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Abstract

We derive equivalent criteria for the existence of a feedback ensuring that a given linear and time-invariant differential-algebraic
control system is regular or autonomous, respectively. Algebraic and geometric criteria are stated in terms of the involved matrices
and the augmented Wong sequences. For systems which are not regularizable by feedback, we show that an additional behavioral
equivalence transformation and a reorganization of input and state variables leads to a regular system, the index of which is at most
one. This procedure is known, however our approach allows for a detailed characterization of the resulting regular system.
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1. Introduction

We study linear time-invariant systems given by
differential-algebraic equations (DAEs) of the form

d
dt Ex(t) = Ax(t)+Bu(t) (1)

where E,A ∈ Rl×n, B ∈ Rl×m. Systems of that type are also
called descriptor systems. The set of systems (1) is denoted
by Σl,n,m and we write [E,A,B] ∈ Σl,n,m. DAE systems of the
form (1) naturally occur when modeling dynamical systems
subject to algebraic constraints; for a further motivation we re-
fer to [1, 7, 19, 21, 27] and the references therein. The system
[E,A,B] is called regular, if the matrix pencil sE−A is regular,
that is, l = n and det(sE−A) ∈ R[s]\{0}.

The function u : R→ Rm is usually called input of the sys-
tem, although one should keep in mind, that in the nonregular
case u might be constrained and some of the state variables can
play the role of an input. The tuple (x,u) : R→Rn×Rm is said
to be a solution of (1) if, and only if, it belongs to the behavior
of (1):

B[E,A,B] := {(x,u) ∈L 1
loc(R;Rn×Rm) | Ex ∈A C (R;Rl),

(x,u) satisfies (1) for almost all t ∈ R },

where L 1
loc and A C denote the space of locally (Lebesgue) in-

tegrable or absolutely continuous functions, respectively. DAE
control systems based on the above behavior have been studied
in detail e.g. in [1].

In the present paper we investigate different notions of reg-
ularization of DAE systems. In [24] a system is called regular-
izable, if there exists a proportional state feedback u(t) = Fx(t)
such that the closed-loop system d

dt Ex(t) = (A+BF)x(t) is reg-
ular. This is not always possible (obviously, l = n is necessary);
we derive different equivalent characterizations in Section 3.
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Another approach is to additionally allow for transformations
which do not alter the behavior of the system [E,A,B], i.e., be-
havioral equivalence as discussed in Section 4, and reinterpre-
tation of variables. The latter means that certain state variables
are reinterpreted as input variables and vice versa. This reg-
ularization procedure has been developed in [13] for general
time-varying and nonlinear systems.

One purpose of the present paper is to give a complete pic-
ture of this regularization procedure for the case of linear time-
invariant DAE systems. Particular emphasis is placed on the
feedback form from [22] (see Section 2) which generalizes the
famous Brunovský form [8] to DAEs and is the crucial tool to
derive the regularized system in Section 5. As a result, the in-
dices appearing in the feedback form allow to explicitly state

• the number of redundant equations,

• the number of free state variables,

• the number of constraint input variables.

Furthermore, we show that these numbers as well as the com-
plete regularized system (without the transformation leading to
it) can be computed out of the augmented Wong sequences,
which are simple subspace iterations.

We like to stress that the above approaches are different
from the notion of regularizability used in [9, 10, 11, 12, 14,
15], which aims at finding a feedback such that the closed-loop
system is regular and additionally has index at most one (see
Section 5 for the definition of the index). It is shown in [10, 11]
that for [E,A,B] ∈ Σn,n,m there exists some F ∈ Rm×n such that
sE− (A+BF) is regular and has index at most 1 if, and only if,
[E,A,B] is impulse controllable, that is imE +AkerE + imB =
Rn. This has been extended to the case of derivative and pro-
portional output feedback in [11, 14, 15]; numerical methods
have been investigated in [9, 12].

The paper is organized as follows: In Section 2 we recall
the feedback form and how the entries in it can be calculated by
the augmented Wong sequences; these results stem from [22]
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in great parts. The feedback form is exploited to study reg-
ularizability of DAE systems by state feedback in Section 3.
First, we derive algebraic and geometric characterizations for
the more general concept of autonomizability and then apply
these to the case of regularizability. We also remark on the
case of derivative state feedback. In Section 4 we introduce
the concepts of behavioral equivalence and minimality of DAE
systems. Again, minimality is characterized by algebraic and
geometric conditions, where the feedback form is the main tool
for the proof. Finally, in Section 5 we revisit the regulariza-
tion procedure from [13]. It is shown that for any DAE sys-
tem [E,A,B] ∈ Σl,n,m via behavioral equivalence, proportional
state feedback and reinterpretation of variables a new system
[Ê, Â, B̂] can be obtained where sÊ− Â is regular and of index
at most one. In contrast to [13], in Theorem 5.1 the necessary
transformations to the regular index-1 system are stated explic-
itly and not by means of a numerical procedure.

2. Feedback

In this section we recall the feedback canonical form
from [22], see also the survey [3]. The feedback form is de-
scribed by a set of multi-indices and one matrix. We show that
the entries of the multi-indices and the Jordan canonical form of
the matrix are completely determined by the augmented Wong
sequences.

For the definition of the feedback form some notation is
warranted. For k ∈ N we define the matrices

Nk :=
[ 0

1

1 0

]
∈ Rk×k,

Kk :=
[

0 1

0 1

]
, Lk :=

[
1 0

1 0

]
∈ R(k−1)×k.

For some multi-index α =(α1, . . . ,αk)∈Nk we use the notation
`(α) = k, |α|= ∑

k
i=1 αi and introduce

Nα := diag(Nα1 , . . . ,Nαk) ∈ R|α|×|α|,

Kα := diag(Kα1 , . . . ,Kαk) ∈ R(|α|−k)×|α|,

Lα := diag(Lα1 , . . . ,Lαk) ∈ R(|α|−k)×|α|,

Eα := diag(e[α1]
α1 , . . . ,e[αk]

αk ) ∈ R|α|×k,

where e[n]i is the ith unit vector in Rn. We also denote the set of
all invertible n×n-matrices over a ring R by Gln(R).

Theorem 2.1 (Feedback form). For any system [E,A,B] ∈
Σl,n,m there exist S ∈ Gll(R),T ∈ Gln(R),V ∈ Glm(R),F ∈
Rm×n such that

(SET,SAT +SBF,SBV ) =


I|α| 0 0 0 0 0
0 Lβ 0 0 0 0

0 0 K>γ 0 0 0

0 0 0 L>
δ

0 0
0 0 0 0 Nκ 0
0 0 0 0 0 Inc

 ,


N>α 0 0 0 0 0
0 Kβ 0 0 0 0

0 0 L>γ 0 0 0

0 0 0 K>
δ

0 0
0 0 0 0 I|κ| 0
0 0 0 0 0 Ac

 ,


Eα 0 0
0 0 0
0 Eγ 0
0 0 0
0 0 0
0 0 0


 ,

(2)

where α ∈ Nnα ,β ∈ Nnβ ,γ ∈ Nnγ ,δ ∈ Nnδ ,κ ∈ Nnκ are multi-
indices which are unique up to a permutation of their entries
and Ac ∈ Rnc×nc is unique up to similarity.

As stated in Theorem 2.1 the entries of the multi-indices
are uniquely determined by [E,A,B]. Those entries can even
be calculated with the help of three simple subspace iterations,
which are defined as follows:

V0 := Rn, Vi+1 := A−1(EVi + imB), i≥ 0,

V ∗ :=
⋂
i≥0

Vi,

W0 := {0}, Wi+1 := E−1(AWi + imB), i≥ 0,

W ∗ :=
⋃
i≥0

Wi,

X0 := kerE, Xi+1 := E−1(AXi + imB), i≥ 0,

X ∗ :=
⋃
i≥0

Xi.

Recall that, for some matrix M ∈ Rl×n, MS ={
x ∈ Rl

∣∣ x ∈S
}

denotes the image of S ⊆ Rn under M
and M−1S = { x ∈ Rn |Mx ∈S } denotes the preimage of
S ⊆ Rl under M. Note that the subspaces Vi, Wi, Xi can be
computed numerically, cf. [26].

The sequences (Vi) and (Wi) are called augmented Wong
sequences, see [3, 6] and the references therein. The reason is
that they are based on the Wong sequences (B= 0) used in [2, 4,
5] and which have their origin in WONG [29] who was the first
using both sequences (with B = 0) for the analysis of matrix
pencils. The sequence (Xi) is just a simple modification of
(Wi) with a different initial value; in fact, X ∗ = W ∗.

The entries of the multi-indices appearing in the feedback
form (2) are fully determined by the augmented Wong se-
quences in the following sense.

Theorem 2.2 (Indices in the feedback form). Let [E,A,B] ∈
Σl,n,m and, for some multi-index η ∈ Np,

η i :=
∣∣{ j ∈ N

∣∣ η j ≥ i
}∣∣ , i = 1, . . . ,maxη .

Use the notation from Theorem 2.1 and assume that (2) holds.
Then

α i = dim(V ∗∩Wi)−dim(V ∗∩Xi−1), i≥ 1,

β i = dim(V ∗∩Xi−1)−dim(V ∗∩Wi−1), i≥ 1,

κ i = dimXi−1−dimWi−1−β i, i≥ 1,

and

γ1 = rkB−α1, γ i = dimWi−1−dimXi−2−α i−1, i≥ 2,

δ 1 = l−n+β 1− γ1,

δ i = dim(W ∗+Vi−2)−dim(W ∗+Vi−1), i≥ 2.
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Proof. The formulas for α i, . . . ,γ i are shown in [22, Prop. 3.2].
The expression for δ i is a consequence of eqs. [3, (6.1) & (6.2)].

For a full determination of the feedback form by the aug-
mented Wong sequences it remains to show that the ODE part
(Inc ,Ac,0) is determined by (a version of) the augmented Wong
sequences as well. To this end, similar to [5, Prop. 2.6], con-
sider the sequence

W λ
0 := {0}, W λ

i+1 := (A−λE)−1(EW λ
i + imB), i≥ 0,

where λ ∈C. We show that the dimension of ker(λ Inc−Ac)
i is

given by W ∗ and W λ
i , and hence the Jordan canonical form of

Ac is fully determined by these numbers, cf. also [5].

Proposition 2.3. Let [E,A,B] ∈ Σl,n,m, use the notation from
Theorem 2.1 and assume that (2) holds. Then, for all λ ∈ C,

det(λ Inc −Ac) = 0 ⇐⇒ W λ
1 ⊆W ∗.

Furthermore,

nc = dimV ∗−dim(V ∗∩W ∗),

dimker(λ Inc −Ac)
i = dim(W ∗+W λ

i )−dimW ∗, i≥ 1.

Proof. As shown in the proof of [3, Thm. 6.4] we may, without
loss of generality, assume that [E,A,B] is in feedback form (2)
and we have that

V ∗ = R|α|×R|β |×{0}|γ|−`(γ)×{0}|δ |−`(δ )×{0}|κ|×Rnc ,

W ∗ = R|α|×R|β |×R|γ|−`(γ)×{0}|δ |−`(δ )×R|κ|×{0}nc .

This implies nc = dimV ∗−dim(V ∗∩W ∗). Furthermore, sim-
ilar to the calculation of the formulas [3, (6.1) & (6.2)], it is
straightforward that

W ∗+W λ
i =

R|α|×R|β |×R|γ|−`(γ)×{0}|δ |−`(δ )×R|κ|×ker(λ Inc −Ac)
i

for i≥ 0. This implies the remaining statements.

3. Regularization by feedback

In this subsection we investigate how regularity can be
gained or lost under the action of proportional state feed-
back, that is the addition of the proportional feedback law
u(t) = Fx(t) to the given system [E,A,B] ∈ Σl,n,m for some ma-
trix F ∈ Rm×n. The resulting system has the form d

dt Ex(t) =
(A+BF)x(t). The set of all homogenous DAEs

d
dt Ex(t) = Ax(t), (3)

where E,A ∈Rl×n is denoted by Σl,n and we write [E,A] ∈ Σl,n.
The behavior of [E,A] ∈ Σl,n is given by

B[E,A] := {x ∈L 1
loc(R;Rn) | Ex ∈A C (R;Rl),

x satisfies (3) for almost all t ∈ R },

A DAE [E,A] ∈ Σl,n is regular if, and only if, sE−A is regular
or, equivalently, l = n and for every f ∈ C ∞(R;Rn) there exists
x ∈ C ∞(R;Rn) such that Eẋ(t) = Ax(t)+ f (t) for all t ∈ R and
x is uniquely determined by x(0), see also [28]. If existence of
a solution is not necessarily provided for every smooth inho-
mogeneity, but solutions are still unique, the considered DAE is
called autonomous.

Definition 3.1. A DAE [E,A] ∈ Σl,n is called autonomous, if

∀x1,x2 ∈ B[E,A] : x1|(−∞,0)
a.e.
= x2|(−∞,0) =⇒ x1

a.e.
= x2.

The notion of autonomy has been introduced by POLDER-
MAN and WILLEMS in [25, Sec. 3.2] for general behaviors.
Autonomy has been algebraically characterized for linear dif-
ferential behaviors in [25, Sec. 3.2], see also [3, Cor. 5.2]; the
following result is an immediate consequence of these.

Lemma 3.2. A DAE [E,A] ∈ Σl,n is

autonomous ⇐⇒ rkR(s)(sE−A) = n,

regular ⇐⇒ l = n ∧ [E,A] is autonomous.

We introduce the corresponding concepts of autonomizabil-
ity and regularizability as follows.

Definition 3.3. A system [E,A,B] ∈ Σl,n,m is called

(i) autonomizable if, and only if, there exists some F ∈Rm×n

such that the DAE [E,A+BF ] is autonomous.

(ii) regularizable if, and only if, there exists some F ∈ Rm×n

such that the pencil sE− (A+BF) is regular.

Note that regularizability implies autonomizability. We
may infer the following algebraic and geometric criteria and
criteria in terms of the feedback form for autonomizability and
regularizability, resp.

Theorem 3.4 (Characterization of autonomizability). For
[E,A,B] ∈ Σl,n,m and the limits V ∗ and W ∗ of the augmented
Wong sequences the following conditions are equivalent:

a) [E,A,B] is autonomizable.

b) rkR(s)[sE−A,B]≥ n.

c) In any feedback form (2) of [E,A,B], we have `(β )≤ `(γ).

d) dim(EV ∗+ imB)≥ dimV ∗.

e) dim(AW ∗+ imB)≥ dimW ∗.

Proof. a)⇒b): Let F ∈ Rm×n be such that [E,A+BF ] is au-
tonomous. Then rkR(s)

[
sE− (A+BF)

]
= n by Lemma 3.2,

and thus

n = rkR(s)
[
sE− (A+BF)

]
=

rkR(s)[sE−A,B]
[

In
−F

]
≤ rkR(s)[sE−A,B].
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b)⇒c): This follows from

n≤ rkR(s)[sE−A,B] = rkR(s) S [sE−A,B]
[

T 0
−F V

]
(2)
= n− `(β )+ `(γ).

c)⇒a): As shown in the proof of [3, Thm. 6.4] we may
without loss of generality assume that [E,A,B] is in feedback
form (2). By `(β )≤ `(γ) we may define

γ̃ := (γ1, . . . ,γ`(β )), γ̂ := (γ`(γ)−`(β ), . . . ,γ`(γ)).

Furthermore, let

Fβ := diag(e[β1]
1 , . . . ,e

[β`(β )]

1 ) ∈ R|β |×`(β ),

and choose the feedback matrix

F =

0 0 0 0 0 0
0 F>

β
0 0 0 0

0 0 0 0 0 0

 ∈ Rm×n.

Then we have

A+BF =



N>α 0 0 0 0 0 0
0 Kβ 0 0 0 0 0
0 Eγ̃ F>

β
L>

γ̃
0 0 0 0

0 0 0 L>
γ̂

0 0 0
0 0 0 0 K>

δ
0 0

0 0 0 0 0 I|κ| 0
0 0 0 0 0 0 Ac


,

so it remains to show that the subsystem[[
Lβ 0
0 K>

γ̃

]
,

[
Kβ 0

Eγ̃ F>
β

L>
γ̃

]]
is autonomous. This follows from observing that by simple row
permutations, where η−1= (η1−1, . . . ,ηk−1)∈Nk

0 for some
multi-index η ∈ Nk, we obtain

s
[

Lβ 0
0 K>

γ̃

]
−
[

Kβ 0
Eγ̃ F>

β
L>

γ̃

]

= P1

s

Lβ 0
0 Nγ̃−1
0 E>

γ̃

−
Kβ 0

0 I|γ̃−1|
F>

β
0


= P2P1

(
s
[

Nβ ∗
0 Nγ̃−1

]
−
[

I|β | 0
0 I|γ̃−1|

])
,

where P1, P2 are appropriate permutation matrices, and the sys-
tem

([
Nβ ∗
0 Nγ̃−1

]
,
[

I|β | 0
0 I|γ̃−1|

])
is clearly autonomous.

c)⇔d): Again, we may assume that [E,A,B] is in feedback
form (2). Then, using the formulas [3, (6.1) & (6.2)], we have
that

EV ∗+imB = R|α|×R|β |−`(β )× imEγ ×{0}|δ |×{0}|κ|×Rnc ,

and therefore

dimV ∗ = |α|+ |β |+nc,

dim(EV ∗+ imB) = |α|+ |β |− `(β )+ `(γ)+nc.

This implies that `(γ) ≥ `(β ) if, and only if, dim(EV ∗ +
imB)≥ dimV ∗.

c)⇔e): The proof is analogous to c)⇔d) after observing
that

AW ∗+ imB = R|α|×R|β |−`(β )×R|γ|×{0}|δ |×R|κ|×{0}nc .

Autonomizability along with its algebraic characterization
in Theorem 3.4 b) has been first investigated in [17] (autonomy
has been called uniqueness regularity property in this paper),
however our proof based on the feedback form (2) is much sim-
pler and we stated it for completeness.

Criteria for regularizability can now immediately be ob-
tained from Theorem 3.4 and Lemma 3.2, invoking that in the
feedback form (2)

l = n ⇐⇒ `(β ) = `(γ)+ `(δ ).

Corollary 3.5 (Characterization of regularizability). For
[E,A,B] ∈ Σl,n,m and the limits V ∗ and W ∗ of the augmented
Wong sequences the following conditions are equivalent:

a) [E,A,B] is regularizable.

b) l = n and rkR(s)[sE−A,B] = n.

c) l = n and dim(EV ∗+ imB) = dimV ∗.

d) l = n and dim(AW ∗+ imB) = dimW ∗.

e) In any feedback form (2) of [E,A,B], we have `(δ ) = 0 and
`(β ) = `(γ).

The algebraic characterization in Corollary 3.5 b) can also
be found in [16] in a more general context and the geometric
characterizations c) and d) have already been obtained in [24].

Remark 3.6 (PD-autonomizability and -regularizability). In
this section we have considered proportional state feedback. A
generalization to the case of proportional state and derivative
feedback, i.e., u(t) = FPx(t)− FDẋ(t), is straightforward us-
ing the PD-feedback form from [22, Sec. 2]. We call a system
[E,A,B]∈ Σl,n,m PD-autonomizable (PD-regularizable), if there
exist FD,FP ∈Rm×n such that [E+BFD,A+BFP] is autonomous
(the pencil s(E +BFD)− (A+BFP) is regular). In fact, it turns
out that [E,A,B] is PD-autonomizable (PD-regularizable) if,
and only if, it is autonomizable (regularizable). For the case
of regularizability this has been shown in [24].

4. Minimality

In this section we provide the framework for the regular-
ization by behavioral equivalence, feedback and reinterpreta-
tion of variables presented in Section 5. We study the concepts
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of behavioral equivalence and minimality which have been in-
troduced for general behaviors in [25]. Essentially, we call
two systems behaviorally equivalent, if their behaviors coin-
cide. This means that we do not allow for state space or input
space transformations or for feedback transformations, but on
the other hand differentiation of the equations is permitted.

Definition 4.1. Two systems [Ei,Ai,Bi] ∈ Σl,n,m, i = 1,2, are
called behaviorally equivalent, if

B[E1,A1,B1]∩C ∞(R;Rn×Rm) =B[E2,A2,B2]∩C ∞(R;Rn×Rm);

we write
[E1,A1,B1] 'B [E2,A2,B2].

Note that it is no restriction to consider behavioral equiv-
alence only for systems with the same number of rows. If
[Ei,Ai,Bi] ∈ Σli,n,m with l1 > l2, then we may simply add l1− l2
zero rows to E2,A2 and B2 which does not change the behavior
of [E2,A2,B2].

As we have mentioned before, for behavioral equivalence
we allow that some of the equations in (1) are differentiated.
This leads to a transformation of the form U( d

dt )(
d
dt E−A)x(t)−

U( d
dt )Bu(t) = 0 with some U(s) ∈ R[s]l×l . Furthermore, since

the behaviors must coincide (on C ∞) the transformation U(s)
must be reversible, that means U(s) must be invertible over
R[s]l×l , i.e., unimodular. As shown in [25, Thms. 2.5.4 & 3.6.2]
this is exactly the set of transformations that characterizes be-
havioral equivalence.

Lemma 4.2 (Behavioral equivalence by unimodular transfor-
mation). Let [Ei,Ai,Bi] ∈ Σl,n,m, i = 1,2. Then [E1,A1,B1] 'B
[E2,A2,B2] if, and only if, there exists U(s) ∈ Gll(R[s]) such
that

[sE1−A1,−B1] =U(s)[sE2−A2,−B1].

The concept of behavioral equivalence allows to consider
minimality of the description of the given behavior. That is,
we seek a DAE (1) with a minimal number of equations that
describes the behavior.

Definition 4.3. A system [E,A,B] ∈ Σl,n,m is called minimal, if

∀k ∈ {1, . . . , l} ∀ [Ẽ, Ã, B̃] ∈ Σk,n,m :(
[E,A,B]'B

[[
Ẽ

0l−k,n

]
,

[
Ã

0l−k,n

]
,

[
B̃

0l−k,m

]]
=⇒ k = l

)
.

In the usual definition given in [25, Def. 2.5.24], mini-
mality is defined via polynomial matrix descriptions R(s) ∈
R[s]g×q of a given system, which satisfies the higher order
DAE R( d

dt )w(t) = 0. Then R(s) is called minimal, if for any
k ∈ {1, . . . ,g} and any R̃(s) ∈ R[s]k×q the polynomial matri-
ces R(s) and

[
R̃(s)

0g−k,q

]
induce the same behavior only if k = g.

Therefore, the definition of minimality of [E,A,B]∈ Σl,n,m as in
Definition 4.3 seems to be weaker than minimality of the poly-
nomial matrix [sE −A,−B] in the sense of [25]. However, in
Theorem 4.4 we show that the two notions are indeed equiva-
lent.

It has been shown in [25] that minimality of a polynomial
matrix R(s) is equivalent to full rank of R(s) over R[s]. We show
that the same statement is true for systems in Σl,n,m. Further-
more, we derive a new geometric characterization and a char-
acterization in terms of the feedback form.

Theorem 4.4 (Characterization of minimality). For [E,A,B] ∈
Σl,n,m and the limits V ∗ and W ∗ of the augmented Wong se-
quences the following conditions are equivalent:

a) [E,A,B] is minimal.

b) rkR[s][sE−A,B] = l (that is, [E,A,B] is minimal in the sense
of [25]).

c) In any feedback form (2) of [E,A,B], we have `(δ ) = 0.

d) EV ∗+AW ∗+ imB = Rl .

Proof. a)⇒b): By [4, Thm. 2.6] there exist S ∈ Gll(R),T ∈
Gln+m(R) such that

S[E,0]T =

EP 0 0
0 ER 0
0 0 EQ

 , S[A,B]T =

AP 0 0
0 AR 0
0 0 AQ

 ,
where EP,AP ∈ RlP×nP ,ER,AR ∈ RnR×nR ,EQ,AQ ∈ RlQ×nQ are
such that lP < nP (or lP = nP = 0), lQ > nQ (or lQ = nQ = 0),
sER−AR is regular and, for all λ ∈ C,

rkC(λEP−AP) = lP, rkEP = lP
rkC(λEQ−AQ) = nQ, rkEQ = nQ.

It follows that rkR[s](sEP−AP) = lP, rkR[s](sER−AR) = nR and
rkR[s](sEQ−AQ)= nQ. Suppose that [sE−A,−B] does not have
full row rank, then it follows that lQ > 0. By [4, Lem. 3.1]
there exist M(s) ∈ R[s]nQ×lQ ,K(s) ∈ R[s](lQ−nQ)×lQ such that
U3(s) :=

[
M(s)
K(s)

]
∈GllQ(R[s]) and

U3(s)(sEQ−AQ) =

[
InQ

0

]
.

Then, for U(s) := diag(IlP , InR ,U3(s))S ∈Gll(R[s]) we find that

U(s)[sE−A,−B] =


sEP−AP 0 0

0 sER−AR 0
0 0 InQ

0 0 0

T−1,

and hence, invoking Lemma 4.2, [E,A,B] is not minimal, a con-
tradiction.

b)⇒a): This is a direct consequence of the definition of
minimality and Lemma 4.2.

b)⇔c): This follows from

rkR(s)[sE−A,B] = rkR(s) S [sE−A,B]
[

T 0
−F V

]
(2)
= l−`(δ ).
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c)⇔d): As shown in the proof of Theorem 3.4 it is no less
of generality to assume that [E,A,B] is in feedback form 2 and
that then

EV ∗+AW ∗+ imB

= R|α|×R|β |−`(β )×R|γ|×{0}|δ |×R|κ|×Rnc .

The assertion is now an immediate consequence of the above.

A thorough investigation of the proof of Theorem 4.4 also
shows how, for given [E,A,B] ∈ Σl,n,m, a minimal system
[Ẽ, Ã, B̃] ∈ Σk,n,m can be found such that

[E,A,B]'B

[[
Ẽ

0l−k,n

]
,

[
Ã

0l−k,n

]
,

[
B̃

0l−k,m

]]
.

5. Regularization by reinterpretation of variables

In this subsection we investigate the regularization and in-
dex reduction of a control system [E,A,B] ∈ Σl,n,m by a combi-
nation of behavioral equivalence transformation, proportional
state feedback and reinterpretation of variables (i.e., states as
inputs and/or inputs as states). The aim is to obtain a system
[E,A,B]∈ Σn,n,m such that sE−A is regular has index at most 1.
The index ν ∈ N0 of a regular matrix pencil sE−A ∈ R[s]n×n

is defined via its (quasi-)Weierstraß form [2, 19, 21], i.e., if for
some S,T ∈Gln(R)

S(sE−A)T =

[
sIr− J 0

0 sN− In−r

]
,

then ν :=
{

0, if r = n,
min

{
k ∈ N0

∣∣ Nk = 0
}
, if r < n.

The index is independent of the choice of S,T and can be com-
puted via the Wong sequences corresponding to sE−A, see [2].

As a first step, it is necessary to derive the “minimal part”
of the given system in order to identify the redundant equations.
If we consider a minimal system [E,A,B] ∈ Σl,n,m in feedback
form (2), then `(δ ) = 0 by Theorem 4.4. In this system the
pencil sE −A is regular and of index at most 1 except for the
nonregular block [

sLβ −Kβ 0
0 sK>γ −L>γ

]
.

The block sLβ −Kβ corresponds to an underdetermined DAE
and contains `(β ) free variables. In the context of the behav-
ioral approach, where it is not distinguished between the mean-
ing of the variables, the free variables are typically treated as
inputs, since “they can be viewed as unexplained by the model
and imposed on the system by the environment” [25]. It is the
methodology of the behavioral approach that the interpretation
of variables (i.e., which variables are states and which ones are
inputs) should be done after the analysis of the model reveals
the free variables. This approach obeys the physical meaning

of the system variables and it may turn out that in the original
model the choice of states and inputs was inappropriate.

In contrast to the β -block which contains free variables,
the γ-block contains constraints on some of the input variables,
since the corresponding DAE reads

d
dt K>γ x3(t) = L>γ x3(t)+Eγ u2(t).

Any solution (x3,u2) of this DAE is almost everywhere zero.
In the particular, the variables u2 are no free variables in the
system, hence in the context of the behavioral approach they
cannot be viewed as inputs, but must be reinterpreted as states.
The reinterpretation can be achieved by a multiplication of the
augmented pencil [sE−A,−B] from the right with a permuta-
tion matrix. It is remarkable that after this reinterpretation the
new system is regular and of index at most 1. We are now in the
position to state the main result of this section.

Theorem 5.1 (Regularization). Let [E,A,B] ∈ Σl,n,m and use
the notation from Theorem 2.1. Then there exist U(s) ∈
Gll(R[s]), T ∈Gln(R), V ∈Glm(R), F ∈Rm×n and a permuta-
tion matrix P∈Gln+m(R) such that, with µ := `(β )−`(γ)∈Z,

U(s) [sE−A,−B]
[

T 0
F V

]
P =

[
sÊ− Â, −B̂

0`(δ ),n−µ 0`(δ ),m+µ

]
,

where sÊ − Â ∈ R[s](n−µ)×(n−µ) is regular and has index at
most 1; in particular [Ê, Â, B̂] is minimal.

Proof. Let S ∈Gll(R), T ∈Gln(R), V ∈Glm(R), F ∈Rm×n be
such that (2) holds. Then

Z(s)S[sE−A,−B]
[

T 0
F V

]
=


sI|α|−N>α 0 0 0 0 0

0 sLβ−Kβ 0 0 0 0

0 0 −K>γ 0 0 0
0 0 0 −I|δ |−`(δ ) 0 0
0 0 0 0`(δ ),|δ |−`(δ ) 0 0
0 0 0 0 −I|κ| 0
0 0 0 0 0 sInc−Ac

,

−Eα 0 0

0 0 0
0 −Eγ 0
0 0 0
0 0 0
0 0 0
0 0 0




(4)

where

Z(s) =

diag

(
I|α|, I|β |−`(β ), −

νγ−1

∑
k=0

skNk
γ , Pδ (s), −

νκ−1

∑
k=0

skNk
κ , Inc

)

is unimodular with νγ = max{γ1, . . . ,γ`(γ)}, νκ =
max{κ1, . . . ,κ`(κ)}, and

Pδ (s) = P1 ·diag


0δi−1,1 −

δi−2

∑
k=0

sk(N>
δi−1
)k

01,1 01,δi−1




j=1,...,`(δ )
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with the permutation matrix

P1 =

[
Lδ

E>
δ

]
.

By a suitable permutation of the `(δ ) zero rows in (4) via a
permutation matrix P2 ∈ Gll(R) and a permutation of columns
established by the permutation matrix

P3 :=



I|α| 0 0 0 0 0 0 0 0

0 L>
β

0 0 0 0 0 Eβ 0
0 0 Lγ 0 0 0 0 0 0
0 0 0 I|δ |−`(δ ) 0 0 0 0 0
0 0 0 0 I|κ| 0 0 0 0
0 0 0 0 0 Inc 0 0 0
0 0 0 0 0 0 I`(α) 0 0

0 0 E>γ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Im−`(α)−`(β )


we obtain that

P2Z(s)S[sE−A,−B]
[

T 0
F V

]
P3 =

[
sÊ− Â, −B̂

0`(δ ),n−µ 0`(δ ),m+µ

]
,

where

sÊ− Â =


sI|α|−N>α 0 0 0 0 0

0 sI|β |−`(β )−N>
β−1 0 0 0 0

0 0 −I|γ| 0 0 0
0 0 0 −I|δ |−`(δ ) 0 0
0 0 0 0 −I|κ| 0
0 0 0 0 0 sInc−Ac

 ,

B̂ =


Eα 0 0
0 Eβ−1 0
0 0 0
0 0 0
0 0 0
0 0 0

 .
(5)

Recall that η − 1 = (η1 − 1, . . . ,ηk − 1) ∈ Nk
0 for some

multi-index η ∈ Nk. It remains to observe that sÊ − Â ∈
R[s](n−`(β )+`(γ))×(n−`(β )+`(γ)) is regular and has index at most 1
and hence we also have that [Ê, Â, B̂] is minimal.

Remark 5.2.

(i) The proof of Theorem 5.1 is constructive. The matrices
S,T,V and F which put [E,A,B] in feedback form are
constructed in [22]. The unimodular matrix U(s) and the
permutation matrix P are given explicitly in the proof of
Theorem 5.1.

(ii) Theorem 5.1 yields that, in terms of a feedback form (2)
of [E,A,B],

• the number of redundant equations is `(δ ),

• the number of free states is `(β ),

• the number of constrained inputs is `(γ).

Furthermore, the regular index-1 subsystem [Ê, Â, B̂] of
[E,A,B] in Theorem 5.1 which is given by (5) is fully
determined by the augmented Wong sequences up to a
permutation of the entries of the multi-indices and up to

similarity of Ac; this is a direct consequence of Theo-
rem 2.2 and Proposition 2.3. Therefore, if the transfor-
mation leading to this system is not of interest, the aug-
mented Wong sequences provide a simple and easily im-
plementable tool for the calculation of [Ê, Â, B̂].

(iii) Regularization plays an important role in optimal con-
trol with differential-algebraic constraints [18, 23]: The
classical techniques for the solution of the optimal con-
trol problem such as, for instance, Riccati equations and
Langrange multiplier-based approaches can only be ap-
plied to regular systems [20]. A preliminary procedure
leading to a regular system therefore enables us to use
the classical approaches of optimal control theory.

(iv) Note that in [13] the general procedure of regulariza-
tion and index reduction has already been developed by
means of an iterative numerical procedure. In contrast
to these results, Theorem 5.1 gives rise to an explicit
construction of the transformations leading to a regu-
lar index-1 subsystem. Furthermore, as explained in
item (ii), the augmented Wong sequences provide a sim-
ple method for the explicit and efficient calculation of this
subsystem.

6. Conclusion

For linear time-invariant DAE control systems we have ad-
dressed the question whether there exists a feedback which ren-
ders the closed-loop system regular. We have shown that this
property can equivalently be characterized by simple algebraic
and geometric conditions. As well, we have considered the
slightly more general problem of existence of a feedback such
that an autonomous closed-loop system is obtained. The proofs
are constructive: The feedback matrix can be obtained by using
the feedback canonical form [22].

Thereafter we have equivalently characterized minimality
of DAE control systems. The latter is a property which, loosely
speaking, states that the behavior of a control system cannot
described by a DAE with fewer equations. We have proved that
this concept is equivalent to minimality in the sense of [25]. An
equivalent geometric condition for minimality has been derived
as well.

These results have been the basis for our considerations for
systems which are not regularizable by feedback: It has been
shown that each system can be reduced to a regular index-1 sys-
tem after feedback, minimalization and suitable reinterpretation
of state and input variables.
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