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Abstract. We propose a computational approach for the solution of an optimal
control problem governed by the wave equation. We aim at obtaining approx-
imate feedback laws by means of the application of the dynamic programming
principle. Since this methodology is only applicable for low-dimensional dynam-
ical systems, we first introduce a reduced-order model for the wave equation by
means of Proper Orthogonal Decomposition. The coupling between the reduced-
order model and the related dynamic programming equation allows to obtain
the desired approximation of the feedback law. We discuss numerical aspects of
the feedback synthesis and provide numerical tests illustrating this approach.

Keywords.Optimal control, Feedback control, Dynamic programming, Hamilton-
Jacobi-Bellman equation, Proper Orthogonal Decomposition, Wave equation.

1. Introduction and description of the problem

In this paper, we shall be concerned with the approximation of feedback laws for
abstract infinite-dimensional optimal control problems of the type:

min
u∈L2(0,∞;U)

J(u) :=

∞∫
0

L(y(t), u(t))e−λs dt , λ > 0, (1.1)

subject to

ẏ = Ay(t) +Bu(t), t ∈ (0,+∞) , (1.2)

y(0) = y0 . (1.3)

Although the methodology that we will introduce can in principle be applied to
general evolutive problems governed by partial differential equations, we will focus
on the setting corresponding to a wave equation over a space domain Ω ⊂ R:⎧⎪⎨

⎪⎩
wtt − wxx − βwxxt = u(x, t) in Ω× (0,∞),

w(·, 0) = w0, wt(·, 0) = w1 in Ω,

w(·, t) = 0 in ∂Ω× (0,∞),

, (1.4)
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which can be cast in the canonical state-space representation by defining

y(t) :=

(
w(x, t)
wt(x, t)

)
, A :=

(
0 I
Δ βΔ

)
, Bu :=

(
0

χω(x)u(t)

)
. (1.5)

Here β > 0 denotes a damping parameter, and χω corresponds to the indicator
function of a subset ω ⊂ Ω, i.e. the control force is a constant load in space. The
running cost is given by

L(y, u) := ‖w(·, t;u)‖2H1(Ω) + ‖wt(·, t;u)‖2L2(Ω) + α|u(t)|2 . (1.6)

Among the available solution techniques for the aforementioned problem, we are
interested in the design of optimal feedback control laws, where the optimal control
u∗(t) can by expressed through the action of a mapping K(y) acting on the current
state of the system,

u∗(t) = −K(y(t)) . (1.7)

Despite the vast literature concerning the analysis and numerical approximation of
optimal control problems for the wave equation, the amount of works devoted to the
synthesis of feedback controllers is rather reduced. In this direction, the application
of the dynamic programming principle (DPP) is a powerful technique. It establishes
a global link between the feedback mapping and the value function of the optimal
control problem, which in turn is characterized as the viscosity solution of a Hamilton-
Jacobi-Bellman (HJB) equation which is solved over the state space of the system
dynamics. This latter fact is a major bottleneck for the application of DPP-based
techniques in the optimal control of PDE’s, as the natural approach for this class of
control problems is to consider a semi-discretization (in space) via finite elements or
finite differences of the abstract governing equations, leading to an inherently high-
dimensional state space. This curse of the dimensionality has been a strong limitation
for the computation of optimal feedback controllers in infinite-dimensional systems.
However, in the last years several steps have been made to obtain reduced-order
models for rather complicated dynamics and by the application of these techniques
it is now possible to have a reasonable approximation of large-scale dynamics using
a rather small number of basis functions. This can open the way to the DPP ap-
proach in high-dimensional systems. The aim of this paper is to study the interplay
between reduced-order dynamics, the associated dynamic programming equation, the
resulting feedback controller and its performance over the high-dimensional system.
To set this paper into perspective we recall that a huge literature has been devoted
to various aspects of control problems for the wave equation. Although a detailed
picture of these contributions goes beyond the goals of this paper we want to mention
some recent and relevant contributions on controllability by Lasiecka and Triggiani
[16], Privat, Trélat and Zuazua [17] and Zhang, Zheng and Zuazua [20]. A thorough
analysis of the approximation of the linear-quadratic regulator problem for the wave
equation can be found in [10]. The interested reader can also find a comprehensive
presentation of control problems for waves and their approximation in [6] (see also
the long list of references therein).
The main stream for the optimal control of the wave equation is still related to open-
loop controls based on the Pontryagin Maximum Principle (this approach has been
extensively discussed in the monograph [19]). More recently, the Proper Orthogonal
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Decomposition (POD) has been proposed for PDE control problems to open the way
to the application of the dynamic programming approach. The dimensional reduction
of the dynamics is necessary to bring the number of state variable to a manageable
scale. The starting point has been the optimal control of the heat equation which
exploits the regularity of the solutions for that equation [5] and then attacking more
difficult problems as the advection-diffusion equation [1, 2, 11], Burgers’s equation
[14, 15] and Navier-Stokes [4]. We also mention that the semi-linear wave equation
has been recently addressed in [13] with the goal of obtaining an approximate feed-
back law, by means of an spectral finite element discretization is used for the wave
dynamics. Instead, we construct a POD approximation based on a finite element
scheme.

2. Dynamic programming equations and its approximation

We illustrate the dynamic programming approach for optimal control problems of
the form ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
min
u∈U

Jx(u(t)) :=
∞∫
0

L(y(s), u(s)) e−λs ds

constrained by the dynamics
ẏ(t) = f(y(t), u(t))
y(0) = x

(2.8)

with system dynamics in R
n and a control signal u(t) ∈ U ≡ {u(·)measurable , u :

[0, T ] → U}, where U is a compact subset of Rm; we assume λ > 0, while L(·, ·) and
f(·, ·) are Lipschitz-continuous, bounded functions. Note that the optimal control
problem (1.1)-(1.3) fits into the more general setting (2.8) provided that the system
dynamics are finite-dimensional. In this setting, a standard solution tool is the ap-
plication of the dynamic programming principle, which leads to a characterization of
the value function

v(x) := inf
u∈U

Jx(u)

as unique viscosity solution of the HJB equation:

λv(x) + sup
u∈U

{−Dv · f(x, u)− L(x, u)} = 0 . (2.9)

Equation (2.9) may be approximated in several ways, we consider a fully-discrete
semi-Lagrangian scheme which is based on the discretization of the system dynamics
with time step h, and a mesh parameter k, leading to a fully discrete approximation
Vh,k(x) satisfying

Vh,k(xi) = min
u∈U

{(1− λh)I1[Vh,k](xi + hf(xi, u)) + L(xi, u)} , (2.10)

for every element xi of the discretized state space. Note that in general, the arrival
point xi + hf(xi, u) is not a node of the state space grid, and therefore the value is
computed by means of an linear interpolation operator, denoted by I1[Vh,k].
The bottleneck of this approach is related to the so-called curse of the dimensionality,
namely, the computational cost increases dramatically as soon as the dimension does.
One way to overcome the dimensionality issue is the construction of efficient iterative
solvers for (2.10). Note that it will not be enough for the purpose of the control of a
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parial differential equation as explained in the next section.
The simplest iterative solver is based on a direct fixed point iteration of the value
function (VI)

V j+1
h,k = T (V j

h,k) (2.11)

[T (V )]i := min
u∈U

{(1− λh)I1[V ](xi + hf(xi, u)) + L(xi, u)} , i = 1, . . . , Np (2.12)

where Np denotes the number of nodes of the grid. Convergence is guaranteed for
any initial condition V 0

h,k since the operator on the right hand side is a contraction
mapping. Although simple and reliable, this algorithm is computationally demanding
and slow when fine meshes are considered.
A more efficient formulation is the so-called policy iteration algorithm (PI), which
starting from an initial guess u0

i of the control at every node, performs the following
iterative procedure:

[V j
h,k]i = (1− λh)I1[V

j
h,k](xi + hf(xi, u

j
i )) + hL(xi, u

j
i )

[uj+1]i = argmin
u∈U

{(1− λh)I1[V
j
h,k](xi + hf(xi, u)) + hL(xi, u)}

where we first have to solve a linear system, since we freeze the control, in order
to find the value function correspondent to the given control and then update the
control. We iterate until we have convergence for the value function. It is well-known
that the PI algorithm has a quadratic convergence provided a good initial guess.
However, its convergence is only local (as for the Newton method), so there is a need
for good initialization. This point is very delicate since this would require to know
a reasonable approximation of the optimal feedback control. To solve this problem
in [3] was proposed an acceleration mechanism based on a (VI) solution on a coarse
grid, which is used to generate an initial guess for (PI) on the fine grid. This is based
on the fact that (VI) generates a fast error decay when applied over coarse meshes,
without depending on a good starting point. Therefore, the proposed approach is
a way to enhance (PI) with both efficiency and robustness features. We adopt the
aforementioned approach (shortly API) for the approximation of the HJB equation.

3. POD-Model Reduction for the controlled problem

In this section, we explain the POD method for the approximate solution of the
optimal control problem. The approach is based on projecting the nonlinear dynamics
onto a low dimensional manifold utilizing projectors which contain information of the
dynamics. A common approach in this framework is based on the snapshot form of
POD proposed by Sirovich in [18], which works as follows.
The snapshots are computed on the basis of a finite element discretization in space
of the system dynamics (1.4) which leads to a semi-discrete system of ODEs of the
form:

MN ẏN = ANyN (t) +BNu(t), t ∈ (0,+∞) , (3.13)

yN (0) = yN0 . (3.14)
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where AN , BN ,MN correspond to the finite-dimensional projections of the abstract
operators in (1.4). Let us assume to know the finite element solutions y(ti) ∈ R

N

for given time instances. We define the snapshot matrix Y = [y(t1), . . . , y(tn)] and
determine its singular value decompositionW 1/2Y = ΨΣV . The POD basis functions
{ψi}�i=1 of rank 	 are the first 	 columns of the matrix Ψ and we define the POD
ansatz of order 	 for the state y as

yN (t) ≈
�∑

i=1

y�i (t)ψi . (3.15)

The reduced optimal control problem is obtained through replacing (3.13) by a dy-
namical system obtained from a Galerkin approximation with basis functions {ψi}�i=1

and ansatz (3.15) for the state. This leads to a 	−dimensional system for the unknown
coefficients {y�i}�i=1, namely

M �ẏ� +A�y� = B�u, y�(0) = y�0. (3.16)

Here the entries of the mass M � and the stiffness A� are given by 〈ψj ,M
Nψi〉W and

〈ψj , A
Nψi〉W , respectively. The weighted inner product is defined as: 〈q, p〉W = q�Wp

where p, q ∈ R
N and W ∈ R

N×N is induced from the approximation of the abstract
state space, which is our case is considered to be H1(Ω) × L2(Ω). The error of the
Galerkin projection is governed by the singular values associated to the truncated
states of the SVD.
The POD-Galerkin approximation leads to the optimization problem

inf
u∈U

J�
y�
0
(u) :=

∫ ∞

0

L(y�(s), u(s))e−λs ds, (3.17)

where u ∈ U , y� solves the reduced dynamics (3.16) . The value function v�, defined
for the initial state y�0 ∈ R

� is given by

v�(y�0) = inf
u∈U

J�
y�
0
(u) .

Note that the resulting HJB equations are defined in R
�, but for computational pur-

poses we need to restrict our numerical domain to a bounded subset of R�. We refer
the interested reader to [1] for a details on this issue.

4. Remarks on the computation of the feedback control

The main advantage of the dynamic programming approach is the possibility to have
a synthesis of feedback controls. Once the discretized value function Vh,k has been
obtained, the approximated optimal control u∗

h,k(x) for a point x of the state space
is given by:

u∗
h,k(x) = arg min

u∈U
{(1− λh)I1[Vh,k](x+ hf(x, u)) + l(x, u)} (4.18)

This choice is quasi-optimal provided some additional condition on the dynamics
are satisfied, a typical example is a linear dependence on control variable as it has



6 A. Alla, M. Falcone and D. Kalise

been shown in [8, p. 231] . However, some difficulties arise in this approximation, we
examine them and provide some possible solutions.
Discretization of the control space. A first step for the computation of the argmin
appearing in (4.18) is to replace the continuous control space U by a discrete number

of steps, i.e. considering the discrete control space Û = {u1, . . . , um}. This, of course,
introduces an additional discretization error which could be avoided working in a
continuous space as in [12] or by a descent method without derivatives (like Brent’s
algorithm) . The discretization error can be reduced by an iterative bisection method
described in [7].
Non uniqueness of the argmin. When the minimum is obtained via a discretization
of the control space one should also take into account the error in the discretization
of the value function. So all the controls which give an approximate value of the
right-hand side of (4.18) close to the minimum by a tolerance ε(k) should also be

taken into account, we will denote this set by Ûε. Then, we have to choose among
them following another rule, e.g. by taking the control which is optimal with respect
to another convex criterium like the squared norm of the control.
Chattering along the optimal trajectories. Even with the adoption of an additional
selection rule it could be that the feedback control jumps introducing a chattering
behavior along the optimal trajectories. This is typical around the curves where the
value function is not regular (remember that the value function is only Lipschitz
continuous). To avoid the chattering and stabilize the trajectory we can introduce
an inertia penalization in the numerical realization of the feedback reconstruction
(4.18), which we illustrate in Algorithm 4.1.

Algorithm 4.1 Feedback regularization algorithm

Require: Vh,k, tolerance ε, current state x, discretized control set U = {u1, . . . , uM},
admissible optimal control set Ûε = ∅, previous optimal control uold.

1: for i=1,. . . ,M do
2: V al(i) = {(1− λh)I1[V ](x+ hf(x, ui)− L(x, ui)}.
3: end for
4: V al∗ = min{V al}
5: for i = 1, . . . ,M do
6: if |V al∗ − V al(i)| < ε then

7: Ûε = Ûε

⋃
ui

8: end if
9: end for

10: u∗
h,k(x) = argmin

u∈̂Uε

|u− uold|

5. Numerical Tests

This section presents numerical tests aiming at assessing the performance of the pro-
posed method. We will present two test cases. The first experiment shows for the
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damped case β > 0, the performance of the coupling between HJB and POD meth-
ods and the study of the chattering of the optimal control. In the second test we focus
on the undamped case β = 0. Both examples are compared with a linear-quadratic
regulator (LQR) controller implemented as in [10]. This latter approach is based on
the solution of a large-scale Riccati equation and does not consider a dimensional
reduction step. For the relation between this approach and the HJB-based control,
we refer to [8, Chapter 8].

Test 1: damped wave equation. In (1.4) we set: Ω = (0, 1), ω = (0.4, 0.6), w0 =
sin(πx), w1 ≡ 0, β = 0.05. In (2.10) we take k = {0.1, 0.05}, h = 0.1k, λ = 1, U =
[−1.2, 0, 6], α = 1. The discrete control set contains 19 equidistant controls. The re-
duced domain is [−2.25, 2.55]×[−2.15, 1.95]×[−0.65, 1.05]×[−0.35, 0.25]×[−0.25, 0.25].
The cost functional is expressed in (1.6). The snapshots are computed from a P1 finite
element discretization in space with an implicit time integrator for given constant
control inputs u ≡ {−1.2, 0, 0.6}. In order to compare our proposed algorithm, we
also compute the solution with a discounted LQR control, and fix control set U from
the active set of the LQR result.
Figure 5.1, presents a comparison between the uncontrolled evolution, the controlled
states by means of an LQR control for the full-order dynamics, and the HJB-POD
approach with 5 reduced states. This is consistent with the fact that for inactive
control constraints and similar settings, both controllers are equivalent. The effect of
the dissipative damping term guarantees the fast decay of the singular values related
to the POD approximation, and therefore a good approximation of the system dy-
namics can be obtained with a reduced number of states. Table 5.1 shows the error
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Figure 5.1. Test 1: Uncontrolled solution (left), controlled state
with full-order LQR control (middle), controlled state with HJB-
POD design with 5 reduced states (right).

between LQR, considered as truth solution, and the HJB-POD approximation. As
expected, the error decays as soon as we increase the number of basis functions 	 and
decrease the step size k. It is worth to comment on the CPU time of the API scheme
for the approximation of the HJB equation. The value function with 5 basis functions
is computed in 722[s] for the API scheme, compared to 6.63×103[s] if computed with
a standard Value Iteration scheme.
Finally, we would like to put our attention on the optimal control output. A common
problem dealing with numerical feedback control, and in particular with numerical
approximations of HJB equations is the chattering of the control output. Our goal is



8 A. Alla, M. Falcone and D. Kalise

k = 0.1 k = 0.05

	 = 3 0.1224 0.0953
	 = 4 0.1009 0.0886
	 = 5 0.0648 0.0468

Table 5.1. H1
0− error for w between LQR control and HJB-POD

approximations at time t = 4. The number of basis functions is 	
and k is the step size for the approximation of the value function.

to minimize the jumps of the control signal in order to obtain a smoother approxi-
mation. Figure 5.2 shows the difference between the numerical HJB feedback control,
the LQR control signal and the regularized HJB control following the algorithm pre-
sented in Section 4. In particular, our regularization algorithm considerably reduced
the chattering of the control signal, mimicking in a better way the LQR control. Note
that the LQR feedback is obtained over a continuous control set U , whereas the HJB
approach uses a discrete approximation. Finally, we note that the error between the
HJB-POD solution correspondent to 	 = 5 and k = 0.05 with a regularized control
and the LQR controlled state is 0.0304 instead of 0.0468, yielding a more accurate
approximation of the control trajectory.
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Figure 5.2. Test 1: HJB-POD feedback control with chattering
(left) LQR control (middle), HJB-POD feedback control with chat-
tering reduction (right).

Test 2: undamped wave equation. The second test differs from the first in the choice
of the parameter β = 0 and the control set U = [−1.5, 1.5]. In this case the re-
duced domain is [−2.7, 2.7] × [−3.1, 3.1] × [−1.3, 1.3] × [−0.7, 0.7] × [−0.8, 0.8]. In
the undamped case, the numerical approximation of the LQR problem is a difficult
task due to the number of purely complex eigenvalues of the matrix AN . The snap-
shots are computed with a finite element scheme for given constant control inputs
u ≡ {−1.5, 0, 1.5} in (1.4), and the discrete control set contains 31 equidistant el-
ements. Figure 5.3 presents the uncontrolled and controlled states for the different
settings. The LQR control exhibits a suboptimal stabilizing behaviour, due to innacu-
racies in the solution of the large-scale algebraic Riccati equation for the undamped
system. Instead, the HJB-POD does not suffer from this problem and the system
is stabilized at a faster rate, although the control signal generates some spurious
oscillations on the state. Due to the non-dissipative dynamics, it is known that a
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larger number of POD basis functions would be required for a more accurate control
synthesis. The different control signals are shown in Figure 5.4. We can observe the
chattering of LQR control which explains the slow stabilization rate. The HJB-POD
feedback control also exhibits chattering, but it is regularized by means of the same
approach applied in the previous test.
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Figure 5.3. Test 2: Uncontrolled solution (left), controlled state
with full-order LQR control (middle), controlled state with HJB-
POD design with 5 reduced states (right).
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Figure 5.4. Test 2: HJB-POD feedback control with chattering
(left) LQR control (middle), HJB-POD feedback control with chat-
tering reduction (right).

Concluding remarks. We have presented a computational approach for the approx-
imation of feedback controllers in the wave equation. The approach is based on a
projection of the abstract system onto a low-order model. A dynamic programming-
based controller is then synthesized for the reduced system. In general the approach
has proven satisfactory in the sense that is able to generate stabilizing feedback con-
trollers based on low-dimensional dynamics, which perform in a consistent way when
applied to the full system. Future directions of research consider the inclusion on
nonlinearities in the dynamics and multi-dimensional extensions of the problem.
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1126.

[18] L. Sirovich. Turbulence and the dynamics of coherent structures. Parts I-II, Quarterly
of Applied Mathematics, XVL, 1987, 561-590.
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