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Abstract

This work is motivated by the need to estimate the probability of rare events in
engineering systems with random inputs. We introduce a multilevel estimator which
is based on and generalises the idea of subset simulation. The novel estimator em-
ploys a hierarchy of approximations to the system response computed with different
resolutions. This leads to reduced computational costs compared to subset simula-
tion. We study the statistical properties and implementation details of the proposed
estimator. Markov chain Monte Carlo runs are required within the estimator and
we demonstrate that the nestedness of the associated multilevel failure domains en-
ables a perfect MCMC simulation without burn-in. We show that nestedness follows
from certain simple one-dimensional failure domains. In high dimensions we propose
a modification of the multilevel estimator which uses level-dependent stochastic input
dimensions. We report on numerical experiments in 1D and 2D physical space; in
particular, we estimate rare events arising from a Darcy flow problem with random
permeability.

Keywords: reliability, subset simulation, Markov chain Monte Carlo, random porous
media, fluid flow, breakthrough time

Mathematics Subject Classification: 65N30, 65C05, 65C40, 60H35, 35R60

1 Introduction

The estimation of failure probabilities is a fundamental problem in reliability analysis and
risk management of engineering systems with uncertain inputs. Specifically, we focus on
systems described by partial differential equations (PDEs) with random coefficients. We
are interested in the estimation of small failure probabilities associated with rare events.

Consider, for example, the simulation of highly uncertain subsurface flows for the
safety assessment of proposed long-term radioactive waste repositories. In this problem it
is important to study the time it takes radionuclides, in case of an accidental damage of
the waste repository, to travel from the repository to the boundary of a well-defined safety
zone. Failure occurs if the travel time of the radionuclides falls below a certain threshold.
We are interested in short travel times after which the radionuclides could still be highly
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active and harmful would they get back to the human environment. The associated failure
probability will be small; the event of interest occurs infrequently, but could have a high
impact.

The permeability of the random porous medium is often modeled as a correlated, log-
normal random field; this is consistent with field data (see e.g. [23, 31]). If the correlation
length is small then the input sample space is very high-dimensional. To date only Monte
Carlo (MC) based approaches achieve convergence independently of the dimension of the
input space. Unfortunately, the number of required samples for crude MC is proportional
to the inverse of the failure probability. Hence a large number of samples is needed to
estimate small probabilities with Monte Carlo. Moreover, one sample of the travel time
requires the solution of discretised groundwater flow and transport equations in 2D or 3D
physical space. This yields a very high total computational cost of Monte Carlo which
might exceed a given computational budget.

Many alternatives to crude Monte Carlo have been developed, and we will not give a
complete overview here. We refer to [40, 51, 55] for a discussion of existing methods. A
straightforward idea is to construct an approximation or surrogate for the system output
or limit state function; this gives an approximation to the probability of failure. For
example, the well known FORM/SORM methods are based on first/second order Taylor
series expansions of the limit-state surface at the design point [36]. In high dimensions
this approach can be expensive since it requires the solution of an optimisation problem.
Moreover, the approximation error can be considerably large [55, 64].

Hybrid approaches, combining Monte Carlo with surrogates, can reduce the compu-
tational costs without compromising the accuracy. For example, surrogates based on
generalised polynomial chaos are studied in [41, 42, 43]. Specifically, [41] proposes a
surrogate-based importance sampling algorithm which allows the estimation of very small
failure probabilities. However, polynomial chaos approaches suffer from the curse of di-
mensionality and are not really practical for very high-dimensional input sample spaces.
Hybrid and goal-oriented adaptive reduced basis methods are investigated in [17]; the
benchmark studies presented in this work are associated with relatively large failure prob-
abilities. In [21] a surrogate model based on kriging is combined with importance sampling;
an unbiased estimate of the failure probability is derived that solves efficiently problems
with up to 100 random variables.

Another option is to enhance the efficiency of Monte Carlo by variance reduction.
A standard technique for this is importance sampling (IS), however, its success depends
highly on the choice of an appropriate IS density. Typical choices are unimodal sam-
pling densities based on results from a preliminary FORM analysis [60] or from an initial
sampling step [12]. Alternatively, multimodal densities have also been applied [6, 39].
However, the choice of a suitable IS density for application to high dimensional problems
is not straightforward [7, 35]. We mention a recent suggestion in [44] in the context of
material failure where the underlying PDE model is identical to the Darcy flow problem
with a lognormal coefficient.

Recently, a number of advanced variance reduction schemes for application in high di-
mensions have been developed. These include subset simulation [1], line sampling [38] and
asymptotic sampling [13]. Among these, subset simulation has been shown in numerous
applications to be a robust technique for accurate and efficient estimation of rare events
in high dimensions. It is now widely used for reliability analyses and estimation of failure
probabilities, e.g. in earthquake engineering [2, 3], geotechnical engineering [3, 53, 65], me-
chanical engineering and fatigue [9], spacecraft engineering [54], and nuclear engineering
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[66]. An enhanced version of the method was proposed in [67]. Moreover, subset simu-
lation has been combined with surrogates based on machine learning theory in [11, 50].
In the statistics and probability theory literature the idea of subset simulation is known
under the names splitting and sequential Monte Carlo. The earliest reference is [34] where
a splitting method is used to estimate dynamic rare events associated with neutron trans-
missions. More recently, a generalised splitting method for dynamic as well as steady-state
simulations has been proposed and analysed in [10]. Sequential Monte Carlo estimators
for rare events are proposed and investigated in [14, 33, 48].

Subset simulation relies on a decomposition of the sample space into a sequence of
nested, partial failure domains. The expensive Monte Carlo estimator is then replaced by
a product of conditional estimators with respect to the partial failure domains. Variance
reduction, and thus a reduction of the total number of samples, is achieved by conditioning.
However, the physical discretisation of the desired system response, e.g. by finite elements,
is fixed in each failure domain and the cost of the conditional sampling is still large. The
novel contribution of this work is a multilevel approach to subset simulation. We define
more flexible failure domains by using system responses computed on a hierarchy of finite
element discretisations; this reduces the cost per sample.

The idea is inspired by multilevel Monte Carlo (MLMC) which has been introduced by
Heinrich [30] for high-dimensional parameter-dependent integrals, and has been extended
by Giles [26] for stochastic differential equations. More recently it has been used to
estimate the statistics of output quantities arising from PDEs with random inputs, see e.g.
the pioneering works [8, 18]. In further developments MLMC is used to approximate the
distribution function and density of univariate random variables [25] and to estimate failure
probabilities [22]. These works, however, are not concerned with rare events. Moreover, the
variance reduction is achieved by the estimation of certain corrections, not by conditioning.

The success of MLMC is based on a simple principle for tackling complex, computing-
intensive systems with random inputs. First, we decompose the original problem into a
set of subproblems each of which has (i) a smaller variance, and (ii) a smaller cost per
sample. Then, we combine the solutions of the individual subproblems to get a solution of
the original problem. Crucially, the total cost to solve all subproblems is in general much
smaller compared to the original problem because the reduced variance leads to a smaller
number of samples, and because of the reduced cost per sample. MLMC as described e.g.
in [8, 18] is not the only possibility to achieve this. We mention [37] where the law of total
expectation is used to combine inexpensive models to estimate the statistics of expensive
outputs. Subset simulation satisfies property (i); it is a variance reduction technique. The
novel multilevel estimator generalises subset simulation; it satisfies properties (i) and (ii).
It can be used in a variety of situations where it is possible to compute the response of
interest with different resolutions or models. In this study we focus on system responses
arising from PDEs with random coefficients.

The paper is organised as follows. In §2 we describe the problem of rare event esti-
mation and review subset simulation. We introduce the multilevel estimator in §3 and
discuss implementation, computational cost, and statistical properties. In §4 we study the
nestedness of the multilevel failure domains, and in §5 we modify the multilevel estima-
tor for level-dependent stochastic input dimensions. In §6 we test the implementation of
the estimator for a 2D flow cell problem with random permeability. We summarise the
discussion in §7.
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2 Background

2.1 Problem setting

We consider some engineering system or model subject to uncertain inputs. Specifically,
let θ = (θm)Mm=1 ⊆ R

M denote the random input vector of the system with associated
probability density function (PDF) f . Let Q = Q(θ) ∈ R denote the (scalar) system
response of interest. For example, the model response could be the displacement of the tip
of a cantilever beam with random Young’s modulus. Another example is the breakthrough
time of particles in subsurface flows in random porous media. Note that Q is often given
implicitly as functional of the solution of a partial differential equation (PDE) subject to
certain initial and/or boundary conditions. The uncertainty in the system inputs prop-
agates to the response and Q is uncertain as well. We are thus interested in statistical
properties of Q.

To carry out a reliability analysis we consider failure events associated with Q that
occur for some θ ∈ F . The set F ⊆ R

M in the input parameter space is termed failure
domain. Formally, we assume that we may parameterise F using a so called limit state
function G : RM → R. We define

F := {θ ∈ R
M : G(θ) ≤ 0} . (2.1)

For example, G(θ) = c−Q(θ) describes the failure event Q ≥ c, i.e. the system response
exceeds the threshold c. We now wish to calculate the probability of failure

PF := Prob(θ ∈ F ) =

∫
θ∈RM

IF (θ)f(θ)dθ, (2.2)

where IF denotes the indicator function: IF (θ) = 1 if θ ∈ F and IF (θ) = 0 otherwise.
For brevity we will write Prob(F ) in place of Prob(θ ∈ F ) in the remainder of this paper.

In most practical applications the geometry of F is complicated and/or the dimension
of the input parameter space is very high. Thus closed form expressions for PF are not
available in general and an estimator for PF must be used. Moreover, the evaluation of
the indicator function IF , or, equivalently, the limit state function G, requires the system
response Q(θ) which is usually unavailable in closed form as well. Instead, we assume that
we can approximate Q by Qh. The parameter h > 0 refers to a certain approximation
level, e.g. the mesh size of a finite element discretisation or the time step size used to
obtain Qh. This leads us to approximate the limit state function G by Gh, the associated
failure region F in (2.1) by

Fh := {θ ∈ R
M : Gh(θ) ≤ 0}, (2.3)

and the probability of failure PF by PFh
, respectively. In summary, our goal is to estimate

PF,h := Prob(Fh) =

∫
θ∈RM

IFh
(θ)f(θ)dθ . (2.4)

Remark 2.1 A failure event described by a limit-state function of the form G(θ) =
c−Q(θ) is termed component failure event, because it describes a particular failure mode
of the system. It is also possible to consider more complex failure events which are inter-
sections and/or unions of component failure events. Such failure events can be expressed
without loss of generality with a single limit-state function G within the framework of
(2.1). We refer to [1, §5.2] for the construction of appropriate limit state functions.
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2.2 Monte Carlo estimator

The standard Monte Carlo (MC) estimator for PF,h is

P̂MC
F,h :=

1

N

N∑
i=1

IFh
(θ(i)), (2.5)

where {θ(i)}Ni=1 are independent, identically distributed (i.i.d.) samples of the random
input vector θ. This approach is flexible and easy to implement even for complex engi-
neering systems. It requires N independent system analyses (to obtain Qh) that can be
carried out in parallel. Subsequently, PF,h is approximated by the sample mean of the
indicator function IFh

evaluated at the input samples.

The MC estimator is unbiased, that is, E[P̂MC
F,h ] = PF,h, and its variance is given by

V[P̂MC
F,h ] = N−1

V[IFh
] = N−1PF,h(1− PF,h) .

A typical relative error measure for rare event estimators is δ, the so called coefficient of
variation (c.o.v.). δ is the ratio of standard deviation and expected value of an estimator.
For the MC estimator in (2.5) we obtain

δ2(P̂MC
F,h ) =

V[P̂MC
F,h ]

E[P̂MC
F,h ]2

=
1− PF,h

NPF,h
.

To achieve δ(P̂MC
F,h ) < ε for a given tolerance ε > 0 requires N > ε−2P−1

F,h(1−PF,h) system
analyses. As is typical for MC estimators, the number of required samples N depends on
ε−2. Much more problematic is the fact that it also depends on the inverse P−1

F,h which
will be very large if the failure probability PF,h � 1 is small. In our setting where a
single system analysis requires the solution of a discretised PDE (possibly in three space
dimensions on a fine FE mesh) the standard Monte Carlo estimator for PF,h is thus too
expensive.

2.3 Subset simulation

To overcome the limits of Monte Carlo we employ subset simulation. We discuss the basic
idea and implementation; for more details we refer to the recent monograph [4]. We will
see that subset simulation is the single-level version of the multilevel estimator in §3.

2.3.1 Basic idea

Consider the task of estimating the failure probability PF in (2.2) associated with a failure
domain F . If PF is small then the MC estimator requires an excessive amount of samples
since the c.o.v. of the estimator is very large (cf. §2.2). To overcome this obstacle we
decompose the original problem into a sequence of subproblems each of which has a smaller
c.o.v. The key idea is to express the failure domain F as intersection of L > 0 intermediate
or partial failure domains

F =

L⋂
�=1

F� .
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Importantly, we assume that F1 ⊃ F2 ⊃ · · · ⊃ FL−1 ⊃ FL = F , i.e. the partial failure
domains are nested. It is easy to see that PF can then be written as product of conditional
probabilities

PF = Prob(FL) = Prob(F1)
L∏

�=2

Prob(F�|F�−1) . (2.6)

Crucially, we select the failure levels for the limit state function G in (2.1) adaptively
and define the intermediate failure domains such that Prob(F1) and Prob(F�|F�−1), � =
2, . . . , L− 1 are much larger than Prob(F ). This reduces the number of samples substan-
tially. Consider, e.g., the intermediate failure domain F1. Intuitively, since F1 is a larger
region in the parameter space compared to FL = F it is easier to find failure points in
F1. Hence we need only a small number of system analyses to achieve δ(P̂MC

F1
) < ε for a

given accuracy ε > 0. A similar argument applies to the conditional failure probabilities
in (2.6).

2.3.2 Implementation

Consider the factorisation of PF in (2.6). The first, unconditional failure probability
Prob(F1) is estimated by Monte Carlo. The estimator P̂MC

F1
is defined analogously to (2.5).

The subsequent failure probabilities Prob(F�|F�−1) require input samples conditioned on
F�−1 with associated conditional PDFs

f(·|F�−1) =
f(·)IF�−1

(·)
Prob(F�−1)

, � = 2, . . . , L . (2.7)

A Monte Carlo estimator for Prob(F�|F�−1) based on rejection sampling could be used.
However, this approach is in general not efficient because the acceptance probability of
rejection sampling is proportional to Prob(F�−1). Given that we have found a failure point
θ ∈ F�−1 it is reasonable to expect that more failure points are located nearby. Therefore
we use an estimator based on Markov Chain Monte Carlo (MCMC) to obtain conditional
samples. The estimator for Prob(F�|F�−1) is then defined as follows,

P̂MCMC
F�|F�−1

:=
1

N

N∑
i=1

IF�
(θ(i)), (2.8)

where θ(i) ∼ f(·|F�−1), i = 1, . . . , N are generated by a Markov chain whose stationary
distribution is equal to the desired conditional distribution.

The MCMC samples are in general not statistically independent. The crucial compo-
nent of MCMC is the transition from the current state θ(n) to the next state θ(n+1) of the
chain. A standard implementation of this transition is given by the Metropolis-Hastings
(M-H) algorithm [29, 47, 57]. There the transition θ(n) → θ(n+1) is performed in two steps.
Using a proposal distribution based on θ(n) a candidate θ′ for the next state is proposed.
Then the candidate is either accepted or rejected with a certain acceptance probability
α = α(θ,θ′) where α ∈ [0, 1]. Importantly, α is chosen such that the transitional PDF
satisfies a reversibility condition. This ensures that the stationary distribution of the chain
is equal to the desired target distribution.

For the remainder of this paper we make the following assumption on the random
input data.
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A1. The components of θ ∈ R
M are statistically independent, standard Gaussian random

variables.

This implies f(θ) ≡ ϕ(θ), where ϕ denotes the M -variate, standard Gaussian proba-
bility density function.

Remark 2.2 Assumption A1 is not very restrictive since the stochastic inputs could be
functions of some independent Gaussian random variables or Gaussian processes. In other
situations it might be possible to represent a vector ξ ∈ R

M of uncorrelated non-Gaussian
random inputs as transformations ξn = ξn(θ1, . . . , θM ), n = 1, . . . ,M , of independent
Gaussian random variables {θm}Mm=1. A standard technique for this is the Rosenblatt
transformation [58].

For use in subset simulation we wish to generate conditional samples θ(i) ∼ ϕ(·|F�−1).
A Metropolis-Hastings-type transition for sampling from ϕ(·|F�−1) can be done in two
steps. First a transition with stationary distribution ϕ(·) is performed with acceptance
probability α̃ that depends on the choice of the proposal distribution. Then, the sample
is accepted if it lies in F�−1, otherwise it is rejected. Hence the combined acceptance
probability of the two steps is α(θ,θ′) = α̃(θ,θ′) · IF�−1

(θ′). In [1], the first step of the
MCMC transition is performed by a component-wise Metropolis-Hastings that generates
each candidate state component-by-component. The acceptance probability of each com-
ponent α̃m depends on the proposal distribution. However, because of the component-wise
generation, the probability of having repeated candidates simultaneously in all components
decreases geometrically with increasing number of random variables M . Hence, this ap-
proach is suitable for application to high dimensional problems. Here, we perform the
first step using a specific proposal density which greatly simplifies the computation. The
implementation is summarised in Algorithm 1.

Algorithm 1 M-H type MCMC for sampling from the target distribution ϕ(·|F�−1)

Choose a correlation parameter γ ∈ [0, 1].
Given a seed θ(1), repeat for n = 1, 2, . . . , :

(1) Generate a candidate θ′

For i = 1, . . . ,M : θ′i = γθ
(n)
i +

√
1− γ2Z, Z ∼ N(0, 1)

(2) Accept or reject θ′

θ(n+1) =

⎧⎨
⎩θ′, θ′ ∈ F�−1 ,

θ(n), θ′ �∈ F�−1 .

It can be shown that under Assumption A1 the acceptance probability for θ′ in part
(1) of Algorithm 1 is α̃ = 1. To put it another way, the (Gaussian) prior distribution is
preserved under the proposal. Therefore we only need to check if θ′ ∈ F�−1 in part (2)
of Algorithm 1. An additional acceptance/rejection step in part (1) based on α̃ is not
required. Algorithm 1 is proposed in [52] for use with subset simulation. The correlation
parameter γ controls the statistical dependence of consecutive states of the Markov chain.
We mention that it is possible to choose γ adaptively to avoid a large rejection rate of
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candidates or a large correlation between the states of the Markov chain (see [52] for
details). In our computations we fix γ = 0.8.

Now we define the subset simulation estimator for the failure probability PF . Recall
that P̂MCMC

F�|F�−1
denotes the MCMC estimator for Prob(F�|F�−1), � = 2, . . . , L, as defined in

(2.8). Then

P̂SubS
F := P̂MC

F1

L∏
�=2

P̂MCMC
F�|F�−1

(2.9)

is the estimator for PF generated by subset simulation. Note that the intermediate failure
domains can be defined analogously to F in (2.1). Precisely, let

F� := {θ ∈ R
M : G(θ) ≤ c�}, � = 1, . . . , L, (2.10)

where, importantly, c1 > c2 > · · · > cL−1 > cL = 0 to ensure the nestedness of
F1, F2, . . . , FL. Moreover, by choosing the sequence c1, . . . , cL−1 “on the fly” we can guar-
antee that P̂MC

F1
= p0 and P̂MCMC

F�|F�−1
= p0, � = 2, . . . , L− 1 for some fixed 0 < p0 < 1. The

expression for the estimate of PF then simplifies to

P̂SubS
F = pL−1

0 P̂MCMC
FL|FL−1

. (2.11)

A typical value used in engineering applications is p0 = 0.1. In this case, the estimation
of a failure probability PF ≈ 10−6 by subset simulation would require L ≈ 6 intermediate
failure domains/levels. We summarise the (standard) subset simulation in Algorithm 2.

Algorithm 2 Subset simulation

Input: p0, N

(1) Generate N i.i.d. samples θ(i) ∼ ϕ(·) for use in Monte Carlo.

Determine a failure level c1 > 0 s.t. P̂MC
F1

= p0.

(2) For � = 2, . . . , L:

Use the N0 failure points in F�−1 as seeds and generate N − N0 samples θ(i) ∼
ϕ(·|F�−1) with Algorithm 1.

If � < L, determine a failure level c� > 0 s.t. P̂MCMC
F�|F�−1

= p0.

(3) Evaluate P̂MCMC
FL|FL−1

as in (2.8) and return P̂SubS
F in (2.11).

Remark 2.3 Typically, since not all seeds follow the desired target distribution, a burn-in
of the Markov chains is required. By this we mean that the first few samples generated by
the chain are not used for estimation. However, thanks to the nestedness of the (intermedi-
ate) failure domains the seeds in part (2) of Algorithm 2 are already distributed according
to the target distribution. Hence all subsequent samples generated by the Markov chain
follow the target distribution, and it is justified to write θ(i) ∼ ϕ(·|F�−1) in part (2) of
Algorithm 2. A burn-in of the chains is not needed. This situation is termed perfect
simulation in the literature, see e.g. [57, §8.6]. In the context of subset simulation this is
discussed in [5, 67] and [4, §5].

Remark 2.4 Replacing F by Fh in (2.3) it is straightforward to use subset simulation
for the estimation of PFh

≈ PF in (2.4).
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3 Multilevel estimator

Consider the estimation of the failure probability PF,h in (2.4) by subset simulation as
discussed in §2.3. Recall that we approximate the system response Q by Qh. The limit
state function G and the partial failure domains F� in (2.10) then depend on h as well,
and we would work with the single-level failure domains

FSL
� := {θ ∈ R

M : Gh(θ) ≤ c�}, � = 1, . . . , L. (3.1)

Again, we assume that c1 > c2 > · · · > cL−1 > cL = 0 holds for the sequence of failure
levels. This implies nestedness, that is, FSL

� ⊂ FSL
�−1, � = 2, . . . , L. However, each evalu-

ation of Gh requires Qh which can be very expensive in many practical applications. To
demonstrate this we make the following assumption.

A2. The cost to obtain one sample of the system response Qh is C(Qh) = O(h−m), where
m > 0 is a constant independent of h.

For example, Qh might require the solution of a discretised elliptic PDE with smooth
coefficients in a domain D ⊂ R

d, d = 1, 2, 3, using standard piecewise linear finite elements
on a triangulation with mesh size h. If the sampling of the coefficients and the solution
of the discretised PDE can be done in optimal, linear cost, then C(Qh) = O(h−d) and
thus m = d in Assumption A2. Hence we see that if a small mesh size h is required for
accuracy, then C(Qh) is very large in 2D and 3D models.

This motivates us to introduce and study a generalised version of the subset simulation
estimator (2.9). To reduce the computational cost we define the failure domains on a hier-
archy of discretisations with decreasing associated mesh sizes (or, equivalently, increasing
resolution in the physical space) and increasing computational cost.

Consider the multilevel failure domains

FML
� := {θ ∈ R

M : Gh�
(θ) ≤ c�}, (3.2)

where h� = 2−�h0, � = 1, . . . , L and h0 > 0. Observe that under Assumption A2 the cost
of obtaining the system response Q� := Qh�

is C(Q�) = O(2�m). Hence using FML
� in place

of FSL
� in the factorisation (2.6) brings obvious computational benefits since the cost of

obtaining Qh�
is small on (coarse) levels where h� is large. Unfortunately, if we change the

failure level and the discretisation parameter at the same time in the transition from FML
�

to FML
�+1 then FML

� �⊂ FML
�−1 , i.e. the multilevel failure domains are not nested in general.

Hence we cannot use the factorisation in (2.6). We address this problem by deriving a
generalised version of (2.6) which is also valid for non-nested failure domains.

3.1 Basic idea

Let us consider three partial failure domains Fj , Fk, and F� in the input parameter space.
Application of Bayes’ formula gives

Prob(Fk|F�)× Prob(F�) = Prob(Fk ∩ F�) = Prob(F�|Fk)× Prob(Fk)

and thus

Prob(F�) =
Prob(F�|Fk)

Prob(Fk|F�)
× Prob(Fk) . (3.3)
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Using Bayes’ formula again for the pair Fj and Fk we obtain

Prob(Fk) =
Prob(Fk|Fj)

Prob(Fj |Fk)
× Prob(Fj) . (3.4)

Inserting (3.4) into (3.3) we see that

Prob(F�) =
Prob(F�|Fk)

Prob(Fk|F�)
× Prob(Fk|Fj)

Prob(Fj |Fk)
× Prob(Fj) .

It is clear that this technique can be applied to any countable, finite collection of partial
failure domains {F�}L�=1. Assuming that FL = F is the target failure domain this gives
the factorisation

PF = Prob(FL) = Prob(F1)
L∏

�=2

Prob(F�|F�−1)

Prob(F�−1|F�)
. (3.5)

Note that (3.5) does not require the nestedness of the partial failure domains. In particular,
(3.5) holds for the multilevel failure domains F� = FML

� defined in (3.2). If, however, the
failure domains are nested, then it is easy to see that all denominators in (3.5) are equal to
one. Hence, for the collection of nested, single-level failure domains F� = FSL

� defined in
(3.2) we see that (3.5) reduces to the factorisation (2.6). We have therefore generalised the
basic idea of subset simulation to a wider class of failure domains which are not necessarily
nested.

3.2 Implementation

Based on (3.5) we define the multilevel estimator (MLE) for PF as follows,

P̂ML
F := P̂MC

F1

L∏
�=2

P̂MCMC
F�|F�−1

P̂MCMC
F�−1|F�

, (3.6)

where P̂MCMC
F�|F�−1

is the MCMC estimator for Prob(F�|F�−1) (see (2.8)), and P̂MCMC
F�−1|F�

is the

MCMC estimator for Prob(F�−1|F�), respectively.
Note that the estimators in the numerator of (3.6) can be evaluated exactly as in

subset simulation. To estimate the denominators we introduce an additional step in the
transition from level � to � + 1. Having estimated Prob(F�|F�−1) we can use the samples
in F� as seeds for Markov chains to generate conditional samples θ ∼ ϕ(·|F�) for use
in the estimation of Prob(F�−1|F�). The implementation of the multilevel estimator is
summarised in Algorithm 3. It is a straightforward extension of subset simulation (see
Algorithm 2). Recall that we can choose 0 < p0 < 1 and construct the intermediate failure
levels c1, c2, . . . , cL−1 such that P̂MC

F1
= p0 and P̂MCMC

F�|F�−1
= p0, � = 2, . . . , L− 1. Hence we

can simplify (3.6) to obtain

P̂ML
F =

pL−1
0 P̂MCMC

FL|FL−1∏L
�=2 P̂

MCMC
F�−1|F�

. (3.7)
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Algorithm 3 Multilevel estimator

Input: p0, N , Lb

(1) Generate N i.i.d. samples θ(i) ∼ ϕ(·) for use in Monte Carlo.

Determine a failure level c1 > 0 s.t. P̂MC
F1

= p0.

(2) For � = 2, . . . , L:

If � < 3, set n = 0, else set n = Lb.

Use the N0 failure points in F�−1 as seeds and generate N +(n−1)N0 samples θ(i)

with Algorithm 1 with target distribution ϕ(·|F�−1). Discard the first n samples
in each Markov chain.

If � < L, determine a failure level c� > 0 s.t. P̂MCMC
F�|F�−1

= p0.

Then, use all N0 failure points in F� as seeds and generate N + (n− 1)N0 samples
θ(k) with Algorithm 1 with target distribution ϕ(·|F�). Discard the first n samples
in each Markov chain. Evaluate P̂MCMC

F�−1|F�
as in (2.8).

(3) Evaluate P̂MCMC
FL|FL−1

as in (2.8) and return P̂ML
F in (3.7).

3.3 Burn-in

The setting of the MLE is more general than subset simulation; this brings new issues.
For the MLE we do not assume nestedness of the multilevel failure domains. Thus not
all seeds will follow the target distribution, and a burn-in of the Markov chains is needed.
Hence we discard the first Lb ≥ 0 samples of each Markov chain in Algorithm 3. We
mention that the burn-in length Lb = Lb,� might depend on the current level �, and might
be smaller on levels with a higher resolution of the system response Qh�

(cf. §5.3).
The burn-in effect can be reduced by application of enhanced MCMC samplers that

incorporate regeneration steps. Regeneration techniques [27, 49] are based on restarting
the Markov chain at random stopping times. Regenerative MCMC algorithms can also be
used to construct better estimates of the variance of quantities of interest. We leave the
application of such techniques within the MLE estimator for future studies.

If a burn-in of the Markov chains in Algorithm 3 is required, then the computational
cost of the estimator increases (cf. §3.4). Moreover, if the burn-in length is insufficient,
then this can increase the bias of the MLE (cf. §3.5). Of course, by using nested multilevel
failure domains we can avoid the burn-in. In §4 we investigate conditions under which
nestedness applies. If the system response arises from the solution of a PDE with random
coefficients, then we show in §5 that we can overcome the burn-in problem by a level-
dependent estimator. By this we mean that the number of input random variablesM = M�

depends on the failure level.

3.4 Computational cost

Let us now predict the savings in terms of computational costs that we can expect when
using the multilevel estimator in place of subset simulation. Consider a sequence of ap-
proximate system responses {Q�}L�=1, where Q� = Qh�

is associated with the discretisation
parameter h� = 2−�h0, h0 > 0. Under Assumption A2 the cost to obtain Q� on level � is
C(Q�) = cA2 × h−m

� = c̃× 2�m, � = 1, . . . , L, where c̃ is a constant independent of �. The
goal is to estimate the failure probability PF,h in (2.4) on level L with h = hL. Algorithm 2
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with the single-level failure domains (3.1) requires N +N(1− p0)(L− 1) system responses
QL. Hence the total cost of subset simulation is

C(P̂SubS
F,h ) = c̃×N(1 + (1− p0)(L− 1))× 2Lm .

On the other hand, Algorithm 3 with the multilevel failure domains (3.2) requires 3N−N0

system responses Q1, 2N+(Lb−1)N0 responses Q2, and N+(Lb−1)N0+N responses on
Q� and Q�−1, resp., on levels � = 3, . . . , L. Hence, assuming that N0 = p0N in Algorithm 3,
the total cost of the MLE is

C(P̂ML
F,h ) = c̃N × ((3− p0)2

m + (2 + (Lb − 1)p0)2
2m + (2 + (Lb − 1)p0)

L∑
�=3

(2m� + 2m(�−1))) .

In Figure 3.1 we plot the predicted cost reduction of the MLE compared to subset sim-
ulation versus a different total number of levels. The burn-in length is Lb = 0 (left) and
Lb = 10 (right). We assume p0 = 0.1 fixed in Algorithms 2 and 3. Moreover, we choose
m = d, which is the minimal cost of a system response arising from typical discretised PDE
models in d-dimensional physical space. We see that in the case of no burn-in the MLE
will be cheaper than subset simulation in 1D models for L ≥ 6 levels. In the best case the
computational cost will be only about 50% of the cost of subset simulation. For 2D and
3D models we can expect savings for L ≥ 4 levels, and costs of about 20%–30% of the cost
of subset simulation in the best case. This might sound like a modest improvement, but
we would like to point out that the MLE improves a method that is already much more
efficient than the standard MC estimator (cf. [1]). If burn-in applies, then, of course, the
cost of the MLE increases. However, for Lb = 10 and 3D models we expect savings for
L ≥ 5 levels.
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Figure 3.1: Cost reduction of the MLE compared to subset simulation for p0 = 0.1 fixed.
The cost to obtain one sample on level � is C(Q�) = O(2m�), where m = d is the dimension
of the physical space in the model. The burn-in length is Lb = 0 (left) and Lb = 10 (right).

Remark 3.1 In Algorithm 3 we could use the exact same conditional samples for the
estimation of Prob(F�−1|F�) in the denominator and Prob(F�+1|F�) in the numerator. We
do not consider this option here since it introduces additional correlations between the
MCMC estimators.
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Remark 3.2 The cost of the MLE could be further reduced by choosing level-dependent
partial failure probabilities p0 = p0,�. This allows us to prescribe a certain variance reduc-
tion between levels to combat the increase of the cost per sample from level � to � + 1.
Observe that in multilevel Monte Carlo (MLMC) methods it is not possible to prescribe the
variance reduction a priori. In contrast, the variance reduction in MLMC depends on the
convergence rate of the FE approximation to the system response, see e.g. [8, 15, 22, 63].

3.5 Statistical properties

Now we investigate the statistical properties of the multilevel estimator (3.6) when used
together with the multilevel failure domains in (3.2). Consider the bias E[P̂ML

F ] − PF of
the multilevel estimator. We obtain the decomposition

E[P̂ML
F ]− PF = (E[P̂ML

F ]− PF,h) + (PF,h − PF ) = (I) + (II) . (3.8)

The term (II) is controlled by the discretisation parameter h. We expect that PF,h − PF

can be made arbitrarily small for sufficiently accurate approximations Qh ≈ Q of the
system response. The term (I) is not equal to zero, because the multilevel estimator as
implemented in Algorithm 3 is biased, E[P̂ML

F ] �= PF,h. This is mainly due to the fact
that we use statistically dependent seeds in the transition from level � to level � + 1 in
Algorithm 3, and because the samples generated by MCMC are correlated. We expect,
however, that the term (I) is controlled by the sample size N and decreases as N increases,
since this can be shown for subset simulation [1, Prop. 1]. For the MC estimator (2.5) the
term (I) is equal to zero.

Let us study (I) in (3.8) in more detail. To this end we take a closer look at the 2L−1
individual estimators that make up the multilevel estimator,

P̂ML
F = P̂MC

F1

L∏
�=2

P̂MCMC
F�|F�−1

P̂MCMC
F�−1|F�

.

Clearly, the MC estimator P̂MC
F1

is unbiased, E[P̂MC
F1

] = Prob(F1). What can we say
about the remaining 2L − 2 estimators? Recall that these estimators use statistically
dependent samples generated by Markov chains. If these samples are, however, identically
distributed according to the target conditional distribution, then, by taking the expected
value on both sides of (2.8), we see that each of the MCMC based estimators in (3.6)
is unbiased. That is, E[P̂MCMC

F�|F�−1
] = Prob(F�|F�−1), and E[P̂MCMC

F�−1|F�
] = Prob(F�−1|F�), for

� = 2, . . . , L, resp. To ensure unbiasedness of the individual MCMC based estimators, we
formulate the following assumption.

A3. All samples θ(i) in Algorithm 3 that are generated by MCMC are distributed ac-
cording to the associated target distribution ϕ(·|F�−1), for � = 2, . . . , L.

In subset simulation, where we use the single-level failure domains (3.1), it is clear that
Assumption A3 is satisfied, because the failure domains FSL

� are nested (see Remark 2.3).
In the MLE, the failure domains FML

� in (3.2) are not necessarily nested. However,
Assumption A3 still holds if we use a sufficiently large burn-in length Lb > 0 for the
Markov chains in Algorithm 3.
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Proposition 3.3 Under Assumption A3 the bias of the multilevel estimator P̂ML
F satisfies

|E[P̂ML
F ]− PF,h| = O(N−1) . (3.9)

Moreover, the variance of P̂ML
F satisfies

V[P̂ML
F ] = O(N−1) . (3.10)

Proof. The proof, which is given in Appendix A, follows the proof of Prop. 1 and Prop.
2 in [1]. �

The mean-square error of an estimator is the bias error squared plus the variance of the
estimator. Squaring the bias decomposition in (3.8) we observe that, asymptotically for
large N , the square of the bias error (3.9) is dominated by the variance error (3.10), and
is not relevant in the mean-square error. Note that an analogous result to Proposition 3.3
is shown in [1, Prop. 1] and [1, Prop. 2] for the bias and the variance of the subset
simulation estimator, respectively.

To summarise, under Assumption A3 the proposed multilevel estimator (3.6) has the
same key statistical properties (bias and variance) as the subset simulation estimator
(2.9). The important difference is, however, the computational cost of the estimators. As
discussed in §3.4, the multilevel estimator is cheaper to evaluate, in particular, for 2D and
3D physical models associated with the system response.

4 Nestedness of failure domains

Consider a collection of failure domains

FML
� = {θ ∈ R

M : Gh�
(θ) ≤ c�}, � = 1, . . . , L,

for use in the multilevel estimator. Here, the failure levels c� and discretisation parameters
h� can be distinct on every level �. When can we expect nestedness of these sets? This
question is relevant for the following reasons:

• The multilevel estimator (3.6) is based on the decomposition (3.5). If the failure
domains are nested, then the denominators in (3.5) are equal to one, and thus need
not be estimated. Instead, the subset simulation (see Algorithm 2) can be used
together with the failure domains F� = FML

� in (3.2). This reduces the absolute cost

for the estimator P̂ML
F by 50% (see §3.4).

• Nestedness of the failure domains implies that Assumption A3 is satisfied. Then, the
bias and variance of the multilevel estimator are asymptotically of the same order
w.r.t. the number of samples N as in subset simulation (see Proposition 3.3).

• Nestedness of the failure domains enables a perfect simulation within MCMC; a
burn-in of the Markov chains in Algorithm 3 is not required (see Remark 2.3).

In the remainder of this section we introduce a property termed complementarity. We
will see that this property ensures nestedness of the failure domains within the multilevel
estimation process. Complementarity arises from certain unbounded one-dimensional fail-
ure domains, that is M = 1. Unfortunately, for random inputs θ ∈ R

M with M > 1, and
specifically in high dimensions, we cannot hope for complementarity, and thus nestedness
of the failure domains FML

� cannot be guaranteed easily.
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4.1 Complementarity

Consider a situation where we have one input random variable θ and one constraint which
defines a failure domain. Specifically, we assume that the failure domains are of the form

F rb
� := {θ ∈ R : θ ≤ b�}, (4.1)

with real and finite bounds b�, � = 1, . . . , L. We make the following observation.

Proposition 4.1 (Complementarity) Let M = 1 and consider a pair of failure do-
mains (F rb

j , F rb
k ) defined in (4.1). Under Assumption A1, either

Prob(F rb
k |F rb

j ) < 1 and Prob(F rb
j |F rb

k ) = 1, or, alternatively, Prob(F rb
k |F rb

j ) = 1 and

Prob(F rb
j |F rb

k ) < 1, or, finally, Prob(F rb
k |F rb

j ) = 1 and Prob(F rb
j |F rb

k ) = 1.

Proof. Depending on the position of the bounds bk and bj we distinguish three cases:
(a) If bk < bj , then Prob(F rb

k |F rb
j ) = Prob(F rb

k )/Prob(F rb
j ) < 1, and Prob(F rb

j |F rb
k ) =

Prob(F rb
k )/Prob(F rb

k ) = 1.
(b) If bk > bj , then Prob(F rb

k |F rb
j ) = Prob(F rb

j )/Prob(F rb
j ) = 1, and Prob(F rb

j |F rb
k ) =

Prob(F rb
j )/Prob(F rb

k ) < 1.

(c) If bk = bj , then Prob(F rb
k |F rb

j ) = Prob(F rb
j |F rb

k ) = 1. �

Remark 4.2 An analogous result to Proposition 4.1 can be proved for failure domains
of the form F lb

� := {θ ∈ R : θ ≥ b�} with real and finite bounds b�, � = 1, . . . , L.

Corollary 4.3 Consider the multilevel estimator for some failure probability 0 < PF < 1
as implemented in Algorithm 3 with 0 < p0 < 1. Assume that A1 holds and that all
failure domains {F�}L�=1 produced by Algorithm 3 are of the form (4.1). Then these failure
domains are nested for � = 1, . . . , L− 1, that is, FL−1 ⊆ FL−2 ⊆ · · · ⊆ F2 ⊆ F1.

Proof. Let L be the total number of failure domains at which Algorithm 3 terminates.
Consider the estimation step when we go from level � − 1 to �, where 1 ≤ � < L. In
Algorithm 3 we would choose the new failure level c� and hence the bound b� in (4.1)
s.t. Prob(F�|F�−1) = p0 < 1. Using Proposition 4.1 this implies Prob(F�−1|F�) = 1. By
assumption, all failure domains are of the form (4.1). Hence Prob(F�−1|F�) = 1 is only
possible if b� ≤ b�−1, and thus F� ⊆ F�−1. Since this argument holds for all 1 ≤ � < L the
result follows. �

Remark 4.4 In the last step of Algorithm 3 with � = L we would obtain a failure domain
FL s.t. Prob(FL|FL−1) is not necessarily equal to p0 < 1. In fact, Prob(FL|FL−1) = 1 is
possible. Therefore, we cannot use Proposition 4.1 to conclude that Prob(FL−1|FL) = 1.
Without further assumptions on the bound bL (or, equivalently, the failure level cL and the
discretisation parameter hL) we can guarantee nestedness of the multilevel failure domains
only up to level � = L− 1.

It is important to note that the result in Corollary 4.3 holds independently of the
approximation Qh�

that we use for the system response Q. Of course, the bounds b� in
(4.1) will depend on the choice of Qh�

, the discretisation parameter h�, and the failure
level c�. Regardless, any pair of multilevel failure domains {FML

� }L�=1 of the form (4.1)
will have the complementarity property. Thus all multilevel failure domains constructed
by Algorithm 3 up to level L−1 will be nested, even if we change h� and the failure level c�
at the same time within FML

�−1 and FML
� . We demonstrate this using the following simple

example.
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Example 1 Consider the initial value problem (IVP)

dU

dt
= −θU, U(t0) = u0, (4.2)

where u0 is a constant, and θ is a standard Gaussian random variable. We define the limit
state function G(θ) := umax − U(t). The associated failure event is a situation where the
solution of (4.2) exceeds a given threshold umax at time t > t0. We approximate the exact
solution U using the forward Euler method with time steps of size h > 0. We obtain the
approximation Uh(t) = u0(1− θh)(t−t0)/h to U(t), and the approximate failure probability

PF,h = Prob(Uh(t) ≥ umax) = Φ((1− (umax/u0)
h/(t−t0))/h). (4.3)

Now consider the multilevel failure domains of the form (3.2) associated with Example 1.
For every level � we select a time step size h� > 0 and a failure level c� s.t. c1 > c2 > · · · >
cL−1 > cL = 0. Looking at (4.3) it is clear that

FML
� = {θ : umax − Uh(t) ≤ c�} = {θ : θ ≤ (1− ((umax − c�)/u0)

h�/(t−t0))/h�} .

Hence the multilevel failure domains are indeed of the desired form (4.1) with bounds

b� = (1− ((umax − c�)/u0)
h�/(t−t0))/h�, � = 1, . . . , L.

Unfortunately, it is easy to see that we cannot establish a complementarity property as in
Proposition 4.1 for more general one-dimensional failure domains that require more than
one constraint, e.g. left- and right-bounded intervals. In higher dimensions with M > 1 it
is also not possible to prove a complementarity result, e.g. for rectangular failure domains.

4.2 High-dimensional stochastic inputs

Now we study a more challenging problem with a large number of stochastic inputsM � 1.
The system response Q is implicitly given as solution of a PDE with a random coefficient.
Problems of this form have been studied extensively in the last decade (see e.g. [28, 46, 62]
and the references therein), and are key building blocks for uncertainty quantification in
computational science and engineering applications. To be able to conduct numerical
experiments in a reasonable time we study a boundary value problem in a 1D physical
domain.

Example 2 Consider the diffusion equation −(au′)′ = 1 for a function u = u(x), 0 ≤
x ≤ 1, subject to the (deterministic) boundary conditions u(0) = 0, and u′(1) = 0. The
coefficient a is a lognormal random field with constant mean value μa ≡ 1 and standard
deviation σa ≡ 0.1. Note that log(a) is a Gaussian random field, and its mean μ and
standard deviation σ are uniquely determined by μa and σa. The covariance function of
log(a) is of exponential type, c(x, y) = exp(−|x − y|/λ), 0 ≤ x, y ≤ 1, with correlation
length λ = 0.01. The spatial discretisation of the boundary value problem is done by
piecewise linear continuous finite elements. The system response is Q = u(1) which
we approximate by the finite element solution Qh = uh(1). We are interested in the
failure event uh(1) > umax, where umax = 0.535. The associated failure probability is
PF,h ≈ 1.6× 10−4.
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In Example 2 we represent log(a) by a truncated Karhunen-Loève (KL) expansion (see
e.g. [45] for details) of the form

log(a)(x) = μ+ σ

M∑
m=1

√
νmam(x)θm, (4.4)

where {θm}Mm=1 are statistically independent, standard Gaussian random variables. The
KL eigenpairs (νm, am) are known analytically for the exponential-type correlation func-
tion (see [24, p. 26ff]). Assuming that the eigenvalues νm are arranged in decreasing order,
we retain only the M leading terms in the KL expansion of log(a). The correlation length
λ = 0.01 is very small compared to the size of the domain of interest and thus requires a
large number of terms to ensure a small KL truncation error. In our experiments we use
M = 150 which captures 87% of the variability of log(a).

Let us now compare the output of the subset simulation as implemented in Algorithm 2
to the output of the multilevel estimator as implemented in Algorithm 3. For subset
simulation we use the single-level failure domains FSL

� in (3.1) with h = hmin := 1/512
fixed in every FSL

� . For the multilevel estimator we use the failure domains FML
� in (3.2)

with h1 = 1/4 on the first level, and h� = h�−1/2 until we reach the finest mesh size hmin.
Note that it is possible for Algorithm 3 to arrive at the desired failure level c� for some level
� ≥ 1 before we have actually arrived at the finest mesh size, that is, h� > hmin. In this
case, we continue the simulation for k ≥ 1 levels with c�+k = c� fixed until h�+k = hmin.
Unless stated otherwise we use N = 103 samples and p0 = 0.1 fixed on every level in both
algorithms.

The estimator outputs are random variables, and we compare their empirical cumu-
lative distribution functions (c.d.f.s) obtained with 500 individual runs of each estimator.
For comparison we use the so-called two-sample Kolmogorov-Smirnov (K-S) test [61]. The
null hypothesis is that both data sets follow the same distribution. If it is rejected, then
there is enough statistical evidence to conclude that the outputs of the subset simulation
and the multilevel estimator are different. Given a certain significance level α > 0, the
K-S test incorrectly rejects the null hypothesis with probability α.
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Figure 4.1: Diffusion problem (Example 2): Empirical CDFs of Prob(uh(1) > umax)
estimated with 500 runs of subset simulation (SubS) and the multilevel estimator (MLE).
The coarsest mesh has 4 elements, the final mesh has 512 elements. We vary p0 and/or
the burn-in length Lb of the Markov chains in the MLE. We include 150 KL modes.
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Figure 4.2: Diffusion problem (Example 2): Prob(uh(1) > u2|u2h(1) > u1) (left) and
Prob(u2h(1) > u1|uh(1) > u2) (right) with h = 1/8. We include 150 KL modes.

In Figure 4.1 we plot the empirical c.d.f.s obtained with subset simulation and the
multilevel estimator (MLE). We run 100 Markov chains of length 10 in parallel on each
level; this gives a total of N = 103 samples per level. In the left panel of Figure 4.1 the
burn-in-length Lb = 0, that is, all 10 samples in each chain are used in the estimator.
However, we vary the size of the partial failure probabilities p0. It can happen that we
obtain more than 100 failure points per level, e.g. if p0 > 0.1. In this case we randomly
select 100 points and use those as seeds for the Markov chains in the next level. We do
this to maintain a comparable correlation between the MCMC samples. Meaning that we
get empirical CDFs of similar form with subset simulation even if we vary p0. Note further
that the computational cost of the MLE does not differ for p0 = 0.1 and p0 = 0.25 since we
always use 8 finite element meshes/levels in total even though the number of intermediate
failure levels is different.

In the left panel of Figure 4.1 we can clearly see that the c.d.f.s of the multilevel
estimators differ significantly from the c.d.f. of the subset simulation. In fact, no data set
obtained with one of the MLEs passes the K-S test when compared to subset simulation
(the significance level is α = 0.01). In the right panel of Figure 4.1 the burn-in length of
the Markov chains is Lb > 0, and we vary again the size of p0 in Algorithm 3. This time,
the data set for p0 = 0.25 and Lb = 10 passes the K-S comparison test with the reference
set obtained by subset simulation (the significance level is α = 0.01). It is also clear from
the figure that the associated c.d.f.s match quite well. In contrast, burn-in for p0 = 0.1
does not give data sets which pass the K-S comparison test with subset simulation.

We conclude from these experiments that the idea of the multilevel estimator is valid
in the sense that the novel decomposition of the failure probability in (3.5) is correct.
By choosing an appropriate partial failure probability p0 and by burn-in of the Markov
chains in Algorithm 3 we eventually obtain the same result as subset simulation. However,
without burn-in or with p0 too small this is not possible in Example 2. This tells us that
the actual implementation of the MLE in (3.6) requires some care.

Assumption A3 holds for nested failure domains and ensures that we don’t need to
burn-in the Markov chains. In §4.1 we showed that complementarity guarantees the nest-
edness of simple one-dimensional failure domains independently of the physical discreti-
sation. In a stochastically high-dimensional setting as in Example 2 this is in general
not possible. To demonstrate this, we plot in Figure 4.2 the conditional probabilities
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Prob(FML
� |FML

�−1 ) and Prob(FML
�−1 |FML

� ) for two consecutive failure domains in Example 2.
The associated mesh sizes are h�−1 = 1/4 and h� = 1/8, respectively. The conditional
probabilities have been estimated with Monte Carlo using N = 106 samples. Note that
the left plot in Figure 4.2 shows probabilities in the numerator, and the right plot shows
probabilities in the denominator of the decomposition (3.5). Complementarity does not
hold here, because there are pairs of failure levels (u1, u2) in the upper right corner of
these plots where the numerator is smaller than one, and the corresponding denominator
is smaller than one as well. If complementarity and thus nestedness do not hold, then
burn-in of the Markov chains used in Algorithm 3 is required; this is clearly demonstrated
by the results in Figure 4.1.

Why is the choice of p0 relevant in Example 2? We see in Figure 4.2 that two consecu-
tive failure domains on coarse meshes are nested if the failure level u1 is small. That is, for
small u1 the denominators in the right panel of Figure 4.2 are equal to one. In Example 2
small failure levels occur for large values of the target intermediate probability p0. Hence,
as the value of p0 increases so are the values of the denominators in (3.6). Having large
values of the denominators is beneficial for two reasons. First, large denominators imply
that the domain F� ∩ FC

�−1, i.e. the domain for which F� �⊂ F�−1, is small. Therefore,
the number of seeds used for sampling conditional on F� which do not follow the target
distribution will be smaller. Hence, a shorter burn-in period can be applied. This is con-
sistent with the right panel of Figure 4.1, where the choice p0 = 0.25 and Lb = 10 gives
a good agreeement with subset simulation. Second, large denominators will decrease the
variance of the estimator P̂ML

F . This can again be observed in the right panel of Figure 4.1.
Choosing p0 = 0.1 and Lb = 100 gives nearly unbiased estimates, but the dispersion of
their distribution is larger than the one of P̂ SubS

F .
To obtain nested failure domains we need to make sure that the combination of approx-

imate system responses Qh�
and failure levels c� leads to failure domains FML

� in (3.2) such
that failure on level �− 1 implies failure on level �. In Example 2 this is difficult since the
correlation length λ = 0.01 is very small and the then required highly oscillatory KL modes
cannot be resolved on a coarse spatial mesh with size h1 = 1/4. (We will come back to this
in §5.) Alternatively, we can start the multilevel simulation on a finer mesh which will give
a better initial approximation to the system response. Figure 4.3 shows again the empiri-
cal c.d.f.s of the subset simulation and MLE; the initial mesh for the MLE is h1 = 1/32.
We can clearly see that the empirical c.d.f.s match quite well this time; both data sets
pass the K-S comparison test (α = 0.01). Contrast this with Figure 4.1. In addition, in
Figure 4.4 we plot the conditional probabilities Prob(FML

� |FML
�−1 ) and Prob(FML

�−1 |FML
� )

for two consecutive failure domains with associated mesh sizes h�−1 = 1/32 and h� = 1/64,
respectively. We can see that complementarity now holds for nearly all pairs (u1, u2), in
contrast to Figure 4.2. Unfortunately, starting on a relatively fine initial mesh increases
the cost of the MLE; we will not be able to benefit from really inexpensive simulations
on coarse meshes. Alternatively, we now suggest a modified MLE with level-dependent
stochastic input dimensions.

5 Level-dependent stochastic input dimension

5.1 Motivation and choice of dimension

Assumption A1 states that the random input vector θ ∈ R
M of our system contains

M independent, standard Gaussian random variables. A typical model problem in this
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Figure 4.3: Diffusion problem (Example 2): Empirical CDFs of Prob(uh(1) > umax)
estimated with 500 runs of subset simulation (SubS) and the MLE. The coarsest mesh has
32 elements, the final mesh has 512 elements. We include 150 KL modes.

Figure 4.4: Diffusion problem (Example 2): Prob(uh(1) > u2|u2h(1) > u1) (left) and
Prob(u2h(1) > u1|uh(1) > u2) (right) with h = 1/64. We include 150 KL modes.

setting is given in Example 2. This is a boundary value problem with a random diffusion
coefficient which is represented by a truncated KL expansion. We retain the leading M
terms in the KL expansion, and for small correlation lengths λ we require M � 1. In §4.2
we learned that this is a potential problem for the multilevel estimator. Let h� denote the
mesh size of the finite element discretisation of the boundary value problem. If we start
the multilevel simulation on a very coarse mesh, then the failure domains

FML
� = {θ ∈ R

M : Gh�
(θ) ≤ c�}, � = 1, . . . , L,

are not nested. Hence Assumption A3 does not hold and we cannot use the implementation
in Algorithm 3 without burn-in of the Markov chains. How can we overcome this problem?

Recall the basic idea of the multilevel estimator: We use different approximations to
the system response Q in two consecutive failure domains FML

�−1 and FML
� . To ensure

nestedness of those we need to choose appropriate approximations Q� := Qh�
and failure

levels c� s.t. failure on level �− 1 implies failure on level �. One way to achieve this is by
making sure that Q� ≈ Q�−1 does not differ dramatically between two consecutive levels.
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In other words, we require a small variance V[Q� −Q�−1]. Error estimates of the form

V[Q� −Q�−1] ≤ |||Q� −Q�−1|||2 ≤ chβ�

for some constants β > 0, c > 0, and a norm |||·||| can be obtained for various system
responses Q and finite element approximations arising from PDEs with random inputs
(see, e.g., [15, 32, 63] for details.) This means that if the mesh size h� is small, then
V[Q� −Q�−1] is small as well. However, such error estimates hold only asymptotically for
h� sufficiently small. If we want to work on coarse spatial meshes, then it is well known,
that V[Q� −Q�−1] can be very large if the correlation length of the random coefficient is
small and we use a large, fixed number of leading terms in the KL expansion of it. This
phenomenon was already observed in [18, §4.1] and can be cured by using a level-dependent
number of KL terms, that is, M = M� (see [63, §4] for details).

Coming back to Example 2 we demonstrate this by comparing V[Q� − Q�−1] for the
original setup of a fixed number of M = 150 KL modes on each level to the modified setup,
where we have M1 = 10, M2 = 20, M3 = 40, M4 = 80, and then M5 = · · · = ML = 150
KL modes on the resp. level, until we arrive at the final level L. The results in Figure 5.1
confirm the observations in the literature. We can clearly see that V[Q� − Q�−1] is very
large on coarse meshes for the original, fixed number of modes setup. It can be reduced
drastically by up to two orders of magnitude by using the modified, variable number of
modes setup. The expected value E[|Q� − Q�−1|] shows a similar behavior; it is large for
large h� and fixed KL modes on each level and decreases with the modified setup (see the
right panel of Figure 5.1).
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Figure 5.1: Diffusion problem (Example 2): Variance of Qh − Q2h (left) and expected
value of |Qh −Q2h| (right) for fixed and variable KL modes setup for Qh = uh(1).

What can we learn from this experiment? For fixed KL modes the variance V[Q�−Q�−1]
is quite large on coarse levels, and we should not expect nestedness of the multilevel failure
domains. However, the variance decreases and is small on fine meshes (see Figure 5.1).
This is interesting for two reasons. First, we expect that on sufficiently fine meshes it is
easier to achieve nested failure domains; this is consistent with our observations in §4.2.
Second, this tells us that the burn-in length of the Markov chains is likely to depend on
the level; it will be large on coarse meshes and will decrease on finer meshes (cf. §3.3). A
detailed study of this observation is beyond the scope of this paper. Finally, for variable
KL modes, since the variance V[Q� − Q�−1] is quite small on all levels, it seems possible
to avoid the burn-in altogether. We will demonstrate this in §5.3.
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Now we discuss our choice of the sequence {M�}L�=1. In Example 2 log(a) is given in
terms of a truncated KL expansion with eigenpairs (νm, am), m = 1, . . . ,M (see (4.4)).
The eigenfunctions am(x) are sine and cosine waves with a certain angular frequency ωm

(see [24, p. 26ff]). If the associated eigenvalues νm are arranged in decreasing order then
ωm increases with m. Hence the modes with large m become highly oscillatory and we
will not be able to represent those on coarse FE meshes.

The resolution is determined by the quadrature nodes we use to approximate the
entries in the FE stiffness matrix. For example, if we use the composite trapezoidal rule,
then the quadrature nodes are the vertices of the FE mesh. On a mesh with n = 1/h
elements this gives n + 1 quadrature nodes and a (spatial) sample frequency fs = n. In
signal theory it is well known that the sample frequency used to read a signal should be
larger than the Nyquist frequency which is twice the frequency of the signal (see e.g. [16,
Ch. 7]). For the eigenfunctions in Example 2 the associated frequency fm = ωm/2π. This
gives the Nyquist frequency 2fm = ωm/π. Hence the spacing of the spatial sample points
should be at most π/ωm for a KL mode with index m.

This theory holds for uniformly distributed sample points, however, we can also use it
as a guideline for other quadrature rules. In Example 2 we use 3 Gauss Legendre nodes
per element. Consideration of the Nyquist frequency leads us to a sequence of KL modes
with M�+1 ≈ 2M�. We mention that this regime has been suggested in [63, §4] to balance
the FE approximation/quadrature and the KL truncation error. The analysis in [63, §4]
holds asymptotically for h� sufficiently small and is of limited use in the pre-asymptotic
range with large mesh sizes. The Nyquist frequency provides a practical guideline in these
situations.

To illustrate the idea we plot in Figure 5.2(a)–(b) one realisation of the coefficient a
evaluated at the vertices and midpoints of a FE mesh with 4 and 512 elements; note that
the sample frequencies are fs = 8 and fs = 1024, resp. In the left panel M = 150 gives a
highly oscillatory realisation; in the right panel M = 10 which yields a smooth realisation.
We can clearly see that it is not possible to represent the highly oscillatory realisation
with only 8 sample points; the sample frequency is too small in this case. This is also
confirmed by Figure 5.2(c)–(d) where we plot the amplitude spectrum of the realisations
and the associated approximations in Figure 5.2(a)–(b). For M = 150 we observe aliasing ;
the amplitude of small frequencies in the signal is amplified in its approximation. The
high frequencies in the signal are not represented. In contrast, for M = 10 the amplitude
spectrum of the signal and its approximation agree quite well.

The observations described here motivate us to introduce multilevel failure domains of
the form

F var
� = {θ ∈ R

M� : Gh�
(θ) ≤ c�}, (5.1)

where the dimension of the random input vector θ depends on the level �, that is M = M�.
To be able to use these domains, we first explain how we can modify and generalise
Algorithm 3 to accommodate level-dependent stochastic input dimensions.

5.2 Modified multilevel estimator

Assume that we have a sequence of dimensions 1 ≤ M1 ≤ M2 ≤ · · · ≤ ML−1 ≤ ML. Let
ϕM�

denote the M�-variate standard Gaussian probability density function. On level � we
want to use random input vectors θ� ∈ R

M� . We assume that the components of θ� are
ordered so that [θ�]1:Mk

is a valid random input vector in R
Mk for 1 ≤ k ≤ �.
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Figure 5.2: Diffusion problem (Example 2): Realisation of the coefficient evaluated at
the vertices and midpoints of a FE mesh with 4 elements and corresponding amplitude
vs frequency plot where the spatial mean has been removed. The sample frequency is
denoted by fs.

The implementation of part (1) in Algorithm 3 is straightforward. Here � = 1 and

we construct unconditional samples θ
(i)
1 ∼ ϕM1(·) with M1 components for use in Monte

Carlo. However, the modification of part (2) in Algorithm 3 requires some care since a
failure point θ�−1 ∈ F var

�−1 has only M�−1 ≤ M� components. How can we construct suitable
points θ� ∼ ϕM�

(·|F var
�−1) with M� components?

Assume that we have generated a sample θ�−1 ∼ ϕM�−1
(·|F var

�−1) on level �− 1 with Al-
gorithm 1 where we have replaced ϕ by ϕM�−1

. We then generate an unconditional sample
Θ� ∼ ϕΔ�

(·) where Δ� := M� −M�−1. Putting together the two samples we finally define
θ� := [θ�−1,Θ�]

�. Note that θ� has indeed M�−1 + Δ� = M� components. Importantly,
the surplus components in Θ� are statistically independent of θ�−1. In summary, by going
from level � − 1 to � we retain the components of the failure points θ�−1 ∈ F var

�−1 and
generate M� −M�−1 additional components independently of the components from level
� − 1. It is easy to see that for samples θ�−1 ∼ ϕM�−1

(·|F var
�−1) this construction actually

yields samples θ� ∼ ϕM�
(·|F var

�−1).
Finally, going from level � to �− 1 in part (3) of Algorithm 3 is clear: Given a failure

point θ� ∈ F var
� with M� components we simply discard the last M� −M�−1 components

and hence obtain a sample with M�−1 components as required. We summarise the imple-
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mentation of the modified multilevel estimator termed MLE-var in Algorithm 4.

Algorithm 4 MLE-var estimator

Input: p0, N , Lb, {M�}L�=1

(1) Generate N i.i.d. samples θ
(i)
1 ∼ ϕM1(·) for use in Monte Carlo.

Determine a failure level c1 > 0 s.t. P̂MC
F1

= p0.

(2) For � = 2, . . . , L:

If � < 3, set n = 0, else set n = Lb.

Use the N0 failure points in F var
�−1 as seeds and generate N+(n−1)N0 samples θ

(i)
�−1

with Algorithm 1 with target distribution ϕ(·|F var
�−1). Discard the first n samples

in each Markov chain.

Then, generate N samples Θ
(i)
� ∼ ϕΔ�

(·), Δ� = M� − M�−1, and set θ
(i)
� =

[θ
(i)
�−1,Θ

(i)
� ]�.

If � < L, determine a failure level c� > 0 s.t. P̂MCMC
F�|F�−1

= p0.

Then, use all N0 failure points in F var
� as seeds and generate N + (n − 1)N0

samples θ
(k)
� with Algorithm 1 with target distribution ϕ(·|F var

� ). Discard the first

n samples in each Markov chain. Evaluate P̂MCMC
F�−1|F�

as in (2.8); discard components

of θ
(k)
� where necessary.

(3) Evaluate P̂MCMC
FL|FL−1

as in (2.8) and return P̂ML
F in (3.7).

5.3 Experiments

Now we test the implementation of the MLE-var estimator given in Algorithm 4. We
continue the discussion started in §4.2 and §5.1 for Example 2. On the coarsest FE mesh
we use h1 = 1/4, and on the final mesh we use hL = 1/512. As in §4.2 we run 100 Markov
chains of length 10 each on every level in Algorithm 4. In the multilevel estimators we use
p0 = 0.25. This is because we observed in §4.2 that the empirical c.d.f.s of subset simulation
and the MLE with burn-in length Lb = 10 match well in this case (see Figure 4.1). Now
we would like to achieve this without burn-in. By including M1 = 10, M2 = 20, M3 = 40,
M4 = 80, and then M5 = · · · = ML = 150 KL modes we obtained a significant reduction
of the variance of Q�−Q�−1 compared to the fixed setup with M = 150 on every level (see
Figure 5.1). Thus we expect nearly nested multilevel failure domains (5.1) which should
not require burn-in of the Markov chains in parts (2)–(3) of Algorithm 4.

In Figure 5.3 we plot the empirical c.d.f.s obtained with subset simulation, and the
MLE with fixed and variable number of KL modes on every level, resp. No burn-in of the
Markov chains is applied. We can see that this time the c.d.f.s of subset simulation and
the MLE-var estimator match up to statistical fluctuations; both data sets pass the K-S
comparison test with α = 0.01. In addition, we have checked Prob(uh(1) > u2|u2h(1) > u1)
and Prob(u2h(1) > u1|uh(1) > u2) on the two coarsest pairs of FE meshes with h = 1/8
for the MLE-var estimator. We have obtained a similar picture to Figure 4.4; we do
not include it here for brevity. This confirms that we can achieve complementarity and
thus nestedness for the multilevel failure domains in (5.1) even if we start the multilevel
estimation on very coarse FE meshes.
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The decomposition of the failure probability in (3.5) holds without further assumptions
on the collection of partial failure domains. There is a lot of flexibility in how we define
these domains and which parameters and/or model specifications change between levels.
We have shown here how we can use this to construct nested or nearly nested failure
domains. All observations have been made for failure events of interest arising from a PDE
with random coefficients in 1D physical space. The ideas outlined here can be applied in
other settings (see §6.2 for a test problem in 2D physical space). In general, however, the
appropriate definition of the partial failure domains will be highly problem-dependent.
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Figure 5.3: Diffusion problem (Example 2): Empirical CDFs of Prob(uh(1) > umax)
estimated with 500 runs of subset simulation (SubS), the MLE with 150 KL modes, and
the modified MLE-var. The coarsest mesh has 4 elements, the final mesh has 512 elements.

6 Application: Rare events in a 2D flow cell

Consider the system of PDEs

a−1q +∇u = 0, (6.1)

∇ · q = 0 (6.2)

in the unit square domain D = (0, 1) × (0, 1). In steady-state flow problems in a porous
medium q is the Darcy velocity, u is the hydrostatic pressure, and a is the permeability.
The empirical relation between pressure and velocity (6.1) is known as Darcy’s law, and
(6.2) is the law of conservation of mass. We consider a standard situation of flow from
left to right, this is often termed “flow cell”. The horizontal boundaries are no-flow
boundaries, that is, ν · q ≡ 0. We have u ≡ 1 along the western (inflow) and u ≡ 0 along
the eastern (outflow) boundary. The physical discretisation of (6.1)–(6.2) is done with
lowest order Raviart-Thomas mixed finite elements (see e.g. [56]) for the Darcy velocity
q and piecewise constant elements for the pressure u on a uniform mesh of n× n squares
each of which is divided into two triangles. We implement the Raviart-Thomas elements
using a divergence-free reduction technique (see [19, 59] for details).

The permeability a = a(x,θ) is a lognormal random field with a random input vector
θ ∈ R

M . Specifically, log(a) is a mean-zero Gaussian random field with constant variance
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σ2 ≡ 1 and a specific covariance function ρ. Here we use the exponential covariance

ρ(r) = ρexp(r) := σ2 exp(−r/λ), (6.3)

where r = ‖x−y‖1 is the distance of x,y ∈ R
d measured in the 1-norm and λ > 0 denotes

the correlation length. We generate samples of log(a) using a truncated KL expansion of
the form (4.4) where only a certain number M of the leading eigenpairs is retained. For the
exponential covariance (6.3) with 1-norm distance the eigenpairs in a rectangular domain
can be constructed by tensorisation of the analytically known 1D eigenpairs.

6.1 Probability of breakthrough

Coming back to our motivating example in §1 we now estimate the statistics of the time it
takes particles to travel from a location in the computational domain D to the boundary
of it. To do this we use a simple particle tracking model. Having computed the mixed FE
approximation to the Darcy velocity qh we compute the time τh ∈ [0,∞) when the particle
hits the boundary, that is, x(τh) ∈ ∂D for the first time. The particle path satisfies the
initial value problem

dx

dt
= qh, x(0) = x0 , (6.4)

where x0 ∈ D denotes the starting point. The Picard-Lindelöf Theorem tells us that
problem (6.4) has a unique solution which can be computed element by element over the
FE mesh of D. By following the particle through the domain D and summing up the
travel times in each element we obtain the FE approximation τh to the actual travel time
τ for each realisation of the random permeability. Particles are released at x0 = [0, 0.5]�.

We wish to estimate the probability PF = Prob(τh < τ0) for a given breakthrough time
τ0 ∈ [0,∞). The associated limit state function is Gh(θ) = τh(θ)− τ0. We are interested
in rare events where τ0 is very small. This means that particles leave the computational
domain after a very short amount of time. In our example the maximal travel time is
τ0 = 0.03 which gives a failure probability PF,h ≈ 10−6. The correlation length of log(a)
is λ = 0.5 and we truncate its KL expansion after M = 150 leading terms.

In the MLE we choose p0 = 0.1 and N = 103 samples. Normally, this gives Np0 = 100
seeds for Markov chains of length 10 in the estimation of each factor. If, however, the
number of seeds is too large and thus the length of each chain would be smaller than 10,
then we only use 10 seeds for chains of length 100 each. No burn-in is applied in the
MCMC runs.

We compare the subset simulation with mesh size h� = 1/128 on each level � to the
MLE where the coarsest mesh has 4 elements in each spatial direction. The results are
depicted in the left panel of Figure 6.1. The data sets generated by the MLE and subset
simulation pass the K-S comparison test with significance level α = 0.01. The MLE saves
31% of the computational cost compared to subset simulation.

6.2 Exceedence of outflow through boundary

As a proof of concept we consider a situation with short correlation length λ = 0.05. It
requires a large number of KL modes of log(a) and thus very high-dimensional stochastic
inputs. This time we use the primal formulation of (6.1)–(6.2) where we have eliminated
the flux q. We consider the system response

g = −
∫
D
a∇u · ∇ψdx, (6.5)
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Figure 6.1: Empirical CDFs of failure probabilities in a 2D flow cell. Left: Probability of
breakthrough Prob(τh < 0.03) obtained with 450 runs. Right: Probability of exceedence of
the outflow Prob(gh > 0.63) obtained with 500 runs. The estimators are subset simulation
(SubS), the multilevel estimator (MLE), and the MLE-var estimator.

where ψ|Γout ≈ 1 and ψ|D\Γout
≈ 0. It can be shown that g in (6.5) approximates the

outflow through the boundary Γout of D (see e.g. [20]). We approximate the pressure u
by standard piecewise linear FEs. Replacing u by uh in (6.5) gives the approximation gh
to the outflow.

We estimate the probability PF,h = Prob(gh > gmin) for a given lower bound gmin.
The associated limit state function is Gh(θ) = gmin − gh(θ). In our example the minimal
outflow is gmin = 0.63 which gives again a failure probability PF,h ≈ 10−6. We compare
the subset simulation with mesh size h� = 1/256 on each level � to the MLE where the
coarsest mesh has 4 elements in each spatial direction. For the MLE we include M = 1024
modes in the KL of log(a). In addition we use the modified ML-var estimator introduced
in §5.2. The sequence of KL modes per level is (4, 8, 16, 64, 256, 512, 1024, 1024, . . . ). The
MCMC setup is the same as in §6.1. In particular, no burn-in is applied.

We give the results in the right panel of Figure 6.1. The data sets generated by
the MLE-var and subset simulation pass the K-S comparison test with significance level
α = 0.01. The MLE-var saves 48% of the computational cost compared to subset simula-
tion. As expected the empirical c.d.f. of the MLE does not agree with the c.d.f. of the
subset simulation estimator. This confirms our observations in §5.3 for a more challenging
application in 2D physical space.

7 Conclusions

We have implemented a novel multilevel estimator (MLE) for the probability PF of rare
events. It is a generalisation of the well-known subset simulation procedure. Specifically,
we have studied failure events arising from PDEs with random coefficients given in terms
of a truncated KL expansion. For a 2D flow cell problem with PF ≈ 10−6 the MLE saves
31% and 48 % of the cost compared to subset simulation. If no burn-in applies we expect
more savings of up to 70 % for smaller PF . The MLE requires MCMC runs, and the
nestedness of the associated multilevel failure domains is crucial for a good performance
of MCMC. Ideally, nestedness enables a perfect MCMC simulation without burn-in of the
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chains. We have shown that nestedness follows from the complementarity of certain simple
unbounded, one-dimensional failure domains. To maintain nestedness for high-dimensional
stochastic inputs it is necessary to use a level-dependent number of KL modes to construct
the failure domains.
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A Proof of Proposition 3.3

To analyse the bias we define random variables associated with the individual estimators
in the MLE (3.6):

Z1 := (P̂MC
F1

− Prob(F1))/σ1,Z , σ1,Z := (V[P̂MC
F1

])1/2,

Z� := (P̂MCMC
F�|F�−1

− Prob(F�|F�−1))/σ�,Z , σ�,Z := (V[P̂MCMC
F�|F�−1

])1/2,

Y� := (P̂MCMC
F�−1|F�

− Prob(F�−1|F�))/σ�,Y , σ�,Y := (V[P̂MCMC
F�−1|F�

])1/2, � = 2, . . . , L.

(A.1)

By construction or by Assumption A3 we have E[Z1] = 0, E[Z�] = 0, and E[Y�] = 0,
� = 2, . . . , L. Moreover, by construction,

E[Z2
1 ] = 1, E[Z2

� ] = 1, and E[Y 2
� ] = 1, � = 2, . . . , L. (A.2)

Let δ1,Z , δ�,Z , and δ�,Y , � = 2, . . . , L, denote the c.o.v.s of the random variables in (A.1).
Note that δ1,Z = O(N−1/2) (see §2.2). Assuming that the samples generated by different
Markov chains in the subset simulation procedure are independent, it is demonstrated in
[1, §6] that the c.o.v.s of the remaining variables show the same asymptotic behaviour
with respect to N . In summary,

δ1,Z = O(N−1/2), δ�,Z = O(N−1/2), δ�,Y = O(N−1/2), � = 2, . . . , L. (A.3)

Now, if δ�,Y is sufficiently small (or, equivalently, N is sufficiently large), we obtain

1 + δ�,ZZ�

1 + δ�,Y Y�
= 1 + δ�,ZZ� − δ�,Y Y� − δ�,Zδ�,Y Z�Y� + δ2�,Y Y

2
� +R�, � = 2, . . . , L,

where R� is a random variable with R� ∈ span{Zn
� Y

m
� }m+n≥3. Let A1 := δ1,ZZ1, and

A� := δ�,ZZ�− δ�,Y Y�− δ�,Zδ�,Y Z�Y�+ δ2�,Y Y
2
� , � = 2, . . . , L. Then, the relative bias of P̂ML

F

satisfies

P̂ML
F − PF,h

PF,h
= (1 + δ1,ZZ1)

∏L
�=2(1 + δ�,ZZ�)∏L
�=2(1 + δ�,Y Y�)

− 1 =

L∏
�=1

(1 +A�)− 1 +B

=
L∑

�=1

A� +
∑
�>k

A�Ak +
∑

�>k>j

A�AkAj + · · ·+
L∏

�=1

A� +B , (A.4)
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where B is a random variable with B ∈ span{Zn
� Y

m
� }m+n≥3,�=2,...,L. Taking the expec-

tation on both sides of the equation above (assuming that the variables Z� and Y� have
sufficiently many moments) we arrive at

E[P̂ML
F ]− PF,h

PF,h
=

L∑
�=1

E[A�] +
∑
�>k

E[A�Ak] +
∑

�>k>j

E[A�AkAj ] + · · ·+ E[

L∏
�=1

A�] + E[B] .

Note that E[A1] = 0, and E[A�] = δ2�,Y E[Y
2
� ] − δ�,Zδ�,Y E[Z�Y�], � = 2, . . . , L. Let Y1 := 0.

Using again the asymptotics in (A.3) we obtain

E[P̂ML
F ]− PF,h

PF,h
=

L∑
�=2

δ2�,Y E[Y
2
� ]− δ�,Zδ�,Y E[Z�Y�] +

∑
�>k

E[A�Ak] + E[B] +O(N−1)

=
∑
�≥k

δ�,Y δk,Y E[Y�Yk] +
∑
�>k

δ�,Zδk,ZE[Z�Zk]−
∑
k,�

δ�,Y δk,Y E[ZkY�] + E[B] +O(N−1) .

Using the triangle inequality, the Cauchy-Schwarz inequality, (A.2), and (A.3) we arrive
at∣∣∣∣∣E[P̂

ML
F ]− PF,h

PF,h

∣∣∣∣∣ ≤
∑
�≥k

δ�,Y δk,Y +
∑
�>k

δ�,Zδk,Z+
∑
k,�

δ�,Y δk,Z+ |E[B]|+O(N−1) = O(N−1) .

Hence the term (I) in the bias decomposition (3.8) satisfies (3.9). To bound the variance
of the MLE we use the estimate

V[P̂ML
F ] ≤ V[P̂ML

F ] + (E[P̂ML
F ]− PF,h)

2 = E[P̂ML
F − E[P̂ML

F ] + E[P̂ML
F ]− PF,h]

2

= E[P̂ML
F − PF,h]

2 = P 2
F,hE

[
(P̂ML

F − PF,h)/PF,h

]2
.

Recalling (A.4) and following the line of arguments to bound the bias it is easy to see that

E[(P̂ML
F − PF,h)/PF,h]

2 = O(N−1) and thus the variance of the MLE satisfies (3.10).
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