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Abstract

We use the method of proper orthogonal decomposition for the derivation of surrogate
models for free boundary value problems. Exemplarily, we study a single-phase Stefan
problem in one spatial dimension and a two-phase Stefan problem in two dimensions. For
the first one we use three different numerical approaches to treat the moving free boundary
for the calculation of the snapshots and compare the performance of the reduced models.
In the second problem we use a fixed grid approach and simulate the apparent heat
equation. In all cases we provide numerical examples underlining the feasibility of our
approach and we present studies on the robustness of the reduced surrogate models with
respect to changes in the data.
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1 Introduction

The increasing complexity of models for industrial applications in combination with the re-
quirement of faster simulation times makes the usage of modern model reduction techniques
mandatory. During the last decades proper orthogonal decomposition (POD) proved to be a
reliable tool for the reduction of nonlinear partial differential equations [21].

Proper orthogonal decomposition is a method to determine an optimal subspace basis, similar
to the concepts of Karhunen-Loève expansion and principal component analysis. Applied as
a method of model reduction, the data that is approximated in an optimal least square sense
is given in the form of solutions of the full systems or can even be obtained from experimental
measurements. As a purely data-driven method POD can also be used as a data analysis
method and has been used in the analysis of turbulence and coherent structures in fluid
dynamics [3, 4, 17, 22, 26, 27], the same application for which model reduction with POD was
first studied. It was successfully applied to optimal control problems of partial differential
equations [2, 7, 8, 12, 13, 24] and simulation of integrated circuits [11, 23]. Recently, POD is
applied to inverse problems in structural mechanics [5] and used to set up low-dimensional
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surrogate models for application in durability analysis and optimal design [1,9,10,15,18]. For
a detailed overview and a classical application example of POD in a nonlinear radiative heat
transport problem see [21].

Here, we are going to consider POD for free boundary value problems, in particular a single-
phase Stefan problem in one spatial dimension and a two-phase Stefan problem in two di-
mensions. This problem class is interesting due to the high nonlinearity and some challenging
numerical issues coming from the resolution of the evolution of the free boundary.

First, we consider the single-phase Stefan problem which describes the temperature distri-
bution in a homogeneous medium undergoing a phase change, e.g., a melting block of ice.
Modelled as a free boundary problem on a semi infinite domain, the interval [0, s(t)] is oc-
cupied by water and increases in size as the heat flux at the boundary s(t) causes a melt
down. Since we neglect heat sources and have zero Dirichlet boundary conditions, the melt
down process is governed by the initial temperature distribution. The precise mathematical
formulation reads:

Find a pair (u(x, t), s(t)) that satisfies the system:

ut − κuxx = 0 in {(x, t) : 0 < x < s(t), 0 < t < T0}, (heat equation)

u(x, 0) = f(x) for x in (0, 1), (initial temperature)

u(0, t) = 0 for 0 ≤ t ≤ T0 (1.1)

u(s(t), t) = 0 for 0 ≤ t ≤ T0

st + κuy(s(t), t) = 0 for 0 < t ≤ T0 (Stefan condition)

s(0) = 1

Here, κ > 0 denotes the diffusion coefficient and f ≥ 0 denotes an initial condition which
satisfies f(0) = f(1) = 0.

For this problem we are going to use three different numerical approaches for the simulation
from which we extract the snapshots for the construction of the reduced POD basis. First, we
consider a Landau-type transformation which allows for the transformation on a fixed spatial
domain. Second, we provide a fixed grid on a larger interval in which the free boundary
is moving. Lastly, the grid is moving and stretched according to the evolution of the free
boundary. While the first approach is restricted to one spatial dimension, the other two can
be easily generalized to higher dimensions.

In two spatial dimensions we are going to simulate the temperature distribution u(x, t) in
two different media with different specific heat capacities, heat conductivities and densities
separated by a free boundary which evolves according to a Stefan condition (see Figure 1).
The problem reads: Find u(x, t) and f(x, t) such that

div (κs∇u) = ρscs ∂tu (x, t) ∈ Ωs × (0, T )

div (κl∇u) = ρlcl ∂tu (x, t) ∈ Ωl × (0, T )

u(x, 0) = u0(x) x ∈ Ωs ∪ Ωl

u(x, t) = ub(x, t) (x, t) ∈ ∂(Ωs ∪ Ωl)× (0, T )
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Figure 1: Two-phase region with moving boundary f(x, t) = 0

as well as

ρLvn = κs
∂us
∂n

− κl
∂ul
∂n

(1.2)

on the free boundary f(x, t) = 0.

Density, heat conductivity and heat capacity of the solid and liquid media are positive con-
stants denoted by ρs, ρl, κs and κl, cs, cl, respectively. The constant L is the latent heat,
which is the heat absorbed or released during a phase transition that occurs without a change
of temperature. Further, vn is the normal velocity of the free boundary.

As shown in [25], this problem can be reformulated to the enhanced or apparent heat capacity
equation

cA∂tu = div (κ∇u), (1.3)

where

cA = gsρscs + glρlcl + ((ρlcl − ρscs)(u− uref ) + ρlL)
dgl
du

and
κ = glκl + gsκs.

Here, gl = gl(u) is the liquid volume fraction (see e.g. [25]), gs = 1 − gl the solid volume
fraction and uref is an arbitrary reference temperature. Now the equation is in a form which
allows for a simulation on a fixed grid. But one has to pay the price that the apparent heat
capacity strongly depends on space and time. Nevertheless, this formulation is now adequate
for the direct application of POD.

The paper is organized as follows. In Section 2 we briefly review the method of proper
orthogonal decomposition based on snapshots. Section 3 is devoted to the study of the single-
phase Stefan problem. We use the three different methods for the calculation of the snapshots,
compare the performance of reduced the POD models and study their robustness with respect
to changes in the data. Finally, we present in Section 4 a fixed grid approach for the apparent
heat equation modelling a two-phase Stefan problem in two dimensions, employ POD and
study again the robustness of the surrogate model. Concluding remarks are given in Section
5.
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2 Proper Orthogonal Decomposition

In the following we shortly review the standard snapshot POD approach, for a detailed de-
scription we refer to [12, 21].

Let (X, (·, ·)) denote a Hilbert space, and let y1, . . . , ym ∈ X denote vectors which are obtained
e.g. from a numerical simulation of a dynamical system as time snapshots yi ≡ y(ti), or from
an experiment (yi denotes the i−th sample or snapshot of the experiment). The snapshots
are stored in the snapshot matrix

Y = [y1, . . . , ym] ∈ Xm. (2.1)

The POD approach now seeks for an orthonormal basis {ϕi | i = 1, . . . , l} of rank 1 ≤ l ≤
dim{Y } which carries as much information as possible contained in Y w.r.t. the inner product
(·, ·), i.e.

{ϕi | i = 1, . . . , l} = argmin
(ϕl,ϕk)=δlk

m∑
i=1

‖yi −
l∑

j=1

(yi, ϕj)ϕj‖2, (2.2)

where ‖ · ‖ := (·, ·)1/2.
The solution to this minimization problem is called POD basis of rank l, and is given by

ϕi =
1√
λi

Y vi (i = 1, . . . , l),

with vi ∈ R
m denoting the i−th eigenvector of (Y, Y ) ∈ R

m,m with eigenvalue λi ≥ 0. The
minimal projection error can then be expressed in terms of the omitted eigenvalues λi, i.e.

min
ϕj

n∑
i=1

‖yi −
l∑

j=1

〈yi, ϕj〉ϕj‖2 =
m∑

i=l+1

λi . (2.3)

2.1 Reduced Order Modeling of a Semilinear Evolution Problem

Now we briefly sketch how the POD method is applied to obtain reduced order dynamics for
abstract semilinear evolution equations of the form

∂ty = Ay + b(t, y) in (0, T ], (2.4)

y(0) = y0, (2.5)

where T > 0, A : V → V ′ denotes a coercive operator, b : (0, T ] × V → V ′ an appropriate
nonlinearity, and y0 ∈ H the initial value. Here, (V,H, V ′) denotes a Gelfand triple, so that
in the following we can choose X = H or X = V . To simplify the exposition we from here
onwards choose X = H.

From the numerical simulation of (2.4) at time instances ti (i = 1, . . . ,m) we obtain snapshots
y1, . . . , ym ∈ X, for which we compute the POD basis {ϕ1, · · · , ϕl} of rank l according to (2.2).
We define Φ = [ϕ1, . . . , ϕl] ∈ Xm and make the ansatz

yl(t) :=
l∑

j=1

αj(t)ϕj ≡ Φα(t). (2.6)
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We insert the ansatz into (2.4) and test the resulting system with the POD basis. This POD
Galerkin scheme delivers the reduced IVP in l variables;

α̇ = Ãα+ b̃(t,Φα),

α(0) = (Φ, y0)
t,

where

Ã = 〈AΦ,Φ〉V ′V , b̃(t, α) = 〈b(t,Φα),Φ〉V ′V , and (Φ, y0) := ((ϕ1, y0), . . . , (ϕl, y0)).

3 The Single-Phase Stefan Problem in One Dimension

Problem (1.1) is difficult to tackle with common POD techniques since the spatial domain is
time-dependent, i.e., it depends on the position of the free boundary s(t). In the following
we consider three approaches to overcome this difficulty and to make POD applicable.

3.1 The Landau Transformation

First, we transform (1.1) using the following Landau-type transformation, as described in [20],

x = s(t)y and τ =

t∫
0

1

s(k)2
dk .

After a short computation we find that U(y, τ) := u(x, t) satisfies the nonlinear parabolic
equation

Uτ (y, τ)− κUyy(y, τ) = −κUy(1, τ)yUy(y, τ)

in {(y, τ) : y ∈ (0, 1), 0 < τ ≤ T}
(3.1)

U(0, τ) = U(1, τ) = 0 for τ > 0

U(y, 0) = f(y) for y ∈ (0, 1)

and the boundary position S(τ) = s(t) of the free boundary is determined by

Sτ (τ) = −κUy(1, τ)S(τ) for τ > 0, S(0) = 1 (3.2)

tτ = S2(τ) with t(0) = 0 .

We note that (3.1) does not depend on S, so that the position of the free boundary can be
calculated using (3.2) once U is known from (3.1).

Since (3.1) forms a nonlinear parabolic equation, it can be approximated by a Galerkin method
based on the POD modes obtained from the snapshots. The Galerkin solution then can be
used to form the mobility of S in (3.2) and to compute the approximate position of the free
boundary.
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3.1.1 Numerical Solution and POD Reduction

For the numerical approximation of (3.1) we use linear finite elements on the equidistant grid
xi :=

i
n+1 , i = 0, . . . , n+ 1. The resulting nonlinear system of ODEs then reads

MU̇ = κKU − κF (U) , (3.3)

where M is the mass matrix, K is the stiffness matrix and the nonlinearity F has the form

F (U) :=
1

4
UnTU, with T :=

⎛
⎜⎜⎜⎜⎜⎝

−2 3
−3 −2 5

. . .
. . .

. . .

−(2n− 3) −2 2n− 1
−(2n− 1) −2

⎞
⎟⎟⎟⎟⎟⎠ , (3.4)

where we use the element-wise midpoint rule to numerically integrate the terms
∫
Ω

yUyφjdy

with FE hat functions φj , for j = 1, . . . , n.

This ODE system can be solved with standard algorithms such that we can build up the
snapshot matrix Y = [U(t0), . . . , U(tm)]. We set X := R

n equipped with the Euclidean scalar
product. The POD basis Φ = [ϕ1, . . . , ϕl] ∈ R

n,m obtained from Y in this setting is now used
to create a reduced order model of (3.3). It reads

M̃ ˙̃U = κK̃Ũ − κF̃ (Ũ), (3.5)

where M̃ := ΦTMΦ, K̃ := ΦTKΦ and

F̃ (Ũ) :=
1

4

(
l∑

i=1

ϕn
i Ũi

)
T̃ Ũ with T̃ := ΦTTΦ. (3.6)

Once the reduced solution is computed, the motion of the boundary S̃ can be obtained from

S̃τ (τ) = −κ(n+ 1)

(
l∑

i=1

ϕn
i Ũi

)
S̃(τ) for τ > 0, S̃(0) = 1 (3.7)

tτ = S̃2(τ) with t(0) = 0 .

3.2 The Control Volume Approach

For the second numerical approach we start with a spatial discretization of a larger domain
Ω̄ = (0, S0), assuming the free boundary will not leave this domain in the regarded time
interval, i.e., s(t) < S0, for all t < T0. The heat equation part of (1.1) is solved using linear
finite elements on the part of the grid that is still confined by the free boundary s(t). This
implies that M and K have to be updated each time s(t) passes a new grid point.
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Let 0 ≤ tp1 ≤ · · · ≤ tpmp ≤ T0 be the points in time when the moving boundary passes a new
grid point. Then we use the following numerical procedure:
Algorithm:

• solve M(pi)u̇ = κK(pi)u in (tpi, tpi+1)

• project solution to original grid

• add new cell with melting point temperature

• project solution back to reference grid

• update mass and stiffness matrix and continue simulation

To determine tpi+1 we update s(t) by the temperature at the last active grid point using the
Stefan condition from (1.1) and determine the phase change at the next grid point. New grid
points are initialized with zero temperature when joining the active domain Ω = (0, s(t)).

Remark 3.1 Unlike the method presented in the previous section, this approach can eas-
ily be generalized to higher dimensions or different types of boundary conditions. But the
computational costs increase as mass and stiffness matrices grow during the simulation.

3.2.1 POD Reduction

Since the length of the snapshots changes during the simulation, POD cannot be applied in
a straightforward manner. First, we have to map all snapshots by rescaling and interpolation
back to the interval Ω̄. From this projected snapshot matrix we compute the POD basis.

During the numerical approximation, each time the free boundary s passes a new grid point,
we have to map U to the full space using Φ, rescale and interpolate back to the active domain
Ω, add a zero temperature entry for the new grid point and finally project back to the POD
space via the reference grid Ω̄. For a overview of the algorithm see the flowchart in Figure 2.

3.3 The Moving Mesh Approach

In this last approach we keep the number of grid points fixed but move them with regard
to the evolution of the free boundary s(t). To guarantee the conservation of energy, the
temperature at the new grid points has to be interpolated with respect to the new grid, as is
sketched in Figure 3. The movement of the grid points is governed by the the ODE

ẋi = ṡ
i

n+ 1
. (3.8)

If we assume that s is monotonically increasing and Δt is small enough such that s does not
exceed more than one grid point in one time step, then the projection reads

ūi = ui

(
1− ẋiΔt

Δx

)
+ ui+1

ẋiΔt

Δx
. (3.9)
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ΩrefΩsFull Model

POD-Basis

ΩrefΩs

Grid
Update

Reduced
Model

SVD

Projection

Projection

Deformation/Boundary Movement

Deformation/Boundary Movement

Figure 2: POD reduced model using a fixed grid method

In the limit Δt → 0 this can be expressed as

u̇i = (ui+1 − ui)
ṡ

s
i . (3.10)

Figure 3: Grid update for the moving mesh method

Incorporating this projection term into the ODE from the FE ansatz we obtain
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u̇ = κM−1Ku+Ru
ṡ

s
= κ

(
M−1Ku+Ru

un(n+ 1)

s2

)
(3.11)

ṡ = κ
un(n+ 1)

s
,

(3.12)

with R :=

⎛
⎜⎜⎜⎜⎜⎝

−1 1
−2 2

. . .
. . .

−(n− 1) (n− 1)
−n

⎞
⎟⎟⎟⎟⎟⎠ . (3.13)

Remark 3.2 Note, that the mass matrix M and the stiffness matrix K depend on s, but
since we use equidistant finite linear elements they can be written as M(s) = n+1

s M0 and
K(s) = n+1

s K0, where M0 and K0 are constant matrices.

Now, we can directly apply POD, but as in the previous sections it should only be applied
to the temperature u, i.e., the position of the free boundary is not incorporated into the
snapshots and dealt with separately.

The reduced model then reads

˙̃u = κΦTM−1KΦũ+ΦTRΦũ
˙̃s(t)

s̃(t)

˙̃s = κ
(n+ 1)

s̃

(
l∑

i=1

ϕn
i ũi

)
.

3.4 Numerical Comparison of the Three Approaches

The approximation quality of the reduced systems is linked to the accuracy of the position of
the free boundary which is measured by

T0∫
0

|s(t)− s̃(t)|2dt (3.14)

and will be the main criterion in comparing the different reduced models.

For the numerical example we choose T0 = 20, κ = 0.1, n = 500, and f(x) = 4x(1 − x) for
x ∈ (0, 1). In all cases, 100 equidistant snapshots are used to form the correlation matrix Y .
For time integration, an adaptive step size control with both relative and absolute tolerances
of 10−8 is used for all three methods.

In Figure 4(a) one finds the eigenvalues of the correlation matrix calculated from the snap-
shots of the first approach. For the other two methods there is no significant difference and
the overall behaviour suggests that one can expect a good approximation property of the
reduced POD model in view of Eq. (2.3). Figure 4 and 5 show that for the Landau-type
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transformation and the moving mesh approach the reduced models give already good results
for very few modes. But the reduced model of the control volume approach does not yield
a good approximation quality until at least 10 modes. Further, we see in Figure 5 that the
error stagnates at a rather rough level compared to the other two approaches. However, the
other two methods show steady improvement of the approximation quality. An explanation
for the worse behaviour of the second method might be the projection step in the algorithm
(see also Figure 2), which introduces an additional error.
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Figure 4: Position of the free boundary s(t) for the different POD reduced models

3.4.1 Sensitivities and Robustness

Next, we investigate the robustness of the reduced POD model with respect to changes in the
data for the simulation. Since the behavior depends critically on the parameter κ, we present
first results for the different values κ = 0.01 and κ = 1 in the reduced model, while the POD
basis is constructed from the simulation with κ = 0.1. In the latter case we choose T0 = 5,
because the melting process happens much faster. As can be seen in Figure 6 similar results
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Figure 5: Approximation error of the POD reduced systems
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can be achieved and there is no strong sensitivity on κ.

Second, to avoid time-consuming simulations of the full system to generate the snapshots
for the POD basis we investigate the quality of the reduced systems gained from only 100
snapshots from the first second (T0 = 1). The results in Figure 7 show that the relevant
dynamics can be captured in the POD-basis even if only the first second of the full system is
used to generate snapshots.

Lastly, to test the reduced model for robustness with respect to changes in the initial data,
we generate the snapshots using modified initial condition f(x) =

√
4x(1− x). As can be

seen in Figure 8, all three methods show again a robust behaviour also regarding this change.

4 Two-Phase Stephan Problem

In this section we study the two-phase Stefan problem in two spatial dimensions modelled by
the apparent heat equation (1.3). This form is identical to the basic Fourier heat conduction
equation, but the apparent heat capacity cA as well as the heat conductivity κ are highly
dependent on space and time. Since the domain is fixed, we can generate a mesh and use
linear finite elements in space yielding a nonlinear dynamical system of the form

M(u)u̇+K(u)u = b. (4.1)

The mass matrix M and the stiffness matrix K depend on the temperature distribution u,
because cA and k are temperature dependent. Since the element mass and stiffness matrices
are constant, except for a small region around the free boundary, we update the full matrices
only by applying the changes to the corresponding element matrices. The change of the i-th
element mass matrix is given by

Mei = cAi · Ji 1
24

⎛
⎝2 1 1
1 2 1
1 1 2

⎞
⎠ ,

and the change of the i-th element stiffness matrix is just

Kei = κi · 1

2Ji
ATA,

where  indicates the change from the previous time step, Ji is the surface area of the i-th
patch and A is given by

A =

(
y2 − y3 y3 − y1 y1 − y2
x3 − x2 x1 − x3 x2 − x1

)
,

with (xk, yk), k = 1, 2, 3 the coordinates of the i-th face. This procedure allows us to update
the mass and stiffness matrix in an optimal way and avoids rebuilding of the matrices.
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4.1 Numerical Results

Next, we apply POD to the two-phase Stefan problem on a rectangular domain with a circular
hole. The material properties ρ, c and κ are chosen for water and ice (see Table 1).

material property solid liquid

ρ (kg/m3) 920 000 1000 000

c (J/(kg ·K)) 2060 4200

κ (W/(m ·K)) 2.33 0.5562

Table 1: Material Parameters

Initially, the whole domain is full of ice at a temperature of −2 ◦C, which is heated by a
constant temperature of 20 ◦C from the boundary (outer rectangle and inner circle). The
liquid volume fraction is modelled by

gl(u) =

⎧⎨
⎩

0, u < Tε

εS + 1−εL−εS
TL−Tε

· (u− Tε), Tε ≤ u ≤ TL

1, TL < u

,

where εS and εL describe the step discontinuity due to the phase change at the mush/solid
interface with freezing point TS and melting point TL.

The original problem is discretized using linear finite elements, yielding a ODE system with
37659 degrees of freedom. Figure 9 shows the melting of the ice cube and the temperature
distribution inside the solid medium at four different points in time.

After projection to the POD basis the reduced Model reads

ΦTM(Φũ)Φ ˙̃u+ΦTK(Φũ)Φũ = ΦT b . (4.2)

Again, the evaluation of the reduced mass matrix ΦTM(Φũ)Φ and of the reduced stiffness
matrix ΦTK(Φũ)Φ is critical for the performance of the reduced model. As long as no phase
change happens in any of the patches, the reduced matrices remain constant as well. In
contrast to the full model we now collect the changes of the element matrices Mei and
Kei of all patches undergoing a phase change and build the complete change matrices
M = M(ti+1) − M(ti) and K = K(ti+1) − K(ti), which then can be reduced with the
POD basis and added to the reduced systems , i.e.,

ΦTM(ti+1)Φ = ΦTM(ti)Φ + ΦT MΦ,

ΦTK(ti+1)Φ = ΦTK(ti)Φ + ΦT KΦ.

In Figure 10 one finds the first four POD modes. The eigenvalues of the correlation matrix
depicted in Figure 11(a) suggest again a good approximation property of the reduced POD
model, which is indeed the fact as can be seen from error plot in Figure 11(b). Already less
than 30 modes are sufficient to get adequate results, which is a significant reduction compared
to the original number of degrees of freedom.
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4.2 Sensitivities and Robustness

Again, we are interested in the robustness of the reduced model with respect to changes in
the data. First, we use a different boundary temperature for the generation of the snapshots,
which leads to a larger error in the reduced POD model (see Figure 12(a)). But still approx-
imately 50 POD modes are sufficient to get reliable results. Second, we shorten the training
time, which has a larger influence on the error as can be seen from Figure 12(b). Here, we
need ca. 150 modes to get still a tolerable error.

5 Conclusions

We presented a model reduction approach for free boundary value problems based on the
method of snapshot POD. The numerical studies suggest that either a moving mesh approach
or a fixed grid approach for the generation of the snapshots guarantees a good approximation
property and a robust behaviour of the surrogate model.
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(a) Landau-type transformation (κ = 0.01, T0 = 20)
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(b) Landau-type transformation (κ = 1, T0 = 5)
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(c) Control Volume (κ = 0.01, T0 = 20)
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(d) Control Volume (κ = 1, T0 = 5)
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(e) Moving Mesh (κ = 0.01, T0 = 20)

0 10 20 30 40 50
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

Number of POD Modes

A
pp

ro
xi

m
at

io
n 

E
rr

or

(f) Moving Mesh (κ = 1, T0 = 5)

Figure 6: Approximation error of the reduced POD model for κ = 0.01 (left) and κ = 1 (right)
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(a) Eigenvalues of the correlation matrix
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(c) Control Volume
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(d) Moving Mesh

Figure 7: Approximation error of the POD reduced systems generated with T0 = 1 and then simulated
until T0 = 20
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(b) Landau-type transformation
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(c) Control Volume

Figure 8: Approximation error of the reduced POD model with modified initial condition
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(a) T ≈ 10min (b) T ≈ 60min

(c) T ≈ 160min (d) T ≈ 175min

Figure 9: Solution of the 2d two-phase Stefan problem (solid part)
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(a) POD mode 1 (b) POD mode 2

(c) POD mode 3 (d) POD mode 4

Figure 10: The first 4 POD modes (without boundary values)
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(a) Eigenvalues of the correlation matrix
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(b) Original Snapshots

Figure 11: Maximum Error in the Temperature of Reduced POD Model
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(a) Snapshots generated with 30 ◦C ambient tempera-
ture (20 ◦C in the original system)
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(b) Snapshots from the first half of the time interval

Figure 12: Maximum Error in Temperature of the Reduced POD Model
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