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Abstract

A new time discretization scheme for the numerical simulation of two-phase
flow governed by a thermodynamically consistent diffuse interface model is pre-
sented. The scheme is consistent in the sense that it allows for a discrete in time
energy inequality. An adaptive spatial discretization is proposed that conserves
the energy inequality in the fully discrete setting by applying a suitable post pro-
cessing step to the adaptive cycle. For the fully discrete scheme a quasi-reliable
error estimator is derived which estimates the error both of the flow velocity, and
of the phase field. The validity of the energy inequality in the fully discrete setting
is numerically investigated.
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Introduction
In the present work we propose a stable and (essentially) linear time discretization
scheme for two-phase flows governed by the diffuse interface model

ρ∂tv + ((ρv + J) · ∇) v − div (2ηDv) +∇p =μ∇ϕ+ ρg ∀x ∈ Ω, ∀t ∈ I, (1)
div(v) =0 ∀x ∈ Ω, ∀t ∈ I, (2)

∂tϕ+ v · ∇ϕ− div(m∇μ) =0 ∀x ∈ Ω, ∀t ∈ I, (3)
−σεΔϕ+ F ′(ϕ)− μ =0 ∀x ∈ Ω, ∀t ∈ I, (4)

v(0, x) =v0(x) ∀x ∈ Ω, (5)
ϕ(0, x) =ϕ0(x) ∀x ∈ Ω, (6)
v(t, x) =0 ∀x ∈ ∂Ω, ∀t ∈ I, (7)

∇μ(t, x) · νΩ = ∇ϕ(t, x) · νΩ =0 ∀x ∈ ∂Ω, ∀t ∈ I, (8)

where J = − dρ
dϕ
m∇μ. This model is proposed in [AGG12]. Here Ω ⊂ R

n, n ∈ {2, 3},
denotes an open and bounded domain, I = (0, T ] with 0 < T < ∞ a time interval,
ϕ denotes the phase field, μ the chemical potential, v the volume averaged velocity,
p the pressure, and ρ = ρ(ϕ) = 1

2
((ρ2 − ρ1)ϕ+ (ρ1 + ρ2)) the mean density, where

0 < ρ1 ≤ ρ2 denote the densities of the involved fluids. The viscosity is denoted by
η and can be chosen arbitrarily, fulfilling η(−1) = η̃1 and η(1) = η̃2, with individual
fluid viscosities η1, η2. The mobility is denoted by m = m(ϕ). The graviational force
is denoted by g. By Dv = 1

2
(∇v + (∇v)t) we denote the symmetrized gradient. The

scaled surface tension is denoted by σ and the interfacial width is proportional to ε.
The free energy is denoted by F . For F we use a splitting F = F+ + F−, where F+ is
convex and F− is concave.

The above model couples the Navier–Stokes equations (1)–(2) to the Cahn–Hilliard
model (3)–(4) in a thermodynamically consistent way, i.e. a free energy inequality
holds. It is the main goal to introduce and analyze an (essentially) linear time dis-
cretization scheme for the numerical treatment of (1)–(8), which also on the discrete
level fulfills the free energy inequality. This in conclusion leads to a stable scheme that
is thermodynamically consistent on the discrete level.

Existence of weak solutions to system (1)–(8) for a specific class of free energies
F is shown in [ADG13a, ADG13b]. See also the work [Grü13], where the existence
of weak solutions for a different class of free energies F is shown by passing to the
limit in a numerical scheme. We refer to [LT98], [Boy02], [DSS07], [ADGK13], and the
review [AMW98] for other diffuse interface models for two-phase incompressible flow.
Numerical approaches for different variants of the Navier–Stokes Cahn–Hilliard system
have been studied in [KSW08], [Fen06], [Boy02], [AV12], [Grü13], [HHK13], [GK14] and
[GLL].

This work is organized as follows. In Section 1 we derive a weak formulation of
(1)–(8) and formulate a time discretization scheme. In Section 2 we derive the fully
discrete model and show the existence of solutions for both the time discrete, and the
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fully discrete model, as well as energy inequalities, both for the time discrete model,
and for the fully discrete model. In Section 3 we use the energy inequality to derive a
residual based adaptive concept, and in Section 4 we numerically investigate properties
of our simulation scheme.

Notation and assumptions
Let Ω ⊂ R

n, n ∈ {2, 3} denote a bounded domain with boundary ∂Ω and outer normal
νΩ. Let I = (0, T ) denote a time interval.

We use the conventional notation for Sobolev and Hilbert Spaces, see e.g. [AF03].
With Lp(Ω), 1 ≤ p ≤ ∞, we denote the space of measurable functions on Ω, whose
modulus to the power p is Lebesgue-integrable. L∞(Ω) denotes the space of measurable
functions on Ω, which are essentially bounded. For p = 2 we denote by L2(Ω) the space
of square integrable functions on Ω with inner product (·, ·) and norm ‖·‖. For a subset
D ⊂ Ω and functions f, g ∈ L2(Ω) we by (f, g)D denote the inner product of f and g
restricted to D, and by ‖f‖D the respective norm. By W k,p(Ω), k ≥ 1, 1 ≤ p ≤ ∞,
we denote the Sobolev space of functions admitting weak derivatives up to order k in
Lp(Ω). If p = 2 we write Hk(Ω). The subset H1

0 (Ω) denotes H1(Ω) functions with
vanishing boundary trace.
We further set

L2
0(Ω) = {v ∈ L2(Ω) | (v, 1) = 0},

and with

H(div,Ω) = {v ∈ H1
0 (Ω)

n | (div(v), q) = 0 ∀q ∈ L2
(0)(Ω)}

we denote the space of all weakly solenoidal H1
0 (Ω) vector fields.

For u ∈ Lq(Ω)n, q > n, and v, w ∈ H1(Ω)n we introduce the trilinear form

a(u, v, w) =
1

2

∫
Ω

((u · ∇) v)w dx− 1

2

∫
Ω

((u · ∇)w) v dx. (9)

Note that there holds a(u, v, w) = −a(u, w, v), and especially a(u, v, v) = 0.

For the data of our problem we assume:

A1 There exists constants ρ ≥ ρ > 0, η ≥ η > 0, and m ≥ m > 0 such that the
following relations are satisfied:

• ρ ≥ ρ(ϕ) ≥ ρ > 0,
• η ≥ η(ϕ) ≥ η > 0,
• m ≥ m(ϕ) ≥ m > 0.

Especially we assume that the mobility is non degenerated. In addition we assume,
that ρ, μ, and m are continuous.
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A2 F : R → R is continuously differentiable.

A3 F and the derivatives F ′
+ and F ′

− are polynomially bounded, i.e. there exists C > 0
such that |F (x)| ≤ C(1+|x|q), |F ′

+(x)| ≤ C(1+|x|q−1) and |F ′
−(x)| ≤ C(1+|x|q−1)

holds for some q ∈ [1, 4] if n = 3 and q ∈ [1,∞) if n = 2,

A4 F ′
+ is Newton (sometimes called slantly) differentiable (see e.g. [HIK03]) regarded

as nonlinear operator F ′
+ : H1(Ω) → (H1(Ω))

∗ with Newton derivative G satisfy-
ing

(G(ϕ)δϕ, δϕ) ≥ 0

for each ϕ ∈ H1(Ω) and δϕ ∈ H1(Ω).

To ensure Assumption A1 we introduce a cut-off mechanism to ensure the bounds
on ρ defined in Assumption A1 independently of ϕ. Note that η(ϕ) and m(ϕ) can be
chosen arbitrarily fulfilling the stated bounds. We define the mass density as a smooth,
monotone and strictly positive function ρ(ϕ) fulfilling

ρ(ϕ) =

⎧⎪⎨
⎪⎩

ρ̃2−ρ̃1
2

ϕ+ ρ̃1+ρ̃2
2

if − 1− ρ̃1
ρ̃2−ρ̃1

< ϕ < 1 + ρ̃1
ρ̃2−ρ̃1

,

const if ϕ > 1 + 2ρ̃1
ρ̃2−ρ̃1

,

const if ϕ < −1− 2ρ̃1
ρ̃2−ρ̃1

.

For a discussion we refer to [Grü13, Remark 2.1].

Remark 1. The Assumptions A2–A4 are for example fulfilled by the polynomial free
energy

F poly(ϕ) =
σ

4ε

(
1− ϕ2

)2
.

Another free energy fulfilling these assumptions is the relaxed double-obstacle free energy
given by

F rel(ϕ) =
σ

2ε

(
1− ϕ2 + sλ2(ϕ)

)
, (10)

with

λ(ϕ) := max(0, ϕ− 1) + min(0, ϕ+ 1),

where s � 0 denotes the relaxation parameter. F rel is introduced in [HHT11] as
Moreau–Yosida relaxation of the double-obstacle free energy

F obst(ϕ) =

{
σ
2ε
(1− ϕ2) if |ϕ| ≤ 1,

0 else,

which is proposed in [BE91] to model phase separation.
In the numerical examples of this work we use the free energy F ≡ F rel. For this

choice the splitting into convex and concave part reads

F+(ϕ) = s
σ

2ε
λ2(ϕ), F−(ϕ) =

σ

2ε
(1− ϕ2).
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1 The time discrete setting
In the present section we formulate our time discretization scheme that is based on
a weak formulation of (1)–(8) which we derive next. To begin with, note that for a
sufficiently smooth solution (ϕ, μ, v) of (1)–(8) we can rewrite (1), using the linearity
of ρ, as

∂t(ρv) + div (ρv ⊗ v) + div (v ⊗ J)− div (2ηDv) +∇p = μ∇ϕ+ ρg, (11)

see [AGG12, p. 14].
We also note that the term ρv + J in (1) is not solenoidal (which might lead to

difficulties both in the analytical and the numerical treatment) and that the trilinear
form (((ρv+ J) · ∇)u, w) is not anti-symmetric. To obtain a weak formulation yielding
an anti-symmetric convection term we use a convex combination of (1) and (11) to
define a weak formulation. We multiply equations (1) and (11) by the solenoidal test
function 1

2
w ∈ H(div,Ω), integrate over Ω, add the resulting equations and perform

integration by parts. This gives

1

2

∫
Ω

(∂t(ρv) + ρ∂tv)w dx+

∫
Ω

2ηDv : Dw dx+ a(ρv + J, v, w) =

∫
Ω

μ∇ϕw + ρgw dx.

Equations (3)–(4) are treated classically. This leads to

Definition 1. We call v, ϕ, μ a weak solution to (1)–(8) if v(0) = v0, ϕ(0) = ϕ0,
v(t) ∈ H(div,Ω) for a.e. t ∈ I and

1

2

∫
Ω

(∂t(ρv) + ρ∂tv)w dx+

∫
Ω

2ηDv : Dw dx

+a(ρv + J, v, w) =

∫
Ω

μ∇ϕw + ρgw dx ∀w ∈ H(div,Ω), (12)∫
Ω

(∂tϕ+ v · ∇ϕ) Φ dx+

∫
Ω

m(ϕ)∇μ · ∇Φ dx = 0 ∀Φ ∈ H1(Ω), (13)

σε

∫
Ω

∇ϕ · ∇Ψ dx+

∫
Ω

F ′(ϕ)Ψ dx−
∫
Ω

μΨ dx = 0 ∀Ψ ∈ H1(Ω), (14)

is satisfied for almost all t ∈ I.

Theorem 1. Let v, ϕ, μ be a sufficiently smooth solution to (12)–(14). Then there holds

1

2

d

dt

(∫
Ω

ρ|v|2 + σε|∇ϕ|2 + F (ϕ) dx

)
= −

∫
Ω

2η|Dv|2 +m|∇μ|2 dx+

∫
Ω

ρgv dx.

Proof. By testing (12) with w ≡ v, (13) with Φ ≡ μ and (14) with Ψ ≡ ∂tϕ and adding
the resulting equations the claim follows.
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In [ADG13a, ADG13b] an alternative weak formulation of (1)–(8) is proposed, for
which the authors show existence of weak solutions.

We now introduce a time discretization which mimics the energy inequality in The-
orem 1 on the discrete level. Let 0 = t0 < t1 < . . . < tk−1 < tk < tk+1 < . . . < tM = T
denote an equidistant subdivision of the interval I = [0, T ] with τk+1 − τk = τ . From
here onwards the superscript k denotes the corresponding variables at time instance tk.

Time integration scheme
Let ϕ0 ∈ H1(Ω) and v0 ∈ H(div,Ω).

Initialization for k = 0:
Set ϕ0 = ϕ0 and v0 = v0.
Find ϕ1 ∈ H1(Ω), μ1 ∈ H1(Ω), v1 ∈ H(div,Ω), such that for all w ∈ H(div,Ω),
Φ ∈ H1(Ω), and Ψ ∈ H1(Ω) it holds

1

τ

∫
Ω

ρ1(v1 − v0)w dx+

∫
Ω

((ρ0v0 + J1) · ∇)v1 · w dx

+

∫
Ω

2η1Dv1 : Dw dx−
∫
Ω

μ1∇ϕ1w + ρ1gw dx = 0 ∀w ∈ H(div,Ω), (15)

1

τ

∫
Ω

(ϕ1 − ϕ0)Φ dx+

∫
Ω

(v0 · ∇ϕ0)Φ dx

+

∫
Ω

m(ϕ0)∇μ1 · ∇Φ dx = 0 ∀Φ ∈ H1(Ω), (16)

σε

∫
Ω

∇ϕ1 · ∇Ψ dx−
∫
Ω

μ1Ψ dx

+

∫
Ω

((F+)
′(ϕ1) + (F−)

′(ϕ0))Ψ dx = 0 ∀Ψ ∈ H1(Ω), (17)

where J1 := − dρ
dϕ
(ϕ1)m1∇μ1.

Two-step scheme for k ≥ 1:
Given ϕk−1 ∈ H1(Ω), ϕk ∈ H1(Ω), μk ∈ W 1,q(Ω), q > n, vk ∈ H(div,Ω),
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find vk+1 ∈ H(div,Ω), ϕk+1 ∈ H1(Ω), μk+1 ∈ H1(Ω) satisfying

1

2τ

∫
Ω

(
ρkvk+1 − ρk−1vk

)
w + ρk−1(vk+1 − vk)w dx

+a(ρkvk + Jk, vk+1, w) +

∫
Ω

2ηkDvk+1 : Dw dx

−
∫
Ω

μk+1∇ϕkw − ρkgw dx = 0 ∀w ∈ H(div,Ω), (18)

1

τ

∫
Ω

(ϕk+1 − ϕk)Φ dx+

∫
Ω

(vk+1 · ∇ϕk)Φ dx

+

∫
Ω

m(ϕk)∇μk+1 · ∇Φ dx = 0 ∀Φ ∈ H1(Ω), (19)

σε

∫
Ω

∇ϕk+1 · ∇Ψ dx−
∫
Ω

μk+1Ψ dx

+

∫
Ω

((F+)
′(ϕk+1) + (F−)

′(ϕk))Ψ dx = 0 ∀Ψ ∈ H1(Ω), (20)

where Jk := − dρ
dϕ
(ϕk)mk∇μk.

We note that in (18)–(20) the only nonlinearity arises from F ′
+ and thus only the

equation (20) is nonlinear. Let us summarize properties of this scheme in the following
remark.

Remark 2.

• The time discretization (15)–(17) used in the initialization step is motivated by
the time discretization in [KSW08] for the equal density case. In particular it
yields a sequential coupling of the Cahn–Hilliard and the Navier–Stokes systems.
Concerning the existence of a unique solution we refer to e.g. [HHK13]. From
the regularity theory for the Laplace operator we have μ1 ∈ H2(Ω).

• Existence and uniqueness of a solution to the time discrete model (18)–(20) is
shown in Theorem 6. Using the Assumption A4 posed on F , it can be shown that
Newton’s method in function space can be used to compute a solution to (18)–(20)
using the steps from Theorem 6.

• Through the use of ρk−1, (18)–(20) is a 2-step scheme. However, by replacing
(18) with

1

2τ

∫
Ω

(
ρk+1vk+1 − ρkvk

)
w + ρk(vk+1 − vk)w dx

+a(ρkvk + Jk, vk+1, w) +

∫
Ω

2ηDvk+1 : Dw dx

−
∫
Ω

μk+1∇ϕkw + ρkgw dx = 0 ∀w ∈ H(div,Ω),
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one obtains an one-step scheme, which then also is nonlinear in the time dis-
cretization of (12). The resulting system is analyzed in a forthcoming paper.

In [GK14] Grün and Klingbeil propose a time-discrete solver for (1)–(8) which leads
to strongly coupled systems for v, ϕ and p at every time step and requires a fully
nonlinear solver. For this scheme Grün in [Grü13] proves an energy inequality and the
existence of so called generalized solutions.

2 The fully discrete setting and energy inequalities
For a numerical treatment we next discretize the weak formulation (18)–(20) in space.
We aim at an adaptive discretization of the domain Ω, and thus to have a different
spatial discretization in every time step.

Let T k =
⋃NT

i=1 Ti denote a conforming triangulation of Ω with closed simplices
Ti, i = 1, . . . , NT and edges Ei, i = 1, . . . , NE, Ek =

⋃NE
i=1 Ei. Here k refers to the time

instance tk. On T k we define the following finite element spaces:

V1(T k) ={v ∈ C(T k) | v|T ∈ P 1(T ) ∀T ∈ T k} =: span{Φi}NP
i=1,

V2(T k) ={v ∈ C(T k) | v|T ∈ P 2(T ) ∀T ∈ T k},
where P l(S) denotes the space of polynomials up to order l defined on S.

We introduce the discrete analogon to the space H(div,Ω):

H(div, T k) = {v ∈ V2(T k)n | (divv, q) = 0 ∀q ∈ V1(T k) ∩ L2
(0)(Ω), v|∂Ω = 0}

:= span{bi}NF
i=1,

We further introduce a H1-stable projection operator Pk : H1(Ω) → V1(T k) satis-
fying

‖Pkv‖Lp(Ω) ≤ ‖v‖Lp(Ω) and ‖∇Pkv‖Lr(Ω) ≤ ‖∇v‖Lr(Ω)

for v ∈ H1(Ω) with r ∈ [1, 2] and p ∈ [1, 6) if n = 3, and p ∈ [1,∞) if n = 2.
Possible choices are the Clément operator ([Clé75]) or, by restricting the preimage to
C(Ω) ∩H1(Ω), the Lagrangian interpolation operator.

Using these spaces we state the discrete counterpart of (18)–(20):
Let k ≥ 1, given ϕk−1 ∈ V1(T k−1), ϕk ∈ V1(T k), μk ∈ V1(T k), vk ∈ H(div, T k),

find vk+1
h ∈ H(div, T k+1), ϕk+1

h ∈ V1(T k+1), μk+1
h ∈ V1(T k+1) such that for all w ∈

H(div, T k+1), Φ ∈ V1(T k+1), Ψ ∈ V1(T k+1) there holds:
1

2τ
(ρkvk+1

h − ρk−1vk + ρk−1(vk+1
h − vk), w) + a(ρkvk + Jk, vk+1

h , w)

+(2ηkDvk+1
h , Dw)− (μk+1

h ∇ϕk + ρkg, w) = 0, (21)
1

τ
(ϕk+1

h − Pk+1ϕk,Φ) + (m(ϕk)∇μk+1
h ,∇Φ) + (vk+1

h ∇ϕk,Φ) = 0, (22)

σε(∇ϕk+1
h ,∇Ψ) + (F ′

+(ϕ
k+1
h ) + F ′

−(Pk+1ϕk),Ψ)− (μk+1
h ,Ψ) = 0, (23)
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where ϕ0 = Pϕ0 denotes the L2 projection of ϕ0 in V1(T 0), v0 = PLv0 denotes the
Leray projection of v0 in H(div, T 0) (see [CF88]), and ϕ1

h, μ
1
h, v

1
h are obtained from the

fully discrete variant of (15)–(17).

2.1 Existence of solution to the fully discrete system

We next show the existence of a unique solution to the fully discrete system (21)–(23).

Theorem 2. There exist vk+1
h ∈ H(div, T k+1), ϕk+1

h ∈ V1(T k+1), μk+1
h ∈ V1(T k+1)

solving (21)–(23).

Proof. By testing (22) with Φ ≡ 1, integration by parts in (vk+1
h ∇ϕk, 1) and using

vk+1
h ∈ H(div, T k+1) we obtain

(ϕk+1
h , 1) = (Pk+1ϕk, 1).

We define α = 1
|Ω|
∫
Ω
Pk+1ϕk dx and set

V(0) := {vh ∈ V1(T k+1) | (vh, 1) = 0}.

Then zk+1 := ϕk+1 − α fulfills zk+1 ∈ V(0). In the following we use zk+1 as unknown for
the phase field, since the mean value of ϕ is fixed. In addition we introduce yk+1 :=
μk+1
h − 1

|Ω|
∫
μk+1
h dx and require (22)–(23) preliminarily only for test functions with zero

mean value.
We define

X = H(div, T k+1)× V(0) × V(0),

with the inner product

((v1, y1, z1), (v2, y2, z2))X := (Dv1, Dv2) + (∇y1,∇y2) + (∇z1,∇z2),

and norm ‖ · ‖2X = (·, ·)X . It follows from the inequalities of Korn and Poincaré that
(·, ·)X indeed forms an inner product on X. For (v, y, z) ∈ X we define

(G(v, y, z), (v, y, z))X :=

(
1

2
(ρk + ρk−1)v − ρk−1vk, v

)
+ τa(ρkvk + Jk, v, v)

+ τ(2ηkDv,Dv)− τ(y∇ϕk, v)− τ(ρkg, v)

+ (z − Pk+1ϕk, y) + τ(m(ϕk)∇y,∇y) + τ(v∇ϕk, y)

+ σε(∇z,∇z) + (F ′
+(z + α) + F ′

−(Pk+1ϕk), z)− (y, z).

Now we show (G(v, y, z), (v, y, z))X > 0 for ‖(v, y, z)‖X large enough and that G satisfies
the supposition of [Tem77, Lem. II.1.4]. It then follows from [Tem77, Lem. II.1.4], that
G admits a root (v∗, y∗, z∗) ∈ X.
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The function G is obviously continuous. We now estimate

(G(v, y, z), (v, y, z))X ≥ ρ(v, v) + 2τη(Dv,Dv)

+ τm(∇y,∇y) + σε(∇z,∇z) + (F ′
+(z + α), z)

− (ρk−1vk, v)− τ(ρkg, v)− (Pk+1ϕk, y) + (F ′
−(Pk+1ϕk), z).

(24)
Using the convexity of F+, which implies that F ′

+ is monotone, we obtain

(F ′
+(z + α), z) = (F ′

+(z + α)− F ′
+(α), z) + (F ′

+(α), z) ≥ (F ′
+(α), z).

By using Hölder’s and Poincaré’s inequality in (24) we obtain

(G(v, y, z), (v, y, z))X > 0

for ‖(v, y, z)‖X ≥ R if R is large enough. Now [Tem77, Lem. II.1.4] implies the existence
of (v∗, y∗, z∗) ∈ X such that G(v∗, y∗, z∗) = 0. Defining (v, μ, ϕ) = (v∗, y∗ + β, z∗ + α)
with β such that (β, 1) = (F ′

+(ϕ)+F ′
−(Pk+1ϕk), 1) we obtain that (v, μ, ϕ) solves (21)–

(23).

Remark 3. Note that we do not need that the variables from old time instances are
defined on the mesh used on the current time instance. We further do not need any
smallness requirement on the mesh size h or on the time step length τ .

Theorem 3. Let (ϕk+1
h , μk+1

h , vk+1
h ) be a solution to (21)–(23). Then for k ≥ 1:

1

2

∫
Ω

ρk
∣∣vk+1

h

∣∣2 dx+
σε

2

∫
Ω

|∇ϕk+1
h |2 dx+

∫
Ω

F (ϕk+1
h ) dx

+
1

2

∫
Ω

ρk−1|vk+1
h − vk|2 dx+

σε

2

∫
Ω

|∇ϕk+1
h −∇Pk+1ϕk|2 dx

+τ

∫
Ω

2ηk|Dvk+1
h |2 dx+ τ

∫
Ω

mk|∇μk+1
h |2 dx

≤ 1

2

∫
Ω

ρk−1
∣∣vk∣∣2 dx+

σε

2

∫
Ω

|∇Pk+1ϕk|2 dx+

∫
Ω

F (Pk+1ϕk) dx+ τ

∫
Ω

ρkgvk+1
h . (25)

Proof. We have

1

2

(
ρkvk+1

h − ρk−1vk
)
· vk+1

h +
1

2
ρk−1

(
vk+1
h − vk

)
· vk+1

h

=
1

2
ρk
∣∣vk+1

h

∣∣2 + 1

2
ρk−1

∣∣vk+1
h − vk

∣∣2 − 1

2
ρk−1

∣∣vk∣∣2 , (26)

∇ϕk+1
h ·

(
∇ϕk+1

h −∇ϕk
)

=
1

2
|∇ϕk+1

h |2 − 1

2
|∇ϕk|2 + 1

2
|∇ϕk+1

h −∇ϕk|2, (27)

10



and since F+ is convex and F− is concave,

F+(ϕ
k+1
h )− F+(ϕ

k) ≤ F ′
+(ϕ

k+1
h )(ϕk+1

h − ϕk), (28)
F−(ϕ

k+1
h )− F−(ϕ

k) ≤ F ′
−(ϕ

k)(ϕk+1
h − ϕk). (29)

The inequality is now obtained from testing (18) with vk+1
h , (19) with μk+1

h , (20)
with (ϕk+1

h − Pk+1ϕk)/τ , and adding the resulting equations. This leads to

1

2τ
(ρkvk+1

h − ρk−1vk, vk+1
h ) +

1

2τ
(ρk−1(vk+1

h − vk), vk+1
h )

+a(ρkv + Jk, vk+1
h , vk+1

h ) + (2ηkDvk+1
h : Dvk+1

h )− (μk+1
h ∇ϕk, vk+1

h )

+
1

τ
(ϕk+1

h − Pk+1ϕk, μk+1
h ) + (vk+1

h ∇ϕk, μk+1
h ) + (mk∇μk+1

h ,∇μk+1
h )

+σε
1

τ
(∇ϕk+1

h ,∇(ϕk+1
h − Pk+1ϕk))− 1

τ
(μk+1

h , ϕk+1
h − Pk+1ϕk)

+
1

τ
(F ′

+(ϕ
k+1
h ), ϕk+1

h − Pk+1ϕk) +
1

τ
(F ′

−(ϕ
k), ϕk+1

h − Pk+1ϕk)

−(ρkg, vk+1
h ) = 0.

The equalities (26) and (27) and the inequalities (28) and (29) now imply

1

2τ

∫
Ω

(
ρk|vk+1

h |2 + ρk−1|vk+1
h − vk|2 − ρk−1|vk|2

)
dx

+

∫
Ω

2ηk|Dvk+1
h |2 dx+

∫
Ω

mk|∇μk+1
h |2 dx

+
σε

2τ

∫
Ω

|∇ϕk+1
h |2 dx− σε

2τ

∫
Ω

|∇Pk+1ϕk|2 dx+
σε

2τ

∫
Ω

|∇ϕk+1
h −∇Pk+1ϕk|2 dx

+
1

τ

∫
Ω

(
F (ϕk+1

h )− F (Pk+1ϕk)
)
dx−

∫
Ω

ρkgvk+1
h dx ≤ 0,

which is the claim.

Theorem 4. System (21)–(23) admits a unique solution.

Proof. Assume there exist two different solutions to (21)–(23) denoted by (v1, ϕ1, μ1)
and (v2, ϕ2, μ2). We show that the difference v = v1 − v2, ϕ = ϕ1 − ϕ2, μ = μ1 − μ2 is
zero.

After inserting the two solutions into (21)–(23) and substracting the two sets of
equations we perform the same steps as for the derivation of the discrete energy esti-
mate, Theorem 3, and obtain

0 =
1

2

∫
Ω

(ρk + ρk−1)v2 dx+ 2τ

∫
Ω

ηk|Dv|2 dx

+ τ‖
√
mk∇μ‖2 + σε‖∇ϕ‖2 +

(
F ′
+(ϕ

1)− F ′
+(ϕ

2), ϕ1 − ϕ2
)
.

11



Since all these terms are non negative we obtain

1

2

∫
Ω

(ρk + ρk−1)v2 dx =0,

∫
Ω

ηk|Dv|2 dx =0,

‖∇μ‖2 =0, ‖∇ϕ‖2 =0.

Since both η(·) and ρ(·) are strictly positive by Assumption A1 we conclude ‖v‖H1(Ω)n =
0 and thus the uniqueness of the velocity field.

By testing (22) by Φ ≡ 1 we obtain (ϕ1, 1) = (ϕ2, 1) = (Pk+1ϕk, 1) and thus
(ϕ1 − ϕ2, 1) = 0. Poincaré-Friedrichs inequality then yields ‖ϕ‖H1(Ω) = 0, and thus the
uniqueness of the phase field.

Last we directly obtain that the chemical potential is unique up to a constant.
By testing (23) with Ψ ≡ 1 and inserting the two solutions we obtain (μ1 − μ2, 1) =
(F ′

+(ϕ
1) − F ′

+(ϕ
2), 1) = 0 and thus ‖μ‖H1(Ω) = 0, again by using Poincaré-Friedrichs

inequality.

Theorem 3 estimates the Ginzburg Landau energy of the current phase field ϕk+1

against the Ginzburg Landau energy of the projection of the old phase field Pk+1(ϕk).
Our aim is to obtain global in time inequalities estimating the energy of the new phase
field against the energy of the old phase field at each time step. For this purpose let us
state an assumption that later will be justified.

Assumption 1. Let ϕk ∈ V1(T k) denote the phase field at time instance tk. Let
Pk+1ϕk ∈ V1(T k+1) denote the projection of ϕk in V1(T k+1). We assume that there
holds

F (Pk+1ϕk) +
1

2
σε|∇Pk+1ϕk|2 ≤ F (ϕk) +

1

2
σε|∇ϕk|2. (30)

This assumption means, that the Ginzburg Landau energy is not increasing through
projection. Thus no energy is numerically produced.

Assumption 1 is in general not fulfilled for arbitrary sequences (T k+1) of triangula-
tions. To ensure (30) we add a post processing step to the adaptive space meshing, see
Section 3.

Theorem 5. Assume that for every k = 0, 1, . . . Assumption 1 holds. Then for every

12



1 ≤ k < l we have

1

2
(ρk−1

h vkh, v
k
h)+

∫
Ω

F (ϕk
h) dx+

1

2
σε(∇ϕk

h,∇ϕk
h) + τ

l−1∑
m=k

(ρmg, vm+1
h )

≥ 1

2
(ρl−1vlh, v

l
h) +

∫
Ω

F (ϕl
h) dx+

1

2
σε(∇ϕl

h,∇ϕl
h)

+
l−1∑
m=k

(ρm−1(vm+1
h − vmh ), (v

m+1
h − vmh ))

+ τ
l−1∑
m=k

(2ηmDvm+1
h , Dvm+1

h )

+ τ

l−1∑
m=k

(m(ϕm
h )∇μm+1

h ,∇μm+1
h )

+
1

2
σε

l−1∑
m=k

(∇ϕm+1
h −∇Pm+1ϕm

h ,∇ϕm+1
h −∇Pm+1ϕm

h ).

Proof. The stated result is obtained immediately from the energy estimate over one
time step (3) together with the Assumption 1.

Remark 4. We note that using Φ = 1 in (22) and using integration by parts only
delivers (ϕk+1

h , 1) = (Pk+1ϕk, 1) instead of (ϕk+1
h , 1) = (ϕk, 1). If we use the quasi

interpolation operator Qk+1 introduced by Carstensen in [Car99] for our generic pro-
jection Pk+1, we would obtain (ϕk+1

h , 1) = (ϕk, 1) since Qk+1 preserves the mean value,
i.e. (ϕk+1

h , 1) = (Qk+1ϕk, 1) ∀ϕ ∈ L1(Ω).
On the other hand if we use Lagrange interpolation Ik+1 we have |(Ik+1ϕk, 1)T −

(ϕk, 1)T | ≤ Ch3
T‖ϕk‖T , and the deviation of (Ik+1ϕk, 1) from (ϕk, 1) remaines small if

we use bisection as refinement strategy, since then Ik+1ϕk ∈ V1(T k+1) and ϕk ∈ V1(T k)
only differ on coarsened patches.

2.2 Existence of a solution to the time discrete system

Now we have shown that there exists a unique solution to (21)–(23). The energy
inequality can be used to obtain uniform bounds on the solution and will be used to
obtain a solution to the time discrete system (18)–(20) by a Galerkin method.

Theorem 6. Let vk ∈ H(div,Ω), ϕk−1 ∈ H1(Ω), ϕk ∈ H1(Ω), and μk ∈ W 1,q(Ω), q > n
be given data. Then there exists a weak solution to (18)–(20). Moreover, ϕk+1 ∈ H2(Ω)
and μk+1 ∈ H2(Ω) holds.

Proof. We proceed as follows. We construct a sequence of meshes (T k+1
l )l→∞ with

gridsize hl
l→∞−→ 0. We show that the sequence (vk+1

l , ϕk+1
l , μk+1

l ) of unique and discrete

13



solutions to (21)–(23) is bounded independently of l, and thus a weakly convergent
subsequence exists which we show to converge to a weak solution of (18)–(20).

Let us start with defining the sequence of meshes. Let T k+1
0 = T k+1 and T k+1

l+1 ,
l = 0, 1, . . ., be obtained from T k+1

l by bisection of all triangles. The projection onto
T k+1
l we denote by Pk+1

l .
From the discrete energy inequality (25) we obtain

1

2

∫
Ω

ρk
∣∣vk+1

l

∣∣2 dx+
σε

2

∫
Ω

|∇ϕk+1
l |2 dx+

∫
Ω

F (ϕk+1
l ) dx

+
1

2

∫
Ω

ρk−1|vk+1
l − vk|2 dx+

σε

2

∫
Ω

|∇ϕk+1
l −∇Pk+1

l ϕk|2 dx

+τ

∫
Ω

2ηk|Dvk+1
l |2 dx+ τ

∫
Ω

mk|∇μk+1
l |2 dx

≤ 1

2

∫
Ω

ρk−1
∣∣vk∣∣2 dx+

σε

2

∫
Ω

|∇Pk+1
l ϕk|2 dx+

∫
Ω

F (Pk+1
l ϕk) dx+ τ

∫
Ω

ρkgvk+1
l .

We have the stability of the projection operator and thus∫
Ω

|∇Pk+1
l ϕk|2 dx ≤ ‖∇ϕk‖2L2(Ω).

Due to Assumption A3 on F there exists a constant C > 0 such that∫
Ω

F (Pk+1
l ϕk) dx ≤C

∫
Ω

|Pk+1
l ϕk|q + 1 dx

≤C
(
‖Pk+1

l ϕk‖qLq(Ω) + 1
)

≤C
(
‖ϕk‖qLq(Ω) + 1

)
,

where we again use the Lq-stability of the projection operator together with the Sobolev
embedding H1(Ω) ↪→ Lq(Ω) with q as in Assumption A3. By using Hölder’s inequality
and Young’s inequality we further have

τ

∫
Ω

ρkgvk+1
l dx ≤τ

(∫
Ω

ρk|g|2 dx
)1/2(∫

Ω

ρk|vk+1
l |2 dx

)1/2

≤τ 2
∫
Ω

ρk|g|2 dx+
1

4

∫
Ω

ρk|vk+1
l |2 dx

Since ρk−1 > 0, ρk > 0, ηk > 0, and mk > 0 by Assumption A1 we obtain that
‖vk+1

l ‖H1(Ω), ‖∇ϕk+1
l ‖ and ‖∇μk+1

l ‖ are uniformly bounded independend of l.
By inserting Φ ≡ 1 in (22) we obtain (Pk+1

l ϕk, 1) = (ϕk+1
l , 1) and by Poincaré-

Friedrichs inequality thus

‖ϕk+1
l ‖H1(Ω) ≤ C

(
‖∇ϕk+1

l ‖+ (Pk+1
l ϕk, 1)

)
≤ C

(
‖∇ϕk+1

l ‖+ ‖Pk+1
l ϕk‖

)
≤ C

(
‖∇ϕk+1

l ‖+ ‖ϕk‖
)
.
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Thus ‖ϕk+1
l ‖H1(Ω) is uniformly bounded.

By inserting Ψ ≡ 1 in (23) we obtain (μk+1
l , 1) = (F ′

+(ϕ
k+1
l ) + F ′

−(Pk+1
l ϕk), 1). Due

to the Assumption A3 on F ′
+ the first part can be bounded by C(‖ϕk+1

l ‖qLq(Ω)+1) which
is bounded by Sobolev embedding. Also due to Assumption A3 on F− and due to the
Lq stability of Pk+1

l the second part can be bounded by C(‖ϕk‖qLq(Ω)+1). Thus, by the
same arguments as ‖ϕk+1

l ‖H1(Ω), also ‖μk+1
l ‖H1(Ω) is uniformly bounded.

Consequently there exist v ∈ H1
0 (Ω)

n, ϕ ∈ H1(Ω), μ ∈ H1(Ω) and a subsequence li
such that vk+1

li
⇀ v in H1

0 (Ω)
n, ϕk+1

li
⇀ ϕ in H1(Ω), μk+1

li
⇀ μ in H1(Ω) for li → ∞.

We show that this triple of functions indeed is a weak solution to (18)–(20). Inserting
the sequence into (18)–(20) yields

1

2τ

∫
Ω

(
ρkvk+1

li
− ρk−1vk

)
w + ρk−1(vk+1

li
− vk)w dx

+a(ρkvk + Jk, vk+1
li

, w) +

∫
Ω

2ηkDvk+1
li

: Dw dx

−
∫
Ω

μk+1
li

∇ϕkw + ρkgw dx = 0, ∀w ∈ H(div,Ω) (31)

τ−1

∫
Ω

(ϕk+1
li

− ϕk)Φ dx+

∫
Ω

(vk+1
li

· ∇ϕk)Φ dx

+

∫
Ω

m(ϕk)∇μk+1
li

· ∇Φ dx = 0, ∀Φ ∈ H1(Ω) (32)

σε

∫
Ω

∇ϕk+1
li

· ∇Ψ dx−
∫
Ω

μk+1
li

Ψ dx

+

∫
Ω

((F+)
′(ϕk+1

li
) + (F−)

′(ϕk))Ψ dx = 0. ∀Ψ ∈ H1(Ω). (33)

Now there holds

1

2τ

∫
Ω

(
ρk + ρk−1

)
vk+1
li

w dx ≤ 1

τ
ρ‖vk+1

li
‖L2(Ω)‖w‖L2(Ω)

and thus 1
2τ

∫
Ω

(
ρk + ρk−1

)
w · dx ∈ (H1

0 (Ω)
n)∗ yielding

1

2τ

∫
Ω

(
ρk + ρk−1

)
vk+1
li

w dx → 1

2τ

∫
Ω

(
ρk + ρk−1

)
vw dx.

Since μk ∈ W 1,q(Ω), q > n there holds Jk ∈ Lq(Ω) and thus by Sobolev embedding
we obtain∣∣∣∣

∫
Ω

(((
ρkvk + Jk

)
· ∇
)
vk+1
li

)
w dx

∣∣∣∣ ≤C‖
(
ρkvk + Jk

)
w‖‖∇vk+1

li
‖,∣∣∣∣

∫
Ω

(((
ρkvk + Jk

)
· ∇
)
w
)
vk+1
li

dx

∣∣∣∣ ≤C‖
((
ρkvk + Jk

)
∇
)
w‖

L
2q
q+2

‖vk+1
li

‖
L

2q
q−2

,
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and thus a(ρkvk + Jk, ·, w) ∈ (H1
0 (Ω)

n)∗. This gives

a(ρkvk + Jk, vk+1
li

, w) → a(ρkvk + Jk, v, w)

The convergence of the remaining terms can be concluded in a similar manner.
Since ϕk+1

li
⇀ ϕ in H1(Ω) there exists a subsequence, again denoted by li such that

ϕk+1
li

→ ϕ in Lq(Ω), q as in Assumption A3. From Assumption A3 and the dominated
convergence theorem we thus obtain∫

Ω

F ′
+(ϕ

k+1
li

)Ψ dx →
∫
Ω

F ′
+(ϕ)Ψ dx.

Next we show the weak solenoidality of v. To begin with we note that every q ∈
L2
(0)(Ω) can be approximated by a sequence (ql)l∈N ⊂ V1(T k+1

l ) ∩ L2
(0)(Ω), so that for

every ξ > 0 an index Nξ exists, such that ‖q − ql‖ ≤ ξ for l ≥ Nξ. Now we have for
arbitrary q ∈ L2

(0)(Ω)

|(div v, q)| ≤ |(div v, q − ql)|+ |(div v − div vli , ql)|+ |(div vli , ql)|.

Let ξ > 0 be given. For the first addend we have |(div v, q−ql)| ≤ ‖div v‖‖q−ql‖ ≤ Cξ
for l ≥ Nξ.

Since the sequence ql is defined on the same hierarchy of meshes as vl we may
restrict ql to the subsequence li and obtain that both qli and vli are defined on the
same meshes. We set k := min{li | li ≥ Nξ}. Now we have (div vli , qk) = 0 for li ≥ k,
since then qk ∈ V1(T k+1

li
), i.e. the third addend vanishes. By choosing li so large that

|(div v − div vli , qk)| ≤ Cξ holds by weak convergence of vli , the weak solenoidality of
v is shown, since ξ > 0 is chosen arbitrarily.

Thus the triple v, ϕ, μ indeed is a weak solution.

It remains to obtain the stated higher regularity for μk+1 and ϕk+1. This directly
follows by regularity results for the Laplacian, see [EG04, Thm. 3.10]. Since μk+1 −
F ′
+(ϕ

k+1) − F ′
−(ϕ

k) ∈ L2(Ω) it follows that ϕk+1 ∈ H2(Ω) and thus, since we have
τ−1(ϕk+1 − ϕk) + vk+1∇ϕk ∈ L2(Ω), also μk+1 ∈ H2(Ω).

The uniqueness of the solution follows by the same steps as the uniqueness of the
discrete solutions, see Theorem 4. Like the fully discrete scheme, also the time-discrete
scheme fulfills an energy inequality.

Theorem 7. Let ϕk+1, μk+1, vk+1 be a solution to (18)–(20). Then the following energy
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inequality holds.

1

2

∫
Ω

ρk
∣∣vk+1

∣∣2 dx+
σε

2

∫
Ω

|∇ϕk+1|2 dx+

∫
Ω

F (ϕk+1) dx

+
1

2

∫
Ω

ρk−1|vk+1 − vk|2 dx+
σε

2

∫
Ω

|∇ϕk+1 −∇ϕk|2 dx

+τ

∫
Ω

2ηk|Dvk+1|2 dx+ τ

∫
Ω

mk|∇μk+1|2 dx

≤ 1

2

∫
Ω

ρk−1
∣∣vk∣∣2 dx+

σε

2

∫
Ω

|∇ϕk|2 dx+

∫
Ω

F (ϕk) dx.+

∫
Ω

ρkgvk+1

Proof. The inequality is obtaind from testing (18) with vk+1, (19) with μk+1, (20) with
(ϕk+1 − ϕk)/τ and using the same arguments as in the proof for Theorem 3.

Remark 5. Let F denote the relaxed double-obstacle free energy introduced in Re-
mark 1, with relaxation parameter s. Let (vs, ϕs, μs)s∈R denote the sequence of solutions
of (18)–(20) for a sequence (sl)l∈N. From the linearity of (18) and [HHT11, Prop. 4.2]
it follows, that there exists a subsequence, still denoted by (vs, ϕs, μs)s∈R, such that

(vs, ϕs, μs)s∈R → (v∗, ϕ∗, μ∗) in H1(Ω),

where (v∗, ϕ∗, μ∗) denotes the solution of (18)–(20), where F obst, denoted in Remark 1,
is chosen as free energy. Especially |ϕ∗| ≤ 1 holds. In the following argumentation
we concentrate on the phase field only. From the regularity ϕs ∈ H2(Ω) together with
a-priori estimates on the solution of the Poisson problem and the energy inequality of
Theorem 7, we obtain the existence of a strongly convergent subsequence ϕs′ → ϕ∗ in
C0,α(Ω), where we use the compact embedding H2(Ω) ↪→ C0,α(Ω) for 2α < 4− n.

Thus for s large enough we have |ϕs| ≤ 1 + θ with θ arbitrarily small. Currently we
are not able to quantify how large s has to be chosen in dependence of θ to guarantee
this bound. Therefore we use the cut-off procedure described before Remark 1.

3 The A-Posteriori Error Estimation
For an efficient solution of (21)–(23) we next describe an a-posteriori error estimator
based mesh refinement scheme that is reliable and efficient up to terms of higher order
and errors introduced by the projection. We also describe how Assumption 1 on the
evolution of the free energy, given in (25), under projection is fulfilled in the discrete
setting.

Let us briefly comment on available adaptative concepts for the spatial discretization
of Cahn–Hilliard Navier–Stokes systems. Heuristic approaches exploiting knowledge of
the location of the diffuse interface can be found in [KSW08, BBG11, AV12, GK14]. In
[HHK13] a fully adaptive, reliable and efficient, residual based error estimator for the
Cahn–Hilliard part in the Cahn–Hilliard Navier–Stokes system is proposed, which ex-
tends the results of [HHT11] for Cahn–Hilliard to Cahn–Hilliard Navier–Stokes systems
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with Moreau–Yosida relaxation of the double-obstacle free energy. A residual based er-
ror estimator for Cahn–Hilliard systems with double-obstacle free energy is proposed
in [BN09].

In the present section we propose an all-in-one adaptation concept for the fully
coupled Cahn–Hilliard Navier–Stokes system, where we exploit the energy inequality of
Theorem 3. To the best of the author’s knowledge this is the first contribution to the
fully adaptive treatment of the fully coupled Cahn–Hilliard Navier–Stokes system.

The fully discrete system used in the numerical realization

Since in our numerical realization we do not include the solenoidality of the velocity
field v into the discrete Ansatz space we now introduce a weak formulation for the time
discrete version of (12)–(14) in primitive variables, which by [GR86] is equivalent to
(18)–(20):
For k ≥ 1, given ϕk−1 ∈ H1(Ω), ϕk ∈ H1(Ω), μk ∈ W 1,q(Ω), q > n, vk ∈ H1

0 (Ω)
n find

vk+1 ∈ H1
0 (Ω)

n, pk+1 ∈ L2
(0)(Ω), ϕ

k+1 ∈ H1(Ω), and μk+1 ∈ H1(Ω) satisfying

1

2τ
(ρkvk+1 − ρk−1vk + ρk−1(vk+1 − vk), w)

+a(ρkvk + Jk, vk+1, w) + (2ηDvk+1 : Dw)

−(pk+1, div(w))− (μk+1∇ϕk + ρkg, w) = 0 ∀w ∈ H1
0 (Ω)

n, (34)
−(div(vk+1), q) = 0 ∀q ∈ L2

(0)(Ω), (35)
1

τ
(ϕk+1 − ϕk,Φ) + (vk+1 · ∇ϕk,Φ) + (m(ϕk)∇μk+1,∇Φ) = 0 ∀Φ ∈ H1(Ω), (36)

σε(∇ϕk+1,∇Ψ) + ((F+)
′(ϕk+1) + (F−)

′(ϕk),Ψ)− (μk+1,Ψ) = 0 ∀Ψ ∈ H1(Ω). (37)

The corresponding fully discrete system now reads:
For k ≥ 1, given ϕk−1 ∈ H1(Ω), ϕk ∈ H1(Ω), μk ∈ W 1,q(Ω), q > n, vk ∈ H1

0 (Ω)
n find

vk+1
h ∈ V2(T k+1), pk+1

h ∈ V1(T k+1),
∫
Ω
pk+1
h dx = 0, ϕk+1

h ∈ V1(T k+1), μk+1
h ∈ V1(T k+1)

such that for all w ∈ V2(T k+1), q ∈ V1(T k+1), Φ ∈ V1(T k+1), Ψ ∈ V1(T k+1) there
holds:

1

2τ
(ρkvk+1

h − ρk−1vk + ρk−1(vk+1
h − vk), w) + a(ρkvk + Jk, vk+1

h , w)

+(2ηkDvk+1
h ,∇w)− (μk+1

h ∇ϕk + ρkg, w)− (pk+1
h , divw) = 0, (38)

−(divvk+1
h , q) = 0, (39)

1

τ
(ϕk+1

h − Pk+1ϕk,Φ) + (m(ϕk)∇μk+1
h ,∇Φ)− (vk+1

h ϕk,∇Φ) = 0, (40)

σε(∇ϕk+1
h ,∇Ψ) + (F ′

+(ϕ
k+1
h ) + F ′

−(Pk+1ϕk),Ψ)− (μk+1
h ,Ψ) = 0. (41)

Thus we use the famous Taylor–Hood LBB-stable P2 − P1 finite element for the
discretization of the velocity - pressure field and piecewise linear and continuous finite
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elements for the discretization of the phase field and the chemical potential. For other
kinds of possible discretizations of the velocity-pressure field we refer to e.g. [Ver10].

Note that we perform integration by parts in (40) in the transport term. As soon as
Pk+1 is a mass conservened projection we by testing equation (40) with Φ = 1 obtain
the conservation of mass in the fully discrete scheme.

The link between equations (38)–(41) and (21)–(23) is provided by the next theorem.

Theorem 8. Let vk+1
h , ϕk+1

h , μk+1
h denote the unique solution to (21)–(23). Then there

exists a unique pressure pk+1
h ∈ V1(T k+1),

∫
Ω
pk+1
h dx = 0 such that (vk+1

h , pk+1
h , ϕk+1

h , μk+1
h )

is a solution to (38)–(41). The opposite direction is obvious.

Proof. Since we use LBB-stable finite elements, from [GR86, Thm. II 1.1] we obtain
the stated result.

Derivation of the error estimator

We begin with noting that the special structure of our time discretization gives rise to
an error estimator which both estimates the error in the approximation of the velocity,
and in the approximation of the phase field and the chemical potential. We are not
able to estimate the error in the approximation of the pressure field and the estimator
will only be reliable and efficient up to higher order terms.

In the derivation of the estimator we follow [HHT11] and restrict the presentation
of its construction to the main steps.

We define the following error terms:

ev :=vk+1
h − vk+1, ep :=pk+1

h − pk+1, (42)
eϕ :=ϕk+1

h − ϕk+1, eμ :=μk+1
h − μk+1, (43)

as well as the discrete element residuals

r
(1)
h :=

ρk + ρk−1

2
vk+1
h − ρk−1vk + τ(bk∇)vk+1

h +
1

2
τdiv(bk)vk+1

h

− 2τdiv
(
ηkDvk+1

h

)
+ τ∇pk+1

h − τμk+1
h ∇ϕk − ρkg,

r
(2)
h :=ϕk+1

h − Pk+1ϕk + τvk+1
h ∇ϕk − τdiv(mk∇μk+1

h ),

r
(3)
h :=F ′

+(ϕ
k+1
h ) + F ′

−(Pk+1ϕk)− μk+1
h ,

where bk := ρkvk + Jk. Furthermore we define the error indicators

η
(1)
T :=hT‖r(1)h ‖T , η

(1)
E :=h

1/2
E ‖2ηk

[
Dvk+1

h

]
ν
‖E,

η
(2)
T :=hT‖r(2)h ‖T , η

(2)
E :=h

1/2
E ‖mk

[
∇μk+1

h

]
ν
‖E,

η
(3)
T :=hT‖r(3)h ‖T , η

(3)
E :=h

1/2
E ‖

[
∇ϕk+1

h

]
ν
‖E.

(44)

Here [·]ν denotes the jump of a discontinuous function in normal direction ν pointing
from the triangle with lower global number to the triangle with higher global number.
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Thus η
(j)
E , j = 1, 2, 3 measures the jump of the corresponding variable across the edge

E, while η
(j)
T , j = 1, 2, 3 measures the triangle wise residuals.

By Πh : H1(Ω) → Vj(T k+1), j = 1, 2 we denote Clément’s interpolation opera-
tor [Clé75], which satisfies for each triangle T ∈ T k+1 and each edge E ∈ Ek+1 the
approximation estimates

‖v − Πhv‖T ≤ChT‖∇v‖ωT
∀v ∈ H1(Ω), (45)

and ‖v − Πhv‖E ≤Ch
1/2
E ‖∇v‖ωE

∀v ∈ H1(Ω), (46)

where C is a generic positive constant and ωT and ωE are given by

ωT :={T ′ ∈ T k+1 : T ∩ T ′ �= ∅},
ωE :={T ∈ T k+1 : E ⊂ T}.

Subsequently it is clear whether Πh maps to V1 or to V2. We therefore do not introduce
further supscripts to distinguish these two cases.

In the following we write equations (34)–(37) as

F 1((vk+1, pk+1, ϕk+1, μk+1), w) = 0, F 2((vk+1, pk+1, ϕk+1, μk+1), q) = 0,

F 3((vk+1, pk+1, ϕk+1, μk+1),Φ) = 0, F 4((vk+1, pk+1, ϕk+1, μk+1),Ψ) = 0,

and analogously (38)–(41) as

F 1
h ((v

k+1
h , pk+1

h , ϕk+1
h , μk+1

h ), w) = 0, F 2
h ((v

k+1
h , pk+1

h , ϕk+1
h , μk+1

h ), q) = 0,

F 3
h ((v

k+1
h , pk+1

h , ϕk+1
h , μk+1

h ),Φ) = 0, F 4
h ((v

k+1
h , pk+1

h , ϕk+1
h , μk+1

h ),Ψ) = 0.

Since the error functions defined in (42)–(43) are valid test functions for the system
(34)–(37) we have

F 1((vk+1, pk+1, ϕk+1, μk+1), τev) = 0, F 2((vk+1, pk+1, ϕk+1, μk+1), τep) = 0,

F 3((vk+1, pk+1, ϕk+1, μk+1), τeμ) = 0, F 4((vk+1, pk+1, ϕk+1, μk+1), eϕ) = 0.

Thus

F 1
h ((v

k+1
h , pk+1

h , ϕk+1
h , μk+1

h ), τev)

= F 1
h ((v

k+1
h , pk+1

h , ϕk+1
h , μk+1

h ), τev)− F 1((vk+1, pk+1, ϕk+1, μk+1), τev).

For F 2
h , F

3
h , F

4
h similar expressions hold.
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Summing up these expressions yields

1

2
((ρk + ρk−1)ev, ev) + 2τ(ηkDev, Dev)

+ τ(mk∇eμ,∇eμ) + σε‖∇eϕ‖2 + (F ′
+(ϕ

k+1
h )− F ′

+(ϕ
k+1), eϕ)

=F 1
h ((v

k+1
h , pk+1

h , ϕk+1
h , μk+1

h ), τev)

+ F 2
h ((v

k+1
h , pk+1

h , ϕk+1
h , μk+1

h ), τep)

+ F 3
h ((v

k+1
h , pk+1

h , ϕk+1
h , μk+1

h ), τeμ)

+ F 4
h ((v

k+1
h , pk+1

h , ϕk+1
h , μk+1

h ), τeϕ)

+ (Pk+1ϕk − ϕk, eμ)− (F ′
−(Pk+1ϕk)− F ′

−(ϕ
k), eϕ)

=η1 + η2 + η3 + η4 + η5 + η6.

Exemplarily we consider the term η4. Since Πheϕ ∈ V1(T k+1) is a valid test function
for (38)–(41) we obtain

F 4
h ((v

k+1
h , pk+1

h , ϕk+1
h , μk+1

h ),Πheϕ) = 0.

Using (45), (46) as well as Hölder’s and Cauchy-Schwarz’s inequality, we have

η4 =(r
(3)
h , eϕ − Πheϕ) + σε(∇ϕk+1

h ,∇(eϕ − Πheϕ))

=
∑

T∈T k+1

[
(r

(3)
h , eϕ − Πheϕ)T + σε(∇ϕk+1

h ,∇(eϕ − Πheϕ))
]

=
∑

T∈T k+1

[
(r

(3)
h , eϕ − Πheϕ)T + σε(∇ϕk+1

h · ν, eϕ − Πheϕ)∂T

]

≤
∑

T∈T k+1

‖r(3)h ‖T‖eϕ − Πheϕ‖T +
∑

E∈Ek+1

σε‖
[
∇ϕk+1

h

]
ν
‖E‖eϕ − Πheϕ‖E

≤C

( ∑
T∈T k+1

(
η
(3)
T

)2
+ (σε)2

∑
E∈Ek+1

(
η
(3)
E

)2)1/2

‖∇eϕ‖Ω.

Here C is a generic constant. In the same manner we derive

η1 ≤ C

( ∑
T∈T k+1

(
η
(1)
T

)2
+ τ 2

∑
E∈Ek+1

(
η
(1)
E

)2)1/2

‖∇ev‖Ω,

η2 ≤ C

( ∑
T∈T k+1

(
η
(2)
T

)2
+ τ 2

∑
E∈Ek+1

(
η
(2)
E

)2)1/2

‖∇eμ‖Ω.

Using Young’s inequality we now directly obtain:
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Theorem 9. There exists a constant C > 0 only depending on the domain Ω and the
regularity of the mesh T k+1 such that

ρ‖ev‖2 + τη‖∇ev‖2 + τm‖∇eμ‖2 + σε‖∇eϕ‖2 + (F ′
+(ϕ

k+1
h )− F ′

+(ϕ
k+1), eϕ)

≤ C
(
η2Ω + ηh.o.t + ηC

)
,

holds with

η2Ω =
1

τη

∑
T∈T k+1

(
η
(1)
T

)2
+

τ

η

∑
E∈Ek+1

(
η
(1)
E

)2
1

τm

∑
T∈T k+1

(
η
(2)
T

)2
+

τ

m

∑
E∈Ek+1

(
η
(2)
E

)2
1

σε

∑
T∈T k+1

(
η
(3)
T

)2
+ σε

∑
E∈Ek+1

(
η
(3)
E

)2
,

ηh.o.t. =τ(div(ev), ep),
and ηC =(Pk+1ϕk − ϕk, eμ)− (F ′

−(Pk+1ϕk)− F ′
−(ϕ

k), eϕ).

Remark 6.

• The term ηh.o.t. is of higher order. By approximation results it can be estimated
in terms of hT to a higher order then the orders included in η

(i)
T , η(i)E , i = 1, 2, 3.

Thus it is neglected in the numerics.

• The term ηC arises due to the transfer of ϕk from the old grid T k to the new grid
T k+1 through the projection Pk+1. In our numerics presented in Section 4 we
use Lagrangian interpolation Ik+1 as projection operator. We note that Ik+1ϕk

and ϕk do only differ in regions of the domain where coarsening in the last time
step took place, if bisection is used as refinement strategy. Since it seems unlikly
that elements being coarsend in the last time step are refined again in the present
time step, this term is neglected in the numerics. We note that this term might be
further estimated to obtain powers of hT by approximation results for the Lagrange
interpolation, see e.g. [EG04].

• Due to these two terms involved the estimator is not fully reliable.

• Neglecting these two terms the estimator can be shown to be efficient by the stan-
dard bubble technique, see e.g. [HHT11, AO00].

• An adaptation of the time step size is not considered in the present work, since
it would conflict with the time discretization over three time instances. In our
numerics we have to choose time steps small enough to sufficently well resolve the
interfacial force μk+1

h ∇ϕk.

In the numerical part, this error estimator is used together with the mesh adaptation
cycle described in [HHT11]. The overall adaptation cycle
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SOLVE → ESTIMATE → MARK → ADAPT

is performed once per time step. For convenience of the reader we state the marking
strategy here.

Algorithm 1 (Marking strategy)

• Fix amin > 0 and amax > 0, and set A = {T ∈ T k+1 | amin ≤ |T | ≤ amax}.

• Define indicators:

1. ηT = 1
τη

(
η
(1)
T

)2
+ 1

τm

(
η
(2)
T

)2
+ 1

σε

(
η
(3)
T

)2
,

2. ηTE =
∑

E⊂T

[
τ
η

(
η
(1)
TE

)2
+ τ

m

(
η
(2)
TE

)2
+ σε

(
η
(3)
TE

)2]
.

• Refinement: Choose θr ∈ (0, 1),

1. Find a set RT ⊂ T k+1 with θr
∑

T∈T k+1 ηT ≤∑T∈RT ηT,

2. Find a set RTE ⊂ T k+1 with θr
∑

T∈T k+1 ηTE ≤∑T∈RTE ηTE.

• Coarsening: Choose θc ∈ (0, 1),

1. Find the set CT ⊂ T k+1 with ηT ≤ θc

N

∑
T∈T k+1 ηT ∀T ∈ CT,

2. Find the set CTE ⊂ T k+1 with ηTE ≤ θc

N

∑
T∈T k+1 ηTE ∀T ∈ CTE.

• Mark all triangles of A ∩ (RT ∪RTE) for refining.

• Mark all triangles of A ∩ (CT ∪ CTE) for coarsening.

Ensuring the validity of the energy estimate

To ensure the validity of the energy estimate during the numerical computations we
ensure that Assumption 1 holds trianglewise. For the following considerations we re-
strict to bisection as refinement strategy combined with the iFEM coarsening strategy
proposed in [Che08]. This strategy only coarsens patches consisting of four triangles
by replacing them by two triangles if the central node of the patch is an inner node of
T k+1, and patches consisting of two triangles by replacing them by one triangle if the
central node of the patch lies on the boundary of Ω. A patch fulfilling one of these two
conditions we call a nodeStar. By using this strategy, we do not harm the Assumption
1 on triangles that are refined. We note that this assumption can only be violated on
patches of triangles where coarsening appears.

After marking triangles for refinement and coarsening and before applying refine-
ment and coarsening to T k+1 we make a postprocessing of all triangles that are marked
for coarsening.

Let MC denote the set of triangles marked for coarsening obtained by the marking
strategy described in Algorithm 1. To ensure the validity of the energy estimate (25)
we perform the following post processing steps:
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Algorithm 2 (Post processing)

1. For each triangle T ∈ MC:
if T is not part of a nodeStar
then set MC := MC \ T.

2. For each nodeStar S ∈ MC:
if Assumption 1 is not fulfilled on S
then set MC := MC \ S.

The resulting set MC does only contain triangles yielding nodeStars on which the
Assumption 1 is fulfilled.

4 Numerics
Now we use the adaptive concept developed in Section 3 to investigate the evolution of
the energy inequality on the numerical level.

The nonlinear system (38)–(41) appearing in every time step of our approach is
solved using the semi-smooth Newton method. Let us first describe how the linear
systems arising in Newton’s method are solved. At each time step in the Newton
iteration we have to solve systems with linear operators G of the form

G =

(
F I
T C

)
=

⎛
⎜⎜⎝

A B I 0
Bt 0 0 0
T 0 C11 C12

0 0 C21 C22

⎞
⎟⎟⎠ .

Here F and C are the discrete realizations of linearized Navier–Stokes and Cahn–Hilliard
systems, respectively, while I represents their coupling through the interfacial force, and
T the coupling through the transport at the interface. The order of the unknowns is
(v, p, μ, ϕ).

Unique solvability of the systems arising from Newton’s method can be shown by
using the energy method of Section 2 taking Assumption A4 into account.

The system is solved by a preconditioned gmres iteration with restart after 10 iter-
ations. As preconditioner we use the block diagonal preconditioner

P =

(
F̃ 0
0 C

)

where C is inverted by LU decomposition, while F̃ is an upper triangular block precon-
ditioner ([BP88]) for Oseen type problems. It uses the Fp preconditioner [KLW02] for
the Schur complement, i.e.

F̃ =

(
Ã B

0 S̃

)
,
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where S̃ is the Fp preconditioner for the Schur complement of F and Ã is composed of
the diagonal blocks of A and is inverted by LU decomposition.

The implementation is done in C++, where the adaptive concept is build upon iFEM
([Che08]). As linear solvers we use umfpack ([Dav04]) and cholmod ([CDHR08]).
The Newton iteration is implemented in its inexact variant, ensuring local superlinear
convergence.

Examples

We investigate the evolution of the free energy and the validity of the energy inequality.
Since we use Lagrange interpolation as projection operator, we violate the conservation
of mass whenever coarsening is performed. This is numerically investigated.

Thereafter we give results for a qualitative benchmark for rising bubble dynam-
ics. For this example we also show the influence of the required post processing step
concerning the evolution of the meshes.

Concerning the free energy F we use the relaxed double-obstacle free energy (10)
and set the relaxation parameter to s = 10000.

Investigation of the free energy

We start by investigating the evolution of the free energy and the validity of the energy
inequality in Theorem 3. Here we use the classic example of spinodal decomposition
[CH58, FM08] as test case. The parameters are chosen as: ρ1 = ρ2 = η1 = η2 = 1,
g ≡ 0, and m(ϕ) ≡ 10−3ε, ε = 0.01, σ = 0.01 and τ = 10−5.

In absence of outer forces the spinodal decomposition admits a characteristic speed
of demixing, see e.g. [Sig79, OSS13]. Especially in the case of a diffusion driven setting
the Ginzburg–Landau energy E decreases with the rate E ∼ t−1/3.

In Figure 1 we show the time evolution of the monotonically decreasing Ginzburg–
Landau energy (left plot). We obtain the expected rate of E ∼ t−1/3 and also observe
a time span where E ∼ t−1 holds, as predicted in [OSS13].

Next we investigate the validity of the energy inequality, see Figure 1 (right plot).
We there show the time evolution of the term

ζ =
1

2

∫
Ω

ρk
(
vk+1
h

)2
dx+

σε

2

∫
Ω

|∇ϕk+1
h |2 dx+

∫
Ω

F (ϕk+1
h ) dx

+
1

2

∫
Ω

ρk−1(vk−1
h − vk)2 dx+

σε

2

∫
Ω

|∇ϕk+1
h −∇Ik+1ϕk|2 dx

+ τ

∫
Ω

2ηk|Dvk+1
h |2 dx+ τ

∫
Ω

mk|∇μk+1
h |2 dx

−
(
1

2

∫
Ω

ρk
(
vk
)2

dx+
σε

2

∫
Ω

|∇Ik+1ϕk|2 dx+

∫
Ω

F (Ik+1ϕk) dx+

∫
Ω

ρkgvk+1
h

)
.

The post processing of Algorithm 2 guarantees, that this term is always negative. The
influence of Algorithm 2 on the mesh quality is investigated later.
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Figure 1: Time evolution of the Ginzburg–Landau energy (left), and validity of the
energy inequality (right).
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Figure 2: Time evolution of the deviation of the mean value of ϕ.

The violation in the conservation of mass

Since we use Lagrange interpolation as projection operator between successive grids,
we do not have full mass conservation, but have a violation in the mean value of
ϕ as discussed in Remark 4. In Figure 2 we depict the time evolution of the term∣∣∫

Ω
ϕk+1 − ϕ0 dx

∣∣, i.e. the difference between the mean value of ϕ and the mean value
of the initial phase field ϕ0. The numerical setup is the spinodal decomposition.

As can be observed, the violation increases with time, and the violation in mass
conservation finally is of size 10−6. We note that the order of the mean value is |Ω|
and here we have |Ω| = 1. Thus though we have deviation of mass, its size is small in
comparison to the actual mean value.
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Comparison with an existing benchmark

In [HTK+09] a quantitative benchmark for the simulation of the rising bubble is pro-
posed. Three different groups provided numerical results for two benchmark computa-
tions of rising bubble scenarios, using sharp interface models. In [AV12] the [HTK+09]
benchmark is implemented with computations based on three different diffuse interface
approximations to the setup of [HTK+09].

We briefly describe the setup. We start with an inital bubble of radius r = 0.25
located at M = (0.5, 0.5) with physical surface tension σphys = 24.5, resulting in σ ≈
15.5972 (see [AGG12, Sec. 4.3.4]). The initial velocity is zero. In the domain Ω =
(0, 1) × (0, 2) we have no-slip boundary conditions for the velocity field on top and
bottom walls, and free-slip on the left and the right walls. The parameters are given
as ρ1 = 1000, ρ2 = 100, η1 = 10, η2 = 1, resulting in a Reynolds number of 35. Here
ρ2 and η2 correspond to the fluid in the bubble. Due to the smaller density we expect
the bubble to rise in the gravity field with force g = (0,−0.98)t. Since we use a diffuse
interface model, we have the additional parameters m ≡ 10−3ε and ε = 0.02. The time
discretization step is chosen as τ = 2.5e− 5. The rising bubble is simulated over a time
horizon of 3 units of time.

In [HTK+09] the following benchmark parameters are defined. For a bubble repre-
sented by ϕ(x) < 0 we measure the evolution of circularity, rising velocity and of the
center of mass.

The circularity is defined by

Θϕ =
perimeter of area-equivalent circle

perimeter of bubble
≤ 1,

the rising velocity is defined as

Vϕ =

∫
ϕ<0

v dx∫
ϕ<0

1 dx
,

and the center of mass is given by

Mϕ =

∫
ϕ<0

x2 dx∫
ϕ<0

1 dx
.

Here x2 denotes the second component of the spatial variable x = (x1, x2). Note that
the process is symmetric and it is sufficient to integrate over the second component.

As benchmark values the minimal circularity (Θϕ)min together with the time tΘ :=
t(Θϕ ≡ (Θϕ)min), the maximal rising velocity (Vϕ)max together with the time tV :=
t(Vϕ ≡ (Vϕ)max) and the center of mass Mϕ(t = 3) at the final time t = 3 are presented.

Our results are shown in Table 1, first row (GHK ε = 0.02). For comparison we in the
second row also give the results obtained in [AV12] (AV ε = 0.02). Note that there the
polynomial double well free energy is used resulting in a diffuser interface. The results

27



Group (Θϕ)min tΘ (Vϕ)max tV Mϕ(t = 3)
GHK ε = 0.02 0.9080 1.9672 0.2388 0.9765 1.0786
AV ε = 0.02 0.9159 2.0040 0.2375 1.0400 1.0733

TP2D 0.9013 1.9041 0.2417 0.9213 1.0813
FreeLIFE 0.9011 1.8750 0.2421 0.9313 1.0799
MooNMD 0.9013 1.9000 0.2417 0.9239 1.0817

BGN 0.9014 1.9000 0.2417 0.9230 1.0819

Table 1: Results for the first benchmark from [HTK+09].

Figure 3: The evolution of the bubble at times t ∈ {0, 1, 2, 3}. The phase field is shown
in the right part and streamlines of the velocity field in the left part of each plot.

in the following rows are taken from the sharp interface numerics in [HTK+09]. The
groups TP2D, FreeLIFE and MooNMD are the groups participating in [HTK+09]. The
group TP2D is the group of Turek at the Technical University of Dortmund, FreeLIFE
is provided by the École polytechnique fédérale de Lausanne by the group of Burman
and MooNMD is the group of Tobiska from the University of Magdeburg. With BGN
we denote the results presented in [BGN13], which are obtained by a sharp interface
approach based on the model used in the present paper.

We see that our results are in quite good aggrement with those obtained with sharp
interface numerics.

In Figure 3 we show the evolution of the bubble for the benchmark setting.

Distribution of the error indicators

Next we investigate the distribution of the error indicators. We observe that a similar
distribution is observed as in the case of the numerical simulation of the Cahn–Hilliard
equation with transport reported in [HHK13]. The errors are concentrated at the
boundary of the interface. We further have additional error contributions from the
Navier–Stokes part in a neighborhood of the bubble.
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Figure 4: The distribution of the error
indicators at time t = 3. ηT on the left,
ηTE on the right. Black indicates higher
errors.

Figure 5: The mesh with (left) and
without (right) postprocessing at final
time t = 3.

In Figure 4 we show the distribution of the error indicators ηT and ηTE defined in
Algorithm 1.

Influence of the post processing of the marked triangles

Finally we investigate the spatial discretization obtained by our adaptive concept. Es-
pecially we show the influence of the post processing step of Algorithm 2 on reducing
the number of triangles that are coarsened.

We simulate the rising bubble benchmark in the setting described above with and
without the postprocessing steps. We note that without the postprocessing artificial
energy is generated numerically through the coarsening process and the validity of the
energy inequality can not be guaranteed, and in fact is not given.

In Figure 5 we show the final meshes at t = 3 with postprocessing (left) and without
postprocessing (right). We see that there are regions in the bulk phase below the bubble
where the postprocessing prevents the adaptive strategy from coarsening the triangles
to the coarsest level. Thus we obtain a larger number of nodes if we use the post
processing as is demonstrated in Figure 6 where we display the evolution of the number
of mesh nodes with and without postprocessing.

We see that the number of nodes increases (by maximal 10% in this example) since
not all triangles that are marked for coarsening are coarsened. On the other hand we
note, that the energy inequality in the case without post processing is violated in 1692
of 60000 simulation steps and this violation takes place within the first 7000 time steps.

Let us note, that from the fluid mechanical point of view and if one considers the
bubble as an obstacle in the channel flow, the region detected by the post processing is
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Figure 6: The evolution of the number of nodes for the described benchmark with
(upper line) and without (lower line) postprocessing.

the wake, where the fluid is accelerated. Thus we expect a refined flow mesh there.

5 Conclusion
We propose a time discretization for the thermodynamically consistent model from
[AGG12] that gives rise to a time discrete energy inequality that can be conserved in
the fully discrete setting. The systems to be solved in the discrete setting are fully
coupled and a concept for handling the linear systems arising from Newton’s method
is proposed.

Based on the energy inequality we derive an error estimator both measuring the local
error in the discretization of the velocity field, and in the phase field and the chemical
potential. We investigate the behavior of our solver and especially could numerically
verify the validity of the discrete energy inequality.

Post processing, applied to fulfill the energy inequality in the discrete setting, in our
example leads to meshes containing approximatly 10% more triangles than the meshes
obtained without post processing, but to a more reasonable refinement from the flow-
physics point of view. The numerical results might be further improved by replacing
the Lagrange interpolation operator by e.g. the mass-conserving quasi-interpolation
operator introduced in [Car99]. This will be subject to future work.
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