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A lower bound for the balanced truncation error for
MIMO systems
Mark R. Opmeer and Timo Reis

Abstract—We show that for a class of systems which includes
state space symmetric systems, the balanced truncation error is
bounded from below by twice the sum of the tail of the Hankel
singular values (including multiplicities) divided by the dimension
of the input space.

Index Terms—balanced realization, balanced truncation, Han-
kel operator, error bound, model reduction, linear time-invariant
systems.

I. I NTRODUCTION

T HE well-known error bound for balanced truncation

sup
ζ∈C:Reζ>0

‖G(ζ)−Gr(ζ)‖ ≤ 2
ℓ∑

j=r+1

µj , (1)

where{µ1, . . . , µℓ} are the distinct Hankel singular values of
G and Gr is the balanced truncation ofG, is known to be
an equality for single-input single-output (SISO) state space
symmetric systems, i.e. ifG(s) = C(sI − A)−1B with A =
A∗ ∈ C

n×n negative definite,C∗ = B ∈ C
n, then

sup
ζ∈C:Reζ>0

|G(ζ) −Gr(ζ)| = 2

ℓ∑

j=r+1

µj ,

(see e.g. [9, Theorem 4.1] and [18, Theorem 4.4]). It is also
known that in this case (this follows e.g. from [14, Corollary
2.2]) the Hankel singular values ofG all have multiplicity
one. Moreover, it is known that for multi-input multi-output
(MIMO) state space symmetric systems, i.e. ifG(s) = C(sI−
A)−1B with A = A∗ ∈ Cn×n negative definite,C∗ = B ∈
Cn×m with m > 1, strict inequality may hold (see e.g. [9,
Remark 4.1] and [18, Section 4]).

In this article we prove that for state space symmetric
systems the following lower bound holds:
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ℓ∑

k=r+1

mj

m
µj ≤ sup

ζ∈C:Reζ>0
‖G(ζ)−Gr(ζ)‖, (2)

wheremj is the multiplicity of µj as a singular value of the
Hankel operator ofG. We note that in combination with the
upper bound (1) this in particular impliesmj ≤ m for the
multiplicities.

In fact, we prove the lower bound (2) for a slightly more
general class of systems than state space symmetric systems,
namely those systems with a semi-definite Hankel operator.
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We note that systems with a semi-definite Hankel operator
includeRC andRL circuits (see Remark 16).

In Section II we first discuss the notation and terminology
used. In Section III we prove a lower bound in terms of the
eigenvalues of the Hankel operator. This is then used in Section
IV to prove the lower bound (2). Section V contains comments
on balanced singular perturbation approximation and on the
case of non-rational transfer functions. Finally, SectionVI
illustrates the theory by considering two simpleRC circuits.

II. N OTATION AND TERMINOLOGY

For a matrixT ∈ Cd×m andp ∈ [1,∞] the Schattenp-norm
as defined by

‖T ‖p :=





(∑min(m,d)
k=1 [σk(T )]

p
)1/p

p ∈ [1,∞),

σ1(T ) p = ∞,

whereσ1(T ) ≥ . . . ≥ σmin(m,d)(T ) are the singular values of
T .

The set of d × m-matrices with entries in the field of
complex rational functions is denoted byC(s)d×m. We call
G ∈ C(s)d×m stable if G is proper and all its poles have
negative real part.

The impulse responseh is the inverse Laplace transform of
G ∈ C(s)d×m. TheHankel operatorof a stableG ∈ C(s)d×m

is given by

H : L2(0,∞;Cm) → L2(0,∞;Cd),

u 7→ (Hu)(t) =

∫ ∞

0

h0(t+ s)u(s) ds,

whereh0 is the function part of the impulse response, i.e. the
inverse Laplace transform of the strictly proper part ofG.

The nonzero singular values of the Hankel operator ofG
are called theHankel singular valuesof G. We denote the
sequence of Hankel singular values by(σk)

n
k=1, the sequence

of distinct Hankel singular values by(µj)
ℓ
j=1 and the sequence

of multiplicities of the Hankel singular values by(mj)
ℓ
j=1 (i.e.

mj is the number of times thatµj appears in the sequence
(σk)

n
k=1). We choose the ordering of these sequences to be

compatible in the following sense

σ1+
∑j−1

i=1
mi

= . . . = σ∑j

i=1
mi

= µj , j = 1, . . . , ℓ.

We denote the sequence of nonzero eigenvalues of the Hankel
operator by(λk)

n
k=1 and call these theHankel eigenvalues

of G. We note that if the Hankel operator is self-adjoint,
then the absolute values of the Hankel eigenvalues equal the
Hankel singular values (including multiplicities). In this case
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we choose the ordering of these sequences to be compatible
in the sense that

|λk| = σk, k = 1, . . . , n.

Giving the ordering of the Hankel singular values this may not
uniquely determine the ordering of the Hankel eigenvalues,but
for our purposes this particular non-uniqueness is irrelevant.

A realization of G ∈ C(s)d×m is a quadruple[A B
C D ]

consisting ofA ∈ C
n×n, B ∈ C

n×m, C ∈ C
d×n, D ∈ C

d×m

with
G(s) = C(sI −A)−1B +D.

Conversely,G is called thetransfer functionof [ A B
C D ].

A realization [ A B
C D ] is called stable if all eigenvalues

of A have negative real part. Thereachability mapΦ :
L2(0,∞;Cm) → Cn and theobservability mapΨ : Cn →
L2(0,∞;Cd) of a stable realization[ A B

C D ] are defined by

Φu =

∫ ∞

0

eAtBu(t) dt, Ψz = t 7→ CeAtz.

We note that the Hankel operator equals the product of the
observability and reachability maps:H = ΨΦ.

The stable realization[ A B
C D ] is calledbalanced, if ΦΦ∗ ∈

Cn×n andΨ∗Ψ ∈ Cn×n satisfy

ΦΦ∗ = Ψ∗Ψ = diag(σ1, . . . , σn),

where we recall that(σk)
n
k=1 is the sequence of Hankel

singular values.

Remark1. Another common definition of the reachability map
is Φ̃ : L2(−∞, 0;Cm) → Cn with Φ̃u :=

∫ 0

−∞
e−AtBu(t) dt.

The Hankel operator is, with this definition,̃H = ΨΦ̃ :
L2(−∞, 0;Cm) → L2(0,∞;Cd), see [23]. Our definition
of the reachability map (and thus also the Hankel operator)
is related to that by multiplication from the right with the
reflection operatorL2(−∞, 0;Cm) → L2(0,∞;Cm). Since
the reflection operator is unitary, this alternative definition
leads to the same concepts of Hankel singular values and
balanced realizations. Since self-adjointness of the Hankel
operator plays an important role in this article, our definition
of the Hankel operator is more convenient for our purposes.

It is well-known that a stableG ∈ C(s)d×m has a balanced
realization (see e.g. [1, Section 7.1]). Note that balanced
realizations as defined above are minimal since by our as-
sumptions we haveΦΦ∗ = Ψ∗Ψ > 0.

Let a balanced realization[ A B
C D ] of G ∈ C(s)d×m be given.

Let r ∈ {1, . . . , ℓ} and q :=
∑r

j=1 mj . Then thebalanced
truncation of G of dimensionq is defined as the transfer
function Gr of

[
Ar Br

Cr D

]
, where, forZr = [ I0 ] ∈ Cn×q, the

matricesAr ∈ Cq×q, Br ∈ Cq×m andCr ∈ Cd×q are defined
by Ar := Z∗

rAZr, Br := Z∗
rB, Cr := CZr. The realization[

Ar Br

Cr D

]
is balanced. The balanced truncationGr depends

only onG, the ordering of the distinct Hankel singular values
andr (and not on the particular balanced realization chosen).

Note that the balanced truncation depends on the ordering
of the sequence of distinct Hankel singular values. We assume
that such an ordering is given (the customary one is the one
with µ1 > µ2 > . . . µℓ > 0; in which caseGr depends only
on G andr, but other orderings are permitted).

We refer the reader to [1, Chapter 7], [6, Chapter 9],
[22, Chapter 7] or [23, Chapter 7] and the main original
contributions [12], [17], [5], [2] for background materialon
balanced realizations and balanced truncations.

III. SELF-ADJOINT SYSTEMS

In this section we consider self-adjoint systems and prove
a lower bound which in Section IV will be used to prove the
lower bound (2).

Definition 2. A rational functionG ∈ C(s)m×m is called
self-adjoint if G = G†, whereG† is defined by

G†(s) := G(s̄)∗.

Remark3. Note that any SISO system with real coefficients
has a self-adjoint transfer function. Also note that the transfer
function of a state space symmetric system (i.e. withA = A∗,
C = B∗ andD = D∗) is self-adjoint.

Lemma 4. The following are equivalent for any stable and
strictly properG ∈ C(s)m×m.

1) G is self-adjoint.
2) The impulse responseh is self-adjoint (that is,h(t) =

h(t)∗ for all t ∈ [0,∞)).
3) The Hankel operator is self-adjoint.

Proof. The definition of the impulse response yields

G(s)∗ =

∫ ∞

0

e−s̄th(t)∗ dt, G†(s) =

∫ ∞

0

e−sth(t)∗ dt.

From this (and uniqueness of the inverse Laplace transform)
we see the equivalence of 1 and 2. Since the adjoint of the
Hankel operator is given by

(H∗u)(t) =

∫ ∞

0

h(t+ s)∗u(s) ds,

we see that 2 implies 3. That 3 implies 2 follows from the
fact thatH −H∗ is the Hankel operator corresponding to the
impulse responseh(t)−h(t)∗ and the fact that the zero Hankel
operator must have zero impulse response.

Remark5. For simplicity in Lemma 4 we considered only
the strictly proper case; if there is a nonzero-feedthrough,
then the impulse response is no longer a function and this
slightly complicates the formulation. In that case 2 has to be
replaced by the function part of the impulse response being
self-adjoint and additionally the feedthrough operator being
self-adjoint. The condition that the feedthrough operatormust
be self-adjoint must also be added to condition 3. All of the
above can be proven by applying Lemma 4 toG−G(∞).

The following lemma shows that a balanced realization
of a self-adjoint transfer function has a certain state space
symmetry property.

Lemma 6. Let G ∈ C(s)m×m be stable and self-adjoint and
let [ A B

C D ] be a balanced realization ofG. Then there exists a
unique self-adjoint operatorJ such that

[
J 0
0 I

] [
A B
C D

]
=

[
A B
C D

]∗ [
J 0
0 I

]
. (3)
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This operatorJ is involutive (i.e.,J−1 = J) and block-
diagonal with block structure according to the multiplicities
of the Hankel singular values. Further, there exists a balanced
realization

[
As Bs

Cs Ds

]
of G in whichJ is diagonal. In this case

the diagonal entries are

Jii =
λi

|λi|
,

where(λk)
n
k=1 are the Hankel eigenvalues ofG.

Proof. By [21, Theorem II], the self-adjointness ofG implies
the existence of a unique and invertibleJ = J∗ such that (3)
holds true. The definition of the reachability and observability
map then gives rise toΨ = Φ∗J , and thus

J(Ψ∗Ψ)2 = JΦΦ∗ ·Ψ∗Ψ = Ψ∗ΨJ−1 · JΦΦ∗J = (Ψ∗Ψ)2J.

A comparison of coefficients yields thatJ is block-diagonal
with block structure determined by the multiplicities of the
Hankel singular values. A consequence is that it commutes
with Ψ∗Ψ, whence we obtain thatΨ∗Ψ = JΦΦ∗J =
JΨ∗ΨJ = J2Ψ∗Ψ. The invertibility of Ψ∗Ψ now implies
that J is involutive.
Using that J is block-diagonal and involutive, there ex-
ists some block-diagonal and unitary matrixU such that
J = U∗JsU , where Js is diagonal with diagonal entries
in {−1, 1}. Then the system

[
As Bs

Cs Ds

]
:=

[
UsAU∗

s UsB

CU∗

s D

]
is

balanced, and its reachability and observability maps fulfill
Ψ∗

sΨs = ΦsΦ
∗
s = Ψ∗Ψ. We further have

[
Js 0
0 I

] [
As Bs

Cs Ds

]
=

[
As Bs

Cs Ds

]∗ [
Js 0
0 I

]
.

It remains to be shown that ifJ is diagonal then its diagonal
entries must beλi

|λi|
. This however follows from the fact that

the non-zero spectrum ofH = ΨΦ coincides with the non-
zero spectrum ofΦΨ, that ΦΨ equals the diagonal matrix
JΨ∗Ψ, that |λi| equal the diagonal elements ofΨ∗Ψ and that
Jii ∈ {−1, 1}.

Remark7. Note that systems that fulfill (3) for some involutive
and self-adjointJ ∈ Rn×n are self-adjoint, since

G(s) = D + C(sI −A)−1B = D∗ + C(sI −A)−1JC∗

= D∗ + CJ(sI −A∗)−1C∗

= D∗ + B∗(sI −A∗)−1C∗ = G†(s).
(4)

Remark8. Systems with a signature structure (3) arise natu-
rally in energy-based modelling of physical systems [20]. The
state signatureJ stands for different types of reactive elements
(such as, for instance inductances/capacitances in electrical
circuit models [19], masses/springs in models for mechanical
systems [16]). The quadratic form defined by the signature has
the physical interpretation of aLagrangianof the system [20].

As is well-known, the chosen subset of the Hankel singular
values is retained in balanced truncation. The following lemma
shows that, in the self-adjoint case, the same is true for the
Hankel eigenvalues. Moreover, the lemma shows that balanced
truncation preserves self-adjointness.

Lemma 9. Let G ∈ C(s)m×m be stable and self-adjoint.
Denote the Hankel eigenvalues ofG by (λk)

n
k=1. For r ∈

{1, . . . , ℓ} let Gr be the balanced truncation ofG, and let
q :=

∑r
j=1 mj, where (mj)

ℓ
j=1 denote the multiplicities of

the Hankel singular values ofG. ThenGr is self-adjoint and
the Hankel eigenvalues ofGr are (λk)

q
k=1.

Proof. By Lemma 6, it is no loss of generality to assume
that (3) is fulfilled for some diagonal matrixJ ∈ Rn×n with
Jii =

λi

|λi|
. Then, forZr = [ I0 ] ∈ Cn×q, defineJr := Z∗

rJZr.
It follows from (3) that

[
Jr 0
0 I

] [
Ar Br

Cr D

]
=

[
Ar Br

Cr D

]∗ [
Jr 0
0 I

]
,

where
[
Ar Br

Cr D

]
is the balanced truncation of[ A B

C D ]. Then, by
applying Remark 7 toGr, we see thatGr is self-adjoint. Since
Jr is diagonal, it follows from Lemma 6 that

Jr
ii =

λr
i

|λr
i |
,

where theλr
i are the Hankel eigenvalues ofGr. By the

definitionJr := Z∗
rJZr we haveJr

ii =
λi

|λi|
. Thus we have

λi

|λi|
=

λr
i

|λr
i |
.

Since for a self-adjoint operator the absolute values of the
eigenvalues are the singular values and the Hankel singular
values are preserved under balanced truncation, it followsthat,
in the case considered, the Hankel eigenvalues are preserved
under balanced truncation:λr

i = λi for i = 1, . . . , q.

The following result is a specialization of the main result
of [3] to the rational case.

Lemma 10. Let G ∈ C(s)m×m be stable and self-adjoint.
Denote the Hankel eigenvalues ofG by (λk)

n
k=1. Then

trace(G(0)−G(∞)) = 2
n∑

k=1

λk.

Combining Lemma 10 with Lemma 9, we obtain the fol-
lowing.

Proposition 11. LetG ∈ C(s)m×m be stable and self-adjoint.
Denote the Hankel eigenvalues ofG by (λk)

n
k=1. For r ∈

{1, . . . , ℓ} let Gr be the balanced truncation ofG, and let
q :=

∑r
j=1 mj, where (mj)

ℓ
j=1 denote the multiplicities of

the Hankel singular values ofG. Then

2

∣∣∣∣∣∣

n∑

k=q+1

λk

∣∣∣∣∣∣
≤ sup

ζ∈C:Reζ>0
‖G(ζ)−Gr(ζ)‖1.

Proof. Using thatG(∞) = Gr(∞) and applying Lemma 10
to bothG andGr we have, withλr

i the Hankel eigenvalues
of Gr,

2

n∑

k=1

λk − 2

q∑

k=1

λr
k

=trace(G(0)−G(∞)) − trace(Gr(0)−Gr(∞))

= trace(G(0)−Gr(0)).

(5)
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By Lemma 9 we haveλr
k = λk for k = 1, . . . , q, so that the

left-hand side of (5) equals

2

n∑

k=q+1

λk.

Using that the absolute value of the trace does not exceed the
trace class norm, the absolute value of the right-hand side of
(5) is at most‖G(0)−Gr(0)‖1. In turn this is not larger than

sup
ζ∈C:Reζ>0

‖G(ζ)−Gr(ζ)‖1.

We conclude that

2

∣∣∣∣∣∣

n∑

k=q+1

λk

∣∣∣∣∣∣
≤ sup

ζ∈C:Reζ>0
‖G(ζ) −Gr(ζ)‖1.

Remark12. The real-valued SISO case of Proposition 11, in
slightly different language, is the main result of [11] (note
that in the SISO case all Schatten norms are the same and
that in the real-valued SISO case every transfer function is
self-adjoint).

IV. SYSTEMS WITH A SEMI-DEFINITE HANKEL OPERATOR

The following proposition establishes a lower bound where
as matrix norm we choose the trace class norm (i.e. the
Schatten 1-norm) instead of the usual operator norm (i.e. the
Schatten∞-norm).

Proposition 13. LetG ∈ C(s)m×m be stable and self-adjoint
with a Hankel operator which is either positive semi-definite
or negative semi-definite. Let(µj)

ℓ
j=1 denote the sequence

of distinct Hankel singular values ofG with multiplicities
(mj)

ℓ
j=1. For r ∈ {1, . . . , ℓ} let Gr be the balanced truncation

of G. Then

2
ℓ∑

j=r+1

mjµj ≤ sup
ζ∈C:Reζ>0

‖G(ζ)−Gr(ζ)‖1. (6)

Proof. Consider the case where the Hankel operator is positive
semi-definite. Then the eigenvalues(λk)

n
k=1 of the Hankel

operator are nonnegative and equal the singular values(σk)
n
k=1

of the Hankel operator. Proposition 11 gives (withq :=∑r
j=1 mj)

2

∣∣∣∣∣∣

n∑

k=q+1

λk

∣∣∣∣∣∣
≤ sup

ζ∈C:Reζ>0
‖G(ζ) −Gr(ζ)‖1,

where, sinceλk = σk ≥ 0, the left-hand side equals
2
∑n

k=q+1 σk, which in turn equals2
∑ℓ

j=r+1 mjµj . We con-
clude that (6) holds.

If the Hankel operator is negative semi-definite then its
eigenvalues are nonpositive and equal to the negatives of the
Hankel singular values. The remainder of the argument is as
above.

The following corollary deals with the operator norm (the
Schatten∞-norm).

Corollary 14. Let G ∈ C(s)m×m be stable and self-adjoint
with a Hankel operator which is either positive semi-definite
or negative semi-definite. Let(µj)

ℓ
j=1 denote the sequence

of distinct Hankel singular values ofG with multiplicities
(mj)

ℓ
j=1. For r ∈ {1, . . . , ℓ} let Gr be the balanced truncation

of G. Then

2

ℓ∑

k=r+1

mj

m
µj ≤ sup

ζ∈C:Reζ>0
‖G(ζ)−Gr(ζ)‖∞ ≤ 2

ℓ∑

j=r+1

µj .

Proof. The upper bound is the standard balanced truncation
error bound. For the lower bound we use that for anym-by-
m matrix T there holds

‖T ‖1 ≤ m‖T ‖∞.

This gives, by using Proposition 13:

2

m

ℓ∑

k=r+1

mjµj ≤
1

m
sup

ζ∈C:Reζ>0
‖G(ζ)−Gr(ζ)‖1

≤ sup
ζ∈C:Reζ>0

‖G(ζ) −Gr(ζ)‖∞.

Remark15. It is easily seen that a state space symmetric
system (that is,A = A∗ ∈ Cn×n negative definite,C∗ = B ∈
Cn×m, D = D∗ ∈ Cm×m) has a Hankel operator which is
positive semi-definite. Therefore Proposition 13 and Corollary
14 apply to state space symmetric systems.

Systems withA = A∗ negative definite,C∗ = −B and
D = D∗ have a Hankel operator which is negative semi-
definite and therefore Proposition 13 and Corollary 14 apply
to such systems as well.

Remark16. In light of Remark 8, systems with a semi-definite
Hankel operator arise in physical systems which contain only
one type of reactive elements. For instanceRC or RL circuits
[18] belong to this class. As well, mass-damper or spring-
damper systems can also be modeled by systems with a semi-
definite Hankel operator [16].

The following corollary shows that for systems with a semi-
definite Hankel operator the multiplicities of the nonzero Han-
kel singular values are bounded from above by the dimension
of the input space.

Corollary 17. Let G ∈ C(s)m×m be stable and self-adjoint
with a Hankel operator which is either positive semi-definite
or negative semi-definite. Let(mj)

ℓ
j=1 denote the multiplicities

of the Hankel singular values ofG. Thenmj ≤ m for j =
1, . . . , ℓ.

Proof. From Corollary 14 withr = ℓ−1, we obtain2mℓµℓ ≤
2mµℓ, which is equivalent tomℓ ≤ m. Since we can choose
any ordering of the distinct Hankel singular values, we obtain
the desired result.

Remark18. Let H be the transfer function of a stable single-
input single-output state space symmetric system. Define
G ∈ C(s)m×m as the diagonal matrix withm copies ofH on
the diagonal. Thenmj = m for all j. For suchG the lower
bound and the upper bound in Corollary 14 are equal, showing
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that the new lower bound is -in general- the best that can be
obtained. This example also shows that for a reasonably large
class of MIMO systems the usual balanced truncation upper
bound is an equality.

V. EXTENSIONS

In this section we briefly mention two extensions to the
theory presented in this article. The first considers balanced
singular perturbation approximation rather than balancedtrun-
cation and the second considers the case of non-rational
functions.

A. Balanced singular perturbation approximation

Balanced realizations cannot only be used to define the
balanced truncation, but also to define the balanced singular
perturbation approximation [10]. The theorems presented in
this article for the balanced truncation also hold for the
balanced singular perturbation approximation. This follows
easily using the reciprocal transformation [13]. DefineGrecip

by Grecip(s) := G(1/s). If [A B
C D ] is a realization ofG, then

a realization ofGrecip is
[

A−1 −A−1B
CA−1 D−CA−1B

]
. It is shown in

[10] that the reachability and observability maps of the system
and its reciprocal are related byΦrecip(Φrecip)∗ = ΦΦ∗ and
(Ψrecip)∗Ψrecip = Ψ∗Ψ. In particular,[ A B

C D ] is balanced, if,

and only if,
[

A−1 −A−1B
CA−1 D−CA−1B

]
is balanced. This implies that

Grecip has the same Hankel singular values (with the same
multiplicities) asG. It can be furthermore concluded from (3)
that self-adjointness ofG (which is clearly equivalent to the
self-adjointness ofGrecip), implies that a balanced realization
of the reciprocal system fulfills

[
−J 0
0 I

] [
A−1 −A−1B
CA−1 D−CA−1B

]
=

[
A−1 −A−1B
CA−1 D−CA−1B

]∗ [
−J 0
0 I

]
.

Lemma 6 then implies that the Hankel eigenvalues ofGrecip

are (with the same multiplicities) the negatives of the Hankel
eigenvalues ofG. In particular,G has a positive (negative)
semi-definite Hankel operator if, and only if, the Hankel
operator ofGrecip is negative (positive) semi-definite.

Let Gspa be the balanced singular perturbation approxima-
tion of G and let (Grecip)r be the balanced truncation of
Grecip. ThenGspa(s) = (Grecip)r(1/s), see [13, Figure 1].
Therefore

G(s)−Gspa(s) = Grecip(1/s)− (Grecip)r(1/s).

Sinces 7→ 1/s is a bijection of the open right-half complex
plane, we obtain that

sup
ζ∈C:Reζ>0

‖G(ζ)−Gspa(ζ)‖

= sup
ζ∈C:Reζ>0

‖Grecip(ζ) − (Grecip)r(ζ)‖,

for any matrix norm.
The results in this article applied to the right-hand side then

lead to the corresponding results for the left-hand side. The
consequence is that we can simply replaceGr by Gspa in the
statements of the theorems.

B. The non-rational case

The theorems presented in this article continue to hold for
non-rational matrix-valued functions as long as the Hankel
operator is trace class, i.e.

∑∞
k=1 σk < ∞ (see e.g. [7], [8]

for this class of systems). We note that the upper bound in
Corollary 14 was proven in [8], [7, Section 5.4]. Lemma 8
can be proven utilizing the discrete-time infinite-dimensional
result [4, Theorem 5.1] translated to continuous-time using the
usual linear fractional transformation (Cayley transform) given
in e.g. [15] as replacement for the reference to [21, Theorem
II]. The remainder of the proofs can remain unchanged.

An example of a state space symmetric system with a trace
class Hankel operator is the following boundary controlled
heat equation on the state spaceL2(0, 1):

∂x
∂t (t, ξ) =

∂2x
∂ξ2 (t, ξ),

x(t, 0)− ∂x
∂ξ (t, 0) = u1(t), x(t, 1)+∂x

∂ξ (t, 1) = u2(t),

y1(t) = x(t, 0), y2(t) = x(t, 1).

VI. EXAMPLES

As a simple illustration of the obtained theoretical results,
we consider two RC ladder circuits. Each of the circuits
contains two current sources; the input is formed by the
currents of the sources at the right and left of the circuit. The
output is the negative of the voltages at the current sources.
The first circuit contains seven resistances with resistance
valueR , and four capacitances with capacitance valueC , the
second circuit six resistances with resistance valueR , and four
capacitances with capacitance valueC . As state, we consider
the vector containing the voltages at the capacitances. Using

iI1 R

R

C

R

C

R

C

R

C

R

R iI2

Figure 1. RC ladder circuit

iI1 R

R

C

R

C C

R

C

R

R iI2

Figure 2. RC ladder circuit

Kirchhoff’s laws and the component relations [19], the first
circuit is modelled by a system with

A =




− 3
2RC

1
RC

0 0
1

RC
− 2

RC

1
RC

0

0 1
RC

− 2
RC

1
RC

0 0 1
RC

− 3
2RC


 ,

B = C∗ =




− 1
2C

0
0 0
0 0
0 − 1

2C


 , D =

[
R

2 0
0 R

2

]
.
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The second circuit can be modelled by a system with

A =




− 3
2RC

1
RC

0 0
1

RC
− 2

RC
0 0

0 0 − 2
RC

1
RC

0 0 1
RC

− 3
2RC


 ,

B = C∗ =




− 1
2C

0
0 0
0 0
0 − 1

2C


 , D =

[
R

2 0
0 R

2

]
.

Note that in both cases we have (3) withJ = I (i.e. we
have a state space symmetric system). Therefore, the Hankel
operators of both circuits are positive semi-definite. We choose
R = C = 1 and apply balanced truncation retaining two states.
For the first circuit the Hankel singular values are

0.2281, 0.1050, 0.0219, 0.0021,

the upper bound is therefore0.0480, the lower bound is0.0240
and the actual error can be computed to be0.0438. For the
second circuit (which satisfies the conditions of Remark 18)
the Hankel singular values are

0.1197, 0.1197, 0.0053, 0.0053,

the upper bound, lower bound and actual error are identical
and are equal to0.01066.
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