogonal matrixU ∈ R

m×m

such thatUR = [R̃⊤, 0]⊤, where R̃ ∈ R
l×r has full row

rank. This implies that, for allw ∈ R
m,

UΓ(w)U⊤ =
[

D(w) 0
0 0

]

, D(w) = R̃G(w)R̃⊤ > 0.

We introduce new variablese1 := [Il, 0]Ue and e2 :=
[0, Im−l]Ue. Then (4.3) may be written, by the use of
‖e(t)‖2 = ‖Ue(t)‖2 = ‖e1(t)‖

2 + ‖e2(t)‖
2, as the system

ė1(t) = [D
(

y(t)
)−1

, 0]U
(

f1
(

y(t)
)

+ f2
(

d1(t), (Ty)(t)
)

)

−k(t)f3
(

d2(t), (Ty)(t)
)

D
(

y(t)
)−1

e1(t)

−[Il, 0]U ẏref(t),

0 = [0, Im−l]U
(

f1
(

y(t)
)

+ f2
(

d1(t), (Ty)(t)
)

)

−k(t)f3
(

d2(t), (Ty)(t)
)

e2(t),

k(t) = k̂
(

1− ϕ(t)2(‖e1(t)‖
2 + ‖e2(t)‖

2)
)−1

.
(4.5)

Note that, sinceD is continuous, the mapw 7→ D(w)−1

is continuous as well. Now, differentiation of the second
equation in (4.5), and using

F21(w) := [0, Im−l]Uf ′
1(w)U

⊤[Il, 0]
⊤,

F22(w) := [0, Im−l]Uf ′
1(w)U

⊤[0, Im−l]
⊤, w ∈ R

m,

yields

0 = F21

(

y(t)
)

ė1(t) + F22

(

y(t)
)

ė2(t)

+ [0, Im−l]Uf ′
2

(

d1(t), (Ty)(t)
)

(

ḋ1(t)

h
(

y(t), (T̃ y)(t)
)

)

− k(t)e2(t)f
′
3

(

d2(t), (Ty)(t)
)

(

ḋ2(t)

h
(

y(t), (T̃ y)(t)
)

)

− f3
(

d2(t), (Ty)(t)
)

(

k̇(t)e2(t) + k(t)ė2(t)
)

. (4.6)

Observe that the derivative ofk is given by

k̇(t) = 2k(t)
(

1− ϕ(t)2(‖e1(t)‖
2 + ‖e2(t)‖

2)
)−1

×
(

ϕ(t)ϕ̇(t)(‖e1(t)‖
2 + ‖e2(t)‖

2)

+ ϕ(t)2(e1(t)
⊤ė1(t) + e2(t)

⊤ė2(t))
)

. (4.7)

Introduce the set

D :=
{

(t, k, e1, e2) ∈ R≥0 × [k̂,∞)× R
l × R

m−l
∣

∣

∣

ϕ(t)2(‖e1‖
2 + ‖e2‖

2) < 1
}

and define

ξ : R≥0 × R
l × R

m−l → R
m,

(t, e1, e2) 7→ U⊤

(

e1
e2

)

+ yref(t),

Θ1 : C(R≥0;R
l)× C(R≥0;R

l) → C1(R≥0;R
q),

(e1, e2) 7→ T (ξ(·, e1(·), e2(·))),

Θ2 : C(R≥0;R
l)× C(R≥0;R

l) → C1(R≥0;R
q),

(e1, e2) 7→ T̃ (ξ(·, e1(·), e2(·))),

g1 : D × R
q → R

l, (t, k, e1, e2, η) 7→

[D
(

ξ(t, e1, e2)
)−1

, 0]U
(

f1
(

ξ(t, e1, e2)
)

+ f2
(

d1(t), η
)

)

− kf3
(

d2(t), η
)

D
(

ξ(t, e1, e2)
)−1

e1(t)− [Il, 0]Uẏref(t).

Now, the first equation in (4.5) can be written as

ė1(t) = g1
(

t, k(t), e1(t), e2(t),Θ(e1, e2)(t)
)

.

Further define

M : D × R
q → Glm−l(R), (t, k, e1, e2, η) 7→

F22

(

ξ(t, e1, e2)
)

− k f3
(

d2(t), η
)

(

Im−l+

2ϕ(t)2
(

1− ϕ(t)(‖e1‖
2 + ‖e2‖

2)
)−1

e2e
⊤
2

)

and

g2 : D × R
l × R

q × R
q → R

m−l,

(t, k, e1, e2, ẽ1, η1, η2) 7→ F21

(

ξ(t, e1, e2)
)

ẽ1

+ [0, Im−l]Uf ′
2

(

d1(t), η1
)

(

ḋ1(t)
h
(

ξ(t, e1, e2), η2
)

)

− k e2 f
′
3

(

d2(t), η1
)

(

ḋ2(t)
h
(

ξ(t, e1, e2), η2
)

)

− 2k f3
(

d2(t), η1
) (

1− ϕ(t)2(‖e1‖
2 + ‖e2‖

2)
)−1

×
(

ϕ(t)ϕ̇(t)(‖e1‖
2 + ‖e2‖

2) + ϕ(t)2e⊤1 ẽ1
)

e2.

If M is well defined, then insertinġk from (4.7) into (4.6)
and rearranging according tȯe2 gives

M
(

t, k(t), e1(t), e2(t),Θ1(e1, e2)(t)
)

ė2(t) =

g2
(

t, k(t), e1(t), e2(t), ė1(t),Θ1(e1, e2)(t),Θ2(e1, e2)(t)
)

.

Now we show thatM is well defined, i.e., thatM is
invertible everywhere on its domain. To this end, letK be the
basis matrix ofkerR⊤ as in the statement of the theorem.



SinceK̃ := U⊤[0, Im−l]
⊤ is another basis matrix ofkerR⊤,

there existsT ∈ Glm−l(R) such thatK̃ = K T . We may
now write

Im−l = K̃⊤K̃ = T⊤K⊤KT,

ẽ(e1, e2) := U⊤(e1, e
⊤
2 )

⊤, e1 ∈ R
l, e2 ∈ R

m−l,

e2 = K̃⊤ẽ(e1, e2) = T⊤K⊤ẽ(e1, e2).

The matrix-valued function

E : D̃ → R
m×m, (t, e, k) 7→ 2ϕ(t)2

(

1− ϕ(t)2‖e‖2
)−1

ee⊤

is symmetric and positive semi-definite everywhere. Then we
have that

M(t, k, e1, e2, η) = T⊤K⊤f ′
1

(

ξ(t, e1, e2)
)

KT

− kf3
(

d2(t), η
)

T⊤
(

K⊤K +K⊤E
(

t, ẽ(e1, e2), k
)

K
)

T

and clearly M is invertible everywhere if, and only
if, T−⊤MT−1 is invertible everywhere. By Lemma 3.3
and (4.1) we obtain, for all(t, k, e1, e2, η) ∈ D × R

q, that

‖k−1f3
(

d2(t), η
)−1(

K⊤K +K⊤E(t, ẽ(e1, e2), k)K
)−1

×K⊤f ′
1

(

ξ(t, e1, e2)
)

K‖

≤ k̂−1α−1‖(K⊤K)−1‖‖K⊤f ′
1

(

ξ(t, e1, e2)
)

K‖ < 1.

This implies thatM is invertible everywhere. Now, with

g̃2 : D × R
q × R

q → R
m−l, (t, k, e1, e2, η1, η2) 7→

M(t, k, e1, e2, η1)
−1g2

(

t, k, e1, e2, g1(t, k, e1, e2, η1), η1, η2
)

,

and

g3 : D × R
q × R

q → R, (t, k, e1, e2, η1, η2) 7→

2k
(

1− ϕ(t)2(‖e1‖
2 + ‖e2‖

2)
)−1

(

ϕ(t)ϕ̇(t)(‖e1‖
2+‖e2‖

2)

+ϕ(t)2
(

e⊤1 g1(t, k, e1, e2, η1)+e⊤2 g̃2(t, k, e1, e2, η1, η2)
)

)

we obtain the system

ė1(t) = g1
(

t, k(t), e1(t), e2(t),Θ1(e1, e2)(t)
)

ė2(t) = g̃2
(

t, k(t), e1(t), e2(t),Θ1(e1, e2)(t),Θ2(e1, e2)(t)
)

k̇(t) = g3
(

t, k(t), e1(t), e2(t),Θ1(e1, e2)(t),Θ2(e1, e2)(t)
)

(4.8)

with initial data

(k, e1, e2)(0) =
(

k̂, U(y0 − yref(0))
)

=: ζ (4.9)

Step 3: We show existence of a maximal local solution
of (4.8), (4.9) which evolves inD and leaves every compact
subset ofD. We may write (4.8), (4.9) for appropriateF :
D × R

2q → R
m+1 in the form

ż(t) = F
(

t, z(t), (Sz)(t)
)

, z(0) = ζ, (4.10)

where Sz =
(

Θ1(e1, e2)
⊤,Θ2(e1, e2)

⊤
)⊤

and S :
C(R≥0;R

m+1) → C1(R≥0;R
2q) is an operator with the

properties as in [11, Def. 2.1] (note that in [11] only

operators with domainC(R≥0;R) are considered, but the
generalization to domainC(R≥0;R

m+1) is straightforward),
which follows by invoking thatyref and ẏref are bounded.

It is clear thatg1, g̃2 andg3 are continuous and henceF
is continuous.

Then [11, Thm. B.1] is applicable to the system (4.10)
(note that in [11] a domainD ⊆ R≥0×R is considered, but
the generalization to the higher dimensional case is only a
technicality) and we may conclude that

(a) there exists a solution of (4.10), i.e., a functionz ∈
C([0, ρ);Rm+1) for some ρ ∈ (0,∞] such thatz is
locally absolutely continuous,z(0) = ζ, (t, z(t)) ∈ D
for all t ∈ [0, ρ) and (4.10) holds for almost allt ∈ [0, ρ),

(b) every solution can be extended to a maximal solution
z ∈ C([0, ω);Rm+1), i.e.,z has no proper right extension
that is also a solution,

(c) if z ∈ C([0, ρ);Rm+1) is a maximal solution, then the
closure ofgraph z is not a compact subset ofD.

Property (c) follows sinceF is locally essentially bounded,
as it is continuous. Letz ∈ C([0, ω);Rm+1) be a maximal
solution of (4.10) and observe thatz is continuously differen-
tiable sinceF is continuous. It is clear thatz is a maximal
solution of (4.8), (4.9) which leaves every compact subset
of D.

Step 4: We show that there exists a maximal solution
of (4.3), (4.4) which evolves iñD and leaves every compact
subset ofD̃. The solution (e1, e2, k) ∈ C([0, ω);Rm+1)
of (4.8) in particular satisfies (4.6). Integration gives, for all
t ∈ [0, ω),

[0, Im−l]U
(

f1
(

y(t)
)

+ f2
(

d1(t), (Ty)(t)
)

)

− k(t)f3
(

d2(t), (Ty)(t)
)

e2(t)

− [0, Im−l]U
(

f1
(

y0
)

+ f2
(

d1(0), j(y
0)
)

)

+ k̂f3
(

d2(0), j(y
0)
)

[0, Im−l]U
(

y0 − yref(0)
)

= 0,

where y = e + yref and j is from (2.3). Since
ker[0, Im−l]U = kerK it follows from the choice ofy0

that (e1, e2, k) satisfies the second equation in (4.5), and
hence all equations in (4.5) are satisfied on[0, ω). This leads
to a maximal solution(e, k) ∈ C1([0, ω);Rn+1) of (4.3)
with graph (e, k) ⊆ D̃. Note that the solution is maximal,
since the existence of a right extension would lead to a right
extension ofz, a contradiction. Furthermore, by (c) we have

the closure ofgraph (e, k) is not a compact subset of̃D.
(4.11)

Step 5: We show thatk is bounded. Seeking a contradic-
tion, assume thatk(t) → ∞ for t → ω.

Step 5a: We show thate2(t) → 0 for t → ω. Seeking a
contradiction, assume that there existκ > 0 and a sequence
(tn) ⊆ R≥0 with tn ր ω such that‖e2(tn)‖ ≥ κ for all
n ∈ N. Let H(t) := [0, Im−l]Uf2

(

d1(t), (Ty)(t)
)

, t ≥ 0,
and f̃1(y) := [0, Im−l]Uf1(y), y ∈ R

m. Then, from (4.5)



we obtain, for allt ≥ 0,

‖H(t)‖ = ‖f̃1
(

y(t)
)

− k(t)f3
(

d2(t), (Ty)(t)
)

e2(t)‖

≥
∣

∣

∣
‖f̃1

(

y(t)
)

‖ − k(t)f3
(

d2(t), (Ty)(t)
)

‖e2(t)‖
∣

∣

∣
.

Sincey is bounded andf1 is continuous, there existsγ >
0 such thatsupt≥0 ‖f̃1

(

y(t)
)

‖ ≤ γ. Since k(t) → ∞,
‖e2(tn)‖ ≥ κ and f3

(

d2(tn), (Ty)(tn)
)

≥ α, we find that
for n ∈ N large enough

‖f̃1
(

y(tn)
)

‖ < k(tn)f3
(

d2(tn), (Ty)(tn)
)

‖e2(tn)‖

and hence

‖H(tn)‖ ≥ ακk(tn)− β → ∞ for n → ∞.

However, this contradicts the fact thatH is bounded, asd1
andTy are bounded (the latter follows from boundedness of
y and Property (iii) in Definition 2.1).

Step 5b: Now, if l = 0 then e = e2 and we have
limt→ω ‖e(t)‖ = 0, which implies, by boundedness of
ϕ, limt→ω ϕ(t)2‖e(t)‖2 = 0, hencelimt→ω k(t) = k̂, a
contradiction. Hence, in the following we assume thatl > 0.

Let δ ∈ (0, ω) be arbitrary but fixed andλ :=
inft∈(0,ω) ϕ(t)

−1 > 0. Since ϕ̇ is bounded and
lim inft→∞ ϕ(t) > 0 we find that d

dt ϕ|[δ,∞) (·)
−1 is

bounded and hence there exists a Lipschitz boundL > 0
of ϕ|[δ,∞) (·)

−1. Furthermore, observe that by continuity of
D(·), D(·)−1 is continuous as well and sincey, Ty, d1 and
ẏref are bounded, the number

µ := sup
t∈[0,ω)

∥

∥

∥
[D

(

y(t)
)−1

, 0]U
(

f1
(

y(t)
)

+ f2
(

d1(t), (Ty)(t)
)

)

− [Il, 0]U ẏref(t)
∥

∥

∥

is well defined. Moreover, Lemma 3.1 implies

∃β1 > 0 ∀ t ∈ [0, ω) : minσ
(

D(y(t)) +D(y(t))⊤
)

≥ β1.

Continuity ofD and boundedness ofy give

∃β2 > 0 ∀ t ∈ [0, ω) : max σ
(

D(y(t))D(y(t))⊤
)

≤ β2.

We may now conclude from Lemma 3.2 that

∀ t ∈ [0, ω) ∀ z ∈ R
l : z⊤D

(

y(t)
)−1

z ≥
β1

2β2
‖z‖2. (4.12)

Define

ν :=
λ2k̂αβ1

8β2
.

Now, chooseε > 0 small enough so that

ε ≤ min

{

λ

2
, min
t∈[0,δ]

(ϕ(t)−1 − ‖e1(t)‖)

}

and
L ≤ −µ+

ν

ε
. (4.13)

We show that

∀ t ∈ (0, ω) : ϕ(t)−1 − ‖e1(t)‖ ≥ ε. (4.14)

By definition ofε this holds on(0, δ]. Seeking a contradiction

suppose that

∃ t1 ∈ [δ, ω) : ϕ(t1)
−1 − ‖e1(t1)‖ < ε.

Then for

t0 := max
{

t ∈ [δ, t1)
∣

∣ ϕ(t)−1 − ‖e1(t)‖ = ε
}

we have for allt ∈ [t0, t1] that

ϕ(t)−1 − ‖e1(t)‖ ≤ ε and

‖e1(t)‖ ≥ ϕ(t)−1 − ε ≥ λ− ε ≥
λ

2

and

k(t) =
k̂

1− ϕ(t)2‖e(t)‖2
≥

k̂

1− ϕ(t)2‖e1(t)‖2

=
k̂

(1− ϕ(t)‖e1(t)‖)(1 + ϕ(t)‖e1(t)‖
≥

k̂

2εϕ(t)
≥

λk̂

2ε
.

Now we have, for allt ∈ [t0, t1],

1

2
d
dt‖e1(t)‖

2 = e1(t)
⊤ė1(t)

(4.5)
≤ µ‖e1(t)‖ − αk(t)e1(t)

⊤D
(

y(t)
)−1

e1(t)
⊤

(4.12)
≤ µ‖e1(t)‖ −

λk̂αβ1

4εβ2
‖e1(t)‖

2

This yields that

1

2
d
dt‖e1(t)‖

2 ≤
(

µ−
ν

ε

)

‖e1(t)‖
(4.13)
≤ −L‖e1(t)‖.

Therefore, using

1

2
d
dt‖e1(t)‖

2 = ‖e1(t)‖
d
dt‖e1(t)‖,

we find that

‖e1(t1)‖ − ‖e1(t0)‖ =

∫ t1

t0

1

2
‖e1(t)‖

−1 d
dt‖e1(t)‖

2 dt

≤ −L(t1 − t0) ≤ −|ϕ(t1)
−1 − ϕ(t0)

−1|

≤ ϕ(t1)
−1 − ϕ(t0)

−1,

and hence

ε = ϕ(t0)
−1 − ‖e1(t0)‖ ≤ ϕ(t1)

−1 − ‖e1(t1)‖ < ε,

a contradiction.

Therefore, (4.14) holds and ase2(t) → 0 there exists̃t ∈
[0, ω) such that‖e2(t)‖ ≤ ε for all t ∈ [t̃, ω). Then, invoking
ε ≤ λ

2 , we obtain for allt ∈ [t̃, ω)

‖e(t)‖2 = ‖e1(t)‖
2 + ‖e2(t)‖

2 ≤ (ϕ(t)−1 − ε)2 + ε2

≤ ϕ(t)−2 − 2ελ+ 2ε2 ≤ ϕ(t)−2 − 2ε2.

This implies boundedness ofk, a contradiction.

Step 6: We show thatω = ∞. First note that by Step 2
and Step 3 we have that(e, k) : [0, ω) → R

m+1 is bounded.
Further noting that boundedness ofk is equivalent to (4.2)
(for t ∈ [0, ω)), the assumptionω < ∞ implies existence of
a compact subsetK ⊆ D̃ such thatgraph (x1, e, x3, k) ⊆ K.



This contradicts (4.11).
Step 7: It remains to show (ii). This follows from

∀ t > 0 : k(t) = k̂ + k(t)ϕ(t)2‖e(t)‖2

(4.2)
≤ k̂ + k(t)ϕ(t)2(ϕ(t)−1 − ε)2 = k̂ + k(t)(1− ϕ(t)ε)2.

This completes the proof of the theorem.
We like to stress again that the condition (4.1) in Theo-

rem 4.1 is sufficient for the closed-loop system to be index-1.
It is an open problem as to whether (4.1) is also necessary
for the index-1 property, although it seems that this is the
case.

Remark 4.2:It is only a technicality to extend the proof
of Theorem 4.1 to incorporate disturbances and the operator
dependency inΓ, i.e., on the left hand side of (1.2) we have

Γ
(

y(t), (Ty)(t), d4(t)
)

ẏ(t).

Furthermore, one could allow forf3 to be matrix valued,
incorporate disturbances inf1 and replaceu(t) by f5

(

u(t)+
d5(t)

)

for some appropriate functionf5 and disturbanced5.
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