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Abstract

In this article a stabilizing feedback control is computed for a semilinear parabolic
partial differential equation utilizing a nonlinear model predictive (NMPC)
method. In each level of the NMPC algorithm the finite time horizon open
loop problem is solved by a reduced-order strategy based on proper orthogonal
decomposition (POD). A stability analysis is derived for the combined POD-
NMPC algorithm so that the lengths of the finite time horizons are chosen in
order to ensure the asymptotic stability of the computed feedback controls. The
proposed method is successfully tested by numerical examples.
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1. Introduction

In many control problems it is desired to design a stabilizing feedback control,
but often the closed-loop solution can not be found analytically, even in the
unconstrained case since it involves the solution of the corresponding Hamilton-
Jacobi-Bellman equations; see, e.g., [7, 11] and [22]. But this approach requires
the solution of a nonlinear hyperbolic partial differential equation with a high-
dimensional spatial variable.

One approach to circumvent this problem is the repeated solution of open-
loop optimal control problems. The first part of the resulting open-loop input
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signal is implemented and the whole process is repeated. Control approaches
using this strategy are referred to as model predictive control (MPC), moving
horizon control or receding horizon control. In general one distinguishes between
linear and nonlinear MPC (NMPC). In linear MPC, linear models are used to
predict the system dynamics and considers linear constraints on the states and
inputs. Note that even if the system is linear, the closed loop dynamics are
nonlinear due to the presence of constraints. NMPC refers to MPC schemes
that are based on nonlinear models and/or consider a nonquadratic cost func-
tional and general nonlinear constraints. Although linear MPC has become an
increasingly popular control technique used in industry, in many applications
linear models are not sufficient to describe the process dynamics adequately
and nonlinear models must be applied. This inadequacy of linear models is
one of the motivations for the increasing interest in nonlinear MPC; see. e.g.,
[3, 12, 15, 24]. The prediction horizon plays a crucial role in MPC algorithms.
For instance, the quasi infinite horizon NMPC allows an efficient formulation
of NMPC while guaranteeing stability and the performances of the closed-loop
as shown in [4, 13, 19] under appropriate assumptions. For the purpose of our
paper we will use a different approach since we will not deal with terminal
constraints.

Since the computational complexity of NMPC schemes grows rapidly with
the length of the optimization horizon, estimates for minimal stabilizing hori-
zons are of particular interest to ensure stability while being computationally
fast. Stability and suboptimality analysis for NMPC schemes without stabiliz-
ing constraints are studied in [15, Chapter 6], where the authors give sufficient
conditions ensuring asymptotic stability with minimal finite prediction horizon.
Note that the stabilization of the problem and the computation of the mini-
mal horizon involve the (relaxed) dynamic programming principle (DPP); see
[16, 23]. This approach allows estimates of the finite prediction horizon based
on controllability properties of the dynamical system.

Since several optimization problems have to be solved in the NMPC method,
it is reasonable to apply reduced-order methods to accelerate the NMPC al-
gorithm. Here, we utilize proper orthogonal decomposition (POD) to derive
reduced-order models for nonlinear dynamical systems; see, e.g., [18, 28] and
[17]. The application of POD is justified by an a priori error analysis for the con-
sidered nonlinear dynamical system, where we combine techniques from [20, 21]
and [27]. Let us refer to [14], where the authors also combine successfully
an NMPC scheme with a POD reduced-order approach. However, no analysis
is carried out ensuring the asymptotic stability of the proposed NMPC-POD
scheme. Our contribution focusses on the stability analysis of the POD-NMPC
algorithm without terminal constraints, where the dynamical system is a semi-
linear parabolic partial differential equation with an advection term. In par-
ticular, we study a minimal finite horizon for the reduced-order approximation
such that it guarantees the asymptotic stability of the surrogate model. Our
approach is motivated by the work [6]. The main difference here is that we have
added an advection term in the dynamical system and utilize a POD suboptimal
strategy to solve the open-loop problems. Since the minimal prediction horizon
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can be large, the numerical solution of the open-loop problems is very expen-
sive within the NMPC algorithm. The application of the POD model reduction
reduces efficiently the computational cost by computing suboptimal solutions.
But we involve this suboptimality in our stability analysis in order to ensure
the asymptotic stability of our NMPC scheme.

The paper is organized in the following manner: In Section 2 we formulate
our infinite horizon optimal control problem governed by a semilinear parabolic
equation and bilateral control constraints. The NMPC algorithm is introduced
in Section 3. For the readers convenience, we recall the known results of the
stability analysis. Further, the stability theory is applied to our underlying
nonlinear semilinear equations and bilateral control constraints. In Section 4
we investigate the finite horizon open loop problem which has to be solved at
each level of the NMPC algorithm. Moreover, we introduce the POD reduced-
order approach and prove an a-priori error estimate for the semilinear parabolic
equation. Finally, numerical examples are presented in Section 5.

2. Formulation of the control system

Let Ω = (0, 1) ⊂ R be the spatial domain. For the initial time t◦ ∈ R
+
0 =

{s ∈ R | s ≥ 0} we define the space-time cylinder Q = Ω × (t◦,∞). By H =
L2(Ω) we denote the Lebesgue space of (equivalence classes of) functions which
are (Lebesgue) measurable and square integrable. We endow H by the standard
inner product – denoted by 〈· , ·〉H – and the associated induced norm ‖ϕ‖H =

〈ϕ,ϕ〉1/2H . Furthermore, V = H1
0 (Ω) ⊂ H stands for the Sobolev space

V =

{
ϕ ∈ H

∣∣∣ ∫
Ω

∣∣ϕ′(x)
∣∣2 dx < ∞ and ϕ(0) = ϕ(1) = 0

}
.

Recall that both H and V are Hilbert spaces. In V we use the inner product

〈ϕ, φ〉V =

∫
Ω

ϕ′(x)φ′(x) dx for ϕ, φ ∈ V

and set ‖ϕ‖V = 〈ϕ,ϕ〉1/2V for ϕ ∈ V . For more details on Lebesgue and Sobolev
spaces we refer the reader to [11], for instance. When the time t is fixed for
a given function ϕ : Q → R, the expression ϕ(t) stands for a function ϕ(· , t)
considered as a function in Ω only. Recall that the Hilbert space L2(Q) can be
identified with the Bochner space L2(t◦,∞;H).

We consider the following control system governed by a semilinear parabolic
partial differential equation: y = y(x, t) solves the semilinear initial boundary
value problem

yt − θyxx + yx + ρ(y3 − y) = u in Q, (2.1a)

y(0, ·) = y(1, ·) = 0 in (t◦,∞), (2.1b)

y(t◦) = y◦ in Ω. (2.1c)
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In (2.1a) it is assumed that the control u = u(x, t) belongs to the set of admis-
sible control inputs

Uad(t◦) =
{
u ∈ U(t◦)

∣∣u(x, t) ∈ Uad for almost all (f.a.a.) (x, t) ∈ Q
}
, (2.2)

where U(t◦) = L2(t◦,∞;H) and Uad = {u ∈ R |ua ≤ u ≤ ub} with given
ua ≤ 0 ≤ ub . The parameters θ and ρ satisfy

(θ, ρ) ∈ Dad =
{
(θ̃, ρ̃) ∈ R

2
∣∣ θa ≤ θ̃ and ρa ≤ ρ̃

}
with positive θa and ρa. Further, in (2.1c) the initial condition y◦ = y◦(x) is
supposed to belong to H.

A solution to (2.1) is interpreted in the weak sense as follows: for given
(t◦, y◦) ∈ R

+
0 ×H and u ∈ Uad(t◦) we call y a weak solution to (2.1) for fixed

(θ, ρ) ∈ Dad if y(t) ∈ V , yt(t) ∈ V ′ hold f.a.a. t ≥ t◦ and y satisfies y(t◦) = y◦
in H as well as

d

dt
〈y(t), ϕ〉H +

∫
Ω

θyx(t)ϕ
′ +

(
yx(t) + ρ(y3(t)− y(t))

)
ϕ dx =

∫
Ω

u(t)ϕ dx (2.3)

for all ϕ ∈ V and f.a.a. t > t◦. Here, yt(t) stands for the distributional derivative
with respect to the time variable satisfying [10, p. 477]

d

dt
〈y(t), ϕ〉H = 〈yt(t), ϕ〉V ′,V for all ϕ ∈ V.

The following result is proved in [8], for instance.

Proposition 2.1. For given (t◦, y◦) ∈ R
+
0 ×H and u ∈ Uad(t◦) there exists a

unique weak solution y = y[u,t◦,y◦] to (2.1) for every (θ, ρ) ∈ Dad.

Let (t◦, y◦) ∈ R
+
0 × H be given. Due to Proposition 2.1 we can define the

quadratic cost functional:

Ĵ(u; t◦, y◦) :=
1

2

∫ ∞

t◦
‖y[u,t◦,y◦](t)− yd‖2H dt+

λ

2

∫ ∞

t◦
‖u(t)‖2H dt (2.4)

for all u ∈ U(t◦) ⊃ Uad(t◦), where y[u,t◦,y◦] denotes the unique weak solution to
(2.1). We suppose that yd = yd(x) is a given desired stationary state in H (e.g.,
the equilibrium yd = 0) and that λ > 0 denotes a fixed weighting parameter.
Then we consider the nonlinear infinite horizon optimal control problem

min Ĵ(u; t◦, y◦) subject to (s.t.) u ∈ Uad(t◦). (2.5)

Suppose that the trajectory y is measured at discrete time instances

tn = t◦ + nΔt, n ∈ N,

where the time step Δt > 0 stands for the time step between two measurements.
Thus, we want to select a control u ∈ Uad(t) such that the associated trajectory
y[u,t◦,y◦] follows a given desired state yd as good as possible. This problem is
called a tracking problem, and, if yd = 0 holds, a stabilization problem.

Since our goal is to be able to react to the current deviation of the state y at
time t = tn from the given reference value yd, we would like to have the control
in feedback form, i.e., we want to determine a mapping μ : H → Uad(t◦) with
u(t) = μ(y(t)) for t ∈ [tn, tn+1].
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3. Nonlinear model predictive control

We present an NMPC approach to compute a mapping μ which allows a
representation of the control in feedback form. For more details we refer the
reader to the monographs [15, 24], for instance.

3.1. The NMPC method

To introduce the NMPC algorithm we write the weak form of our control
system (2.1) as a parametrized nonlinear dynamical system. For (θ, ρ) ∈ Dad

let us introduce the θ-and ρ-dependent nonlinear mapping F which maps the
space V ×H into the dual space V ′ of V as follows:

F(ϕ, v) = −θϕxx + ϕx + ρ(ϕ3 − ϕ)− v for (ϕ, v) ∈ V ×H.

Then, we can express (2.3) as the nonlinear dynamical system

y′(t) = F(y(t), u(t)) ∈ V ′ for all t > t◦, y(t◦) = y◦ in H (3.1)

for given (t◦, y◦) ∈ R
+
0 ×H. The cost functional has been already introduced in

(2.4). Summarizing, we want to solve the following infinite horizon minimization
problem

min Ĵ(u; t◦, y◦) =
∫ ∞

t◦
�
(
y[u,t◦,y◦](t), u(t)

)
dt s.t. u ∈ Uad(t◦), (P(t◦))

where we have defined the running quadratic cost as

�(ϕ, v) =
1

2

(
‖ϕ− yd‖2H + λ ‖v‖2H

)
for ϕ, v ∈ H. (3.2)

If we have determined a state feedback μ for (P(t◦)), the control u(t) = μ(y(t))
allows a closed loop representation for t ∈ [t◦,∞). Then, for a given initial
condition y0 ∈ H we set t◦ = 0, y◦ = y0 in (3.1) and insert μ to obtain the
closed-loop form

y′(t) = F(y(t), μ(y(t))) in V ′ for t ∈ (t◦,∞),

y(t◦) = y◦ in H.
(3.3)

Note that the infinite horizon problem may be very hard to solve due to the
dimensionality of the problem. On the other hand it guarantees the stabilization
of the problem which is very important for certain applications. In an NMPC
algorithm a state feedback law is computed for (P(t◦)) by solving a sequence of
finite time horizon problems.

To formulate the NMPC algorithm we introduce the finite horizon quadratic
cost functional as follows: for (t◦, y◦) ∈ R

+
0 ×H and u ∈ U

N
ad(t◦) we set

ĴN (u; t◦, y◦) =
∫ tN◦

t◦
�
(
y[u,t◦,y◦](t), u(t)

)
dt,
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where N is a natural number, tN◦ = t◦+NΔt is the final time and NΔt denotes
the length of the time horizon for the chosen time step Δt > 0. Further, we
introduce the Hilbert space U

N (t◦) = L2(t◦, tN◦ ;H) and the set of admissible
controls

U
N
ad(t◦) =

{
u ∈ U

N (t◦)
∣∣u(x, t) ∈ Uad f.a.a. (x, t) ∈ QN

}
with QN = Ω × (t◦, tN◦ ) ⊂ Q; compare (2.2). In Algorithm 1 the method is
presented.

Algorithm 1 (NMPC algorithm)

Require: time step Δt > 0, finite horizon N ∈ N, weighting parameter λ > 0.
1: for n = 0, 1, 2, . . . do
2: Measure the state y(tn) ∈ V of the system at tn = nΔt.
3: Set t◦ = tn = nΔt, y◦ = y(tn) and compute a global solution to

min ĴN (u; t◦, y◦) s.t. u ∈ U
N
ad(t◦). (PN (t◦))

We denote the obtained optimal control by ūN .
4: Define the NMPC feedback value μN (t; t◦, y◦) = ūN (t), t ∈ (t◦, t◦ + Δt]

and use this control to compute the associated state y = y[μN (·),t◦,y◦] by
solving (3.1) on [t◦, t◦ +Δt].

5: end for

We store the optimal control on the first subinterval [t◦, t◦+Δt] = [0,Δt] and the
associated optimal trajectory. Then, we initialize a new finite horizon optimal
control problem whose initial condition is given by the optimal trajectory ȳ(t) =
y[μN (·),t◦,y◦](t) at t = t◦ +Δt using the optimal control μN (t; t◦, y◦) = ūN (t) for
t ∈ (t◦, t◦+Δt] . We iterate this process by setting t◦ = t◦+Δt. Of course, the
larger the horizon, the better the approximation one can have, but we would
like to have the minimal horizon which can guarantee stability [16]. Note that
(PN (t◦)) is an open loop problem on a finite time horizon [t◦, t◦ +NΔt] which
will be studied in Section 4.

3.2. Dynamic programming principle (DPP) and asymptotic stability

For the reader’s convenience we now recall the essential theoretical results
from dynamic programming and stability analysis. Let us first introduce the so
called value function v defined as follows for an infinite horizon optimal control
problem:

v(t◦, y◦) := inf
u∈Uad(t◦)

Ĵ(u; t◦, y◦) for (t◦, y◦) ∈ R
+
0 ×H.
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Let N ∈ N be chosen. The DDP states that the value function v satisfies for
any k ∈ {1, . . . , N} with tk◦ = tk + kΔt:

v(t◦, y◦)

= inf
u∈Uk

ad(t◦)

{∫ tk◦

t◦
�
(
y[u,t◦,y◦](t), u(t)

)
dt+ v

(
t◦ + kΔt, y[u,t◦,y◦](t◦ + kΔt)

)}

which holds under very general conditions on the data; see, e.g., [7] for more
details. The value function for the finite horizon problem (PN (t◦)) is of the
following form:

vN (t◦, y◦) = inf
u∈UN

ad(t◦)
ĴN (u; t◦, y◦) for (t◦, y◦) ∈ R

+
0 ×H.

The value function vN satisfies the DPP for the finite horizon problem for t◦ +
kΔt, 0 < k < N :

vN (t◦, y◦)

= inf
u∈Uk

ad(t◦)

{∫ t◦+kΔt

t◦
�
(
y[u,t◦,y◦](t), u(t)

)
dt+ vN−k

(
y[u,t◦,y◦](t◦ + kΔt)

)}
.

Nonlinear stability properties can be expressed by comparison functions which
we recall here for the readers convenience [15, Definition 2.13].

Definition 3.1. We define the following classes of comparison functions:

K =
{
β : R+

0 → R
+
0

∣∣β is continuous, strictly increasing and β(0) = 0
}
,

K∞ =
{
β : R+

0 → R
+
0

∣∣β ∈ K, β is unbounded
}
,

L =
{
β : R+

0 → R
+
0

∣∣β is continuous, strictly decreasing, lim
t→∞β(t) = 0

}
,

KL =
{
β : R+

0 × R
+
0 → R

+
0

∣∣β is continuous, β(· , t) ∈ K, β(r, ·) ∈ L}.
Utilizing a comparison function β ∈ KL we introduce the concept of asymp-

totic stability; see, e.g. [15, Definition 2.14].

Definition 3.2. Let y[μ(·),t◦,y◦] be the solution to (3.3) and y∗ ∈ H an equilib-
rium for (3.3), i.e., we have F(y∗, μ(y∗)) = 0. Then, y∗ is said to be locally
asymptotically stable if there exist a constant η > 0 and a function β ∈ KL
such that the estimate

‖y[μ(·),t◦,y◦](t)− y∗‖H ≤ β
(‖y◦ − y∗‖H , t)

holds for all y◦ ∈ H satisfying ‖y◦ − y∗‖H < η and all t ≥ t◦.

Let us recall the main result about asymptotic stability via DPP; see [16].
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Proposition 3.3. Let N ∈ N be chosen and the feedback mapping μN be com-
puted by Algorithm 1. Assume that there exists an αN ∈ (0, 1] such that for all
(t◦, y◦) ∈ R

+
0 ×H the relaxed DPP

vN (t◦, y◦) ≥ vN
(
t◦ +Δt, y[μN (·),t◦,y◦](t◦ +Δt)

)
+ αN �

(
y◦, μN (y◦))

)
(3.4)

holds. Then we have for all (t◦, y◦) ∈ R
+
0 ×H:

αNv(t◦, y◦) ≤ αN Ĵ(μN (y[μN (·),t◦,y◦]); t◦, y◦) ≤ vN (t◦, y◦) ≤ v(t◦, y◦), (3.5)

where y[μN (·),t◦,y◦] solves the closed-loop dynamics (3.3) with μ = μN . If, in
addition, there exists an equilibrium y∗ ∈ H and α1, α2 ∈ K∞ satisfying

�∗(y◦) = min
u∈Uad

�(y◦, u) ≥ α1

(‖y◦ − y∗‖H
)
, (3.6a)

α2

(‖y◦ − y∗‖H
) ≥ vN (t◦, y◦) (3.6b)

hold for all (t◦, y◦) ∈ R
+
0 ×H, then y∗ is a globally asymptotically stable equi-

librium for (3.3) with the feedback map μ = μN and value function vN .

Remark 3.4. 1) Our running cost � defined in (3.2) satisfies condition (3.6a)
for the choice yd = y∗. Further, (3.6b) follows from the finite horizon
quadratic cost functional ĴN , the definition of the value function vN and
our a-priori analysis presented in Lemma 3.6 below. Therefore, we only
have to check the relaxed DPP (3.4).

2) It is proved in [16] that lim
N→∞

αN = 1. Hence, we would like to find αN

close to one to have the best approximation of v in terms of vN . On the
other hand, a large N implies that the numerical solution of (PN (t◦)) is
much more involved. We will discuss the numerical computation of αN

next.
3) By (3.5) we obtain the suboptimality estimate

Ĵ(μN
(
y[μN (·),t◦,y◦]); t◦, y◦

) ≤ vN (t◦, y◦)
αN

≤ v(t◦, y◦)
αN

;

compare [15, Section 4.3]. ♦
In order to estimate αN in the relaxed DPP we require the exponential control-
lability property for the system.

Definition 3.5. System (3.1) is called exponentially controllable with respect
to the running cost � if for each (t◦, y◦) ∈ R

+
0 ×H there exist two real constants

C > 0, σ ∈ [0, 1) and an admissible control u ∈ Uad(t◦) such that:

�(y[u,t◦,y◦](t), u(t)) ≤ Cσt−t◦�∗(y◦) f.a.a. t ≥ t◦. (3.7)

We present an a-priori estimate for the uncontrolled solution to (3.1), i.e.,
the solution for u = 0. For a proof we refer to the Appendix A. Recall that
V is continuously (even compactly) embedded into H. Due to the Poincaré
inequality [11] there exists a constant CV > 0 such that

‖ϕ‖H ≤ CV ‖ϕ‖V for all ϕ ∈ V. (3.8)

8



Lemma 3.6. Let (t◦, y◦) ∈ R
+
0 ×H and u = −Ky ∈ Uad(t◦) with an appropriate

real constant K > 0. Then, the solution y = y[u,t◦,y◦] to (3.1) satisfies the a-
priori estimate

‖y(t)‖H ≤ e−γ(K)(t−t◦) ‖y◦‖H f.a.a. t ≥ t◦ (3.9)

with γ(K) = γ(K; θ, ρ) = K + θ/CV − ρ.

Remark 3.7. 1) Let K = 0 hold. Then, for θ > ρCV we have γ > 0. Then,
(3.9) implies that ‖y(t)‖H < ‖y◦‖H for any t > t◦. Moreover, the origin
y◦ = 0 is unstable for γ < 0; see[15, Example 6.27].

2) If K > ρ− θ/CV holds, ‖y(t)‖H tends to zero for t → ∞. ♦

Let us choose yd = 0. Suppose that we have a particular class of state
feedback controls of the form u(x, t) = −Ky(x, t) with a positive constant K;
see [6]. This assumption helps us to derive the exponential controllability in
terms of the running cost � and to compute a minimal finite time prediction
horizon NΔt ensuring asymptotic stability. Combining (3.9) with the desired
exponential controllability (3.7) and using yd = 0 we obtain for all t ≥ t◦ [6]:

�(y(t), u(t)) =
1

2

(‖y(t)‖2H + λ ‖u(t)‖2H
)
=

1

2
(1 + λK2) ‖y(t)‖2H

≤ 1

2
C(K)e−2γ(K)(t−t◦) ‖y◦‖2H = C(K)σ(K)t−t◦ �∗(y◦)

(3.10)

f.a.a. t ≥ t◦ and for every (t◦, y◦) ∈ R
+
0 ×H, where

C(K) = (1 + λK2), σ(K) = e−2γ(K). (3.11)

In the following theorem we provide an explicit formula for the scalar αN in
(3.4). A complete discussion is given in [16].

Theorem 3.8. Assume that the system (3.1) and � statisfy the controllability
condition (3.7). Let the finite prediction horizon NΔt be given with N ∈ N and
Δt > 0. Then the parameter αN depends on K and is given by:

αN (K) = 1−
(
ηN (K)− 1

)∏N
i=2

(
ηi(K)− 1

)∏N
i=2 ηi(K)−∏N

i=2

(
ηi(K)− 1

) (3.12)

where ηi(K) = C(1 − σi)/(1 − σ) and the constants C = C(K), σ = σ(K) are
given by (3.11).

Remark 3.9. 1) Theorem 3.8 suggests how we can compute a minimal hori-
zon N which ensures asympotic stability; see [5]. Due to (3.11) we fix a
small finite horizon N ∈ N compute a (global) solution K̄ to

maxαN (K) s.t. γ(K) ≥ ε (3.13)

with 0 < ε � 1 and ηi(K) from Theorem 3.8. If the optimal value αN (K̄)
is greater than zero, the finite horizon guarantees asymptotic stability. If
αN (K̄) < 0 holds, we enlarge N and solve (3.13) again.

9



K y◦a < 0 y◦a ≥ 0

y◦b = 0 no constraints not considered

y◦b < 0 K ≤ ub/|y◦b| impossible

y◦b > 0 K ≤ min
{|ua|/y◦b, ub/|y◦a|

}
K ≤ |ua|/y◦b

Table 3.1: Constraints for the feedback factor K in u(x, t) = −Ky(x, t) considering the
bilateral control constraints (3.14) and the initial condition (3.15).

2) Since we suppose that u ∈ U
N
ad(t◦), we have to guarantee the bilateral

control constraints

ua ≤ −Ky(x, t) ≤ ub f.a.a. (x, t) ∈ QN (3.14)

with ua ≤ 0 ≤ ub. This leads to additional constraints for K in (3.13).
Since we determine K in such a way that γ(K) > 0 is satisfied, we derive
from (3.9) that

‖y(t)‖H ≤ ‖y◦‖H f.a.a. t ≥ t◦.

Let us suppose that we have y◦ = 0 and ‖y(t)‖C(Ω) ≤ ‖y◦‖C(Ω) f.a.a.
t ≥ t◦. Then, we define

y◦a = min
x∈Ω

y◦(x), y◦b = max
x∈Ω

y◦(x). (3.15)

Then, K has to satisfy γ(K) ≥ ε and the restrictions shown in Table 3.1.
Summarizing, K has always an upper bound due to the constraints ua, ub

and a lower bound due to the stabilization related to γ(K) > 0. ♦

4. The finite horizon problem (PN(t◦))

In this section we discuss (PN (t◦)), which has to be solved at each level of
Algorithm 1.

4.1. The open loop problem

Recall that we have introduced the final time tN◦ = t◦+NΔt and the control
space U

N (t◦) = L2(t◦, tN◦ ;H). The space Y
N (t◦) = W (t◦, tN◦ ) is given by

W (t◦, tN◦ ) =
{
ϕ ∈ L2(t◦, tN◦ ;V )

∣∣ϕt ∈ L2(t◦, tN◦ ;V ′)
}
,

which is a Hilbert space endowed with the common inner product [10, pp. 472-
479]. We define the Hilbert space X

N (t◦) = Y
N (t◦)×U

N (t◦) endowed with the
standard product topology. Moreover, we introduce the Hilbert space ZN (t◦) =
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Z
N
1 (t◦)×H with Z

N
1 (t◦) = L2(t◦, tN◦ ;V ) and the nonlinear operator e = (e1, e2) :

X
N (t◦) → Z

N (t◦)′ by

〈e1(x), ϕ〉ZN
1 (t◦)′,ZN

1 (t◦) =

∫ tN◦

t◦
〈yt(t), ϕ(t)〉V ′,V dt

+

∫ tN◦

t◦

∫
Ω

θyx(t)ϕ(x) +
(
yx(t) + ρ

(
y(t)3 − y(t)

)− u(t)
)
ϕ(t) dxdt,

〈e2(x), φ〉H = 〈y(t◦)− y◦, φ〉H
for x = (y, u) ∈ X

N (t◦), (ϕ, φ) ∈ Z
N (t◦), where we identify the dual ZN (t◦)′ of

Z
N (t◦) with L2(t◦, tN◦ ;V ′) ×H and 〈· , ·〉ZN

1 (t◦)′,ZN
1 (t◦) denotes the dual pairing

between Z
N
1 (t◦)′ and Z

N
1 (t◦). Then, for given u ∈ U

N (t◦) the weak formulation
for (2.3) can be expressed as the operator equation e(x) = 0 in Z

N (t◦)′. Fur-
ther, we can write (PN (t◦)) as a constrained infinite dimensional minimization
problem

min J(x) =

∫ tN◦

t◦
�(y(t), u(t)) dt s.t. x ∈ F

N
ad(t◦) (4.1)

with the feasible set

F
N
ad(t◦) =

{
x = (y, u) ∈ X

N (t◦)
∣∣ e(x) = 0 in Z

N (t◦)′ and u ∈ U
N
ad(t◦)

}
.

For given fixed control u ∈ U
N
ad(t◦) we consider the state equation e(y, u) = 0 ∈

Z
N (t◦)′, i.e., y satisfies

d

dt
〈y(t), ϕ〉H +

∫
Ω

θyx(t)ϕ
′ +

(
yx(t) + ρ(y(t)3 − y(t))

)
ϕ dx

=

∫
Ω

u(t)ϕ dx f.a.a. t ∈ (t◦, tN◦ ],

〈y(t◦), ϕ〉H = 〈y◦, ϕ〉H

(4.2)

for all ϕ ∈ V . The following result is proved in [29, Theorem 5.5].

Proposition 4.1. For given (t◦, y◦) ∈ R
+
0 ×H and u ∈ U

N
ad(t◦) there exists a

unique weak solution y ∈ Y
N (t◦) to (4.2) for every (θ, ρ) ∈ Dad. If, in addition,

y◦ is essentially bounded in Ω, i.e., y◦ ∈ L∞(Ω) holds, we have y ∈ L∞(QN )
satisfying

‖y‖
YN (t◦) + ‖y‖L∞(QN ) ≤ C

(‖u‖
UN (t◦) + ‖y◦‖L∞(Ω)

)
(4.3)

for a C > 0, which is independent of u and y◦.

Utilizing (4.3) it can be shown that (4.1) possesses at least one (local) optimal
solution which we denote by x̄N = (ȳN , ūN ) ∈ F

N
ad(t◦); see [29, Chapter 5]. For

the numerical computation of x̄N we turn to first-order necessary optimality
conditions for (4.1). To ensure the existence of a unique Lagrange multiplier
we investigate the surjectivity of the linearization e′(x̄N ) : XN (t◦) → Z

N (t◦)′ of

11



the operator e at a given point x̄N = (ȳN , ūN ) ∈ X
N (t◦). Note that the Fréchet

derivative e′(x̄N ) = (e′1(x̄
N ), e′2(x̄

N )) of e at x̄N is given by

〈e′1(x̄N )x, ϕ〉
ZN
1 (t◦)′,ZN

1 (t◦) =

∫ tN◦

t◦
〈yt(t), ϕ(t)〉V ′,V dt

+

∫ tN◦

t◦

∫
Ω

θyx(t)ϕ(x) +
(
yx(t) + ρ

(
3ȳN (t)2 − 1

)
y(t)− u(t)

)
ϕ(t) dxdt,

〈e′2(x̄N )x, φ〉H = 〈y(t◦), φ〉H
for x = (y, u) ∈ X

N (t◦), (ϕ, φ) ∈ Z
N (t◦). Now, the operator e′(x̄N ) is surjective

if and only if for an arbitrary F = (F1, F2) ∈ Z
N (t◦)′ there exists a pair x =

(y, u) ∈ X
N (t◦) satisfying e′(x̄N ) = F in Z

N (t◦)′ which is equivalent with the
fact that there exist a u ∈ U

N (t◦) and a y ∈ Y
N (t◦) solving the linear parabolic

problem

yt − θyxx + yx + ρ(3ȳ2 − 1)y = F1 in Z
N
1 (t◦)′, y(t◦) = F2 in H. (4.4)

Utilizing standard arguments [10] it follows that there exists for any u ∈ U
N (t◦)

a unique y ∈ Y
N (t◦) solving (4.4). Thus, e′(x̄N ) is a surjective operator and

the local solution x̄N to (4.1) can be characterized by first-order optimality
conditions. We introduce the Lagrangian by

L(x, p, p◦) = J(x) + 〈e(x), (p, p◦)〉ZN (t◦)′,ZN (t◦)

for x ∈ X
N (t◦) and (p, p◦) ∈ Z

N (t◦). Then, there exists a unique associated
Lagrange multiplier pair (p̄N , p̄◦) to (4.1) satisfying the optimality system

∇yL(x̄
N , p̄N , p̄N◦ )y = 0 ∀y ∈ Y

N (t◦) (adjoint equation)

∇uL(x̄
N , p̄N , p̄N◦ )(u− ūN ) ≥ 0 ∀u ∈ U

N
ad(t◦) (variational inequality),

〈e(x̄N ), (p, p◦)〉ZN (t◦)′,ZN (t◦) = 0 ∀(p̄, p̄0) ∈ Z
N (t◦) (state equation).

It follows from variational arguments that the strong formulation for the adjoint
equation is of the form

−p̄Nt − θp̄Nxx − p̄Nx − ρ
(
1− 3(ȳN )2

)
p̄N = yd − ȳN in QN ,

p̄N (0, ·) = p̄N (1, ·) = 0 in (t◦, tN◦ ),

p̄N (tN◦ ) = 0 in Ω.

(4.5)

Moreover, we have p̄N◦ = p̄N (t◦). The variational inequality base the form∫ tN◦

t◦

∫
Ω

(λūN − p̄N )(u− ūN ) dxdt ≥ 0 for all u ∈ U
N
ad(t◦). (4.6)

Using the techniques as in [30, Proposition 2.12] one can prove that second-
order sufficient optimality conditions can be ensured provided the residuum
‖ȳN − yd‖L2(t◦,tN◦ ;H) is sufficiently small.
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4.2. POD reduced order model for open-loop problem

To solve (4.1) we apply a reduced-order discretization based on proper or-
thogonal decomposition (POD); see [17]. In this subsection we briefly introduce
the POD method, present an a-priori error estimate for the POD solution to the
state equation e(x) = 0 ∈ Z

N (t◦)′ and formulate the POD Galerkin approach
for (4.1).

4.2.1. The POD method for dynamical systems

By X we denote either the function space H or V . Then, for ℘ ∈ N let the
so-called snapshots or trajectories yk(t) ∈ X be given f.a.a. t ∈ [t◦, tN◦ ] and for
1 ≤ k ≤ ℘. At least one of the trajectories yk is assumed to be nonzero. Then
we introduce the linear subspace

V = span
{
yk(t) | t ∈ [t◦, tN◦ ] a.e. and 1 ≤ k ≤ ℘

}
⊂ X (4.7)

with dimension d ≥ 1. We call the set V snapshot subspace. The method of
POD consists in choosing a complete orthonormal basis in X such that for every
l ≤ d the mean square error between yk(t) and their corresponding l-th partial
Fourier sum is minimized on average:⎧⎪⎪⎨⎪⎪⎩

min

℘∑
k=1

∫ tN◦

t◦

∥∥∥yk(t)− l∑
i=1

〈yk(t), ψi〉X ψi

∥∥∥2
X
dt

s.t. {ψi}li=1 ⊂ X and 〈ψi, ψj〉X = δij , 1 ≤ i, j ≤ l,

(Pl)

where the symbol δij denotes the Kronecker symbol satisfying δii = 1 and δij = 0
for i = j. An optimal solution {ψ̄i}li=1 to (Pl) is called a POD basis of rank l.
The solution to (Pl) is given by the next theorem. For its proof we refer the
reader to [17, Theorem 2.13].

Theorem 4.2. Let X be a separable real Hilbert space and yk1 , . . . , y
k
n ∈ X be

given snapshots for 1 ≤ k ≤ ℘. Define the linear operator R : X → X as
follows:

Rψ =

℘∑
k=1

∫ tN◦

t◦
〈ψ, yk(t)〉X yk(t) dt for ψ ∈ X. (4.8)

Then, R is a compact, nonnegative and symmetric operator. Suppose that
{λ̄i}i∈N and {ψ̄i}i∈N denote the nonnegative eigenvalues and associated or-
thonormal eigenfunctions of R satisfying

Rψ̄i = λ̄iψ̄i, λ̄1 ≥ . . . ≥ λ̄d > λ̄d+1 = . . . = 0, λ̄i → 0 as i → ∞. (4.9)

Then, for every l ≤ d the first l eigenfunctions {ψ̄i}li=1 solve (Pl). Moreover,
the value of the cost evaluated at the optimal solution {ψ̄i}li=1 satisfies

E(l) =
℘∑

k=1

∫ tN◦

t◦

∥∥∥yk(t)− l∑
i=1

〈yk(t), ψ̄i〉X ψ̄i

∥∥∥2
X
dt =

d∑
i=l+1

λ̄i. (4.10)
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Remark 4.3. In real computations, we do not have the whole trajectories yk(t)
at hand f.a.a. t ∈ [t◦, tN◦ ] and for 1 ≤ k ≤ ℘. Moreover, the space X has to be
discretized as well. In this case, a discrete version of the POD method should
be utilized; see, e.g., [17]. ♦

4.2.2. The Galerkin POD scheme for the state equation

Suppose that (t◦, y◦) ∈ R
+
0 ×H and tN◦ = t◦ +NΔt with prediction horizon

NΔt > 0. For given fixed control u ∈ U
N
ad(t◦) we consider the state equation

e(y, u) = 0 ∈ Z
N (t◦)′, i.e., y satisfies (4.2). Let us turn to a POD discretization

of (4.2). To keep the notation simple we apply only a spatial discretization with
POD basis functions, but no time integration by, e.g., the implicit Euler method.
In this section we distinguish two choices for X: X = H and X = V . We choose
the snapshots y1 = y and y2 = yt, i.e., we set ℘ = 2. By Proposition 4.1 the
snapshots yk, k = 1, . . . , ℘, belong to L2(t◦, tN◦ ;V ). According to (4.9) let us
introduce the following notations:

RV ψ =

℘∑
k=1

∫ tN◦

t◦
〈ψ, yk(t)〉V yk(t) dt for ψ ∈ V,

RHψ =

℘∑
k=1

∫ tN◦

t◦
〈ψ, yk(t)〉H yk(t) dt for ψ ∈ H.

To distinguish the two choices for the Hilbert spaceX we denote by the sequence
{(λV

i , ψ
V
i )}i∈N ⊂ R

+
0 ×V the eigenvalue decomposition for X = V , i.e., we have

RV ψ
V
i = λV

i ψ
V
i for all i ∈ N.

Furthermore, let {(λH
i , ψH

i )}i∈N ⊂ R
+
0 ×H in satisfy

RHψH
i = λH

i ψH
i for all i ∈ N.

Then, d = dimRV (V ) = dimRH(H) ≤ ∞; see [27]. The next result – also
taken from [27] – ensures that the POD basis {ψH

i }li=1 of rank l build a subset
of the test space V .

Lemma 4.4. Suppose that the snapshots {yk}℘k=1 belong to L2(t◦, tN◦ ;V ). Then,
we have ψH

i ∈ V for i = 1, . . . , d.

Let us define the two POD subspaces

V l = span
{
ψV
1 , . . . , ψV

l

} ⊂ V, H l = span
{
ψH
1 , . . . , ψH

l

} ⊂ V ⊂ H,

where H l ⊂ V follows from Lemma 4.4. Moreover, we introduce the orthogonal
projection operators P l

H : V → H l ⊂ V and P l
V : V → V l ⊂ V as follows:

vl = P l
Hϕ for any ϕ ∈ V iff vl solves min

wl∈Hl
‖ϕ− wl‖V ,

vl = P l
V ϕ for any ϕ ∈ V iff vl solves min

wl∈V l
‖ϕ− wl‖V .

(4.11)
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It follows from the first-order optimality conditions for (4.11) that vl = P l
Hϕ

satisfies
〈vl, ψH

i 〉V = 〈ϕ, ψH
i 〉V , 1 ≤ i ≤ l. (4.12)

Writing vl ∈ H l in the form vl =
∑l

j=1 v
l
jψ

H
j we derive from (4.12) that the

vector vl = (vl1, . . . , v
l
l)

� ∈ R
l satisfies the linear system

l∑
j=1

〈ψH
j , ψH

i 〉
V
vlj = 〈ϕ, ψH

i 〉V , 1 ≤ i ≤ l. (4.13)

Summarizing, vl = P l
Hϕ ∈ H l is given by the expansion

∑l
j=1 v

l
jψ

H
j , where the

coefficients {vlj}lj=1 satisfy the linear system (4.13). For the operator P l
V : V →

V l we have the explicit representation

P l
V ϕ =

l∑
i=1

〈ϕ, ψi〉V ψi for ϕ ∈ V. (4.14)

We conclude from (4.10) that

℘∑
k=1

∫ tN◦

t◦
‖yk(t)− P l

V y
k(t)‖2V dt =

d∑
i=l+1

λV
i . (4.15)

Let us define the linear space X l ⊂ V as

X l = span
{
ψ1, . . . , ψl

}
,

where ψi = ψV
i in case of X = V and ψi = ψH

i in case of X = H. Hence,
X l = V l and X l = H l for X = V and X = H, respectively. Now, a POD
Galerkin scheme for (4.2) is given as follows: find yl(t) ∈ X l f.a.a. t ∈ [t◦, tN◦ ]
satisfying

d

dt
〈yl(t), ψ〉H +

∫
Ω

θylx(t)ψ
′ +

(
ylx(t) + ρ(yl(t)3 − yl(t))

)
ψ dx

=

∫
Ω

u(t)ψ dx f.a.a. t ∈ (t◦, tN◦ ],

〈yl(t◦), ψ〉H = 〈y◦, ψ〉H

(4.16)

for all ψ ∈ X l. It follows by similar arguments as in the proof of Proposition 4.1
that there exists a unique solution to (4.16). If y◦ ∈ L∞(QN ) holds, yl satisfies
the a-priori estimate

‖yl‖
YN (t◦) + ‖yl‖L∞(QN ) ≤ C

(‖y◦‖L∞(Ω) + ‖u‖
UN (t◦)

)
, (4.17)

where the constant C > 0 is independent of l and y◦. Let P l denote P l
V in case

of X = V and P l
H in case of X = H. The next result is proved in Appendix B.
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Theorem 4.5. Suppose that (t◦, y◦) ∈ R
+
0 × L∞(Ω), tN◦ = t◦ + NΔ with pre-

diction horizon NΔt > 0. Further, let u ∈ U
N
ad(t◦) be a fixed control input. By

y and yl we denote the unique solution to (4.2) and (4.16), respectively, where
the POD basis of rank l is computed by choosing ℘ = 2, y1 = y and y2 = yt.
Then,

‖y − yl‖2
YN (t◦) ≤ C ·

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
‖yl(t◦)− P l

V y◦‖
2

H +

d∑
i=l+1

λV
i , X = V,

‖yl(t◦)− P l
Hy◦‖2H +

d∑
i=l+1

λH
i ‖ψH

i − P l
HψH

i ‖2V , X = H

for a C > 0 which is independent of l. In particular, liml→∞ ‖y−yl‖YN (t◦) = 0.

4.2.3. The Galerkin POD scheme for the optimality system

Suppose that we have computed a POD basis {ψi}li=1 of rank l by choosing
X = H or X = V . Suppose that for u ∈ U

N
ad(t◦) the function yl is the POD

Galerkin solution to (4.16). Then the POD Galerkin scheme for the adjoint
equation (4.5) is given as follows: find pl ∈ X l = span {ψ1, . . . , ψl} f.a.a. t ∈
[t◦, tN◦ ] satisfying

− d

dt
〈pl(t), ψ〉H +

∫
Ω

θplx(t)ψ
′ − (

plx(t) + ρ(1− 3yl(t)2)
)
pl(t)ψ dx

=

∫
Ω

(
yd − yl(t)

)
ψ dx = 0 f.a.a. t ∈ [t◦, tN◦ ),

〈pl(tN◦ ), ψ〉H = 0

(4.18)

for all ψ ∈ X l. A-priori error estimates for the POD solution pl to (4.18) can
be derived by variational arguments; compare [26] and [17, Theorem 4.15]. If pl

is computed, we can derive a POD approximation for the variational inequality
(4.6): ∫ tN◦

t◦

∫
Ω

(λu− pl)(ũ− u) dxdt ≥ 0 for all ũ ∈ U
N
ad(t◦). (4.19)

Summarizing, a POD suboptimal solution x̄N,l = (ȳN,l, ūN,l) ∈ X
N
ad(t◦) to

(PN (t◦)) satisfies together with the associated Lagrange multiplier p̄N,l ∈ Y
N
1 (t◦)

the coupled system (4.16), (4.18) and (4.19). The POD approximation of the
finite horizon quadratic cost functional (4.1) reads

ĴN,l(u; t◦, y◦) =
∫ tN◦

t◦
�
(
yl[u,t◦,y◦](t), u(t)

)
dt,

where yl[u,t◦,y◦] is the solution to (4.16). In Algorithm 2 we set up the POD dis-
cretization for Algorithm 1. Due to our POD reduced-order approach an optimal
solution to (PN,l(t◦)) can be computed much faster than the one to (PN (t◦)).
In the next subsection we address the question, how the suboptimality of the
control influences the asymptotic stability.
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Algorithm 2 (POD-NMPC algorithm)

Require: time step Δt > 0, finite control horizon N ∈ N, weighting parameter
λ > 0, POD tolerance τpod > 0.

1: Compute a POD basis {ψi}li=1 satisfying (4.10) with E(l) ≤ τpod.
2: for n = 0, 1, 2, . . . do
3: Measure the state y(tn) ∈ V of the system at tn = nΔt.
4: Set t◦ = tn = nΔt, y◦ = y(tn) and compute a global solution to

min ĴN,l(ul; t◦, yl◦) s.t. ul ∈ U
N
ad(t◦). (PN,l(t◦))

We denote the optimal control by ūN,l and the optimal state by ȳN,l.
5: Define the NMPC feedback value μN,l(t; t◦, y◦) = ūN,l(t) and use this

control to compute the associated state y = y[μN,l(·),t◦,y◦] by solving (3.1)
on [t◦, t◦ +Δt].

6: end for

4.3. Asymptotic stability for the POD-MPC algorithm

In this subsection we present the main results of this paper. We give sufficient
conditions that Algorithm 2 gives a stabilizing feedback control for the reduced-
order model. Due to Definition 3.5 we have to find an admissible control u ∈
U

N (t◦) for any N ∈ N so that the solution to (3.1) satisfies (3.7).
In (3.2) we have introduced our running quadratic cost. As in Section 3.2 we

choose yd = y∗ = 0. Suppose that yl is the reduced-order solution to (4.16) for
the control ul = −Kyl. If K satisfies appropriate bounds (see Remark 3.9-2)),
we can ensure that ul ∈ U

N
ad(t◦) holds. Analogously to (3.9) ands (3.10) we find

‖yl(t)‖2H ≤ σ(K)t−t◦ ‖y◦‖2H f.a.a. t ≥ t◦ (4.20)

and

�
(
yl(t), ul(t)

) ≤ C(K)

2
‖yl(t)‖2H . (4.21)

with the same constants C(K) and σ(K) as in (3.11). Let y[ul,t◦,y◦] be the (full-

order) solution to (4.16) for the same admissible control law u = ul. Utilizing
the Cauchy-Schwarz inequality we get

�
(
y[ul,t◦,y◦](t), u

l(t)
) ≤ 1

2
‖y[ul,t◦,y◦](t)− yl(t)‖2

H
+ �

(
yl(t), ul(t)

)
+ ‖y[ul,t◦,y◦](t)− yl(t)‖

H
‖yl(t)‖H .

(4.22)

If y◦ = 0 holds, we infer that ‖yl(t)‖H is positive for all t ∈ [t◦, tN◦ ]. Then,
we conclude from (4.21), (4.22) and (4.20) that the exponential controllability
condition (3.7) holds for the admissible control law ul = −Kyl:

�
(
y[ul,t◦,y◦](t), u

l(t)
) ≤ 1

2

(
Err(t; l)2 + C(K) + 2Err(t; l)

)
‖yl(t)‖2H

≤ 1

2
Cl(K)σ(K)t−t◦ ‖y◦‖2H = Cl(K)σ(K)t−t◦ �∗(y◦)
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with the error term

Err(t; l) =
‖y[ul,t◦,y◦](t)− yl(t)‖

H

‖yl(t)‖H
(4.23)

and the constant

Cl(K) = C(K) + 2Err(t; l) + Err(t; l)2 ≥ C(K). (4.24)

Thus, the constant Cl(K) takes into account the approximation made by the
POD reduced-order model. In the following theorem we provide an explicit
formula for the scalar αN,l which appears in the relaxed DPP. The notation
αN,l intends to stress that we are working with POD surrogate model. We
summarize our result in the following theorem.

Theorem 4.6. Let the constant Cl be given by (4.24) and NΔt denote the
finite prediction horizon with N ∈ N and Δt > 0. Then the parameter αN,l is
given by the explicit formula:

αN,l(K) = 1−
(
ηlN (K)− 1

)∏N
i=2

(
ηli(K)− 1

)∏N
i=2 η

l
i(K)−∏N

i=2

(
ηli(K)− 1

) (4.25)

with ηli(K) = Cl(K)(1− σi(K))/(1− σ(K)) and σ(K) as in (3.11).

Remark 4.7. 1) If Err(t; l) is small, Theorem 4.6 informs we can compute
the constant αN,l ≈ αN basically in the same way of the full-model,
replacing the constants C, η with Cl, ηl, respectively, taking into ac-
count the POD reduced-order modelling. Then, (3.5) implies that a
suboptimality estimate holds approximately; see Remark 3.4. To obtain
the minimal horizon which ensures the asymptotic stability of the POD-
NMPC scheme we maximize (4.25) according to the constraints αN,l > 0,
K > max(0, ρ− θ/CV ) and to the constraints in Table 3.1.

2) Due to (4.20) and ul = −Kyl the norm ‖ul(t)‖H is bounded independent
of l. By Theorem 4.5 and (B.12) we have liml→∞ ‖y[ul,t◦,y◦](t)−yl(t)‖H =

0 holds for all t ∈ [t◦, tN◦ ]. Thus, if we choose l sufficiently large we can
ensure that Err(t; l) is small enough provided the denominator satisfies
‖yl(t)‖H ≥ C∗ with a positive constant C∗ which is independent of l.

3) In Algorithm 2 we compute the control law ūN,l instead of −Kyl. There-
fore, one can replace Err(t; l) by

Ẽrr(t; l) =
‖y[ūN,l(·),t◦,y◦](t)− yN,l(t)‖

H

‖yN,l(t)‖H
that can be evaluated easily, since yN,l(t) and y[ūN,l,t◦,y◦] are known from
Algorithm 2, steps 4 and 5, respectively. It turns out that for our test
examples both error terms lead to the same choices for the prediction
horizon N ∈ N, for the positive feedback factor K and for the relaxation
parameter αN,l ∈ (0, 1]. ♦
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5. Numerical tests

This section presents numerical tests in order to show the performance of
our proposed algorithm. All the numerical simulations reported in this paper
have been made on a MacBook Pro with 1 CPU Intel Core i5 2.3 Ghz and 8GB
RAM.

5.1. The finite difference approximation for the state equation

For N ∈ N we introduce an equidistant spatial grid in Ω by xi = iΔx,
i = 0, . . . ,N + 1, with the step size Δx = 1/(N + 1). At x0 = 0 and xN+1 = 1
the solution y is known due to the boundary conditions (2.1). Thus, we only
compute approximations yhi (t) for y(t, xi) with 1 ≤ i ≤ N and t ∈ [t◦, tf ]. We
define the vector yh(t) = (yh1 (t), . . . , y

h
N (t))� ∈ R

N of the unknowns. Analo-
gously, we define uh = (uh

1 , . . . , u
h
N )� ∈ R

N , where uh
i approximates u(xi, ·) for

1 ≤ i ≤ N . Utilizing a classical second-order finite difference (FD) scheme and
an implicit Euler method for the time integration we derive a discrete approxi-
mation of the parabolic problem. In Figure 5.1 the discrete solutions are plotted
for N = 99, for t ∈ [0, 2] and two different initial conditions.
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Figure 5.1: FD state y for y◦ = 0.1 sgn(x − 0.3) (left plot) and y◦ = 0.2 sinπx (right plot)
with u = 0, (θ, ρ) = (0.1, 11) and N = 99.

As we see from Figure 5.1, the uncontrolled solutions do not tend to zero for
t → ∞, indeed it stabilizes at one.

5.2. POD-NMPC experiments

In our numerical examples we choose yd ≡ 0, i.e., we force the state to be
close to zero, and λ = 0.01 in (2.4). A finite horizon open loop strategy does
not steer the trajectory to the zero-equilibrium (see Figure 5.2). Therefore, sta-
bilization is not guaranteed by the theory of asymptotic stability. Note that we
are not dealing with terminal constraints and the terminal condition of the ad-
joint equation (4.5) is zero. In our tests, the snapshots are computed taking the
uncontrolled system, e.g. u ≡ 0, in (2.1) and the correspondent adjoint equation
(4.5). Several hints for the computation of the snapshots in the context of MPC
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Figure 5.2: Open-loop solution y for y◦ = 0.1 sgn(x− 0.3), (θ, ρ) = (0.1, 11), N = 99, tf = 2
(left plot) and y◦ = 0.2 sinπx, (θ, ρ) = (0.1, 11), N = 99, tf = 2 (right plot).

are given in [14]. The nonlinear term is reduced following the Discrete Empiri-
cal Interpolation Method (DEIM) which is a method that avoid the evaluation
of the full model of the nonlinear part building new basis functions upon the
nonlinear term; compare [9] for more details. Note that, in our simulations, the
optimal prediction horizon N is always obtained from Theorem 4.6.

Run 5.1 (Unconstrained case with smooth initial data). The parameters are
presented in Table 5.1. According to the computation of αN in (3.12) related

T Δt Δx θ ρ y0(x) ua ub N K

0.5 0.01 0.01 1 11 0.2 sin(πx) −∞ ∞ 10 2.46

Table 5.1: Run 5.1: Setting for the optimal control problem, minimal stabilizing horizon N
and feedback constant K.

to the relaxed DPP, the minimal horizon that guarantes asymptotic stability is
N = 10. Even in the POD-NMPC scheme the asymptotic stability is achieved
for N = 10, provided that Err(t; l) ≤ 10−3 for all t ≥ t◦. Note that the horizon of
the surrogate model is computed by (4.25). In Figure 5.3 we show the controlled
state trajectory computed by Algorithm 1 taking N = 3 and N = 10. As we can
see, we do not get a stabilizing feedback for N = 3, whereas N = 10 leads to a
state trajectory which tends to zero for t → ∞. Note that we plot the solution
only on the time interval [0, 0.5] in order to have a zoom of the solution. Further,
in Figure 5.3 the solution related to u = −Ky is presented. As we can see, the
NMPC control stabilized to the origin very soon while the control law u = −Ky
requires a larger time horizon. This is due to the fact that MPC stabilizes in an
optimal way, in contrast to the control law u = −Ky. In Table 5.2 we present the
error in L2(t◦, T ;H)-norm considering the solution coming from the Algorithm 1
as the ’truth’ solution (in our case the finite difference solution denoted by yFD).
The examples are computed with Err(t, l) ≤ 10−3. The CPU time for the full-
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Figure 5.3: Run 5.1: NMPC state with N = 3 (left plot), with N = 10 (middle plot) and with
u = −Ky (right plot)

Ĵ time K ‖yFD − y‖L2(t◦,T ;H)

Solution with u = −Ky 0.0025 2.46 0.0145
Alg. 1 0.0015 49s
Alg. 2 (l = 13, lDEIM = 15) 0.0016 8s 0.0047
Alg. 2 (l = 3, lDEIM = 2) 0.0016 6s 0.0058

Table 5.2: Run 5.1: Evaluation of the cost functional, CPU time, suboptimal solution.

model turns out to be 49 seconds, whereas the POD-suboptimal approximation
with only three POD and two DEIM basis functions requires 6 seconds. We can
easily observe an impressive speed up factor eight. Moreover the evaluation of
the cost functional in the full model and the POD model provides very close
values. We have not considered the CPU time in the suboptimal problem since
it did not involve a real optimazion problem. As soon as we have computed K,
within an offline stage, we directly approximate the equation with the control
law u = −Ky. ♦

Run 5.2 (Constrained case with smooth initial data). In contrast to Run 5.1
we choose ua = −0.3 and ub = 0. As expected, the minimal horizon N increases
compared to Run 5.1; see Table 5.3. As one can see from Figure 5.4 the NMPC

T Δt Δx θ ρ y0(x) ua ub N K

0.5 0.01 0.01 1 11 0.2 sin(πx) −0.3 0 14 1.50

Table 5.3: Run 5.2: Setting for the optimal control problem, minimal stabilizing horizon N
and feedback constant K.

state with N = 14 tends faster to zero than the state with u = −Ky. The
solution coming from the POD model is in the middle of Figure 5.4. Note that
E(l = 3) = 0.01, E(l = 13) = 0, and Err(t; l) ≤ 10−3 for any l and t ≥ t◦. Indeed,
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Figure 5.4: Run 5.2: NMPC state with N = 14 (left plot), POD-NMPC state with N = 14
(middle plot) and state with u = −Ky (right plot)

Table 5.4 presents the evaluation of the cost functionals for the proposed algo-
rithms and the CPU time which shows that the speed up by the reduced order
approach is about 16. Note that K in Run 5.2 is smaller compared to Run 5.1

Ĵ time K ‖yFD − y‖L2(t◦,T ;H)

Solution with u = −Ky 0.0035 1.50 0.0089
Alg. 1 0.0027 65s
Alg. 2 (l = 13, lDEIM = 15) 0.0032 5s 0.0054
Alg. 2 (l = 3, lDEIM = 2) 0.0033 4s 0.0055

Table 5.4: Run 5.2: Evaluation of the cost functional, CPU times, suboptimal solution.

due to the constraint of the control space. Further, the error is presented in
Table 5.4. To study the influence of Err(t; l) we present in Figure 5.5, on the left,
how the optimal prediction horizon N changes according to different tolerance.
The blue line corresponds to the optimal prediction horizon in Run 5.1, and the
red one to Run 5.2. It turns out that, as long as Err(t; l) ≤ 10−3, we can work
exactly with the same horizon N we had in the full model in both examples. In
the middle plot of Figure 5.5 there is a zoom of the function α with different
values of Err(t; l) with respect to Run 5.2. The right plot of Figure 5.5 shows
the relative error Err(t; l) for 0 ≤ t ≤ 0.5 with l = 3. One of the big advan-
tages of feedback control is the stabilization under perturbation of the system.
The perturbation of the initial condition is a typical example which comes from
many applications in fact, often the measurements may not be correct. For a
given noise distribution δ = δ(x) we consider a perturbation the following form:

y0(x) =
(
1 + δ(x)

)
y◦(x) for x ∈ Ω.

The perturbation is applied only at every initial condition of the MPC algorithm
(see (PN (t◦)) in Algorithm 1) and it is random with respect to the spatial
variable. The study of the asympotic stability does not change: we can compute
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Figure 5.5: Run 5.2: Optimal horizon N and αN,l according to different Err(t; l) = 10−3,
Influence of the relative error t �→ Err(t; l) = 10−3 for l = 3.

the minimal prediction horizon as before. As we can see in Figure 5.6 the POD-
NMPC algorithm is able to stabilize with a noise of |δ(x)| ≤ 30%. ♦
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Figure 5.6: Run 5.2: POD-NMPC state with 30% noise (left plot); Run 5.3: NMPC state
with N = 30 (middle plot) and POD-NMPC state with N = 30, l = lDEIM = 16 (right plot).

Run 5.3 (Constrained case with smooth initial data). Now we decrease the
diffusion term and, as a consequence, the prediction horizon N increases; see
Table 5.5 and middle plot of Figure 5.6. Even if the horizon is very large,

T Δt Δx θ ρ y0(x) ua ub N K

0.5 0.01 0.01 1/
√
2 10 0.2 sin(πx) −1 0 30 5

Table 5.5: Run 5.3: Setting for the optimal control problem.

the proposed Algorithm 2 accelerates the approximation of the problem. The
decrease of θ may give some troubles with the POD-model since the domination
of the convection term causes a high-variability in the solution, then a few basis
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functions will not suffice to obtain good surrogate models (see [1, 2]). Note that,
in our example, the diffusion term is still relevant such that we can work with
only 2 POD basis functions. The CPU time in the full model is 84 seconds,
whereas with a low-rank model, such as l = 2 we obtained the solution in five
seconds and an impressive speed up factor of 16. Even with a more accurate
POD model we have a very good speed up factor of nine. The evaluation of the
cost functional is given in Table 5.6. In the right plot of Figure 5.6 the POD-

Ĵ time K ‖yFD − y‖L2(t◦,T ;H)

Suboptimal solution (u = −Ky) 0.0021 5 0.0208
Algorithm 1 0.0016 84s
Algorithm 2 (l = 16, lDEIM = 16) 0.0017 9s 0.0092
Algorithm 2 (l = 2, lDEIM = 3) 0.0018 5s 0.0093

Table 5.6: Run 5.3: Evaluation of the cost functional and CPU time.

NMPC state is plotted for l = 16 POD basis and lDEIM = 16 DEIM ansatz
functions. The error between the NMPC state and the POD-MPC state is less
than 0.01 . ♦
Run 5.4 (Constrained case with no-smooth initial data). In the last test we
focus on a different initial condition and different control constraints. The pa-
rameters are presented in Table 5.7. The minimal horizon N which ensures

T Δt Δx θ ρ y0(x) ua ub N K

0.5 0.01 0.01 1/2 5 0.1 sgn(x− 0.3) -1 1 43 9.99

Table 5.7: Run 5.4: Setting for the optimal control problem.

asymptotic stability is N = 43. Table 5.8 emphazises again the performance
of the POD-NMPC method with an acceleration 12 times faster than the full
model.

Ĵ time K ‖yFD − y‖L2(t◦,T ;H)

Solution with u = −Ky 4.7e-4 9.99 0.0060
Alg. 1 4.1e-4 50s
Alg. 2 (l = 17, lDEIM = 19) 4.4e-4 12s 0.0034
Alg. 2 (l = 3, lDEIM = 4) 4.4e-4 4s 0.0035

Table 5.8: Run 5.4: Cost functional, CPU time and suboptimal solution.

The evaluation of the cost functional gives the same order in all the simu-
lation we provide. In Figure 5.7 we present the NMPC state for N = 43 (left
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plot), the POD-NMPC state with N = 43, l = 3, lDEIM = 4 (middle plot) and
the increase of the optimal horizon N according to the perturbation Err(t; l).
The error between the NMPC state and the POD-MPC state is 0.0035 when
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