Hamburger Beiträge zur Angewandten Mathematik

A finite element method for dirichlet boundary control problems governed by parabolic PDEs

Wei Gong, Michael Hinze, and Zhaojie Zhou

Nr. 2014-21
October 2014

A FINITE ELEMENT METHOD FOR DIRICHLET BOUNDARY CONTROL PROBLEMS GOVERNED BY PARABOLIC PDES

WEI GONG ${ }^{\dagger}$, MICHAEL HINZE ${ }^{*}$, AND ZHAOJIE ZHOU ${ }^{\diamond}$

Abstract

Finite element approximations of Dirichlet boundary control problems governed by parabolic PDEs on convex polygonal domains are studied in this paper. The existence of a unique solution to optimal control problems is guaranteed based on very weak solution of the state equation and $L^{2}\left(0, T ; L^{2}(\Gamma)\right)$ as control space. For the numerical discretization of the state equation we use standard piecewise linear and continuous finite elements for the space discretization of the state, while a $\mathrm{dG}(0)$ scheme is used for time discretization. The Dirichlet boundary control is realized through a space-time L^{2}-projection. We consider both piecewise linear, continuous finite element approximation and variational discretization for the controls and derive a priori L^{2}-error bounds for controls and states. We finally present numerical examples to support our theoretical findings.

Keywords: optimal control problem, parabolic equation, finite element method, a priori error estimate, Dirichlet boundary control

Subject Classification: 49J20, 49K20, 65N15, 65N30.

1. Introduction

In this paper we study the following parabolic optimal control problem:

$$
\begin{equation*}
\min _{u \in U_{a d}} J(y, u)=\frac{1}{2}\left\|y-y_{d}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}^{2}+\frac{\alpha}{2}\|u\|_{L^{2}\left(0, T ; L^{2}(\Gamma)\right)}^{2} \tag{1.1}
\end{equation*}
$$

subject to

$$
\left\{\begin{align*}
\frac{\partial y}{\partial t}-\Delta y=f & \text { in } \Omega_{T} \tag{1.2}\\
y=u & \text { on } \Sigma \\
y(0)=y_{0} & \text { in } \Omega
\end{align*}\right.
$$

where $\Omega_{T}=\Omega \times(0, T], \Sigma=\partial \Omega \times(0, T]$ with Ω denoting an open bounded, convex polygonal domain in \mathbb{R}^{2} with boundary $\Gamma:=\partial \Omega$, and $\alpha>0, f \in L^{2}\left(0, T ; L^{2}(\Omega)\right), y_{0} \in L^{2}(\Omega), y_{d} \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$ and $T>0$ are fixed. $U_{a d}$ is the admissible control set which is assumed to be of box type

$$
\begin{equation*}
U_{a d}:=\left\{u \in L^{2}\left(0, T ; L^{2}(\Gamma)\right): u_{a} \leq u(x, t) \leq u_{b}, \text { a.e. on } \Sigma\right\} \tag{1.3}
\end{equation*}
$$

with $u_{a}<u_{b}$ denoting constants.
Dirichlet boundary control is important in many practical applications such as the active boundary control of flows. If one is, e.g., interested in blowing and suction as control on part of the boundary, controls with low regularity should be admissible, which could have jumps and satisfy pointwise bounds. In the mathematical theory one has to use the concept of very weak solutions in this situation, see 4 for a more detailed discussion of this fact.

[^0]In the present work we consider a parabolic Dirichlet boundary control problem of tracking type, which may be regarded as prototype problem to study Dirichlet boundary control for timedependent PDEs. For parabolic optimal boundary control problems of Dirichlet type, only few contributions can be found in the literature. Kunisch and Vexler in [23] considered a semi-smooth Newton method for the numerical solution of parabolic Dirichlet boundary control problems. A Robin penalization method using Robin-type boundary conditions applied to parabolic Dirichlet boundary control problems is investigated in [3]. However, to the best of the authors' knowledge no error analysis is available for the finite element approximation of this kind of problems. With the present paper we intend to fill this gap and derive a priori error estimates for parabolic Dirichlet boundary control problems. Compared to the elliptic case, parabolic Dirichlet boundary control problems are more involved in both the definition of discrete schemes and the a priori error analysis, since the regularity of the involved state variable is low.

Finite element approximations of optimal control problems are important for the numerical treatment of optimal control problems related to practical applications, see e.g. [22, Ch.4]. An overview on the numerical a priori and a posteriori analysis for elliptic control problems can be found in [22, Ch.3] and [28, respectively. To the best of the authors knowledge the first contribution to parabolic optimal control problems is given in 37. The state of the art in the numerical a priori analysis of distributed parabolic optimal control problems can be found in [30, 31]. More recent contributions with higher order in time Galerkin schemes can be found in [1, 32, 36]. For boundary control problems with parabolic equations we refer to [15. Residual-based a posteriori error estimates are presented in [26] and [27]. There is a long list of contributions to boundary control of elliptic PDEs, see e.g. [7, 10, 11, 14, 16, 21, 29, 35]. Further references can be found in [22, Ch.3].

In this paper we use the very weak solution concept for the state equation and $L^{2}\left(0, T ; L^{2}(\Gamma)\right)$ as control space to argue the existence of a unique solution to the optimal control problems (1.1)(1.2). For the numerical discretization of the optimal control problem we discretize the state using standard piecewise linear and continuous finite elements in space and dG(0) scheme in time. The Dirichlet boundary conditions are approximated based on the space-time L^{2}-projection. The control is discretized in space either by piecewise linear finite elements or implicitly through the discretization of the adjoint state, the so-called variational discretization (see [19]). For both cases we derive a priori error bounds for the state and control in the L^{2}-norm for problems posed on polygonal domains. As main result we obtain the error bound

$$
\begin{equation*}
\left\|u-U_{h k}\right\|_{L^{2}\left(L^{2}(\Gamma)\right)}+\left\|y-Y_{h k}\right\|_{L^{2}\left(L^{2}(\Omega)\right)} \leq\left(h^{\frac{1}{2}}+k^{\frac{1}{4}}\right) \tag{1.4}
\end{equation*}
$$

for the optimal solution (y, u) of 1.1 , where $Y_{h k}$ and $U_{h k}$ denote the optimal discrete state and control. We present several numerical examples which support our theoretical findings.

The rest of our paper is organized as follows. In Section 2 we present the analytical setting of the parabolic Dirichlet boundary control problem and argue the existence of a unique solution. In Section 3 we establish the fully discrete finite element approximation to the state equation and the corresponding stability results. Then we formulate the fully discrete approximation for parabolic Dirichlet boundary control problems. The a priori error analysis for the finite element approximation and the variational discretization of the optimal control problems posed on convex, polygonal or polyhedral domains is studied in Section 4. Furthermore, we present some numerical experiments in Section 5 to support our theoretical results.

2. Optimal control problem

Let $\Omega \subset \mathbb{R}^{2}$ be a polygonal convex domain. For $m \geq 0$ and $1 \leq s \leq \infty$, we adopt the standard notation $W^{m, s}(\Omega)$ for Sobolev spaces on Ω with norm $\|\cdot\|_{m, s, \Omega}$ and seminorm $|\cdot|_{m, s, \Omega}$, where $H^{m}(\Omega)=W^{m, 2}(\Omega),\|\cdot\|_{m, \Omega}=\|\cdot\|_{m, 2, \Omega}$ and $|\cdot|_{m, \Omega}=|\cdot|_{m, 2, \Omega}$ for $s=2$. Note that $H^{0}(\Omega)=$ $L^{2}(\Omega)$ and $H_{0}^{1}(\Omega)=\left\{v \in H^{1}(\Omega) ; v=0\right.$ on $\left.\partial \Omega\right\}$. We denote by $L^{r}\left(0, T ; W^{m, s}(\Omega)\right)$ the Banach space of all L^{r} integrable functions from $[0, T]$ into $W^{m, s}(\Omega)$ with norm $\|v\|_{L^{r}\left(0, T ; W^{m, s}(\Omega)\right)}=$
$\left(\int_{0}^{T}\|v\|_{m, s, \Omega}^{r} d t\right)^{\frac{1}{r}}$ for $1 \leq r<\infty$, and with the standard modification for $r=\infty$. For a Banach space Y, we use the abbreviations $L^{2}(Y)=L^{2}(0, T ; Y), H^{s}(Y)=H^{s}(0, T ; Y), s=[0, \infty)$, and $C(Y)=C([0, T] ; Y)$. We denote the L^{2}-inner products on $L^{2}(\Omega), L^{2}\left(\Omega_{T}\right)$ and $L^{2}(\Gamma)$ by (\cdot, \cdot), $(\cdot, \cdot)_{\Omega_{T}}$ and $\langle\cdot, \cdot\rangle$, respectively. In addition c and C denote generic positive constants.

Let

$$
a(y, w)=\int_{\Omega} \nabla y \cdot \nabla w \quad \forall y, w \in H^{1}(\Omega)
$$

The standard weak form for the parabolic equation 1.2 is to find $y \in L^{2}\left(H^{1}(\Omega)\right) \cap H^{1}\left(H^{-1}(\Omega)\right)$ with $\left.y\right|_{\Sigma}=u$ and $\left.y(\cdot, 0)\right|_{\Omega}=y_{0}(\cdot)$ such that

$$
\begin{equation*}
\left(\frac{\partial y}{\partial t}, v\right)+a(y, v)=(f, v) \text { a.a. } t \in(0, T], \forall v \in H_{0}^{1}(\Omega) \tag{2.1}
\end{equation*}
$$

This setting requires $u \in L^{2}\left(H^{\frac{1}{2}}(\Gamma)\right)$. Motivated by practical considerations (see e.g. the discussion in [4]) we are interested in controls $u \in U_{a d}$ defined in (1.3). For a proper treatment of the state equation in this case we in the present paper use the transposition technique introduced by Lions and Magenes (see [25]) to argue the existence of a unique solution to the state equation (1.2). The very weak form of 1.2 that we shall utilize reads: Find $y \in L^{2}\left(L^{2}(\Omega)\right)$ such that

$$
\begin{array}{r}
\int_{\Omega_{T}} y\left(-z_{t}-\Delta z\right) d x d t=-\int_{\Sigma} u \partial_{n} z d s d t+\int_{\Omega_{T}} f z d x d t+\int_{\Omega} y_{0} z(\cdot, 0) d x \\
\forall z \in L^{2}\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \cap H^{1}\left(L^{2}(\Omega)\right) \tag{2.2}
\end{array}
$$

with $z(\cdot, T)=0$ holds, where $\partial_{n} v:=\nabla v \cdot n$ with n denoting the unit outward normal to Γ. Then the existence and uniqueness of a very weak solution of 2.2 is shown in the following lemma (see, e.g, [25])

Lemma 2.1. For $y_{0} \in L^{2}(\Omega), f \in L^{2}\left(L^{2}(\Omega)\right)$ and $u \in L^{2}\left(L^{2}(\Gamma)\right)$, there exists a unique very weak solution $y \in L^{2}\left(L^{2}(\Omega)\right)$ of (2.2) satisfying

$$
\begin{equation*}
\|y\|_{L^{2}\left(L^{2}(\Omega)\right)} \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\|f\|_{L^{2}\left(L^{2}(\Omega)\right)}+\|u\|_{L^{2}\left(L^{2}(\Gamma)\right)}\right) \tag{2.3}
\end{equation*}
$$

Proof. For $y_{0} \in L^{2}(\Omega), f \in L^{2}\left(L^{2}(\Omega)\right)$ and $u \equiv 0$ it is straightforward to show that 1.2 admits a unique solution $y \in L^{2}\left(H_{0}^{1}(\Omega)\right) \cap H^{1}\left(H^{-1}(\Omega)\right)$ in the sense of 2.1, which also satisfies 2.3. To prove the lemma in the case $u \neq 0$ it is sufficient to consider the case $f \equiv 0, y_{0} \equiv 0$, where we follow the constructive approach of [10]. For each $g \in L^{2}\left(L^{2}(\Omega)\right)$ we denote by $z \in L^{2}\left(H^{2}(\Omega) \cap\right.$ $\left.H_{0}^{1}(\Omega)\right) \cap H^{1}\left(L^{2}(\Omega)\right)$ the solution of

$$
\left\{\begin{align*}
-\frac{\partial z}{\partial t}-\Delta z=g & \text { in } \Omega_{T} \tag{2.4}\\
z=0 & \text { on } \Sigma \\
z(T)=0 & \text { in } \Omega
\end{align*}\right.
$$

Then we have $\partial_{n} z \in H^{\frac{1}{4}}\left(L^{2}(\Gamma)\right)$ according to [25]. Moreover, from the fact that $z \in L^{2}\left(H^{2}(\Omega)\right)$ and $z=0$ on Σ we obtain that $\partial_{n} z \in L^{2}\left(H^{\frac{1}{2}}(\Gamma)\right)$ according to Lemma A. 2 in 6]. We denote by $T: L^{2}\left(L^{2}(\Omega)\right) \rightarrow L^{2}\left(L^{2}(\Gamma)\right)$ the continuous linear operator which is defined by $T g:=-\left.\partial_{n} z\right|_{\Sigma}$ and denote its adjoint by T^{*}. Then with $y=T^{*} u$ we have

$$
\int_{\Omega_{T}} y g d x d t=\int_{\Omega_{T}} y\left(-z_{t}-\Delta z\right) d x d t=\int_{\Omega_{T}} T^{*} u g d x d t=-\int_{\Sigma} u \partial_{n} z d s d t
$$

which verifies that y satisfies 2.2 . The estimate 2.3 follows by observing that

$$
\left|\int_{\Omega_{T}} y g d x d t\right| \leq C\|u\|_{L^{2}\left(L^{2}(\Gamma)\right)}\left\|\partial_{n} z\right\|_{L^{2}\left(L^{2}(\Gamma)\right)} \leq C\|u\|_{L^{2}\left(L^{2}(\Gamma)\right)}\|g\|_{L^{2}\left(L^{2}(\Omega)\right)}
$$

Now we are ready to formulate the optimal control problem considered in the present paper. It reads

$$
\left\{\begin{array}{r}
\min \quad J(y, u)=\frac{1}{2}\left\|y-y_{d}\right\|_{L^{2}\left(L^{2}(\Omega)\right)}^{2}+\frac{\alpha}{2}\|u\|_{L^{2}\left(L^{2}(\Gamma)\right)}^{2} \tag{2.5}\\
\text { over } \quad(y, u) \in L^{2}\left(L^{2}(\Omega)\right) \times L^{2}\left(L^{2}(\Gamma)\right) \\
\text { subject to } 2.2 \text { and } u \in U_{a d} .
\end{array}\right.
$$

By standard arguments (see, e.g, 24]), there exists a unique solution (y, u) for problem 2.5). Let $J(u):=J(y(u), u)$ denote the reduced cost functional, where for each $u \in L^{2}\left(L^{2}(\Gamma)\right)$ the state $y(u)$ is the unique very weak solution of 2.2 . Then J is infinitely often Fréchet differentiable. Moreover, the first order sufficient and necessary optimality conditions for problem (2.5) are given by

Theorem 2.2. Assume that $u \in L^{2}\left(L^{2}(\Gamma)\right)$ is the unique solution of problem 2.5) and let y be the associated state. Then there exists a unique adjoint state $z \in L^{2}\left(H_{0}^{1}(\Omega)\right) \cap H^{1}\left(H^{-1}(\Omega)\right)$ such that

$$
\left\{\begin{align*}
-\frac{\partial z}{\partial t}-\Delta z=y-y_{d} & \text { in } \Omega_{T} \tag{2.6}\\
z=0 & \text { on } \Sigma \\
z(T)=0 & \text { in } \Omega
\end{align*}\right.
$$

and

$$
\begin{equation*}
J^{\prime}(u)(v-u)=\int_{0}^{T} \int_{\Gamma}\left(\alpha u-\partial_{n} z\right)(v-u) d s d t \geq 0, \quad \forall v \in U_{a d} \tag{2.7}
\end{equation*}
$$

We note that 2.7 is equivalent to

$$
\begin{equation*}
J^{\prime}(u)(v-u)=\int_{\Sigma} \alpha u(v-u) d s d t+\int_{\Omega_{T}}\left(y-y_{d}\right)(y(v)-y) d x d t \geq 0, \quad \forall v \in U_{a d} \tag{2.8}
\end{equation*}
$$

or

$$
\begin{equation*}
u=P_{U_{a d}}\left(\frac{1}{\alpha} \partial_{n} z\right) \tag{2.9}
\end{equation*}
$$

where for each $v \in L^{2}\left(L^{2}(\Gamma)\right), y(v)$ is the solution of problem 2.2 with u replaced by v, and $P_{U_{a d}}: L^{2}\left(L^{2}(\Gamma)\right) \rightarrow U_{a d}$ denotes the orthogonal projection.

We now turn to the regularity properties of optimal controls u on Σ. The proof of the following theorem can be found in, e.g, [23].
Theorem 2.3. Let $(y, u, z) \in L^{2}\left(L^{2}(\Omega)\right) \times L^{2}\left(L^{2}(\Gamma)\right) \times L^{2}\left(H_{0}^{1}(\Omega)\right) \cap H^{1}\left(H^{-1}(\Omega)\right)$ be the solution of optimal control problem (2.5)-(2.8), assume that Ω is a bounded, convex polygonal or polyhedral domain in \mathbb{R}^{n}, $f \in L^{2}\left(L^{2}(\Omega)\right)$, $y_{d} \in L^{2}\left(L^{2}(\Omega)\right)$ and $y_{0} \in L^{2}(\Omega)$. Then we have

$$
\begin{equation*}
u \in L^{2}\left(H^{\frac{1}{2}}(\Gamma)\right) \cap H^{\frac{1}{4}}\left(L^{2}(\Gamma)\right), \quad y \in L^{2}\left(H^{1}(\Omega)\right) \cap H^{\frac{1}{2}}\left(L^{2}(\Omega)\right) \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
z \in L^{2}\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \cap H^{1}\left(L^{2}(\Omega)\right) \tag{2.11}
\end{equation*}
$$

Proof. From $f \in L^{2}\left(L^{2}(\Omega)\right), y_{0} \in L^{2}(\Omega)$ and $u \in L^{2}\left(L^{2}(\Gamma)\right)$ we conclude that $y \in L^{2}\left(L^{2}(\Omega)\right)$ according to Lemma 2.1. Thus, $y_{d} \in L^{2}\left(L^{2}(\Omega)\right)$ implies $z \in L^{2}\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \cap H^{1}\left(L^{2}(\Omega)\right)$, which in turn implies $\partial_{n} z \in L^{2}\left(H^{\frac{1}{2}}(\Gamma)\right) \cap H^{\frac{1}{4}}\left(L^{2}(\Gamma)\right)$ (see [6]). From 2.9) we obtain that $u \in$ $L^{2}\left(H^{\frac{1}{2}}(\Gamma)\right) \cap H^{\frac{1}{4}}\left(L^{2}(\Gamma)\right)$ and thus $y \in L^{2}\left(H^{1}(\Omega)\right) \cap H^{\frac{1}{2}}\left(L^{2}(\Omega)\right)$ (see [25]). This completes the proof.

Although we only consider the finite element approximation to optimal control problems posed on polygonal or polyhedral domains, we note that for optimal control problems posed on curved domains with smooth boundary we can get higher regularities (see e.g. [23]).

Theorem 2.4. Let $(y, u, z) \in L^{2}\left(L^{2}(\Omega)\right) \times L^{2}\left(L^{2}(\Gamma)\right) \times L^{2}\left(H^{1}(\Omega)\right) \cap H^{1}\left(H^{-1}(\Omega)\right)$ be the solution of optimal control problem (2.5)-(2.8), assume that Ω is a bounded domain in \mathbb{R}^{n} with sufficiently smooth boundary $\Gamma, f \in L^{2}\left(L^{2}(\Omega)\right)$, $y_{d} \in L^{2}\left(H^{1}(\Omega)\right) \cap H^{\frac{1}{2}}\left(L^{2}(\Omega)\right)$ and $y_{0} \in H^{\frac{1}{2}-\varepsilon}(\Omega)$. Then we have

$$
\begin{equation*}
u \in L^{2}\left(H^{1}(\Gamma)\right) \cap H^{\frac{1}{2}}\left(L^{2}(\Gamma)\right), \quad y \in L^{2}\left(H^{\frac{3}{2}-\varepsilon}(\Omega)\right) \cap H^{\frac{3-2 \varepsilon}{4}}\left(L^{2}(\Omega)\right) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
z \in L^{2}\left(H^{3}(\Omega) \cap H_{0}^{1}(\Omega)\right) \cap H^{\frac{3}{2}}\left(L^{2}(\Omega)\right) \tag{2.13}
\end{equation*}
$$

for every $\varepsilon \in\left(0, \frac{1}{2}\right]$.
Proof. From Theorem 2.3 we already have $z \in L^{2}\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \cap H^{1}\left(L^{2}(\Omega)\right), u \in L^{2}\left(H^{\frac{1}{2}}(\Gamma)\right) \cap$ $H^{\frac{1}{4}}\left(L^{2}(\Gamma)\right)$ and $y \in L^{2}\left(H^{1}(\Omega)\right) \cap H^{\frac{1}{2}}\left(L^{2}(\Omega)\right)$. If $y_{d} \in L^{2}\left(H^{1}(\Omega)\right) \cap H^{\frac{1}{2}}\left(L^{2}(\Omega)\right)$, since the boundary Γ of domain Ω is sufficiently smooth, we from [25] have the improved regularity $z \in L^{2}\left(H^{3}(\Omega)\right) \cap$ $H^{\frac{3}{2}}\left(L^{2}(\Omega)\right)$. The trace theorem for parabolic equations implies $\partial_{n} z \in L^{2}\left(H^{\frac{3}{2}}(\Gamma)\right) \cap H^{\frac{3}{4}}\left(L^{2}(\Gamma)\right)$. From 2.9. we then conclude $u \in L^{2}\left(H^{1}(\Gamma)\right) \cap H^{\frac{1}{2}}\left(L^{2}(\Gamma)\right)$. This implies that $y \in L^{2}\left(H^{\frac{3}{2}-\varepsilon}(\Omega)\right) \cap$ $H^{\frac{3-2 \varepsilon}{4}}\left(L^{2}(\Omega)\right)$ for each $\varepsilon>0$, see, e.g., [25], which completes the proof.

In our analysis we frequently use results of the following backward in time parabolic problem:

$$
\left\{\begin{array}{r}
-w_{t}-\Delta w=g \quad \text { in } \Omega_{T} \tag{2.14}\\
w=0 \text { on } \Sigma \\
w(T)=0 \text { in } \Omega
\end{array}\right.
$$

If $g \in L^{2}\left(L^{2}(\Omega)\right)$, then 2.14 has a unique solution $w \in L^{2}\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \cap H^{1}\left(L^{2}(\Omega)\right)$ satisfying

$$
\begin{align*}
\|w\|_{L^{2}\left(H^{2}(\Omega)\right)}+\left\|w_{t}\right\|_{L^{2}\left(L^{2}(\Omega)\right)} & \leq C\|g\|_{L^{2}\left(L^{2}(\Omega)\right)} \tag{2.15}\\
\|w(0)\|_{1, \Omega} & \leq C\|g\|_{L^{2}\left(L^{2}(\Omega)\right)} \tag{2.16}
\end{align*}
$$

3. Finite element discretization of the state equation and optimal control PROBLEMS

At first let us consider the finite element approximation of the state equation $\sqrt{1.2}$. For the spatial discretization we consider conforming Lagrange triangular elements.

We assume that Ω is a polygonal domain. Let \mathscr{T}^{h} be a quasi-uniform partitioning of Ω into disjoint regular triangles τ, so that $\bar{\Omega}=\bigcup_{\tau \in \mathscr{T}^{h}} \bar{\tau}$. Associated with \mathscr{T}^{h} is a finite dimensional subspace V^{h} of $C(\bar{\Omega})$, such that for $\chi \in V^{h}$ and $\tau \in \mathscr{T}^{h},\left.\chi\right|_{\tau}$ are piecewise linear polynomials. We set $V_{0}^{h}=V^{h} \cap H_{0}^{1}(\Omega)$.

Let \mathscr{T}_{U}^{h} be a partitioning of Γ into disjoint regular segments s, so that $\Gamma=\bigcup_{s \in \mathscr{T}_{U}^{h}} \bar{s}$. Associated with \mathscr{T}_{U}^{h} is another finite dimensional subspace U^{h} of $L^{2}(\Gamma)$, such that for $\chi \in U^{h}$ and $s \in \mathscr{T}_{U}^{h}$, $\left.\chi\right|_{s}$ are piecewise linear polynomials. Here we suppose that \mathscr{T}_{U}^{h} is the restriction of \mathscr{T}^{h} on the boundary Γ and $U^{h}=V^{h}(\Gamma)$, where $V^{h}(\Gamma)$ is the restriction of V^{h} on the boundary Γ.

For the standard Lagrange interpolation operator $I_{h}: C(\bar{\Omega}) \rightarrow V^{h}$, we have the following error estimate (see, e.g., 9])

$$
\begin{equation*}
\left\|w-I_{h} w\right\|_{l, \Omega} \leq C h^{m-l}\|v\|_{m, \Omega}, \quad 0 \leq l \leq 1 \leq m \leq 2 \tag{3.1}
\end{equation*}
$$

To define our discrete scheme, we need to introduce some projection operators. Here $Q_{h}: L^{2}(\Gamma) \rightarrow$ $V^{h}(\Gamma)$ and $\tilde{Q}_{h}: L^{2}(\Omega) \rightarrow V_{0}^{h}$ denote the orthogonal projection operators. Furthermore, R_{h} : $H^{1}(\Omega) \rightarrow V_{0}^{h}$ denotes the Ritz projection operator defined as

$$
\begin{equation*}
a\left(R_{h} w, v_{h}\right)=a\left(w, v_{h}\right), \quad \forall v_{h} \in V_{0}^{h} \tag{3.2}
\end{equation*}
$$

It is well known that the Ritz projection satisfies

$$
\begin{equation*}
\left\|w-R_{h} w\right\|_{s, \Omega} \leq C h^{l-s}\|w\|_{l, \Omega}, \quad w \in H_{0}^{1}(\Omega) \cap H^{l}(\Omega), \quad \forall 0 \leq s \leq 1 \leq l \leq 2 \tag{3.3}
\end{equation*}
$$

For the $L^{2}(\Gamma)$ projection operator Q_{h} we also have

$$
\begin{equation*}
\left\|w-Q_{h} w\right\|_{0, \Gamma} \leq C h^{s-\frac{1}{2}}\|w\|_{s, \Omega} \text { for } w \in H^{s}(\Omega), \frac{1}{2} \leq s \leq 2 \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\left(I-Q_{h}\right) \partial_{n} w\right\|_{0, \Gamma} \leq C h^{\frac{1}{2}}\|w\|_{2, \Omega} \text { for } w \in H^{2}(\Omega) \tag{3.5}
\end{equation*}
$$

In our following analysis we need estimates for discrete harmonic functions.
Lemma 3.1. Let $v_{h} \in V^{h}(\Gamma)$, and suppose that $w \in H^{1}(\Omega)$ is the solution of

$$
\begin{equation*}
a(w, \phi)=0, \quad \forall \phi \in H_{0}^{1}(\Omega), \quad w=v_{h} \text { on } \Gamma \tag{3.6}
\end{equation*}
$$

and $w_{h} \in V^{h}$ is the solution of

$$
\begin{equation*}
a\left(w_{h}, \phi_{h}\right)=0, \quad \forall \phi_{h} \in V_{0}^{h}, \quad w_{h}=v_{h} \text { on } \Gamma \tag{3.7}
\end{equation*}
$$

Then

$$
\begin{array}{r}
\left\|w-w_{h}\right\|_{1, \Omega} \leq C\left\|v_{h}\right\|_{\frac{1}{2}, \Gamma} \leq C h^{-\frac{1}{2}}\left\|v_{h}\right\|_{0, \Gamma} \\
\left\|w_{h}\right\|_{0, \Omega}+h^{-\frac{1}{2}}\left\|w_{h}\right\|_{1, \Omega} \leq C\left\|v_{h}\right\|_{0, \Gamma} \\
\left\|w-w_{h}\right\|_{\frac{1}{2}, \Omega} \leq C\left\|v_{h}\right\|_{0, \Gamma} \tag{3.10}
\end{array}
$$

Proof. The proof of (3.8) and 3.9) can be found in [5], 7] and [11]. Here we provide a proof of 3.10. For each $g \in H^{-\frac{1}{2}}(\Omega)$ let $\psi_{g} \in H^{\frac{3}{2}}(\Omega) \cap H_{0}^{1}(\Omega)$ be the solution of

$$
\begin{equation*}
a\left(\phi, \psi_{g}\right)=\langle g, \phi\rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}}, \quad \forall \phi \in H_{0}^{1}(\Omega) \tag{3.11}
\end{equation*}
$$

Then we have $\left\|\psi_{g}\right\|_{\frac{3}{2}, \Omega} \leq C\|g\|_{-\frac{1}{2}, \Omega}$. Note that from (3.6) and (3.7) we have

$$
\left\langle g, w-w_{h}\right\rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}}=a\left(w-w_{h}, \psi_{g}\right)=a\left(w-w_{h}, \psi_{g}-I_{h} \psi_{g}\right)
$$

where $I_{h} \psi_{g}$ is the linear Lagrange interpolation of $\psi_{g}(9)$. Then standard error estimates lead to

$$
\begin{align*}
\left\langle g, w-w_{h}\right\rangle_{H^{-\frac{1}{2}}, H^{\frac{1}{2}}} & =a\left(w-w_{h}, \psi_{g}-I_{h} \psi_{g}\right) \\
& \leq\left\|w-w_{h}\right\|_{1, \Omega}\left\|\psi_{g}-I_{h} \psi_{g}\right\|_{1, \Omega} \\
& \leq C h^{\frac{1}{2}}\left\|v_{h}\right\|_{\frac{1}{2}, \Gamma}\left\|\psi_{g}\right\|_{\frac{3}{2}, \Omega} \tag{3.12}\\
& \leq C\left\|v_{h}\right\|_{0, \Gamma}\|g\|_{-\frac{1}{2}, \Omega}
\end{align*}
$$

where we have used the estimate 3.8 . This implies

$$
\left\|w_{h}-w\right\|_{\frac{1}{2}, \Omega} \leq C\left\|v_{h}\right\|_{0, \Gamma}
$$

which proves 3.10.
The semi-discrete finite element approximation of 1.2 reads: Find $y_{h} \in L^{2}\left(V^{h}\right)$ such that

$$
\left\{\begin{array}{l}
-\left(y_{h}, \partial_{t} v_{h}\right)_{\Omega_{T}}+a\left(y_{h}, v_{h}\right)_{\Omega_{T}}=\left(f, v_{h}\right)_{\Omega_{T}}+\left(y_{0}^{h}, v_{h}(\cdot, 0)\right) \quad \forall v_{h} \in H^{1}\left(V_{0}^{h}\right) \tag{3.13}\\
y_{h}=Q_{h}(u) \text { on } \Sigma
\end{array}\right.
$$

with $v_{h}(\cdot, T)=0, y_{0}^{h} \in V^{h}$ an approximation of y_{0} using the L^{2}-projection, and Q_{h} the projection operator from $L^{2}(\Gamma)$ to $V^{h}(\Gamma)$. Note that the above semi-discrete scheme is well-defined and admits a unique solution since $Q_{h}(u) \in L^{2}\left(H^{\frac{1}{2}}(\Gamma)\right)$.

The semi-discrete finite element approximation of (1.1)-1.2) reads as follows:

$$
\begin{equation*}
\min _{u_{h} \in U_{a d}^{h}, y_{h} \in L^{2}\left(V^{h}\right)} J_{h}\left(y_{h}, u_{h}\right)=\frac{1}{2}\left\|y_{h}-y_{d}\right\|_{L^{2}\left(L^{2}(\Omega)\right)}^{2}+\frac{\alpha}{2}\left\|u_{h}\right\|_{L^{2}\left(L^{2}(\Gamma)\right)}^{2} \tag{3.14}
\end{equation*}
$$

subject to

$$
\left\{\begin{array}{l}
-\left(y_{h}, \partial_{t} v_{h}\right)_{\Omega_{T}}+a\left(y_{h}, v_{h}\right)_{\Omega_{T}}=\left(f, v_{h}\right)_{\Omega_{T}}+\left(y_{0}^{h}, v_{h}(\cdot, 0)\right) \quad \forall v_{h} \in H^{1}\left(V_{0}^{h}\right) \tag{3.15}\\
y_{h}=Q_{h}\left(u_{h}\right) \text { on } \Sigma
\end{array}\right.
$$

where $y_{h} \in L^{2}\left(V^{h}\right), y_{0}^{h} \in V^{h}$ is an approximation of y_{0}, and $U_{a d}^{h}$ is an appropriate approximation to $U_{a d}$ depending on the discretization scheme for the control.

It follows that the control problem (3.14)-(3.15) has a unique solution $\left(y_{h}, u_{h}\right)$ and that a pair $\left(y_{h}, u_{h}\right)$ is the solution of the problem (3.35)-3.36) if and only if there is a co-state $z_{h} \in L^{2}\left(V_{0}^{h}\right)$ such that the triplet $\left(y_{h}, z_{h}, u_{h}\right)$ satisfies the following optimality conditions:

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
-\left(y_{h}, \partial_{t} v_{h}\right)_{\Omega_{T}}+a\left(y_{h}, v_{h}\right)_{\Omega_{T}}=\left(f, v_{h}\right)_{\Omega_{T}}+\left(y_{0}^{h}, v_{h}(\cdot, 0)\right) \forall v_{h} \in H^{1}\left(V_{0}^{h}\right), \\
y_{h}=Q_{h}\left(u_{h}\right) \text { on } \Sigma,
\end{array}\right. \\
\left\{\begin{array}{r}
-\left(\frac{\partial z_{h}}{\partial t}, q_{h}\right)+a\left(q_{h}, z_{h}\right)=\left(y_{h}-y_{d}, q_{h}\right), \quad \forall q_{h} \in V_{0}^{h} \\
z_{h}=0
\end{array} \quad x \in \Sigma ; z_{h}(x, T)=0 \quad x \in \Omega\right.
\end{array}\right\} \begin{aligned}
& \int_{0}^{T} \int_{\Omega}\left(y_{h}-y_{d}\right)\left(y_{h}\left(v_{h}\right)-y_{h}\right) d x d t+\alpha \int_{0}^{T} \int_{\Gamma} u_{h}\left(v_{h}-u_{h}\right) d s d t \geq 0, \quad \forall v_{h} \in U_{a d}^{h},
\end{aligned}
$$

where $y_{h}\left(v_{h}\right) \in L^{2}\left(V^{h}\right)$ is the solution of state equation with Dirichlet boundary condition $Q_{h}\left(v_{h}\right)$.

We next consider the fully discrete approximation for above semi-discrete problem by using the $\mathrm{dG}(0)$ scheme in time. For simplicity we consider an equi-distant partition of the time interval. Let $0=t_{0}<t_{1}<\cdots<t_{N-1}<t_{N}=T$ with $k=\frac{T}{N}$ and $t_{i}=i k, i=1,2, \cdots, N$. We also set $I_{i}:=\left(t_{i-1}, t_{i}\right]$. For $i=1,2, \cdots, N$, we construct the finite element spaces $V^{h} \in H^{1}(\Omega)$ with the mesh \mathscr{T}^{h}. Similarly, we construct the finite element spaces $U^{h} \in L^{2}(\Gamma)$ with the mesh \mathscr{T}_{U}^{h}. In our case we have $U^{h}=V^{h}(\Gamma)$. Then we denote by V^{h} and U^{h} the finite element spaces defined on \mathscr{T}^{h} and \mathscr{T}_{U}^{h} on each time step.

Let V_{k} denote the space of piecewise constant functions on the time partition. We define the L^{2} projection operator $P_{k}: L^{2}(0, T) \rightarrow V_{k}$ on I_{i} through

$$
\left(P_{k} w\right)(t)=\frac{1}{k} \int_{I_{i}} w(s) d s \text { for } t \in I_{i}(i=1, \cdots, N)
$$

Then we have the following estimate

$$
\begin{equation*}
\left\|\left(I-P_{k}\right) w\right\|_{L^{2}(0, T ; H)} \leq C k\left\|w_{t}\right\|_{L^{2}(0, T ; H)}, \quad \forall w \in H^{1}(0, T ; H) \tag{3.19}
\end{equation*}
$$

where H denotes some separable Hilbert space .
We consider a dG(0) scheme for the time discretization and set

$$
V_{h k}:=\left\{\phi: \bar{\Omega} \times[0, T] \rightarrow \mathbb{R},\left.\phi(\cdot, t)\right|_{\bar{\Omega}} \in V^{h},\left.\phi(x, \cdot)\right|_{I_{n}} \in \mathbb{P}_{0} \text { for } n=1, \cdots, N\right\}
$$

i.e. $\phi \in V_{h k}$ is a piecewise constant polynomial w.r.t. time. We also set $V_{h k}(\Gamma)$ as the restriction of $V_{h k}$ on $L^{2}\left(L^{2}(\Gamma)\right)$. We set $Q=Q_{h} P_{k}=P_{k} Q_{h}$. Thus, we have $Q: L^{2}\left(L^{2}(\Gamma)\right) \rightarrow V_{h k}(\Gamma)$. For $Y, \Phi \in V_{h k}$ we set

$$
A(Y, \Phi):=\sum_{n=1}^{N} k a\left(Y^{n}, \Phi^{n}\right)+\sum_{n=2}^{N}\left(Y^{n}-Y^{n-1}, \Phi^{n}\right)+\left(Y_{+}^{0}, \Phi_{+}^{0}\right)
$$

where $\Phi^{n}:=\Phi_{-}^{n}, \Phi_{ \pm}^{n}=\lim _{s \rightarrow 0^{ \pm}} \Phi\left(t_{n}+s\right)$.
For each $u \in L^{2}\left(L^{2}(\Gamma)\right)$ the fully discrete $\mathrm{dG}(0)-\mathrm{cG}(1)$ finite element approximation of 3.13) now reads: Find $Y_{h k} \in V_{h k}$ such that

$$
\left\{\begin{align*}
A\left(Y_{h k}, \Phi\right)=(f, \Phi)_{\Omega_{T}}+\left(y_{0}, \Phi_{+}^{0}\right), & \forall \Phi \in V_{h k}^{0} \tag{3.20}\\
Y_{h k}=Q(u) & \text { on } \Gamma
\end{align*}\right.
$$

where $V_{h k}^{0}$ denotes the subspace of $V_{h k}$ with functions vanishing on the boundary Γ.

It is easy to see that on each time interval $I_{i}, Y_{h k}^{i} \in V^{h}$ solves the following problem:

$$
\left\{\begin{array}{l}
\left(\frac{Y_{h k}^{i}-Y_{h k}^{i-1}}{k}, w_{h}\right)+a\left(Y_{h k}^{i}, w_{h}\right)=\left(P_{k}^{i} f, w_{h}\right), \forall w_{h} \in V_{0}^{h}, \quad i=1, \cdots, N, \tag{3.21}\\
Y_{h k}^{0}(x)=y_{0}^{h}(x), x \in \Omega ; \quad Y_{h k}^{i}=Q_{h}\left(P_{k}^{i} u\right), i=1, \cdots, N \text { on } \Gamma
\end{array}\right.
$$

Here we use L^{2}-projection to approximate the non-smooth Dirichlet boundary condition in 3.20 .
In the following we need to investigate the stability behavior of the fully discrete scheme 3.20) with respect to the initial value y_{0}, the righthand side f and the Dirichlet boundary conditions u.
Lemma 3.2. There exists a constant C independent of h, k and the data $\left(f, y_{0}\right)$ such that for $k=O\left(h^{2}\right)$, there holds

$$
\begin{align*}
& \sum_{i=1}^{N}\left(\left\|Y_{h k}^{i}-Y_{h k}^{i-1}\right\|_{0, \Omega}^{2}+k\left\|Y_{h k}^{i}\right\|_{1, \Omega}^{2}\right)+\left\|Y_{h k}^{N}\right\|_{0, \Omega}^{2} \\
\leq & C\left(\left\|y_{0}\right\|_{0, \Omega}^{2}+h^{-1}\|u\|_{L^{2}\left(L^{2}(\Gamma)\right)}^{2}+\|f\|_{L^{2}\left(L^{2}(\Omega)\right)}^{2}\right) . \tag{3.22}
\end{align*}
$$

Proof. Since the problem under consideration is linear it is sufficient to consider the problems with either $f \equiv 0, y_{0} \equiv 0$ or $u \equiv 0$.

Let us first assume that $f \equiv 0, y_{0} \equiv 0$. The proof follows the idea of 12 . To begin with we introduce the following problem: Find $y_{u} \in V_{h k}$ with

$$
\left\{\begin{array}{l}
\left(\frac{y_{u}^{i}-y_{u}^{i-1}}{k}, w_{h}\right)+a\left(y_{u}^{i}, w_{h}\right)=0, \forall w_{h} \in V_{0}^{h}, \quad i=1, \cdots, N \tag{3.23}\\
y_{u}^{0}(x)=0 x \in \Omega ; \quad y_{u}^{i}=Q_{h}\left(P_{k}^{i} u\right), i=1, \cdots, N \text { on } \Gamma
\end{array}\right.
$$

For arbitrary $y_{h} \in V^{h}$ we have the splitting

$$
y_{h}=y_{1}+R_{h} y_{h} \quad \text { and } \quad y_{h}=y_{2}+\tilde{Q}_{h} y_{h}
$$

where $\tilde{Q}_{h} y_{h} \in V_{0}^{h}$ and $R_{h} y_{h} \in V_{0}^{h}$ are the L^{2}-projection and Ritz-projection of y_{h}, respectively. Then we have $\left.y_{2}\right|_{\Gamma}=y_{h},\left.y_{1}\right|_{\Gamma}=y_{h}$ and

$$
\left(y_{2}, v_{h}\right)=0 \quad \text { and } \quad a\left(y_{1}, v_{h}\right)=0, \quad \forall v_{h} \in V_{0}^{h}
$$

Let $y_{u}^{i}=y_{2}^{i}+\tilde{Q}_{h} y_{u}^{i}$. Then 3.23 delivers

$$
\begin{equation*}
\left(\tilde{Q}_{h} y_{u}^{i}-\tilde{Q}_{h} y_{u}^{i-1}, w_{h}\right)+k a\left(\tilde{Q}_{h} y_{u}^{i}, w_{h}\right)=-k a\left(y_{2}^{i}, w_{h}\right), \quad \forall w_{h} \in V_{0}^{h} \tag{3.24}
\end{equation*}
$$

Let $w_{h}=\tilde{Q}_{h} y_{u}^{i}$. Summation from 1 to N then gives

$$
\sum_{i=1}^{N}\left(\frac{1}{2}\left\|\tilde{Q}_{h} y_{u}^{i}-\tilde{Q}_{h} y_{u}^{i-1}\right\|_{0, \Omega}^{2}+k a\left(\tilde{Q}_{h} y_{u}^{i}, \tilde{Q}_{h} y_{u}^{i}\right)\right)+\frac{1}{2}\left\|\tilde{Q}_{h} y_{u}^{N}\right\|_{0, \Omega}^{2}=-\sum_{i=1}^{N} k a\left(y_{2}^{i}, \tilde{Q}_{h} y_{u}^{i}\right)
$$

which implies

$$
(3.25) \frac{1}{2} \sum_{i=1}^{N}\left(\left\|\tilde{Q}_{h} y_{u}^{i}-\tilde{Q}_{h} y_{u}^{i-1}\right\|_{0, \Omega}^{2}+k a\left(\tilde{Q}_{h} y_{u}^{i}, \tilde{Q}_{h} y_{u}^{i}\right)\right)+\frac{1}{2}\left\|\tilde{Q}_{h} y_{u}^{N}\right\|_{0, \Omega}^{2} \leq \frac{1}{2} \sum_{i=1}^{N} k a\left(y_{2}^{i}, y_{2}^{i}\right)
$$

On the other hand, we have

$$
\begin{equation*}
\sum_{i=1}^{N}\left(\left\|y_{2}^{i}-y_{2}^{i-1}\right\|_{0, \Omega}^{2}+k a\left(y_{2}^{i}, y_{2}^{i}\right)\right)+\left\|y_{2}^{N}\right\|_{0, \Omega}^{2} \leq \sum_{i=1}^{N}\left(k a\left(y_{2}^{i}, y_{2}^{i}\right)+2\left\|y_{2}^{i}\right\|_{0, \Omega}^{2}\right) \tag{3.26}
\end{equation*}
$$

Combining 3.25 and 3.26 yields

$$
\begin{equation*}
\sum_{i=1}^{N}\left(\left\|y_{u}^{i}-y_{u}^{i-1}\right\|_{0, \Omega}^{2}+k a\left(y_{u}^{i}, y_{u}^{i}\right)\right)+\left\|y_{u}^{N}\right\|_{0, \Omega}^{2} \leq C \sum_{i=1}^{N}\left(k a\left(y_{2}^{i}, y_{2}^{i}\right)+\left\|y_{2}^{i}\right\|_{0, \Omega}^{2}\right) \tag{3.27}
\end{equation*}
$$

For $y_{u}^{i} \in V^{h}$ we also have the splitting $y_{u}^{i}=y_{1}^{i}+R_{h} y_{u}^{i}$. Since $C_{0}^{\infty}(\Omega)$ is dense in $H^{s}(\Omega)$ for $s \leq \frac{1}{2}$ (see [12]), there exists $\left\{v^{n}\right\} \subset C_{0}^{\infty}(\Omega)$ such that $\lim _{n \rightarrow \infty}\left\|v^{n}-y_{1}^{i}\right\|_{\frac{1}{2}, \Omega}=0$. From the definition of the L^{2}-projection we conclude that

$$
\begin{aligned}
y_{2}^{i} & =\left(I-\tilde{Q}_{h}\right) y_{u}^{i}=\left(I-\tilde{Q}_{h}\right)\left(y_{1}^{i}+R_{h} y_{u}^{i}\right) \\
& =\left(I-\tilde{Q}_{h}\right) y_{1}^{i},
\end{aligned}
$$

thus, we deduce that

$$
\left\|y_{2}^{i}\right\|_{0, \Omega}=\left\|\left(I-\tilde{Q}_{h}\right) y_{1}^{i}\right\|_{0, \Omega}=\lim _{n \rightarrow \infty}\left\|\left(I-\tilde{Q}_{h}\right) v^{n}\right\|_{0, \Omega} \leq C h^{\frac{1}{2}} \lim _{n \rightarrow \infty}\left\|v^{n}\right\|_{\frac{1}{2}, \Omega}=C h^{\frac{1}{2}}\left\|y_{1}^{i}\right\|_{\frac{1}{2}, \Omega} .
$$

We note that $y_{1}^{i} \mid \Gamma=y_{u}^{i}=Q_{h}\left(P_{k}^{i} u\right)$ and

$$
a\left(y_{1}^{i}, \phi_{h}\right)=0, \quad \forall \phi_{h} \in V_{0}^{h} .
$$

Let $w^{i} \in H^{1}(\Omega)$ be the solution of 3.6 with v_{h} substituted by $Q_{h}\left(P_{k}^{i} u\right)$. Then $\left\|w^{i}\right\|_{\frac{1}{2}, \Omega} \leq$ $C\left\|Q_{h}\left(P_{k}^{i} u\right)\right\|_{0, \Gamma}$ and y_{1}^{i} is the finite element approximation to w^{i}. So we deduce from Lemma 3.1 that

$$
\begin{aligned}
\left\|y_{1}^{i}\right\|_{\frac{1}{2}, \Omega} & \leq\left\|y_{1}^{i}-w^{i}\right\|_{\frac{1}{2}, \Omega}+\left\|w^{i}\right\|_{\frac{1}{2}, \Omega} \\
& \leq C\left\|Q_{h}\left(P_{k}^{i} u\right)\right\|_{0, \Gamma},
\end{aligned}
$$

which in turn gives

$$
\left\|y_{2}^{i}\right\|_{0, \Omega} \leq C h^{\frac{1}{2}}\left\|Q_{h}\left(P_{k}^{i} u\right)\right\|_{0, \Gamma} .
$$

Inverse estimates also yield

$$
\left\|y_{2}^{i}\right\|_{1, \Omega} \leq C h^{-\frac{1}{2}}\left\|Q_{h}\left(P_{k}^{i} u\right)\right\|_{0, \Gamma} .
$$

With the help of above estimates and norm interpolation we are led to

$$
\begin{equation*}
\left\|y_{2}^{i}\right\|_{s, \Omega} \leq C h^{\frac{1}{2}-s}\left\|Q_{h}\left(P_{k}^{i} u\right)\right\|_{0, \Gamma}, \quad 0 \leq s \leq 1, \quad i=1,2, \cdots, N . \tag{3.28}
\end{equation*}
$$

Thus, for $k=O\left(h^{2}\right)$ we have

$$
\begin{align*}
& \sum_{i=1}^{N}\left(\left\|y_{u}^{i}-y_{u}^{i-1}\right\|_{0, \Omega}^{2}+k a\left(y_{u}^{i}, y_{u}^{i}\right)\right)+\left\|y_{u}^{N}\right\|_{0, \Omega}^{2} \\
\leq & C \sum_{i=1}^{N}\left(k a\left(y_{2}^{i}, y_{2}^{i}\right)+\left\|y_{2}^{i}\right\|_{0, \Omega}^{2}\right) \\
\leq & C \sum_{i=1}^{N}\left(k h^{-1}\left\|Q_{h}\left(P_{k}^{i} u\right)\right\|_{0, \Gamma}^{2}+h\left\|Q_{h}\left(P_{k}^{i} u\right)\right\|_{0, \Gamma}^{2}\right) \\
\leq & C h^{-1} \sum_{i=1}^{N} \int_{I_{i}}\left\|Q_{h}\left(P_{k}^{i} u\right)\right\|_{0, \Gamma}^{2} \\
\leq & C h^{-1}\|Q(u)\|_{L^{2}\left(L^{2}(\Gamma)\right)}^{2} \leq C h^{-1}\|u\|_{L^{2}\left(L^{2}(\Gamma)\right)}^{2} . \tag{3.29}
\end{align*}
$$

This gives

$$
\begin{equation*}
\sum_{i=1}^{N}\left(\left\|y_{u}^{i}-y_{u}^{i-1}\right\|_{0, \Omega}^{2}+k\left\|y_{u}^{i}\right\|_{1, \Omega}^{2}\right)+\left\|y_{u}^{N}\right\|_{0, \Omega}^{2} \leq C h^{-1}\|u\|_{L^{2}\left(L^{2}(\Gamma)\right)}^{2} . \tag{3.30}
\end{equation*}
$$

For the case $u \equiv 0$, let $y_{f} \in L^{2}\left(H_{0}^{1}(\Omega)\right) \cap H^{1}\left(H^{-1}(\Omega)\right)$ be the solution of following problem

$$
\begin{cases}\left(\frac{\partial y_{f}}{\partial t}, w\right)+a\left(y_{f}, w\right)=(f, w), & \forall w \in H_{0}^{1}(\Omega), \quad t \in(0, T], \tag{3.31}\\ y_{f}(x, 0)=y_{0} \quad x \in \Omega ; \quad y_{f}=0 & \text { on } \Gamma .\end{cases}
$$

Then we have

$$
\begin{equation*}
\left\|y_{f}\right\|_{L^{2}\left(H^{1}(\Omega)\right)}+\left\|\frac{\partial y_{f}}{\partial t}\right\|_{L^{2}\left(H^{-1}(\Omega)\right)} \leq C\left(\|f\|_{L^{2}\left(L^{2}(\Omega)\right)}+\left\|y_{0}\right\|_{0, \Omega}\right) \tag{3.32}
\end{equation*}
$$

Let $y_{f}^{i} \in V^{h}, i=1,2, \cdots, N$ be the solutions of following problems:

$$
\left\{\begin{array}{l}
\left(\frac{y_{f}^{i}-y_{f}^{i-1}}{k}, w_{h}\right)+a\left(y_{f}^{i}, w_{h}\right)=\left(P_{k}^{i} f, w_{h}\right), \forall w_{h} \in V_{0}^{h}, \quad i=1, \cdots, N \tag{3.33}\\
y_{f}^{0}(x)=y_{0}^{h}(x), x \in \Omega ; \quad y_{f}^{i}=0, \quad i=1, \cdots, N, \quad \text { on } \Gamma
\end{array}\right.
$$

Then we have $Y_{h k}^{i}=y_{f}^{i}+y_{u}^{i}$, since y_{f}^{i} is the standard fully discrete approximation of y_{f}. It is straightforward to prove that

$$
\begin{equation*}
\sum_{i=1}^{N}\left(\left\|y_{f}^{i}-y_{f}^{i-1}\right\|_{0, \Omega}^{2}+k\left\|y_{f}^{i}\right\|_{1, \Omega}^{2}\right)+\left\|y_{f}^{N}\right\|_{0, \Omega}^{2} \leq C\left(\left\|y_{0}\right\|_{0, \Omega}^{2}+\|f\|_{L^{2}\left(L^{2}(\Omega)\right)}^{2}\right) \tag{3.34}
\end{equation*}
$$

Combining 3.30 and 3.34 completes the proof.

We next consider the fully discrete approximation for above semi-discrete optimal control problems by using the $\mathrm{dG}(0)$ scheme in time. The fully discrete approximation scheme of (3.14)-(3.15) is to find $\left(Y_{h k}, U_{h k}\right) \in V_{h k} \times U_{a d}^{h k}$, such that

$$
\begin{equation*}
\min _{U_{h k} \in U_{a d}^{h k}, Y_{h k} \in V_{h k}} J_{h k}\left(Y_{h k}, U_{h k}\right)=\sum_{i=1}^{N} k\left\{\frac{1}{2} \int_{\Omega}\left(Y_{h k}^{i}-P_{k}^{i} y_{d}\right)^{2} d x+\frac{\alpha}{2} \int_{\Gamma}\left(U_{h k}^{i}\right)^{2} d s\right\} \tag{3.35}
\end{equation*}
$$

subject to

$$
\left\{\begin{align*}
A\left(Y_{h k}, \Phi\right)=(f, \Phi)_{\Omega_{T}}+\left(y_{0}, \Phi_{+}^{0}\right), & \forall \Phi \in V_{h k}^{0} \tag{3.36}\\
Y_{h k}=Q\left(U_{h k}\right) & \text { on } \Sigma
\end{align*}\right.
$$

Here $U_{a d}^{h k}$ is an appropriate approximation to $U_{a d}$. We set $U_{a d}^{h k}=V_{h k}(\Gamma) \cap U_{a d}$ for the full discretization of the control problem (1.1)-(1.2) and $U_{a d}^{h k} \equiv U_{a d}$ for its variational discretization.

It follows from standard arguments (see [24]) that the above control problem has a unique solution $\left(Y_{h k}, U_{h k}\right)$, and that a pair $\left(Y_{h k}, U_{h k}\right) \in V_{h k} \times U_{a d}^{h k}$ is the solution of 3.35 - 3.36 if and only if there is a co-state $Z_{h k} \in V_{h k}^{0}$, such that the triplet $\left(Y_{h k}, Z_{h k}, U_{h k}\right) \in V_{h k} \times V_{h k}^{0} \times U_{a d}^{h k}$ satisfies the following optimality conditions:

$$
\left\{\begin{align*}
A\left(Y_{h k}, \Phi\right)=(f, \Phi)_{\Omega_{T}}+\left(y_{0}, \Phi_{+}^{0}\right), & \forall \Phi \in V_{h k}^{0} \tag{3.37}\\
Y_{h k}=Q\left(U_{h k}\right) & \text { on } \Sigma
\end{align*}\right.
$$

$$
\left.\begin{array}{c}
\left\{\begin{array}{r}
A\left(\Phi, Z_{h k}\right)=\sum_{i=1}^{N} \int_{I_{i}}\left(Y_{h k}^{i}-y_{d}, \Phi\right) d t, \forall \Phi \in V_{h k}^{0} \\
Z_{h k}=0
\end{array}\right. \\
\text { on } \Sigma \tag{3.39}
\end{array}\right\}
$$

where $Y_{h k}\left(v_{h k}\right)$ is the solution of problem (3.37) with Dirichlet boundary conditions $Q\left(v_{h k}\right)$.
To derive an expression for the derivative of $J_{h k}: L^{2}\left(L^{2}(\Gamma)\right) \rightarrow \mathbb{R}$ analogous to the one of J given by formula 2.7) we have to define a discrete normal derivative $\partial_{n}^{h k} Z_{h k} \in V_{h k}(\Gamma)$ satisfying

$$
\begin{equation*}
\int_{\Sigma} \partial_{n}^{h k} Z_{h k} \Phi d s d t=A\left(\Phi, Z_{h k}\right)-\int_{\Omega_{T}}\left(Y_{h k}-y_{d}\right) \Phi d x d t, \quad \forall \Phi \in V_{h k} \tag{3.40}
\end{equation*}
$$

It is easy to verify that the linear form

$$
L(\Phi):=A\left(\Phi, Z_{h k}\right)-\int_{\Omega_{T}}\left(Y_{h k}-y_{d}\right) \Phi d x d t
$$

is well defined on $V_{h k}(\Gamma)$ and is also continuous. Thus from Riesz representation theorem the equation 3.40 admits a unique solution $\partial_{n}^{h k} Z_{h k}$ in $V_{h k}(\Gamma)$. For an analogous reconstruction of discrete normal derivatives for elliptic Dirichlet boundary control problems we refer to [7]. With the help of 3.40 it is not difficult to show that

$$
\begin{aligned}
0 & \leq J_{h k}^{\prime}\left(U_{h k}\right)\left(v_{h k}-U_{h k}\right) \\
& =\alpha \int_{\Sigma} U_{h k}\left(v_{h k}-U_{h k}\right) d s d t+\int_{\Omega_{T}}\left(Y_{h k}-y_{d}\right)\left(Y_{h k}\left(v_{h k}\right)-Y_{h k}\right) d x d t \\
& =\alpha \int_{\Sigma} U_{h k}\left(v_{h k}-U_{h k}\right) d s d t+A\left(Y_{h k}\left(v_{h k}\right)-Y_{h k}, Z_{h k}\right)-\int_{\Sigma} \partial_{n}^{h k} Z_{h k}\left(Y_{h k}\left(v_{h k}\right)-Y_{h k}\right) d s d t \\
& =\alpha \int_{\Sigma} U_{h k}\left(v_{h k}-U_{h k}\right) d s d t-\int_{\Sigma} \partial_{n}^{h k} Z_{h k} \cdot Q\left(v_{h k}-U_{h k}\right) d s d t \\
& =\int_{\Sigma}\left(\alpha U_{h k}-\partial_{n}^{h k} Z_{h k}\right)\left(v_{h k}-U_{h k}\right) d s d t
\end{aligned}
$$

for $v_{h k} \in U_{a d}^{h k}$, which in turn implies

$$
\begin{equation*}
U_{h k}=P_{U_{a d}^{h k}}\left(\frac{1}{\alpha} \partial_{n}^{h k} Z_{h k}\right) \tag{3.41}
\end{equation*}
$$

where $P_{U_{a d}^{h k}}: U \rightarrow U_{a d}^{h k}$ denotes the orthogonal projection in U onto $U_{a d}^{h k}$.

4. ERROR EStimates For the optimal CONTROL Problems

As a preliminary result we first estimate the error introduced by the discretization of the state equation, i.e., the error between the solutions of problems 2.2 and 3.20).
Theorem 4.1. Suppose that $f \in L^{2}\left(L^{2}(\Omega)\right)$, $u \in L^{2}\left(L^{2}(\Gamma)\right)$, and $y_{0} \in L^{2}(\Omega)$. Let $y \in L^{2}\left(L^{2}(\Omega)\right)$ and $Y_{h k}(u) \in V_{h k}$ with $\left.Y_{h k}(u)\right|_{\Sigma}=Q(u)$ be the solutions of problems (2.2) and (3.20), respectively. Then for $k=O\left(h^{2}\right)$ we have

$$
\begin{equation*}
\left\|y-Y_{h k}(u)\right\|_{L^{2}\left(L^{2}(\Omega)\right)} \leq C\left(h^{\frac{1}{2}}+k^{\frac{1}{4}}\right)\left(\|f\|_{L^{2}\left(L^{2}(\Omega)\right)}+\left\|y_{0}\right\|_{0, \Omega}+\|u\|_{L^{2}\left(L^{2}(\Gamma)\right)}\right) \tag{4.1}
\end{equation*}
$$

Proof. We first note that according to $12 y \in L^{2}\left(H^{\frac{1}{2}}(\Omega)\right)$ holds. In view of the linearity of the problem it is sufficient to consider the problems with either $f \equiv 0, y_{0} \equiv 0$ or $u \equiv 0$.

Let us first assume that $f \equiv 0, y_{0} \equiv 0$. Let $g=y-Y_{h k}(u)$ in 2.14. Since $w(T)=0$, we from (2.2) and 3.20 deduce that

$$
\begin{aligned}
& \left\|y-Y_{h k}(u)\right\|_{L^{2}\left(L^{2}(\Omega)\right)}^{2} \\
(4.2 \neq & \int_{0}^{T} \int_{\Omega}\left(-w_{t}-\Delta w\right)\left(y-Y_{h k}(u)\right) d x d t \\
= & \int_{0}^{T} \int_{\Omega}\left(-w_{t} y-\Delta w y\right) d x d t+\int_{0}^{T} \int_{\Omega}\left(w_{t} Y_{h k}(u)-\nabla w \nabla Y_{h k}(u)\right) d x d t+\int_{0}^{T} \int_{\Gamma} Q(u) \frac{\partial w}{\partial n} d s d t \\
= & \left(\int_{0}^{T} \int_{\Gamma} Q(u) \frac{\partial w}{\partial n}-\int_{0}^{T} \int_{\Gamma} u \frac{\partial w}{\partial n}\right) d s d t+\int_{0}^{T} \int_{\Omega}\left(w_{t} Y_{h k}(u)-\nabla w \nabla Y_{h k}(u)\right) d x d t \\
:= & E_{1}+E_{2} .
\end{aligned}
$$

We treat E_{1} by exploiting the properties of P_{k} and Q_{h} :

$$
E_{1}=\int_{0}^{T} \int_{\Gamma}(Q(u)-u) \frac{\partial w}{\partial n} d s d t
$$

$$
\begin{aligned}
& =\int_{0}^{T}\left\langle\left(P_{k}-I\right) u, \frac{\partial w}{\partial n}\right\rangle d t+\int_{0}^{T}\left\langle\left(Q_{h}-I\right) P_{k} u, \frac{\partial w}{\partial n}\right\rangle d t \\
& =\int_{0}^{T}\left\langle\left(P_{k}-I\right) u, \frac{\partial}{\partial n}\left(I-P_{k}\right) w\right\rangle d t+\int_{0}^{T}\left\langle\left(Q_{h}-I\right) P_{k} u,\left(I-Q_{h}\right) \frac{\partial w}{\partial n}\right\rangle d t .
\end{aligned}
$$

From Young's inequality, the trace inequality and a norm interpolation inequality we derive (see, e.g. [12])

$$
\begin{aligned}
\left\|\frac{\partial}{\partial n}\left(I-P_{k}\right) w\right\|_{L^{2}\left(L^{2}(\Gamma)\right)}^{2} & \leq \frac{C}{\varepsilon}\left\|\left(I-P_{k}\right) w\right\|_{L^{2}\left(H^{2}(\Omega)\right)}^{2}+\varepsilon\left\|\left(I-P_{k}\right) w\right\|_{L^{2}\left(H^{1}(\Omega)\right)}^{2} \\
& \leq \frac{C}{\varepsilon}\left\|\left(I-P_{k}\right) w\right\|_{L^{2}\left(H^{2}(\Omega)\right)}^{2}+\varepsilon\left\|\left(I-P_{k}\right) w\right\|_{L^{2}\left(H^{2}(\Omega)\right)}\left\|\left(I-P_{k}\right) w\right\|_{L^{2}\left(L^{2}(\Omega)\right)} \\
& \leq \frac{2 C}{\varepsilon}\left\|\left(I-P_{k}\right) w\right\|_{L^{2}\left(H^{2}(\Omega)\right)}^{2}+\varepsilon^{3}\left\|\left(I-P_{k}\right) w\right\|_{L^{2}\left(L^{2}(\Omega)\right)}^{2} .
\end{aligned}
$$

Setting $\varepsilon=k^{-\frac{1}{2}}$ and using the approximation property 3.19) of P_{k} gives

$$
\left\|\frac{\partial}{\partial n}\left(I-P_{k}\right) w\right\|_{L^{2}\left(L^{2}(\Gamma)\right)}^{2} \leq C k^{1 / 2}\left(\|w\|_{L^{2}\left(H^{2}(\Omega)\right)}^{2}+\left\|w_{t}\right\|_{L^{2}\left(L^{2}(\Omega)\right)}^{2}\right) .
$$

We also have

$$
\left\|\left(I-Q_{h}\right) \frac{\partial w}{\partial n}\right\|_{L^{2}\left(L^{2}(\Gamma)\right)} \leq C h^{1 / 2}\|w\|_{L^{2}\left(H^{2}(\Omega)\right)}
$$

Using the Cauchy-Schwartz inequality and stability results for Q_{h} and P_{k} we estimate

$$
\begin{align*}
\left|E_{1}\right| \leq & C k^{1 / 4}\|u\|_{L^{2}\left(L^{2}(\Gamma)\right)}\left(\|w\|_{L^{2}\left(H^{2}(\Omega)\right)}+\left\|w_{t}\right\|_{L^{2}\left(L^{2}(\Omega)\right)}\right) \\
& +C h^{1 / 2}\left\|P_{k} u\right\|_{L^{2}\left(L^{2}(\Gamma)\right)}\|w\|_{L^{2}\left(H^{2}(\Omega)\right)} \\
\leq & C\left(h^{1 / 2}+k^{1 / 4}\right)\|u\|_{L^{2}\left(L^{2}(\Gamma)\right)}\|g\|_{L^{2}\left(L^{2}(\Omega)\right)} . \tag{4.3}
\end{align*}
$$

Next we estimate E_{2}. Considering 3.20 and $w^{N}=w(\cdot, T)=0$ we calculate

$$
\begin{align*}
E_{2} & =\int_{0}^{T} \int_{\Omega}\left(w_{t} Y_{h k}(u)-\nabla w \nabla Y_{h k}(u)\right) d x d t \\
& =\sum_{i=1}^{N}\left(Y_{h k}^{i}(u), w^{i}-w^{i-1}\right)-k\left(\nabla Y_{h k}^{i}(u), \nabla P_{k}^{i} w\right) \\
& =-\sum_{i=1}^{N}\left(Y_{h k}^{i}(u)-Y_{h k}^{i-1}(u), w^{i-1}\right)+k\left(\nabla Y_{h k}^{i}(u), \nabla P_{k}^{i} w\right) \\
& =-\sum_{i=1}^{N}\left(Y_{h k}^{i}(u)-Y_{h k}^{i-1}(u), w^{i-1}-R_{h} P_{k}^{i} w\right)+k\left(\nabla Y_{h k}^{i}(u), \nabla\left(P_{k}^{i} w-R_{h} P_{k}^{i} w\right)\right) . \tag{4.4}
\end{align*}
$$

By the Cauchy-Schwartz inequality we have

$$
\left|E_{2}\right| \leq F_{1} \cdot F_{2},
$$

where

$$
F_{1}=\left(\sum_{i=1}^{N}\left(\left\|Y_{h k}^{i}(u)-Y_{h k}^{i-1}(u)\right\|_{0, \Omega}^{2}+k\left(\nabla Y_{h k}^{i}(u), \nabla Y_{h k}^{i}(u)\right)\right)\right)^{\frac{1}{2}}
$$

and

$$
F_{2}=\left(\sum_{i=1}^{N}\left(\left\|w^{i-1}-R_{h} P_{k}^{i} w\right\|_{0, \Omega}^{2}+k\left(\nabla\left(I-R_{h}\right) P_{k}^{i} w, \nabla\left(I-R_{h}\right) P_{k}^{i} w\right)\right)\right)^{\frac{1}{2}}
$$

In view of the stability result (3.22) of Lemma 3.2 we have

$$
\begin{equation*}
\left|F_{1}\right| \leq C h^{-\frac{1}{2}}\|u\|_{L^{2}\left(L^{2}(\Gamma)\right)} . \tag{4.5}
\end{equation*}
$$

It remains to estimate F_{2}. To begin with we note that

$$
\begin{align*}
\left\|w^{i-1}-R_{h} P_{k}^{i} w\right\|_{0, \Omega} & \leq\left\|w^{i-1}-P_{k}^{i} w\right\|_{0, \Omega}+\left\|\left(I-R_{h}\right) P_{k}^{i} w\right\|_{0, \Omega} \\
& \leq\left\|w^{i-1}-P_{k}^{i} w\right\|_{0, \Omega}+C h^{2}\left\|P_{k}^{i} w\right\|_{2, \Omega} \tag{4.6}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\nabla\left(I-R_{h}\right) P_{k}^{i} w, \nabla\left(I-R_{h}\right) P_{k}^{i} w\right) \leq C h^{2}\left\|P_{k}^{i} w\right\|_{2, \Omega}^{2} \tag{4.7}
\end{equation*}
$$

It is straightforward to show that

$$
\begin{equation*}
\left\|w^{i-1}-P_{k}^{i} w\right\|_{0, \Omega} \leq k^{1 / 2}\left\|w_{t}\right\|_{L^{2}\left(I_{i}, L^{2}(\Omega)\right)} \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|P_{k}^{i} w\right\|_{2, \Omega} \leq k^{-1 / 2}\|w\|_{L^{2}\left(I_{i}, H^{2}(\Omega)\right)} \tag{4.9}
\end{equation*}
$$

Combining (4.6)-(4.9) we get

$$
\begin{align*}
F_{2} & \leq C\left(\sum_{i=1}^{N}\left(\left(h^{4}+k h^{2}\right)\left\|P_{k}^{i} w\right\|_{2, \Omega}^{2}+k\left\|w_{t}\right\|_{L^{2}\left(I_{i}, L^{2}(\Omega)\right)}^{2}\right)\right)^{\frac{1}{2}} \\
& \leq C\left(h+k^{\frac{1}{2}}\right)\left(\sum_{i=1}^{N}\left(\|w\|_{L^{2}\left(I_{i}, H^{2}(\Omega)\right)}^{2}+\left\|w_{t}\right\|_{L^{2}\left(I_{i}, L^{2}(\Omega)\right)}^{2}\right)\right)^{\frac{1}{2}} \\
& \leq C\left(h+k^{\frac{1}{2}}\right)\left(\|w\|_{L^{2}\left(H^{2}(\Omega)\right)}+\left\|w_{t}\right\|_{L^{2}\left(L^{2}(\Omega)\right)}\right) . \tag{4.10}
\end{align*}
$$

Using the stability estimate of Lemma 3.2 we conclude

$$
\begin{equation*}
\left|E_{2}\right| \leq C h^{-\frac{1}{2}}\left(h+k^{\frac{1}{2}}\right)\left(\|w\|_{L^{2}\left(H^{2}(\Omega)\right)}+\left\|w_{t}\right\|_{L^{2}\left(L^{2}(\Omega)\right)}\right)\|u\|_{L^{2}\left(L^{2}(\Gamma)\right)} \tag{4.11}
\end{equation*}
$$

From the estimates 4.2-4.11 we conclude the desired result in the case $f \equiv 0, y_{0} \equiv 0$.

$$
\begin{equation*}
\left\|y-Y_{h k}(u)\right\|_{L^{2}\left(L^{2}(\Omega)\right)} \leq C\left(h^{\frac{1}{2}}+k^{\frac{1}{4}}\right)\|u\|_{L^{2}\left(L^{2}(\Gamma)\right)} \tag{4.12}
\end{equation*}
$$

If $u \equiv 0, f \in L^{2}\left(L^{2}(\Omega)\right)$ and $y_{0} \in L^{2}(\Omega)$ we have $y \in L^{2}\left(H_{0}^{1}(\Omega)\right) \cap H^{1}\left(H^{-1}(\Omega)\right)$ (see, e.g., [25]).
Then it is straightforward to prove that

$$
\begin{equation*}
\left\|y-Y_{h k}(u)\right\|_{L^{2}\left(L^{2}(\Omega)\right)} \leq C\left(h+k^{\frac{1}{2}}\right)\left(\|f\|_{L^{2}\left(L^{2}(\Omega)\right)}+\left\|y_{0}\right\|_{0, \Omega}\right) \tag{4.13}
\end{equation*}
$$

Combining both cases completes the proof.
Now we are in a position to derive our main result of this section: the a priori error estimates for optimal control problems. At first we consider the fully discrete case, i.e., $U_{a d}^{h k}=U_{a d} \cap V_{h k}(\Gamma)$.

Theorem 4.2. Let $(y, u, z) \in L^{2}\left(L^{2}(\Omega)\right) \times L^{2}\left(L^{2}(\Gamma)\right) \times L^{2}\left(H^{2}(\Omega)\right) \cap H^{1}\left(L^{2}(\Omega)\right)$ and $\left(Y_{h k}, U_{h k}, Z_{h k}\right) \in$ $V_{h k} \times U_{a d}^{h k} \times V_{h k}^{0}$ be the solutions of problem 2.5)-2.8) and (3.37)-(3.39), respectively. Then we have the a priori error estimate

$$
\begin{equation*}
\left\|u-U_{h k}\right\|_{L^{2}\left(L^{2}(\Gamma)\right)}+\left\|y-Y_{h k}\right\|_{L^{2}\left(L^{2}(\Omega)\right)} \leq C\left(h^{\frac{1}{2}}+k^{\frac{1}{4}}\right) \tag{4.14}
\end{equation*}
$$

with a constant $C>0$ independent of h and k.
Proof. Let us recall the continuous and discrete optimality conditions

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega}\left(y-y_{d}\right)(y(v)-y) d x d t+\alpha \int_{0}^{T} \int_{\Gamma} u(v-u) d s d t \geq 0, \quad \forall v \in U_{a d} \tag{4.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega}\left(Y_{h k}-y_{d}\right)\left(Y_{h k}\left(v_{h k}\right)-Y_{h k}\right) d x d t+\alpha \int_{0}^{T} \int_{\Gamma} U_{h k}\left(v_{h k}-U_{h k}\right) d s d t \geq 0, \forall v_{h k} \in U_{a d}^{h k} \tag{4.16}
\end{equation*}
$$

Setting $v=U_{h k} \in U_{a d}$ and $v_{h k}=Q(u) \in U_{a d}^{h k}$ we have

$$
\alpha\left\|u-U_{h k}\right\|_{L^{2}\left(L^{2}(\Gamma)\right)}^{2}=\alpha \int_{0}^{T} \int_{\Gamma}\left(u-U_{h k}\right)^{2} d s d t
$$

$$
\begin{aligned}
= & \alpha \int_{0}^{T} \int_{\Gamma} u\left(u-U_{h k}\right) d s d t-\alpha \int_{0}^{T} \int_{\Gamma} U_{h k}\left(u-U_{h k}\right) d s d t \\
\leq & \int_{0}^{T} \int_{\Omega}\left(y-y_{d}\right)\left(y\left(U_{h k}\right)-y\right) d x d t-\alpha \int_{0}^{T} \int_{\Gamma} U_{h k}(u-Q(u)) d s d t \\
& -\alpha \int_{0}^{T} \int_{\Gamma} U_{h k}\left(Q(u)-U_{h k}\right) d s d t \\
\leq & \int_{0}^{T} \int_{\Omega}\left(y-y_{d}\right)\left(y\left(U_{h k}\right)-y\right) d x d t+\int_{0}^{T} \int_{\Omega}\left(Y_{h k}-y_{d}\right)\left(Y_{h k}(Q u)-Y_{h k}\right) d x d t \\
& -\alpha \int_{0}^{T} \int_{\Gamma} U_{h k}(u-Q(u)) d s d t
\end{aligned}
$$

where $y\left(U_{h k}\right) \in L^{2}\left(L^{2}(\Omega)\right)$ with $\left.y\left(U_{h k}\right)\right|_{\Sigma}=U_{h k}$ solves

$$
\begin{array}{r}
\int_{\Omega_{T}} y\left(U_{h k}\right)\left(-v_{t}-\Delta v\right) d x d t=-\int_{\Sigma} U_{h k} \partial_{n} v d s d t+\int_{\Omega_{T}} f v d x d t+\int_{\Omega} y_{0} v(\cdot, 0) d x \\
\forall v \in L^{2}\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \cap H^{1}\left(L^{2}(\Omega)\right) \tag{4.18}
\end{array}
$$

with $v(\cdot, T)=0$, and $Y_{h k}(Q u) \in V_{h k}$ solves

$$
\left\{\begin{align*}
A\left(Y_{h k}(Q u), \Phi\right)=(f, \Phi)_{\Omega_{T}}+\left(y_{0}, \Phi_{+}^{0}\right), & \forall \Phi \in V_{h k}^{0} \tag{4.19}\\
Y_{h k}(Q u)=Q(u) & \text { on } \Sigma
\end{align*}\right.
$$

With Young's inequality we deduce

$$
\begin{align*}
& \int_{0}^{T} \int_{\Omega}\left(y-y_{d}\right)\left(y\left(U_{h k}\right)-y\right) d x d t+\int_{0}^{T} \int_{\Omega}\left(Y_{h k}-y_{d}\right)\left(Y_{h k}(Q u)-Y_{h k}\right) d x d t \\
= & \left(y-y_{d}, y\left(U_{h k}\right)-y\right)_{\Omega_{T}}+\left(Y_{h k}-y_{d}, Y_{h k}(Q u)-Y_{h k}\right)_{\Omega_{T}} \\
= & \left(y-y_{d}, y\left(U_{h k}\right)-y\right)_{\Omega_{T}}+\left(Y_{h k}-y, y-Y_{h k}\right)_{\Omega_{T}} \\
& +\left(Y_{h k}-y, Y_{h k}(Q u)-y\right)_{\Omega_{T}}+\left(y-y_{d}, Y_{h k}(Q u)-Y_{h k}\right)_{\Omega_{T}} \\
= & -\left\|y-Y_{h k}\right\|_{L^{2}\left(L^{2}(\Omega)\right)}^{2}+\left(Y_{h k}-y, Y_{h k}(Q u)-y\right)_{\Omega_{T}} \\
& +\left(y-y_{d}, y\left(U_{h k}\right)-y-\left(Y_{h k}-Y_{h k}(Q u)\right)\right)_{\Omega_{T}} \\
\leq & -\left\|y-Y_{h k}\right\|_{L^{2}\left(L^{2}(\Omega)\right)}^{2}+\left(y-y_{d}, y\left(U_{h k}\right)-y-\left(Y_{h k}-Y_{h k}(Q u)\right)\right)_{\Omega_{T}} \\
& +\sigma\left\|y-Y_{h k}\right\|_{L^{2}\left(L^{2}(\Omega)\right)}^{2}+C(\sigma)\left\|Y_{h k}(Q u)-y\right\|_{L^{2}\left(L^{2}(\Omega)\right)}^{2} . \tag{4.20}
\end{align*}
$$

Taking $\sigma>0$ small enough, we from 4.17-4.20 obtain

$$
\begin{align*}
& \alpha\left\|u-U_{h k}\right\|_{L^{2}\left(L^{2}(\Gamma)\right)}^{2}+\left\|y-Y_{h k}\right\|_{L^{2}\left(L^{2}(\Omega)\right)}^{2} \\
\leq & -\alpha \int_{0}^{T} \int_{\Gamma} U_{h k}(u-Q(u)) d s d t+C\left\|Y_{h k}(Q u)-y\right\|_{L^{2}\left(L^{2}(\Omega)\right)}^{2} \\
& +\left(y-y_{d}, y\left(U_{h k}\right)-y-\left(Y_{h k}-Y_{h k}(Q u)\right)\right)_{\Omega_{T}} \\
:= & I_{1}+I_{2}+I_{3} . \tag{4.21}
\end{align*}
$$

Note that from the standard error estimates for the L^{2}-projection and the regularity of u we have

$$
\begin{equation*}
\|Q(u)-u\|_{L^{2}\left(L^{2}(\Gamma)\right)}^{2} \leq C\left(h+k^{\frac{1}{2}}\right)\left(\|u\|_{L^{2}\left(H^{\frac{1}{2}}(\Gamma)\right)}^{2}+\|u\|_{H^{\frac{1}{4}}\left(L^{2}(\Gamma)\right)}^{2}\right) \tag{4.22}
\end{equation*}
$$

Thus we are led to

$$
\begin{aligned}
\left|I_{1}\right| & =\left|-\alpha \int_{0}^{T} \int_{\Gamma} U_{h k}(u-Q(u)) d s d t\right| \\
& =\left|\alpha \int_{0}^{T} \int_{\Gamma} u(Q(u)-u) d s d t+\alpha \int_{0}^{T} \int_{\Gamma}\left(U_{h k}-u\right)(Q(u)-u) d s d t\right|
\end{aligned}
$$

$$
\begin{align*}
& =\left|\alpha \int_{0}^{T} \int_{\Gamma}(u-Q(u))(Q(u)-u) d s d t+\alpha \int_{0}^{T} \int_{\Gamma}\left(U_{h k}-u\right)(Q(u)-u) d s d t\right| \\
& \leq \sigma\left\|u-U_{h k}\right\|_{L^{2}\left(L^{2}(\Gamma)\right)}^{2}+C\|u-Q(u)\|_{L^{2}\left(L^{2}(\Gamma)\right)}^{2} \\
& \leq \sigma\left\|u-U_{h k}\right\|_{L^{2}\left(L^{2}(\Gamma)\right)}^{2}+C\left(h+k^{\frac{1}{2}}\right)\left(\|u\|_{L^{2}\left(H^{\frac{1}{2}}(\Gamma)\right)}^{2}+\|u\|_{H^{\frac{1}{4}\left(L^{2}(\Gamma)\right)}}^{2}\right) . \tag{4.23}
\end{align*}
$$

Since $Y_{h k}(Q u)$ is the fully discrete finite element approximation of y, the error estimate (4.1) of Theorem 4.1 gives

$$
\begin{equation*}
I_{2}=\left\|Y_{h k}(Q u)-y\right\|_{L^{2}\left(L^{2}(\Omega)\right)}^{2} \leq C\left(h+k^{\frac{1}{2}}\right)\|u\|_{L^{2}\left(L^{2}(\Gamma)\right)}^{2} . \tag{4.24}
\end{equation*}
$$

Then it remains to estimate I_{3}. From (2.2), (2.6), 4.18) and 4.19) we have

$$
\begin{aligned}
I_{3}= & \left(y-y_{d}, y\left(U_{h k}\right)-y-\left(Y_{h k}-Y_{h k}(Q u)\right)\right)_{\Omega_{T}} \\
= & \int_{0}^{T} \int_{\Omega}\left(y\left(U_{h k}\right)-y\right)\left(-\frac{\partial z}{\partial t}-\Delta z\right) d x d t-\int_{0}^{T} \int_{\Omega}\left(Y_{h k}-Y_{h k}(Q u)\right)\left(-\frac{\partial z}{\partial t}-\Delta z\right) d x d t \\
= & \int_{0}^{T} \int_{\Omega}\left(-\left(y\left(U_{h k}\right)-y\right) z_{t}-\left(y\left(U_{h k}\right)-y\right) \Delta z\right) d x d t \\
& +\int_{0}^{T} \int_{\Omega}\left(z_{t}\left(Y_{h k}-Y_{h k}(Q u)\right)-\nabla\left(Y_{h k}-Y_{h k}(Q u)\right) \nabla z\right) d x d t+\int_{0}^{T} \int_{\Gamma}\left(U_{h k}-Q(u)\right) \partial_{n} z \\
= & -\int_{0}^{T} \int_{\Gamma}\left(U_{h k}-u\right) \partial_{n} z d s d t+\int_{0}^{T} \int_{\Gamma}\left(U_{h k}-Q(u)\right) \partial_{n} z d s d t \\
& +\int_{0}^{T} \int_{\Omega}\left(z_{t}\left(Y_{h k}-Y_{h k}(Q u)\right)-\nabla\left(Y_{h k}-Y_{h k}(Q u)\right) \nabla z\right) d x d t \\
(4.25)= & H_{1}+H_{2}+H_{3} .
\end{aligned}
$$

Note that

$$
\begin{aligned}
H_{1}+H_{2} & =-\int_{0}^{T} \int_{\Gamma}\left(U_{h k}-u\right) \partial_{n} z d s d t+\int_{0}^{T} \int_{\Gamma}\left(U_{h k}-Q(u)\right) \partial_{n} z d s d t \\
& =-\int_{0}^{T} \int_{\Gamma}\left(U_{h k}-u-Q\left(U_{h k}-u\right)\right) \partial_{n} z d s d t \\
& =-\int_{0}^{T} \int_{\Gamma}\left(U_{h k}-u-Q\left(U_{h k}-u\right)\right)\left(\partial_{n} z-Q\left(\partial_{n} z\right)\right) d s d t .
\end{aligned}
$$

It is straightforward to estimate

$$
\begin{equation*}
\left|H_{1}+H_{2}\right| \leq C\left(h+k^{\frac{1}{2}}\right)\left(\|z\|_{L^{2}\left(H^{2}(\Omega)\right)}^{2}+\left\|z_{t}\right\|_{L^{2}\left(L^{2}(\Omega)\right)}^{2}\right)+\delta\left\|u-U_{h k}\right\|_{L^{2}\left(L^{2}(\Gamma)\right)}^{2} \tag{4.26}
\end{equation*}
$$

Define $E_{h k}:=Y_{h k}-Y_{h k}(Q u)$. Using the proof technique of Theorem 4.1 we from (3.37), 4.19) obtain

$$
\begin{aligned}
H_{3} & =\int_{0}^{T} \int_{\Omega}\left(z_{t} E_{h k}-\nabla E_{h k} \nabla z\right) d x d t \\
& =\sum_{i=1}^{N}\left(\left(E_{h k}^{i}, z^{i}-z^{i-1}\right)-k\left(\nabla E_{h k}^{i}, \nabla P_{k}^{i} z\right)\right), \\
& =-\sum_{i=1}^{N}\left(\left(E_{h k}^{i}-E_{h k}^{i-1}, z^{i-1}\right)+k\left(\nabla E_{h k}^{i}, \nabla P_{k}^{i} z\right)\right), \\
& =-\sum_{i=1}^{N}\left(E_{h k}^{i}-E_{h k}^{i-1}, z^{i-1}-R_{h} P_{k}^{i} z\right)+k\left(\nabla E_{h k}^{i}, \nabla\left(P_{k}^{i} z-R_{h} P_{k}^{i} z\right)\right) .
\end{aligned}
$$

With the help of projection error estimate and proceeding as in the estimate of 4.4 we have

$$
\left|H_{3}\right| \leq C\left(h+k^{\frac{1}{2}}\right)\left(\|z\|_{L^{2}\left(H^{2}(\Omega)\right)}+\|z\|_{H^{1}\left(L^{2}(\Omega)\right)}\right)\left(\sum_{i=1}^{N}\left\|E_{h k}^{i}-E_{h k}^{i-1}\right\|_{0, \Omega}^{2}+k\left\|E_{h k}^{i}\right\|_{1, \Omega}^{2}\right)^{\frac{1}{2}}
$$

From Lemma 3.2 we conclude

$$
\begin{align*}
\left|H_{3}\right| & \leq C\left(h+k^{\frac{1}{2}}\right)\left(\|z\|_{L^{2}\left(H^{2}(\Omega)\right)}+\left\|z_{t}\right\|_{L^{2}\left(L^{2}(\Omega)\right)}\right) h^{-\frac{1}{2}}\left\|Q(u)-U_{h k}\right\|_{L^{2}\left(L^{2}(\Gamma)\right)} \\
& \leq C\left(h^{\frac{1}{2}}+k^{\frac{1}{4}}\right)\left(\|z\|_{L^{2}\left(H^{2}(\Omega)\right)}+\left\|z_{t}\right\|_{L^{2}\left(L^{2}(\Omega)\right)}\right)\left\|u-U_{h k}\right\|_{L^{2}\left(L^{2}(\Gamma)\right)}, \tag{4.27}
\end{align*}
$$

where we have used the fact that $k=O\left(h^{2}\right)$. Combining above results and using the CauchySchwartz inequality and Young's inequality completes the proof.

If we use variational discretization concept introduced in [19], i.e., $U_{a d}^{h k}=U_{a d}$, we can prove the following error estimates in a similar way.
Theorem 4.3. Let $(y, u, z) \in L^{2}\left(L^{2}(\Omega)\right) \times L^{2}\left(L^{2}(\Gamma)\right) \times L^{2}\left(H^{2}(\Omega)\right) \cap H^{1}\left(L^{2}(\Omega)\right)$ and $\left(Y_{h k}, U_{h k}, Z_{h k}\right) \in$ $V_{h k} \times U_{a d} \times V_{h k}^{0}$ be the solutions of problem (2.5)-(2.8) and (3.37)-(3.39), respectively. Then we have following a priori error estimate

$$
\begin{equation*}
\left\|u-U_{h k}\right\|_{L^{2}\left(L^{2}(\Gamma)\right)}+\left\|y-Y_{h k}\right\|_{L^{2}\left(L^{2}(\Omega)\right)} \leq C\left(h^{\frac{1}{2}}+k^{\frac{1}{4}}\right) \tag{4.28}
\end{equation*}
$$

with a constant $C>0$ independent of h and k.
Proof. In the proof of Theorem 4.2 it suffices to set $v=U_{h k}$ in 4.15 and $v_{h k}=u$ in 4.16 and add the corresponding inequalities. This directly gives

$$
\begin{aligned}
\alpha\left\|u-U_{h k}\right\|_{L^{2}\left(L^{2}(\Gamma)\right)}^{2} \leq & \left(y-y_{d}, y\left(U_{h k}\right)-y\right)_{\Omega_{T}}+\left(Y_{h k}-y_{d}, Y_{h k}(u)-Y_{h k}\right)_{\Omega_{T}} \\
\leq & -\left\|y-Y_{h k}\right\|_{L^{2}\left(L^{2}(\Omega)\right)}^{2}+\left(y-Y_{h k}, y-Y_{h k}(u)\right) \\
& +\left(y-y_{d}, y\left(U_{h k}\right)-y-\left(Y_{h k}-Y_{h k}(u)\right)\right)_{\Omega_{T}} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \alpha\left\|u-U_{h k}\right\|_{L^{2}\left(L^{2}(\Gamma)\right)}^{2}+\left\|y-Y_{h k}\right\|_{L^{2}\left(L^{2}(\Omega)\right)}^{2} \\
\leq & C\left\|y-Y_{h k}(u)\right\|_{L^{2}\left(L^{2}(\Omega)\right)}^{2}+\left(y-y_{d}, y\left(U_{h k}\right)-y-\left(Y_{h k}-Y_{h k}(u)\right)\right)_{\Omega_{T}}
\end{aligned}
$$

The rest of proof is along the lines of the estimation of the term I_{3} in the proof of Theorem 4.2.

Remark 4.4. The error estimates we obtained in Theorem 4.2 and 4.3 reflect the worst cases we can expect for parabolic Dirichlet boundary control problems defined on convex polygonal domains. Since the regularity of parabolic equations depends on the maximum interior angle of the domain, the state admits the improved regularity $y \in L^{s}\left(0, T ; W^{1, p}(\Omega)\right)$ for $s, p \geq 2$ depending on the data and the domain. Moreover, for problems defined on curved domains with smooth boundary, we have higher regularity for the optimal control problems as stated in Theorem 2.4. Improved regularity leads to better approximation properties of the state and thus to better convergence rates, as is reported in our numerical results. For the elliptic case with polygonal boundaries we refer to [7] where an approximation order for the controls of $O\left(h^{1-\frac{1}{p}}\right)$ is derived for some $2<p \leq p_{*}$ with p_{*} depending on the data and the maximum interior angle of the domain. For the error estimates of elliptic Dirichlet boundary control problems defined on curved domains we refer to [8], [10] and [16] for more details.

5. Numerical experiments

In this section we will carry out some numerical experiments to support our theoretical findings. We consider the optimal control problems 1.1-1.2 of tracking type with control set $U_{a d}$ defined as follows

$$
U_{a d}:=\left\{u \in L^{2}\left(0, T ; L^{2}(\Gamma)\right): 0 \leq u(x, t) \leq 1, \quad \text { a.a. }(t, x) \in[0, T] \times \Gamma\right\}
$$

Table 1. Error of control u, state y and adjoint state z for Example 5.1 with fixed time step $N=4096$.

Dof	$\left\\|u-U_{h k}\right\\|_{L^{2}\left(L^{2}(\Gamma)\right)}$	order	$\left\\|y-Y_{h k}\right\\|_{L^{2}\left(L^{2}(\Omega)\right)}$	order	$\left\\|z-Z_{h k}\right\\|_{L^{2}\left(L^{2}(\Omega)\right)}$	order
31	0.026183462176	\backslash	0.007511873255	\backslash	0.001757302801	\backslash
105	0.010011019039	1.5762	0.001941841224	2.2178	0.000449449353	2.2353
385	0.003690706908	1.5360	0.000497530721	2.0961	0.000112846733	2.1273
1473	0.001333520373	1.5173	0.000124966909	2.0593	0.000031576461	1.8984
5761	0.000477713130	1.5054	0.000034179205	1.9012	0.000017536745	0.8625

TABLE 2. Error of control u, state y and adjoint state z for Example 5.1 with fixed mesh $\operatorname{Dof}=22785$.

N	$\left\\|u-U_{h k}\right\\|_{L^{2}\left(L^{2}(\Gamma)\right)}$	order	$\left\\|y-Y_{h k}\right\\|_{L^{2}\left(L^{2}(\Omega)\right)}$	order	$\left\\|z-Z_{h k}\right\\|_{L^{2}\left(L^{2}(\Omega)\right)}$	order
2	0.030398571028	\backslash	0.025518889725	\backslash	0.030398678795	\backslash
4	0.018595263504	0.7091	0.015608671639	0.7092	0.016205193500	0.9076
8	0.011269239439	0.7225	0.008709737707	0.8416	0.008295451927	0.9661
16	0.006647997579	0.7614	0.004633730272	0.9105	0.004196415068	0.9832
32	0.003745029192	0.8279	0.002392405119	0.9537	0.002112281353	0.9904
64	0.002021680314	0.8894	0.001213660252	0.9791	0.001060211691	0.9944
128	0.001064326895	0.9256	0.000610081508	0.9923	0.000531194879	0.9970
256	0.000563475024	0.9175	0.000305197979	0.9993	0.000265839733	0.9987
512	0.000320272343	0.8151	0.000152181075	1.0040	0.000132937121	0.9998

Although we do not consider problems defined on curved domains in our numerical analysis, we include some numerical examples on both polygonal and curved domains using full discretization and variational discretisation of the control. For the numerical approximations of Dirichlet boundary control problems defined on curved domains we refer to [8], [10] and [16].

Example 5.1. The first example is a unconstrained problem defined on the unit square $\Omega=$ $[0,1] \times[0,1], T=1$. The data is chosen as

$$
\begin{aligned}
f & =-\frac{4.0}{\alpha} \sin (\pi t)-\frac{\pi}{\alpha}\left(x_{1}\left(1-x_{1}\right)+x_{2}\left(1-x_{2}\right)\right) \cos (\pi t) \\
y_{d} & =-(2+1.0 / \alpha)\left(x_{1}\left(1-x_{1}\right)+x_{2}\left(1-x_{2}\right)\right) \sin (\pi t)+\pi x_{1} x_{2}\left(1-x_{1}\right)\left(1-x_{2}\right) \cos (\pi t)
\end{aligned}
$$

with $\alpha=1$, so that the optimal solution is given by

$$
\begin{array}{r}
u=-\frac{1}{\alpha}\left(x_{1}\left(1-x_{1}\right)+x_{2}\left(1-x_{2}\right)\right) \sin (\pi t) \\
y=-\frac{1}{\alpha}\left(x_{1}\left(1-x_{1}\right)+x_{2}\left(1-x_{2}\right)\right) \sin (\pi t) \\
\quad z=x_{1} x_{2}\left(1-x_{1}\right)\left(1-x_{2}\right) \sin (\pi t)
\end{array}
$$

At first we consider the error with respect to spatial mesh size h. We fix the time step to $k=\frac{1}{4096}$ and present the errors of optimal control u, state y and adjoint state z in Table 1 . Then we consider the convergence order of error with respect to time step size k. We fixed the space mesh with $D O F=22785$ and present the errors of optimal control u, state y and adjoint state z in Table 2. We observe an order of convergence $\frac{3}{2}$ for the control and order 2 for the state and adjoint state for spatial discretization, and order 1 convergence for both of them for the time discretization. This is the best result we can expect for linear finite elements and $\mathrm{dG}(0)$ approximations.
Example 5.2. The second example is an unconstrained problem defined in a polygonal domain with maxminum interior angle $\omega_{\max }=\frac{5}{6} \pi$ (see [29]), the optimal solution has only reduced regularity.

TABLE 3. Error of control u, state y and adjoint state z for Example 5.2 with fixed time step $N=4096$.

Dof	$\left\\|u-U_{h k}\right\\|_{L^{2}\left(L^{2}(\Gamma)\right)}$	order	$\left\\|y-Y_{h k}\right\\|_{L^{2}\left(L^{2}(\Omega)\right)}$	order	$\left\\|z-Z_{h k}\right\\|_{L^{2}\left(L^{2}(\Omega)\right)}$	order
53	0.021578034106	\backslash	0.006632500684	\backslash	0.002058710969	\backslash
182	0.013947673670	0.7074	0.002850064176	1.3693	0.000543409130	2.1593
671	0.010619549501	0.4179	0.001537497778	0.9460	0.000141300731	2.0647
2573	0.008212461016	0.3825	0.000866946011	0.8525	0.000036700709	2.0060
10073	0.006098931924	0.4360	0.000467699526	0.9044	0.000009388603	1.9978
average	\backslash	0.4859	\backslash	1.0180	\backslash	2.0570

TABLE 4. Error of control u, state y and adjoint state z for Example 5.2 with fixed mesh $\operatorname{Dof}=158561$.

N	$\left\\|u-U_{h k}\right\\|_{L^{2}\left(L^{2}(\Gamma)\right)}$	order	$\left\\|y-Y_{h k}\right\\|_{L^{2}\left(L^{2}(\Omega)\right)}$	order	$\left\\|z-Z_{h k}\right\\|_{L^{2}\left(L^{2}(\Omega)\right)}$	order
4	0.167327134403	\backslash	0.088804542387	\backslash	0.020552016247	\backslash
8	0.107460725354	0.6389	0.051579167598	0.7838	0.013212388713	0.6374
16	0.070415333055	0.6098	0.030045232355	0.7797	0.007759076126	0.7679
32	0.044502497910	0.6620	0.016906812048	0.8295	0.004258097400	0.8657
64	0.026671216305	0.7386	0.009227011579	0.8737	0.002231368045	0.9323
average	\backslash	0.6623	\backslash	0.8167	\backslash	0.8008

The data is chosen as

$$
y_{d}= \begin{cases}t^{2} g(x) & 0 \leq t<0.5 \\ -t^{2} g(x) & 0.5 \leq t \leq 1\end{cases}
$$

with $f=1, g=\frac{1}{\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{1}{3}}}$.
There is no exact solution for this example. We take the solution with $k=\frac{1}{4096}$ and $\operatorname{Dof}=$ 158561 in the spatial discretization as reference solution. Similarly as in the previous example, we investigate the convergence order with respect to the spatial and time discretization separately. We in Table 3 can observe nearly $O\left(h^{\frac{1}{2}}\right)$-order convergence for the spatial discretization of the control. This is in agreement with our theoretical results. The convergence order for the time discretization reported in Table 4 is higher than $O\left(k^{\frac{1}{4}}\right)$ which is caused by the higher regularity of the state w.r.t time.

Example 5.3. This example is a control constrained problem defined in a smooth domain (see [10]). The domain is the unit circle $\Omega=B(0,1)$ with center at zero and radius $1, T=1$. The data is presented in polar coordinates. We set

$$
f(r, \theta ; t)=-6 r \max \left(0, \cos \theta \sin ^{3}(\pi t)\right)-\frac{\pi}{2} \sin (\pi t) r^{3} \max \left(0, \cos ^{3} \theta\right)
$$

$y_{d}(r, \theta ; t)=\left(7 r^{2} \cos ^{2} \theta+6 r^{2}-6 r\right) \cos \theta \sin ^{3}(\pi t)+y(r, \theta)-\frac{\pi}{2} \sin (\pi t) r^{3}(r-1) \max \left(0, \cos ^{3} \theta\right)$,
so that the optimal solution is given by

$$
\begin{array}{r}
u(r, \theta ; t)=\max \left(0, \cos ^{3} \theta \sin ^{3}(\pi t)\right) \\
y(r, \theta ; t)=r^{3} \max \left(0, \cos ^{3} \theta \sin ^{3}(\pi t)\right) \\
z(r, \theta ; t)=r^{3}(r-1) \cos ^{3} \theta \sin ^{3}(\pi t)
\end{array}
$$

We set $\alpha=1$.
First we consider the error with respect to spatial mesh size h. We fix the time step $k=\frac{1}{4096}$ and present the error of the optimal control u, the state y and the adjoint state z in Table 5 with

TABLE 5. Error of control u, state y and adjoint state z for Example 5.3 with fixed time step $N=4096$ and full discretisation.

Dof	$\left\\|u-U_{h k}\right\\|_{L^{2}\left(L^{2}(\Gamma)\right)}$	order	$\left\\|y-Y_{h k}\right\\|_{L^{2}\left(L^{2}(\Omega)\right)}$	order	$\left\\|z-Z_{h k}\right\\|_{L^{2}\left(L^{2}(\Omega)\right)}$	order
25	0.080438933409	\backslash	0.050499450897	\backslash	0.027537485412	\backslash
81	0.052462945814	0.6166	0.018390173000	1.4573	0.009386608073	1.5527
289	0.025693482841	1.0299	0.005955737135	1.6266	0.002546961550	1.8818
1089	0.010836772478	1.2455	0.001775580269	1.7460	0.000654383533	1.9606
4225	0.004214559039	1.3625	0.000499943184	1.8285	0.000180980668	1.8543

Table 6. Error of control u, state y and adjoint state z for Example 5.3 with fixed time step $N=4096$ and variational discretisation.

$D o f$	$\left\\|u-U_{h k}\right\\|_{L^{2}\left(L^{2}(\Gamma)\right)}$	order	$\left\\|y-Y_{h k}\right\\|_{L^{2}\left(L^{2}(\Omega)\right)}$	order	$\left\\|z-Z_{h k}\right\\|_{L^{2}\left(L^{2}(\Omega)\right)}$	order
25	0.080080823101	\backslash	0.050452860374	\backslash	0.027529915188	\backslash
81	0.052889327427	0.5985	0.018972070528	1.4111	0.009398192721	1.5506
289	0.025433412568	1.0563	0.005947170731	1.6736	0.002550336513	1.8817
1089	0.010686498089	1.2509	0.001738641208	1.7742	0.000652324545	1.9670
4225	0.004164564394	1.3596	0.000485052340	1.8417	0.000167939460	1.9576

TABLE 7. Error of control u, state y and adjoint state z for Example 5.3 with fixed mesh $\operatorname{Dof}=16641$.

N	$\left\\|u-U_{h k}\right\\|_{L^{2}\left(L^{2}(\Gamma)\right)}$	order	$\left\\|y-Y_{h k}\right\\|_{L^{2}\left(L^{2}(\Omega)\right)}$	order	$\left\\|z-Z_{h k}\right\\|_{L^{2}\left(L^{2}(\Omega)\right)}$	order
2	0.018744907559	\backslash	0.027982932366	\backslash	0.071397322443	\backslash
4	0.024808047492	-0.4043	0.020226462340	0.4683	0.034454664183	1.0512
8	0.013491456808	0.8788	0.012915023887	0.6472	0.019032557741	0.8562
16	0.006930734029	0.9610	0.007288727815	0.8253	0.009953295271	0.9352
32	0.003529211695	0.9737	0.003870945517	0.9130	0.005085050476	0.9689
64	0.001839283189	0.9402	0.001994283984	0.9568	0.002569466386	0.9848
128	0.001046515255	0.8136	0.001012041776	0.9786	0.001291388317	0.9925
256	0.000720808717	0.5379	0.000510064738	0.9885	0.000647313735	0.9964

full discretisation, and in Table 6 with variational discretisation. We as expected observe that both approaches deliver similar results. Then we consider the convergence order of the time error. We fix the space mesh with $D O F=16641$ and present the error of the optimal control u, the state y and the adjoint state z in Table 7. We observe higher order convergence w.r.t. the spatial discretization for both the control u and the state y.

Acknowledgments

The first author would like to thank the support of Alexander von Humboldt Foundation during the stay in University of Hamburg, Germany where this work was initialized. This work was supported by the National Basic Research Program of China under grant 2012CB821204, the National Nature Science Foundation of China under grant 11201464 and 91330115 , and the scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry. The second author gratefully acknowledges the support of the DFG Priority Program 1253 entitled "Optimization with Partial Differential Equations".

References

[1] T. Apel and T. G. Flaig. Crank-nicolson schemes for optimal control problems with evolution equations. SIAM Journal on Numerical Analysis, 50:1484-1512, 2012.
[2] N. Arada and J. P. Raymond. Dirichlet boundary control of semilinear parabolic equations. part 1: problems with no state constraints. Appl. Math. Optim., 45:125-143, 2002.
[3] F. B. Belgacem, C. Bernardi, and H. E. Fekih. Dirichlet boundary control for a parabolic equation with a final observation i: A space-time mixed formulation and penalization. Asymptotic Analysis, 71:101-121, 2011.
[4] M. Berggren. Approximation of very weak solutions to boundary value problems. SIAM J. Numer. Anal., 42:860-877, 2004.
[5] J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of preconditioners for elliptic problems by substructing i. Math. Comput., 47:103-134, 1986.
[6] E. Casas, M. Mateos, and J. P. Raymond. Penalization of dirichlet optimal control problems. ESAIM Control Optim. Calc. Var., 15:782-809, 2009.
[7] E. Casas and J. P. Raymond. Error estimates for the numerical approximation of dirichlet boundary control for semilinear elliptic equations. SIAM J. Control Optim., 45:1586-1611, 2006.
[8] E. Casas and J. Sokolowski. Approximation of boundary control problems on curved domains. SIAM J. Control Optim., 48:3746-3780, 2010.
[9] P. G. Ciarlet. The Finite Element Methods for Elliptic Problems. North-Holland, 1978.
[10] K. Deckelnick, A. Günther, and M. Hinze. Finite element approximation of dirichlet boundary control for elliptic pdes on two- and three-dimensional curved domains. SIAM J. Control Optim., 48:2798-2819, 2009.
[11] D. A. French and J. T. King. Approximation of an elliptic control problem by the finite element method. Numer. Funct. Anal. Optim., 12:299-314, 1991.
[12] D. A. French and J. T. King. Analysis of a robust finite element approximation for a parabolic equation with rough boundary data. Math. Comput., 60:79-104, 1993.
[13] A. V. Fursikov, M. D. Gunzburger, and L. S. Hou. Boundary value problems and optimal boundary control for the navier-stokes systems: The two-dimensional case. SIAM J. Control Optim., 36:852-894, 1998.
[14] T. Geveci. On the approximation of the solution of an optimal control problem governed by an elliptic equation. RAIRO Anal. Numer., 13:313-328, 1979.
[15] W. Gong and N. N. Yan. A posteriori error estimate for boundary control problems governed by the parabolic partial differential equations. J. Comput. Math., 27:68-88, 2009.
[16] W. Gong and N. N. Yan. Mixed finite element method for dirichlet boundary control problem governed by elliptic pdes. SIAM J. Control Optim., 49:984-1014, 2011.
[17] P. Grisvard. Singularities in Boundary Value Problems. Springer-Verlag, 1992.
[18] M. D. Gunzburger and L. S. Hou. Treating inhomogeneous essential boundary conditions in finite element methods and the calculation of boundary stresses. SIAM J. Numer. Anal., 29:390-424, 1992.
[19] M. Hinze. A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl., 30:45-63, 2005.
[20] M. Hinze and K. Kunisch. Second order methods for boundary control of the instationary navier-stokes system. ZAMM Z. Angew. Math. Mech., 84:171-187, 2004.
[21] M. Hinze and U. Matthes. A note on variational discretization of neumann boundary control problems. Control \& Cybernetics, 38:577-591, 2009.
[22] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE Constraints, Mathematical Modelling: Theory and Applications, Volume 23. Springer, 2009.
[23] K. Kunisch and B. Vexler. Constrained dirichlet boundary control in l^{2} for a class of evolution equations. SIAM J. Control Optim., 46:1726-1753, 2007.
[24] J. L. Lions. Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, 1971.
[25] J. L. Lions and E. Magenes. Non-Homogeneous Boundary Value Problems and Applications. Springer-Verlag, Berlin, 1972.
[26] W. B. Liu, H. P. Ma, T. Tang, and N. N. Yan. A posteriori error estimates for discontinuous galerkin timestepping method for optimal control problems governed by parabolic equations. SIAM J. Numer. Anal., 42:1032-1061, 2004.
[27] W. B. Liu and N. N. Yan. A posteriori error estimates for optimal control problems governed by parabolic equations. Numer. Math., 93:497-521, 2003.
[28] W. B. Liu and N. N. Yan. Adaptive finite element methods for optimal control governed by PDEs. Science press, Beijing, 2008.
[29] S. May, R. Rannacher, and B. Vexler. Error analysis fo a finite element approximation of elliptic dirichlet boundary control problems. SIAM J. Control Optim., 51(3):2585-2611, 2013.
[30] D. Meidner and B. Vexler. A priori error estimates for space-time finite element discretization of parabolic optimal control problems. part i: problems without control constraints. SIAM J. Control Optim., 47(3):11501177, 2008.
[31] D. Meidner and B. Vexler. A priori error estimates for space-time finite element discretization of parabolic optimal control problems. part ii: problems with control constraints. SIAM J. Control Optim., 47(3):13011329, 2008.
[32] D. Meidner and B. Vexler. A priori error analysis of the petrov-galerkin crank-nicolson scheme for parabolic optimal control problems. SIAM J. Control Optim., 49(5):2183-2211, 2011.
[33] L. R. Scott and S. Y. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp., 54(190):483-493, 1990.
[34] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin, 2006.
[35] B. Vexler. Finite element approximation of elliptic dirichlet optimal control problems. Numer. Funct. Anal. Optim., 28:957-973, 2007.
[36] N. von Daniels, M. Hinze, and M. Vierling. Crank-nicolson time stepping and variational discretization of control-constrained parabolic optimal control. Technical report, Hamburger Beiträge zur Angewandten Mathematik 2014-04, 2014.
[37] R. Winther. Error estimates for a galerkin approximation of a parabolic control problem. Ann. Math. Pura App., 117(4):173-206, 1978.

[^0]: Date: October 2, 2014.
 \dagger LSEC, Institute of Computational Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China. Email: wgong@lsec.cc.ac.cn.

 * Schwerpunkt Optimierung und Approximation, Universität Hamburg, Bundesstrasse 55, 20146, Hamburg, Germany. Email: michael.hinze@uni-hamburg.de.
 \diamond School of Mathematics Sciences, Shandong Normal University, 250014, Ji'nan, China. Email: zzj534@amss.ac.cn.

