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Adaptive Approximation Algorithms
for Sparse Data Representation

M. Guillemard, D. Heinen, A. Iske, S. Krause-Solberg, and G. Plonka

Abstract We survey our latest results on the development and analysis of adaptive

approximation algorithms for sparse data representation, where special emphasis

is placed on the Easy Path Wavelet Transform (EPWT), nonlinear dimensionality

reduction (NDR) methods, and their application to signal separation and detection.

1 Introduction

During the last few years there has been an increasing interest in efficient (i.e.,

sparse) representation and denoising of high-dimensional signals. We have focussed

our research on the development and analysis of adaptive approximation algorithms

for high-dimensional signals, especially (a) scattered data denoising by wavelet

transforms; (b) nonlinear dimensionality reduction relying on geometrical and topo-

logical concepts. This contribution reviews our recent research results on (a) and (b).

For (a), we present a general framework for the Easy Path Wavelet Transform
(EPWT) for sparse representation and denoising of scattered data taken from high-

dimensional signals (in Section 2). As regards (b), we continue our research on

nonlinear dimensionality reduction (NDR) methods (cf. Section 3), where we com-

bine recent NDR methods with non-negative matrix factorization (NNMF), for the

purpose of separating sources from a mixture of signals without a prior knowledge

about the mixing process. More details on dimensionality reduction and NNMF,

along with our recent results on signal separation, are discussed in Section 4.
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The presented results are based on our papers [8,9,11,13,17-21,25] and have been

achieved in the project “Adaptive approximation algorithms for sparse data repre-

sentation” of the German Research Foundation’s priority program DFG-SPP 1324.

2 The Easy Path Wavelet Transform

Let Ω be a connected domain in R
d and let Γ be a large finite set of points in Ω .

We let hΓ := maxy∈Ω minx∈Γ ‖y− x‖2 be the fill distance of Γ in Ω and its grid
distance is gΓ := minx,x′∈Γ ,x �=x′ ‖x− x′‖2. We say that the set Γ is quasi-uniform, if

hΓ < 2gΓ . Further, let f : Ω → R be a piecewise smooth function that is sampled

at Γ , i.e., the values f (x), x ∈ Γ , are given. We are now interested in an efficient

approximation of f using a meshless multiscale approach called Easy Path Wavelet

Transform (EPWT). For applications, we usually assume that Γ approximates a

smooth manifold in R
d . For example, our approach covers the efficient approxima-

tion of digital images, see [17, 21], where Γ is chosen to be a set of regular grid

points in a rectangle Ω , and the approximation of piecewise smooth functions on

the sphere, see [19], where Ω = S
2 and Γ is a suitably chosen quasi-uniform point

set on the sphere S
2.

Similar approaches have also been proposed for generalizing the wavelet trans-

form to data defined on weighted graphs, see [23]. In this section, we extend the

EPWT proposed in [17, 19, 25] to the case of high-dimensional data approximation.

2.1 The General EPWT Algorithm for Sparse Approximation

Let us shortly recall the notions of a biorthogonal wavelet filter bank of perfect

reconstruction. To this end, let ϕ be a sufficiently smooth, compactly supported,

one-dimensional scaling function, ϕ̃ the corresponding biorthogonal compactly sup-

ported scaling function, and ψ, ψ̃ the corresponding pair of biorthogonal compactly

supported wavelets, see, e.g. [3, 16]. These functions provide us with a filter bank

of perfect reconstruction with sequences (hn)n∈Z, (h̃n)n∈Z of low-pass filter coeffi-

cients and (gn)n∈Z, (g̃n)n∈Z of high-pass filter coefficients.

Assume that the number N = |Γ | of given points x ∈ Γ ⊂ R
d is a power of 2,

N = 2J , where J � 1. We denote Γ J := Γ and its elements by xJ
k = xk, k = 1, . . . ,N,

i.e., we fix some ordering of the points in Γ J . Now the EPWT works as follows.

In a first step, we seek a suitable permutation pJ of the indices of the points in Γ J

by determining a path of length N through all points xJ
k such that consecutive data

points (xJ
pJ(k), f (xJ

pJ(k))) and (xJ
pJ(k+1)

, f (xJ
pJ(k+1)

)) in the path strongly “correlate”.

In the second step, we apply the one-dimensional wavelet filter bank to the sequence

of functions values ( f (xJ
pJ(k)))

N
k=1, and simultaneously a low-pass filter to the points

(xJ
pJ(k))

N
k=1, where we consider each of the d components separately. The significant
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high-pass coefficients corresponding to the function values will be stored. The N/2

low-pass data will be processed further at the next level of the EPWT. Particularly,

we denote the set of the N/2 points obtained by low-pass filtering and downsam-

pling of (xJ
pJ(k))

N
k=1 by Γ J−1, and relate the low-pass function coefficients to these

points. Again, we start with seeking a permutation pJ−1 of the indices of the points

in Γ J−1 to obtain an appropriate ordering of the data and apply the one-dimensional

wavelet filter bank to the ordered low-pass function data. We iterate this procedure

and obtain a sparse representation of the original data by applying a hard threshold-

ing procedure to the high-pass coefficients of the function value components. The

complete procedure can be summarized as follows.

Algorithm 1 (Decomposition) Let Γ = {x1, . . . ,xN}= {xJ
1, . . . ,x

J
N}= Γ J ⊂ R

d be
a given point set. Let f J

k := f (xk), for k= 1, . . . ,N, where N = 2J. Choose a biorthog-
onal wavelet filterbank with decomposition filters h̃, g̃, and reconstruction filters h,g,
where ∑k∈Z h̃(k) =

√
2, and a low-pass filter h̃p, where ∑k∈Z h̃p(k) = 1.

Iteration: Perform the following 4 steps for �= J,J−1 . . . ,J−L+1 with L < J:

1. Find a suitable path vector p� ∈N
2� consisting of a permutation of the indices of

the points in Γ � that describes a fixed order of points (x�p�(k), f �p�(k)), k = 1, . . . ,2�.

2. Apply the (periodic) low-pass filter h̃ to ( f �p�(k))
2�

k=1 followed by downsampling by

two to obtain the low-pass data ( f �−1
k )2�−1

k=1 . Apply the (periodic) high-pass filter
g̃ to ( f �p�(k))

2�

k=1 followed by downsampling by two to obtain the vector of wavelet

coefficients (d�−1
k )2�−1

k=1 .
3. Apply the low-pass filter h̃p to point vector (x�p�(k))

2�

k=1 (component-wise) followed

by downsampling by two to obtain a new vector of scattered points (x�−1
k )2�−1

k=1 .

Determine the new point set Γ �−1 := {x�−1
1 , . . . ,x�−1

2�−1}.

4. Apply a hard-threshold operator Tθ to the wavelet vector (d�−1
k )2�−1

k=1 to find

d̃�−1
k = Tθ (d�−1

k ) =

{
d�−1

k if |d�−1
k | ≥ θ ,

0 if |d�−1
k |< θ ,

with a predefined threshold parameter θ > 0.

Output: low-pass function values ( f J−L
k )2J−L

k=1 , thresholded high-pass function values

(d̃�
k)

2�

k=1, �= J−1, . . . ,J−L, path vectors p�, �= J, . . . ,J−L+1.

By construction many high pass values d�
k will vanish. An optimal storage of the path

vectors p� depends on the original distribution of the points xJ
k and on the applied

filter h̃p. Employing a “lazy” filter, we have x�k := x�+1
p�+1(2k)

, such that at each level

the new point set is just a subset of that of the preceding level of half cardinality.

Algorithm 2 (Reconstruction) Reconstruct values f (xk) = f (xJ
k) by applying the

following iteration, where ( f̃ J−L
k )2J−L

k=1 := ( f J−L
k )2J−L

k=1 .
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Iteration: Perform the following three steps for �= J−L,J−L+1, . . . ,J−1:

1. Apply an upsampling by two and then the low-pass filter h to ( f̃ �k )
2�

k=1.
2. Apply an upsampling by two and then the high-pass filter g to (d̃�

k)
2�

k=1.
3. Add the results of the previous two steps to obtain ( f̃ �+1

p�+1(k)
)2�+1

k=1 , and invert per-

mutation p�+1.

Output: ( f̃ J
k )

N
k=1, the approximated function values at scattered points xk ∈ Γ .

2.2 Construction of Path Vectors

The main challenge for the application of the EPWT to sparse data representation is

to construct path vectors through the point sets Γ �, �= J, . . . ,J−L+1. This step is

crucial for the performance of the data compression. The path construction is based

on determining a suitable correlation measure that takes the local distance of the

scattered points x�k into account, on the one hand, and the difference of the corre-

sponding low-pass values f �k , on the other hand. In the following, we present some

strategies for path construction and comment on their advantages and drawbacks.

2.2.1 Path Construction with Fixed Local Distances

One suitable strategy for path construction [17, 25] is based on a priori fixed local

ε-neighborhoods of the points x�k. In R
d , we consider a neighborhood of the form

Nε(x�k) = {x ∈ Γ � \{x�k} : ‖x�k − x‖2 ≤ mMn2(J−�)/dε},

where ε > 2J/d gΓ depends on the distribution of the original point set Γ = Γ J . For

example, starting with a regular rectangular grid in R
2 with mesh size gΓ = 2−J/2

(with J even) in both directions, one may think about a constant ε with
√

2 ≤ ε < 2,

such that each inner grid point has 8 neighbors.

For path construction at level � of the EPWT, we choose a first point x� ∈ Γ �

randomly, and put x�p�(1) := x�. Let now P�
j := {x�p�(1), . . . ,x

�
p�( j)} be the set of points

that have already been taken in the path. Now, we determine the ( j+1)-th point by

x�p�( j+1)
:= argmin

x∈Nε (x�p�( j)
)\P�

j

| f (x)− f (x�p�( j))|, (1)

i.e., we choose the point x in the neighborhood of the point x�p�( j) with minimal abso-

lute difference of the corresponding function values. This measure has been applied

in the rigorous EPWT of [17, 19]. The advantage of fixing the local neighborhood

in spatial domain lies in the reduced storage costs for the path vector that needs to

be kept to ensure a reconstruction. The drawback of this measure is that the set of
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“admissible points” Nε(x�p�( j)) \P�
j may be empty. In this case a different rule for

finding the next path entry has to be applied.

A special measure occurs if one tries to mimic the one-dimensional wavelet trans-

form. In order to exploit the piecewise smoothness of the function f to be approxi-

mated, one should prefer to construct path vectors, where locally three consecutive

points x�p�( j−1)
, x�p�( j), x�p�( j+1)

lie (almost) on a straight line. This consideration leads

to the following measure: We fix a threshold μ for the function values. For finding

the next point in the path, we compute

Nε,μ(x�p�( j)) := {x ∈ Nε(x�p�( j))\P�
j : | f (x)− f (x�p�( j))| ≤ μ}, (2)

and then let

x�p�( j+1)
:= argmin

x∈Nε,μ (x�p�( j)
)

〈x�p�( j−1)
− x�p�( j),x

�
p�( j)− x〉

‖x�
p�( j−1)

− x�
p�( j)

‖2 ‖x�
p�( j)

− x‖2

, (3)

where 〈·, ·〉 denotes the usual scalar product in R
d . Note that in (3) the cosine

of the angle between the vectors x�p�( j−1)
− x�p�( j) and x�p�( j) − x is minimized if

x�p�( j−1)
, x�p�( j) and x are co-linear. This approach is taken in [17, 25] for images

(called relaxed EPWT), and in [11] for scattered data denoising.

Remark 1. The idea to prefer path vectors, where the angles between three con-

secutive points in the path is as large as possible, can be theoretically validated in

different ways. Assume that the given wavelet decomposition filter g̃ = (g̃k)k∈Z in

the filter bank satisfies the moment conditions ∑k∈Z g̃k = 0 and ∑k∈Z kg̃k = 0. Then

we simply observe that for a constant function f (x) = c for x ∈ Γ and c ∈ R by

dJ
n = ∑

k∈Z
g̃k−2n+1 f (xJ

pJ(k)) = c ∑
k∈Z

g̃k−2n+1 = 0

all wavelet coefficients vanish, while for a linear function of the form f (x) = aT x+b
with a ∈ R

d and b ∈ R we have

dJ
n = ∑

k∈Z
g̃k−2n+1 f (xJ

pJ(k)) = aT ∑
k∈Z

g̃k−2n+1xJ
pJ(k) +b ∑

k∈Z
g̃k−2n+1.

Consequently, these coefficients only vanish, if the points in the sequence (xJ
pJ(k))k∈Z

are co-linear and equidistant, see [11]. A second validation for choosing the path

vector using the criterion (3) is given by the so-called path smoothness condition
in [18], see also Subsection 2.4, Remark 4.

Remark 2. Our numerical results in Subsection 2.5 show that the relaxed path con-

struction proposed in (2)-(3) is far superior to the rigorous path construction (1),

since it produces fewer “interruptions”, i.e., cases where Nε(xp�( j)) \P�
j = /0, and a

new path entry needs to be taken that is no longer locally correlated to the preceding
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point, which is usually leading to large wavelet coefficients and a higher effort in

path coding (see [17, 25]).

2.2.2 Path Construction with Global Distances

We want to present a second path construction using a global weight function. Con-

sidering the vectors y�k = y(x�k) := ((x�k)
T , f �k )

T ∈ R
d+1 at each level, we define a

symmetric weight matrix W � = (w(y�k,y
�
k′))

2�

k,k′=1, where the weight is written as

w(y�k,y
�
k′) = w1(x�k,x

�
k′) ·w2( f �k , f �k′).

Now the weights for the scattered points x�k can be chosen differently from the

weights for the (low-pass) function values f �k . A possible weight function used al-

ready in the context of bilateral filtering [26] is

w(y�k,y
�
k′) = exp

(
−‖x�k − x�k′ ‖2

2

22(J−�)/dη1

)
· exp

(
−| f �k − f �k′ |2

2J−�η2

)
,

where η1 and η2 need to be chosen appropriately. The normalization constant

22(J−�)/d in the weight w1 is due to the reduction of the points x ∈ Γ � by factor 2, at

each level, so that the distances between the points grow. The normalization constant

2J−� in the weight w2 arises from the usual amplification of the low-pass coefficients

in the wavelet transform with filters h̃ satisfying ∑k∈Z h̃k =
√

2.

Having computed the weight matrix W � = (w(y�k,y
�
k′))

2�

k,k′=1, we simply compute

the path vector as follows. We choose the first component x�p�(1) randomly from Γ �.

Using again the notation P�
j := {x�p�(1), . . . ,x

�
p�( j)} for the set of points in Γ � that are

already contained in the path vector, we now determine the next point as

x�p�( j+1)
:= argmax

x∈Γ �\P�
j

w(y(x),y(x�p�( j))),

where uniqueness can be achieved by fixing a rule if the maximum is attained at

more than one point. The advantage of this path construction is that no “interrup-

tions” occur. The essential drawback consists in higher storage costs for path vec-

tors, where we can no longer rely on direct local neighborhood properties of con-

secutive points in the path vector. Further, computing the full weight matrix W � is

very expensive. The costs can be reduced by cutting the spatial weight at a suitable

distance defining

w1(x�k,x
�
k′) =

{
exp(−‖x�k − x�k′ ‖2

2/22(J−�)/dη1) for ‖x�k − x�k′ ‖2 ≤ 2−�/dD,

0 for ‖x�k − x�k′ ‖2 > 2−�/dD,
(4)

with D chosen appropriately to ensure a sufficiently large spatial neighborhood.
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Remark 3. This approach has been used in [11] for random path construction, where

the compactly supported weight function w1(x�k,x
�
k′) above is employed. Taking the

weight function

w1(x�k,x
�
k′) =

{
1 for ‖x�k − x�k′ ‖2 ≤ 2−�/dD,

0 for ‖x�k − x�k′ ‖2 > 2−�/dD,

and w2( f �k , f �k′) = exp

(
−| f �k− f �k′ |2

2J−�η2

)
we obtain a distance measure that is equivalent

to (1).

2.3 EPWT for Scattered Data Denoising

The EPWT can also be used for denoising of scattered data. Let us again assume

Γ = {x1, . . . ,xN} are scattered points in R
d and let f : Rd →R be a smooth function

sampled on Γ ⊂ Ω . For the measured data f̃ (x j), we suppose that

f̃ (x j) = f (x j)+ z j,

where z j denotes additive Gaussian noise with zero mean and an unknown variance

σ2. For the distribution of the points in Ω we assume quasi-uniformity as before.

We now apply the EPWT, Algorithms 1 and 2 in Section 2.1, for data denoising.

Note that in case of noisy function values, the construction of path vectors (being

based on the correlation of function values at points with small spatial distance) is

now influenced by the noise. To improve the denoising performance, we have to

resemble the “cycle spinning” method (see [4]) that works as follows. We apply

the (tensor product) wavelet shrinkage not only to the image itself, but also to the

images that are obtained by up to seven cyclic shifts in x- and y-direction. After

un-shifting, one takes the average of the 64 reconstructed images, thereby greatly

improving the denoising result.

Employing the EPWT algorithm, we use Algorithms 1 and 2, applying them 64

times using different starting values xpJ(1) as a first path component each time. For

the path construction, we utilize one of the two methods described in Section 2.2.

After reconstruction of the 64 data sets, we take the average in order to obtain the

denoising result. Similarly as for wavelet denoising, the threshold parameter θ in

Algorithm 1 needs to be selected carefully depending on the noise level.

In [11] we have employed two different path constructions for image denoising.

The first one is very similar to the path construction in Subsection 2.2.1. The sec-

ond one is based on a weight matrix resembling that in Subsection 2.2.2. Here, the

next component in the path vector is chosen randomly according to a probability

distribution based on the weight matrix.

For images, the proposed denoising procedure strongly outperforms the usual

tensor-product wavelet shrinkage with cycle spinning, see [11]. Moreover, the pro-
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cedure is not restricted to rectangular grids, but can be used in a much more general

context for denoising of functions on manifolds. Numerical examples of the EPWT-

based denoising scheme are given in Subsection 2.5.

2.4 Optimal Image Representation by the EPWT

In this subsection we restrict ourselves to the EPWT on digital images on a domain

Ω = [0,1)2. For cartoon models, where the image is piecewise Hölder continuous or

even Hölder smooth, we can prove that the EPWT leads to optimally sparse image

representations, see [18, 20]. To explain this, let F ∈ L2(Ω) be a piecewise Hölder

continuous image. More precisely, let {Ωi}1≤i≤K be a finite set of regions forming

a disjoint partition of Ω whose boundaries are continuous and of finite length. In

each region Ωi, F is assumed to be Hölder continous of order α ∈ (0,1],

|F(x)−F(x+h)| ≤C‖h‖α
2 , x, x+h ∈ Ωi, (5)

where C > 0 does not depend on i. For given samples {(F(2−J/2n))}n∈IJ , the func-

tion F can be approximated by the piecewise constant function

FJ(x) = ∑
n∈IJ

F(2−J/2n)χ[0,1)2(2J/2x−n), x ∈ [0,1)2,

where the index set IJ := {n = (n1,n2) ∈N
2 : 0 ≤ n1 ≤ 2J/2 −1,0 ≤ n2 ≤ 2J/2 −1}

is of cardinality 2J . In this special case α ∈ (0,1] we can rely on the orthogonal

Haar wavelet filter bank in Algorithms 1 and 2. An optimal image representation is

strongly based on an appropriate path construction. As shown in [20], we need to

satisfy the following two conditions.

Region condition. At each level � of the EPWT, we need to choose the path vector,

such that it contains at most R1K discontinuities which are incurred by crossing over

from one region Ωi to another region, or by jumping within one region Ωi. Here R1

does not depend on J or �, and K is the number of regions.

Diameter condition. At each level � of the EPWT, we require

‖xp�(k)− xp�(k+1)‖2 ≤ D12−�/2,

for almost all points x�p�(k), k = 1, . . . ,2�−1, where D1 does not depend on J or �. The

number of path components which do not satisfy the diameter condition is bounded

by a constant being independent of � and J.

The region condition suggests that for path construction, we should first collect

all points that belong to one region Ωi before transferring to the next region. The

diameter condition ensures that the remaining points in Γ � are quasi-uniformly dis-

tributed at each level � of the EPWT. Satisfying these two conditions for the path

vectors, we have shown in [20], Corollary 3.1 that the M-term approximation FM
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reconstructed from the M most significant EPWT wavelet coefficients, satisfies the

asymptotically optimal error estimate

‖F −FM‖2
2 ≤ C̃ M−α (6)

with a constant C̃ and the Hölder exponent α ∈ (0,1] in (5).

Remark 4. Observe that at each level of the EPWT the path vector (p�( j))2 j

j=1 de-

termines a planar curve that interpolates f �p�( j) at the points x�p�( j), j = 1, . . . ,2�.

By definition, this curve is only piecewise linear. A generalization of the optimal

M-term approximation result (6) for piecewise Hölder smooth images with Hölder

exponent α > 1 has been developed in [18]. In this case, one needs to general-

ize the idea of a piecewise linear path vector curve to a smooth path function that

satisfies, besides the region condition and the diameter condition, a third condition

called path smoothness condition, see [18]. More precisely, let us consider a domain

Ω ⊂ [0,1]2 with a sufficiently smooth Lipschitz boundary and a disjoint partition Ωi
of Ω with smooth boundaries of finite length. Further, instead of (5), we assume that

F ∈ L2(Ω) is a piecewise smooth bivariate function being Hölder smooth of order

α > 1 in each region Ωi, i = 1, . . . ,K. In order to show the optimal error estimate (6)

also for α > 1, we need to employ a path function that approximates the values f �p�( j)

at the points x�p�( j) being a planar curve that is not only piecewise smooth but smooth

of order α inside a region Ωi with suitably bounded derivatives, see [18], Section

3.2. Particularly, this condition suggests that one should avoid “small angles” in the

path curve.

2.5 Numerical Results

We shortly illustrate the performance of the proposed EPWT algorithm for sparse

date representattion and data denoising. In Figure 1, we illustrate the application of

the EPWT for sparse image representation, see also [17, 25]. The three considered

images are of size 256× 256. In Algorithm 1, we have used the 7-9 biorthogonal

filter bank for the function values, and the lazy filter bank for the grid points, i.e.,

at each level of the EPWT, we have kept only every other grid point. The path

construction from Subsection 2.2.1 is taken, where in (2) the parameters ε =
√

2 and

μ = 5 are employed. The threshold parameter θ in Algorithm 1 is chosen, such that

1000 most significant EPWT wavelet coefficients are kept for the clock image, 700

coefficients are kept for the Lenna image and 200 coefficients are kept for the sail

image. Figure 1 shows the reconstructed images, where we compare the results of

a tensor-product wavelet compression with the 7-9 biorthogonal filter bank with the

results of the EPWT reconstruction, using the same number of wavelet coefficients

for the reconstruction in both cases.

In a second example we study the denoising behavior of the EPWT approach as

described in Subsection 2.3. In Figure 2, we present the noisy pepper image with a
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Fig. 1: Top row: Reconstruction by tensor-product wavelet compression using the

7-9 biorthogonal filter bank with 1000 wavelet coefficients for test image clock
(PSNR 29.93), 700 coeffs for Lenna (PSNR 24.28), and 200 coeffs for sail
(PSNR 19.58). Bottom row: Reconstruction by EPWT wavelet transform using

the 7-9 biorthogonal filter bank with 1000 wavelet coefficients for clock (PSNR

33.55), 700 coeffs for Lenna (PSNR 30.46), 200 coeffs for sail (PSNR 27.19).

PSNR of 19.97 and compare the denoising results of different methods. In particu-

lar, we have used the four-pixel denoising scheme based on anisotropic diffusion by

Welk et al. [29] with 76 iterations and step size 0.001 providing a PSNR of 28.26.

Further, we apply the 7-9 wavelet shrinkage with a PSNR of 24.91 and the 7-9

wavelet shrinkage with cycle spinning using 64 shifts of the image and yielding the

PSNR 28.11. Our EPWT denoising approach employing a relaxed path construc-

tion as described in Subsection 2.2.1 achieves a PSNR of 29.01 while a random

path construction based on the ideas in Subsection 2.2.2 yields the PSNR 27.96.

Note that the repeated application of the EPWT shrinkage method can be done in a

parallel process. While our proposed EPWT denoising is (due to the path construc-

tions) more expensive than the tensor-product wavelet shrinkage its application is

not restricted to rectangular regular grids.

The third example shows the EPWT denoising to a triangular domain taking the

approach in Section 2.3, see Figure 3. We use the 7-9 biorthogonal filter bank for

the function values, the lazy filter bank for the grid points, and the path construction

from Subsection 2.2.1 with ε = 1.3, μ = 89 and threshold θ = 89.
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Fig. 2: Top row: Peppers with additive white Gaussian noise with σ = 25 (PSNR

19.97) and reconstruction by the Four-Pixel Scheme [29] (PSNR 28.26), Mid row:

Reconstruction by 2d tensor product wavelet transform using the 7-9 biorthogonal

filter bank without (PSNR 24.91) and with cycle spinning (PSNR 28.11) Bottom
row: Reconstruction by our approach described in Subsection 2.3 using a relaxed

path construction with fixed local distances in (2), (PSNR 29.01) and a random path

construction based on (4) (PSNR 27.96).
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Fig. 3: Cameraman. Data with additive white Gaussian noise with σ = 25 (PSNR

19.98), and EPWT reconstruction using the approach in Section 2.3 (PSNR 26.31).

3 Dimensionality Reduction on High-Dimensional Signal Data

To explain basic concepts on dimensionality reduction, we regard point cloud data
as a finite family of vectors

X = {xi}m
i=1 ⊂ R

n

contained in an n-dimensional Euclidean space. The fundamental assumption is that

X lies in M , a low dimensional (topological) space embedded in R
n. Therefore,

X ⊂ M ⊂ R
n with p := dim(M ) � n. Another ingredient is a parameter domain

Ω for M , where Ω is assumed to be embedded in a low dimensional space Rd with

p ≤ d < n. Moreover, we assume the existence of a homeomorphism (diffeomor-

phism)

A : Ω → M ,

so that Ω is a homeomorphic (diffeomorphic) copy of M . This concept can then be

used for signal analysis in a low dimensional environment. In practice, we can only

approximate Ω by a projection

P : M → Ω ′,

where Ω ′ is a homeomorphic copy of Ω . The low dimensional structure representing

X is the reduced data Y = {yi}m
i=1 ⊂ Ω ′ ⊂ R

d , according to the following diagram.

X ↪→ M ↪→ R
n

Y ↪→ Ω ′ ↪→ R
d

P|X P

Principal component analysis (PCA) is a classical linear projection method. Di-

mensionality reduction by PCA can be described as an eigenvalue problem, so that

PCA can be applied by using the singular value decomposition (SVD). More pre-
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cisely, in PCA we consider centered data X (i.e., X has zero mean) in matrix form

X ∈R
n×m. Now the concept of PCA is to construct a linear projection P : Rn →R

n,

for rank(P) = p < n, with minimal error err(P,X) = ∑m
k=1 ‖xk −P(xk)‖2, or, equi-

valently, with maximal variance var(P,X) = ∑m
k=1 ‖P(xk)‖2. These conditions can in

turn be reformulated as an eigenvalue problem, where the p largest eigenvalues of

the covariance matrix XXT ∈ R
n×n are sought, cf. [15].

Another classical linear dimensionaly reduction method is multidimensional
scaling (MDS), which is also relying on an eigendecomposition of data X ∈ R

n×m.

In contrast to PCA, the MDS method constructs a low dimensional configuration

of X without using an explicit projection map. More precisely, on input matrix

X ∈ R
n×m, MDS works with the distance matrix D = (di j)i, j=1,···,m, of the points

in X to compute an optimal configuration of points Y = (y1, · · · ,ym) ∈ R
p×m, with

p ≤ n, minimizing the error err(Y,D) = ∑m
i, j=1(di j −‖yi − y j‖)2. In other words,

the low dimensional configuration of points Y preserves the distances of the higher

dimensional dataset X approximately.

In the construction of nonlinear dimensionality reduction (NDR) methods, we

are especially interested in their interaction with signal processing tools, e.g., convo-

lution transforms. When applying signal transforms to the dataset X , one important

task is the analysis of the incurred geometrical deformation. To this end, we propose

the concept of modulation maps and modulation manifolds for the construction of

particular datasets which are relevant in signal processing and NDR, especially since

we are interested in numerical methods for analyzing geometrical properties of the

modulation manifolds, with a particular focus on their scalar and mean curvature.

We define a modulation manifold by employing a homeomorphism (or diffeo-

morphism) A : Ω → M , for a specific manifold Ω , as used in signal processing.

The basic objective is to understand how the geometry of Ω is distorted when we

transform Ω using a modulation map A . More explicitly, let {φk}d
k=1 ⊂ H be a

set of vectors in an Euclidean space H , and {sk : Ω → CH (H )}d
k=1 a family of

smooth maps from a manifold Ω to CH (H ) (the continuous functions from H
into H ). We say that a manifold M ⊂ H is a {φk}d

k=1-modulated manifold if

M =

{
d

∑
k=1

sk(α)φk, α ∈ Ω

}
.

In this case, the map A : Ω → M , α �→ ∑d
k=1 sk(α)φk, is called modulation map.

To make one prototypical example (cf. [9]), we regard a map of the form

A (α)(ti) =
d

∑
k=1

φk(αkti), α = (α1, . . . ,αd) ∈ Ω , {ti}n
i=1 ⊂ [0,1],

for a set of band-limited functions {φk}d
k=1 in combination with a finite set of uni-

form samples {ti}n
i=1 ⊂ [0,1].

Now we use the same notation for the band-limited functions φk and the above

mentioned vector of sampling values {φk(ti)}n
i=1, as this is justified by the Whittaker-

Shannon interpolation formula as follows.
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As the support of the band-limited functions φk is located in [0,1], the Whittaker-

Shannon interpolation formula allows us to reconstruct each φk exactly from the

finite samples (φk(ti))n
i=1 ∈ R

n. This in turn gives a one-to-one relation between the

band-limited functions φk : [0,1]→R and the vectors (φk(ti))n
i=1 ∈R

n. Note that the

maps sk(α) are in our example given by sk(α)φk(ti) = φk(αkti). In other words, we

use the (continuous) map sk(α), f (t) �→ f (αkt), as the scaling by factor αk, being

the k-th coordinate of vector α ∈ Ω ⊂ R
d .

To explain our analysis of the geometric distortions incurred by A , we restrict

ourselves to the case d = 3 and Ω ⊂ R
3 with dim(Ω) = 2. We compute the scalar

curvature of M from the parametrization of Ω and the modulation map A by the

following algorithm [9].

Algorithm 3 On input parametrization α = (α j(θ1,θ2))
d
j=1 of Ω and band-limited

functions {φ j}d
j=1 that are generating the map A , perform the following steps.

(1) Compute the Jacobian matrices Jα ;
(2) Compute the metric tensor gi j = ∑n

�=1 t2
� ∑d

r,q=1

(
dφr
dt (αrt�)

dφq
dt (αqt�) ∂αr

∂θi

∂αq
∂θ j

)
;

(3) Compute the Christoffel symbols Γ k
i j =

1
2 ∑p

�=1

(
∂g j�
∂xi

+ ∂gi�
∂x j

− ∂gi j
∂x�

)
g�k;

(4) Compute the tensors R�
i jk = ∑p

h=1(Γ
h
jkΓ �

ih −Γ h
ik Γ �

jh)+
∂Γ �

jk
∂xi

− ∂Γ �
ik

∂x j
;

(5) Compute the scalar curvature S = ∑p
i, j=1 gi jRi j, where Ri j = ∑p

k,�=1 gk�Rk
ki j.

Output: The scalar curvature S of M = A (Ω).

For further details concerning the construction of Algorithm 3, we refer to [9].

(a) (b)

Fig. 4: (a) A sphere Ω whose colors represent the scalar curvature of M = A (Ω),
(b) PCA projection of M = A (Ω) with Gaussian curvature represented by colors.
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4 Audio Signal Separation and Signal Detection

In many relevant applications of signal processing there is an increasing demand for

effective methods to estimate the components from a mixture of acoustic signals. In

recent years, different decomposition techniques were developed to do so, includ-

ing independent subspace analysis (ISA), based on independent component analysis
(ICA), see [2, 6, 27], and non-negative matrix factorization (NNMF), see [7, 24, 28].

The computational complexity of these methods, however, may be very large, in par-

ticular for real-time computations on audio signals. In signal separation, dimension-

ality reduction methods are used to first reduce the dimension of the data obtained

from a time-frequency transform, e.g., short time Fourier transform (STFT), before

the reduced data is decomposed into different components, each assigned to one of

the source signals. For the application of dimensionality reduction in combination

with NNMF, however, non-negative dimensionality reduction methods are essen-

tially required to guarantee non-negative output data from non-negative input data

(e.g., a non-negative spectrogram from the STFT). For the special case of PCA, a

suitable rotation map is constructed in [13] for the purpose of back-projecting the

reduced data to the positive orthant of the Cartesian coordinate system, where the

sought rotation is given by the solution of a constraint optimization problem in a

linear subspace of orthogonal matrices.

In this section, we evaluate different decomposition methods for signal separation

in combination with the non-negative PCA projection from [13]. The basic steps of

our method are illustrated in Figure 5.

spectrograms
of f1 and f2

ICA, NNMF

signal f

X

Y

decomposed data

signals f1, f2

STFT

U
UT

inverse STFT

Fig. 5: Signal separation with dimensionality reduction.
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To explain how we use PCA, let U ∈ R
D×d be an orthogonal projection, satisfy-

ing Y =UT X , being obtained by the solution of the minimization problem

min
ŨT Ũ=I

n

∑
k=1

∥∥xk −ŨŨT xk
∥∥

2
. (7)

The solution of (7) is given by the maximizer of the variance var(Y ) of Y , as given

by the trace of YY T . This observation allows us to reformulate the minimization

problem in (7) as an equivalent maximization problem,

max
ŨT Ũ=I

tr(ŨT XXTŨ), (8)

where the maximizer U of var(Y ) is given by a matrix U whose d columns contain

the eigenvectors of the d largest eigenvalues of the covariance matrix XXT .

For further processing the data in a subsequent decomposition by NNMF, the data

matrix Y is essentially required to be non-negative. Note, however, that even if the

data matrix X (obtained e.g., by STFT) may be non-negative, this is not necessarily

the case for the components of the reduced data matrix Y . Therefore, we reformulate

the maximization problem in (8) by adding a non-negativity constraint:

max
ŨT Ũ=I
ŨT X≥0

tr(ŨT XXTŨ). (9)

Note that this additional restriction transforms the simple PCA problem (8) into

a much more difficult non-convex optimization problem (9) with many local solu-

tions, for which (in general) none of the solutions is known analytically.

We tackle this fundamental problem as follows. We make use of the fact that the

input data set X is non-negative, before it is projected onto a linear subspace, with

the perception that there exists a rotation of the low-dimensional data set Y into the

non-negative orthant. Indeed, as proven in [13], such a rotation map exists, which

motivates us to split the non-negative PCA (NNPCA) problem (9) into a PCA part

and a rotation part. This, in turn, gives rise to seek for a general construction of a

rotation matrix W satisfying WUT X ≥ 0.

To further explain our splitting approach, recall that we already know the solution

U of the PCA part. Since the rotation matrix W is orthogonal, it does not affect the

value of the NNPCA cost functional. Now, in order to determine the rotation matrix

W , we consider solving an auxiliary optimization problem on the set of orthogonal

matrices SO(d), i.e., we minimize the cost functional

J(W̃ ) =
1

2
∑
i, j

[(
W̃UT X

)
−
]2

i j
where [Z−]i j =

{
zi j if zi j < 0,
0 otherwise,

(10)

as this was proposed in [22] in the context of ICA. However, we cannot solve this op-

timization problem directly by an additive update algorithm, since the set of rotation

matrices SO(d) is not invariant under additions. But an elegant way to minimize the
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cost functional J in (10) uses the Lie-group structure of SO(d) to transfer the prob-

lem into an optimization problem on the Lie-algebra of skew-symmetric matrices

so(d). Due to the vector space property of so(d), standard methods can be applied

to find the minimum (see [10, 12, 22] for details).

4.1 Decomposition Techniques

There are different methods for the decomposition of the (reduced) spectrogram Y .

Among them, independent component analysis (ICA) and non-negative matrix fac-

torization (NNMF) are commonly used. In either case, for the application of ICA or

NNMF, we assume the input data Y to be a linear mixture of source terms si, i.e.,

Y = AS, (11)

where A ∈ R
d×r and S ∈ R

r×n are unknown. For the estimation of A and S we

need specific additional assumptions to balance the disproportion of equations and

unknowns in the factorization problem (11).

4.1.1 Independent Component Analysis (ICA)

The basic assumption of ICA is that the source signals are statistically indepen-

dent. Furthermore, the data matrix Y is assumed to result from n realizations of a

d-dimensional random vector. In order to estimate S, a random variable S is con-

structed, whose n realizations yield the columns of the source matrix S. The com-

ponents of S are chosen to be as stochastically independent as possible, where the

stochastical independence can be measured by the Kullback-Leibler distance [5].

In practice, the number of sources is usually unknown. Therefore, we may detect

more independent components than the true number of sources. In this case, two or

more of the separated components belong to the same source. Thus, the sources are

combinations of the independent components. In a subsequent step, the sources are

grouped into independent subspaces, each corresponding to one source. Finally, the

sources are reconstructed from these multi-component subspaces [2]. This proce-

dure is called independent subspace analysis (ISA). The main difficulty of ISA is to

identify components belonging to the same multi-component subspace.

4.1.2 Non-Negative Matrix Factorization (NNMF)

The factorization of the given data Y into a mixing matrix A and the source signals

(source components) S, i.e., Y = AS, could be done by matrix factorization. The data

we use for signal separation are obtained by taking the modulus of the signal’s STFT,

and so the input data is non-negative. Since the source components are assumed to
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be spectrograms, too, we assume them to be non-negative as well. Therefore, non-

negative matrix factorizations (NNMF) are suitable tools for decomposition.

There are different NNMF algorithms available, all of which are relying on the

non-negativity Y,A,S ≥ 0, where different measures d(Y,AS) for the reconstruction

error were proposed [7, 24, 28]. We consider using the generalized Kullback-Leibler
distance (proposed in [14] and used for decomposing signal data in [28]):

d(Y,AS) = ∑
i, j

Yi j log
Yi j

(AS)i j
−Yi j +(AS)i j.

4.2 Numerical Results
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Fig. 6: Two acoustic signals: castanets f1 (top left), cymbal f2 (top right), and cor-

responding spectrograms (2nd row). Signal f = f1 + f2 and spectrogram (3rd row).
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We present one numerical example comparing the decomposition strategies ICA

and NNMF. We consider a mixture f = f1 + f2 of acoustic transient signals, where

f1 is a sequence of castanets and f2 a cymbal signal, shown in Figure 6, where also

the combination f = f1 + f2 of the two signals is displayed. The spectrograms in

these figures are generated with an STFT using a Hamm-window. Since f2 is a high-

energy signal, f has a complex frequency characteristic. Therefore, the extraction of

the castanets signal f1, being active only at a few time steps, is a challenging task.

The obtained separations, resulting from the two different decomposition meth-

ods using NNPCA and PCA, respectively, are displayed in Figure 7. Note that both

methods, NNMF and ICA, achieve to reproduce the characteristic peaks of the cas-

tanets quite well. However, in the case of NNMF strong artifacts of the castanets are

visible in the cymbal signal, whereas the separation by ICA is almost perfect.
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Fig. 7: Signal separation by NNPCA & NNMF (left col.); PCA & ICA (right col.).

Likewise, for the reconstruction of the reduced signal, the combination of PCA

and ICA provides an almost complete reproduction of the original signal f (see Fig-

ure 8). Merely at time steps where a high amplitude of the cymbal exactly matches

the peaks of the castanets, a correct separation is not quite achieved. As for the

NNMF, the spectrogram in Figure 8 shows that information is being lost.

We finally remark that for signal separation without dimensionality reduction,

NNMF is competitive to ICA (see e.g. [28]). This indicates that our use of NNPCA

in combination with NNMF could be improved. Further improvements could be

achieved by the use of more sophisticated (nonlinear) dimensionality reduction

methods. On the other hand, this would lead to a much more complicated construc-
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Fig. 8: Reconstruction of f as sum of the decomposed fi by using NNPCA & NNMF

(left column) and by using PCA & ICA (right column).

tion of the inverse transform, as required for the back-projection of the data. We

defer these points to future research. Nevertheless, although PCA is only a linear
projection method, our numerical results of this section, especially those obtained

by the combination of PCA and ICA, are already quite promising.
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