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Abstract

On the torus Tm of dimension m ≥ 2 we prove the existence of a real-analytic weak
mixing diffeomorphism preserving a measurable Riemannian metric. The proof is based on
a real-analytic version of the approximation by conjugation-method with explicitly defined
conjugation maps and partition elements.

1 Introduction

Until 1970 it was an open question if there exists an ergodic area-preserving smooth diffeomor-
phism on the disc D2. This problem was solved by the so-called “approximation by conjugation”-
method developed by D. Anosov and A. Katok in [AK70]. In fact, on every smooth compact
connected manifold M of dimension m ≥ 2 admitting a non-trivial circle action R = {Rt}t∈S1

preserving a smooth volume µ this method enables the construction of smooth diffeomorphisms
with specific ergodic properties (e.g. weak mixing ones in [AK70], section 5) or non-standard
smooth realizations of measure-preserving systems (e.g. [AK70], section 6, [Be13] and [FSW07]).
See also [FK04] for more details and other results of this method. These diffeomorphisms are
constructed as limits of conjugates fn = Hn ◦ Rαn+1 ◦ H−1

n , where αn+1 = αn + 1
kn·ln·q2n

∈ Q,
Hn = Hn−1 ◦hn and hn is a measure-preserving diffeomorphism satisfying R 1

qn
◦hn = hn ◦R 1

qn
.

In each step the conjugation map hn and the parameter ln are chosen such that the diffeo-
morphism fn imitates the desired property with a certain precision. Then the parameter kn is
chosen large enough to guarantee closeness of fn to fn−1 in the C∞-topology and so the con-
vergence of the sequence (fn)n∈N to a limit diffeomorphism is provided. It is even possible to
keep this limit diffeomorphism within any given C∞-neighbourhood of the initial element Sα1

or, by applying a fixed diffeomorphism g first, of g ◦ Sα1 ◦ g−1. So the construction can be
carried out in a neighbourhood of any diffeomorphism conjugate to an element of the action.
Thus, A (M) = {h ◦Rt ◦ h−1 : t ∈ S1, h ∈ Diff∞ (M,µ)}

C∞

is a natural space for the produced
diffeomorphisms.
In their influential paper [AK70] Anosov and Katok proved amongst others that in A (M) the
set of weak mixing diffeomorphisms is generic (i. e. it is a dense Gδ-set) in the C∞ (M)-topology.
For it they used the “approximation by conjugation”-method. In [GKa00] the conjugation maps
are constructed more explicitly such that they can be equipped with the additional structure
of being locally very close to an isometry. Hereby, it is shown that there exists a weak mix-
ing smooth diffeomorphism preserving a smooth measure and a measurable Riemannian metric.
Actually, it follows from the respective proofs that both results are true in the restricted space
Aα (M) = {h ◦Rα ◦ h−1 : h ∈ Diff∞ (M,µ)}

C∞

for a Gδ-set of α ∈ S1. However, both proofs
do not give a full description of the set of α ∈ S1 for which the particular result holds in Aα (M).
Such a result is the content of [GKu15]: If α ∈ R is Liouville, the set of volume-preserving
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diffeomorphisms, that are weak mixing and preserve a measurable Riemannian metric, is dense
in the C∞-topology in Aα (M).
While the “approximation by conjugation”-method is one of the most powerful tools of construct-
ing smooth diffeomorphisms with prescribed ergodic or topological properties, there are great
challenging differences in the real-analytic case as discussed in [FK04], §7.1: Since maps with
very large derivatives in the real domain or its inverses are expected to have singularities in a
small complex neighbourhood, for a real analytic family St, 0 ≤ t ≤ t0, S0 = id, the family
h ◦ St ◦ h−1 is expected to have singularities very close to the real domain for any t > 0. So,
the domain of analycity for maps of our form fn = Hn ◦Rαn+1 ◦H−1

n will shrink at any step of
the construction and the limit diffeomorphism will not be analytic. Thus, it is necessary to find
conjugation maps of a special form which may be inverted more or less explicitly in such a way
that one can guarantee analycity of the map and its inverse in a large complex domain.
Using very explicit conjugation maps M. Saprykina was able to construct examples of volume-
preserving uniquely ergodic real-analytic diffeomorphims on T2 ([Sa03]). Fayad and Katok
designed such examples on any odd-dimensional sphere in [FK14]. By a similar approach as
Saprykina we can prove the existence of weak mixing real-analytic diffeomorphisms on T2 that
are uniformly rigid with respect to a prescribed sequence satisfying a growth condition ([Ku15]).
Recently, S. Banerjee constructed non-standard real-analytic realizations on T2 of some irrational
circle rotations ([Ba15]). His key idea is to use entire functions that approximate certain carefully
chosen step functions, which is the important mechanism in our constructions in this paper as
well. We will prove the following main theorem:

Theorem. Let ρ > 0, m ≥ 2 and Tm be the torus with Lebesgue measure µ. There exists a
weak mixing real-analytic diffeomorphism f ∈ Diffωρ (Tm, µ) preserving a measurable Riemannian
metric.

Hereby, we solve [GKa00], Problem 3.9., about the existence of real-analytic volume-preserving
IM-diffeomorphisms (i. e. diffeomorphisms preserving an absolutely continuous probability mea-
sure and a measurable Riemannian metric) in the case of tori Tm, m ≥ 2. See [GKa00], section
3, for a comprehensive consideration of IM-diffeomorphisms and IM-group actions. In particular,
the existence of a measurable invariant metric for a diffeomorphism is equivalent to the existence
of an invariant measure for the projectivized derivative extension which is absolutely continuous
in the fibers. In [K1] the ergodic behaviour of the derivative extension with respect to such a
measure is examined. It provides the only known examples of measure-preserving diffeomor-
phisms whose differential is ergodic with respect to a smooth measure in the projectivization of
the tangent bundle.

2 Preliminaries

2.1 Analytic topology
Real-analytic diffeomorphisms of Tm homotopic to the identity have a lift of type

F (x1, ..., xm) = (x1 + f1 (x1, ..., xm) , ..., xm + fm (x1, ..., xm)) ,

where the functions fi : Rm → R are real-analytic and Zm-periodic for i = 1, ...,m. For these
functions we introduce the subsequent definition:

Definition 2.1. For any ρ > 0 we consider the set of real-analytic Zm-periodic functions on
Rm, that can be extended to a holomorphic function on

Aρ := {(z1, ..., zm) ∈ Cm : |im (zi)| < ρ for i = 1, ...,m} .
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1. For these functions let ‖f‖ρ := sup(z1,...,zm)∈Aρ |f (z1, ..., zm)|.

2. The set of these functions satisfying the condition ‖f‖ρ <∞ is denoted by Cωρ (Tm).

Furthermore, we consider the space Diffωρ (Tm, µ) of those volume-preserving diffeomorphisms
homotopic to the identity, for whose lift we have fi ∈ Cωρ (Tm) for i = 1, ...,m.

Definition 2.2. For f, g ∈ Diffωρ (Tm, µ) we define

‖f‖ρ = max
i=1,...,m

‖fi‖ρ

and the distance
dρ (f, g) = max

i=1,...,m

{
inf
p∈Z
‖fi − gi − p‖ρ

}
.

Remark 2.3. Diffωρ (Tm, µ) is a Banach space (see [Sa03] for a more extensive treatment of these
spaces).

Moreover, for a diffeomorphism T with lift T̃ (x1, ..., xm) = (T1 (x1, ..., xm) , ..., Tm (x1, ..., xm))
we define

‖DT‖ρ = max

{∥∥∥∥∂Ti∂xj

∥∥∥∥
ρ

for i, j = 1, ...,m

}

2.2 Outline of the proof
We consider the torus Tm equipped with Lebesgue measure µ and the circle action R = {Rt}t∈S1

comprising of the diffeomorphisms Rt (x1, ..., xm) = (x1 + t, x2, ..., xm). According to the “ap-
proximation by conjugation-method” the aimed weak mixing diffeomorphism f preserving a
measurable invariant Riemannian metric is constructed as the limit of volume-preserving real-
analytic diffeomorphisms fn defined by fn = Hn ◦ Rαn+1 ◦ H−1

n . Here, the rational numbers
αn+1 ∈ S1 and the conjugation maps Hn ∈ Diffω (Tm, µ) are constructed inductively:

αn+1 =
pn+1

qn+1
= αn +

1
kn · ln · qn

and Hn = h1 ◦ ... ◦ hn,

where the conjugation map hn ∈ Diffω (Tm, µ) has to satisfy hn ◦Rαn = Rαn ◦hn and kn, ln ∈ N
are parameters that have to be chosen appropriately.
In our constructions, hn = gn ◦φn is the composition of two real-analytic diffeomorphisms, which
are defined explicitly in subsection 3.3 and 3.4 respectively. Moreover, we define two types of
partial partitions ηn and ζn in subsection 3.2. The elements of ηn have to be (γ, ε)-distributed
under the map Φn := φn ◦ Rmnαn+1

◦ φ−1
n , where the numbers mn ∈ N are defined in subsection

3.1. This concept of (γ, ε)-distribution is introduced in section 4: Descriptively, it says that the
partition elements, which are contained in a cuboid of small edge length 1

ln
, are mapped in a

almost uniformly distributed way onto a set of almost full volume in the x2, ..., xm-coordinates
and x1-width smaller than γ. This property is the central notion in the criterion for weak mixing
deduced in section 5. At this juncture, the map gn is required to introduce some kind of shear
into the x1-coordinate. On the other hand, hn has to act as an “almost isometry” on the elements
of the partial partition ζn in order to enable us to construct the invariant measurable Riemannian
metric.

Definition 2.4. For a diffeomorphism f defined on a compact subset U of a smooth Riemannian
manifold we define the deviation from being an isometry by

devU (f) := max
v∈TU,‖v‖=1

|log ‖df(v)‖|
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Remark 2.5. We observe that this quantity has the following properties:

• devU (f) = 0 if and only if f is a smooth isometry of U .

• devU (f) = devf(U)

(
f−1

)
• devU

(
f̃ ◦ f

)
≤ devf(U)

(
f̃
)

+ devU (f)

Hereby, the invariant measurable Riemannian metric is constructed by the same approach as
in [GKa00]. Finally, by choosing kn large enough we can prove the convergence of the sequence
(fn)n∈N in Diffωρ (Tm, µ) in section 6.

3 Explicit constructions

We present step n in our inductive process of construction. Hence, we assume that we have
already defined Hn−1 = h1 ◦ ...◦hn−1 and the rational numbers α1, ..., αn ∈ S1. Let ln be a large
enough integer satisfying condition A and

(1) ln > m · n2 · qn · ‖DHn−1‖0 .

We will use this parameter to ensure that the sequence of partial partitions under consideration
converge to the decomposition into points (see the proof of Lemma 5.3) and that the constructed
form ω∞ is positive definite (see Lemma 7.3). In this connection, the parameters

(2) δn =
1

10 · n2 · qn · lm+1
n

and

(3) εn =
1

400 ·m · n4 · q2
n · l2m+2

n

are important as well.

3.1 Choice of the mixing sequence (mn)n∈N

By condition 13 our chosen sequence (qn)n∈N satisfies

(4) qn+1 = kn · ln · qn > 40n2 · qn · lm+1
n .

Define

mn = min
{
m ≤ qn+1 : m ∈ N, inf

k∈Z

∣∣∣∣m · pn+1

qn+1
− 1

2 · qn
+

k

qn

∣∣∣∣ ≤ 1
qn+1

}
= min

{
m ≤ qn+1 : m ∈ N, inf

k∈Z

∣∣∣∣m · qn · pn+1

qn+1
− 1

2
+ k

∣∣∣∣ ≤ qn
qn+1

}
Lemma 3.1. The set

{
m ≤ qn+1 : m ∈ N, infk∈Z

∣∣∣m qn·pn+1
qn+1

− 1
2 + k

∣∣∣ ≤ qn
qn+1

}
is nonempty for

every n ∈ N, i.e. mn exists.
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Proof. We construct the sequence αn = pn
qn

in such a way, that αn+1 = αn + 1
ln·kn·qn . In

particular, pn+1 and qn+1 are relatively prime. Therefore, the set
{
j · qn·pn+1

qn+1
: j = 1, ..., qn+1

}
contains qn+1

gcd(qn,qn+1) different equally distributed points on S1. Hence, there are at least qn+1
qn

different such points and so for every x ∈ S1 there is a j ∈ {1, ..., qn+1} such that

inf
k∈Z

∣∣∣∣x− j · qn · pn+1

qn+1
+ k

∣∣∣∣ ≤ qn
qn+1

.

In particular, this is true for x = 1
2 .

Remark 3.2. We define

an =
(
mn ·

pn+1

qn+1
− 1

2 · qn

)
mod

1
qn

By the above construction of mn it holds that |an| ≤ 1
qn+1

. By equation 4 we get:

|an| ≤
1

40n2 · qn · lm+1
n

=
δn
4
.

3.2 Sequences of partial partitions
In this subsection we define the two announced sequences of partial partitions (ηn)n∈N and
(ζn)n∈N of Tm.

3.2.1 Partial partition ηn

Remark 3.3. For convenience we will use the notation
∏m
i=2 [ai, bi] for [a2, b2]× ...× [am, bm].

Initially, ηn will be constructed on the fundamental sector
[
0, 1

qn

]
× Tm−1. With a view to

the piecewise definition of the conjugation map φn in the following subsection we divide the
fundamental sector in two sections:

• On
[
0, 1

2·qn

]
× Tm−1 we consider the following sets:

Ij1,...,jm :=⋃[ j1
2qn · ln

+
t(1)

2qnl2n
+ ...+

t(m−1)

2qnlmn
+ δn,

j1
2qnln

+
t(1)

2qnl2n
+ ...+

t(m−1) + 1
2qnlmn

− δn

]

×
m∏
i=2

[
ji
ln

+ δn,
ji + 1
ln
− δn

]
,

where the union is taken over t(s) ∈ Z, 0 ≤ t(s) ≤ ln − 1, for s = 1, ...,m− 1.
The partial partition ηn consists of all such sets Ij1,...,jm−1 , at which ji ∈ Z, 1 ≤ j1 ≤ ln−3
and 1 ≤ ji ≤ ln − 2 for i = 2, ...,m.
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• On
[

1
2·qn ,

1
qn

]
× Tm−1 we consider sets of the following form:

Īj1,...,jm :=⋃[ 1
2qn

+
j1

2qn · ln
+

t(1)

2qn · l2n
+ ...+

t(m−1)

2qn · lmn
+ δn,

1
2qn

+
j1

2qn · ln
+

t(1)

2qn · l2n
+ ...+

t(m−1) + 1
2qn · lmn

− δn

]

×
m∏
i=2

[
ji
ln

+ δn,
ji + 1
ln
− δn

]
,

where the union is taken over t(s) ∈ Z, 0 ≤ t(s) ≤ ln − 1, for s = 1, ...,m− 1.
The partial partition ηn consists of all such sets Īj1,...,jm−1 , at which ji ∈ Z, 1 ≤ j1 ≤ ln−3
and 1 ≤ ji ≤ ln − 2 for i = 2, ...,m.

As the image under Rl/qn with l ∈ Z this partial partition of
[
0, 1

qn

]
× Tm−1 is extended to

a partial partition of Tm.

Remark 3.4. By construction this sequence of partial partitions converges to the decomposition
into points.

3.2.2 Partial partition ζn

On the fundamental sector
[
0, 1

qn

]
×Tm−1 the partial partition ζn consists of all multidimensional

intervals of the following form:

[
j

(1)
1

2qn · ln
+

j
(2)
1

2qnl2n
+ ...+

j
(m)
1

2qnlmn
+ δn,

j
(1)
1

2qnln
+

j
(2)
1

2qnl2n
+ ...+

j
(m)
1 + 1
2qnlmn

− δn

]

×
m∏
i=2

[
j

(1)
i

ln
+

j
(2)
i

10n2 · qn · lm+1
n

+
δn

10n2 · qn · lm+1
n

,
j

(1)
i

ln
+

j
(2)
i + 1

10n2 · qn · lm+1
n

− δn

10n2 · qn · lm+1
n

]
,

where j(1)
1 ∈ Z, 0 ≤ j

(1)
1 ≤ 2ln − 1, and j(s)

1 ∈ Z, 1 ≤ j
(s)
1 ≤ ln − 2, for s = 2, ...,m as well as for

i = 2, ...,m: j(1)
i ∈ Z, 1 ≤ j(1)

i ≤ ln − 2, and j(2)
i ∈ Z, 1 ≤ j(2)

i ≤ 10n2 · qn · lmn − 2.
As above we extend it to a partial partition of Tm as the image under Rl/qn with l ∈ Z.

Remark 3.5. For every n ≥ 3 the partial partition ζn consists of disjoint sets, covers a set of
measure at least 1− 1

n2 and the sequence (ζn)n∈N converges to the decomposition into points.

3.3 The conjugation map φn

First of all, we consider the following step functions for d = 2, ...,m:

ψ̃
(d)
1,n : [0, 1)→ R defined by ψ̃(d)

1,n(x) =
ln−1∑
i=1

ln − i
2qn · ldn

· χ[ iln ,
i+1
ln

)(x)

ψ̃
(d)
3,n : [0, 1)→ R defined by ψ̃(d)

3,n(x) =
ln−1∑
i=1

i

2qn · ldn
· χ[ iln ,

i+1
ln

)(x)
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Furthermore, we require another type of step function: For i ∈ Z, 0 ≤ i ≤ ldn − 1, we put
β

(2)
i := j

ln
if i ≡ j mod ln. For i ∈ Z, ldn ≤ i ≤ 2ldn − 1, we put β(2)

i := 0. Then we consider

ψ̃
(d)
2,n :

[
0,

1
qn

)
→ R defined by ψ̃(d)

2,n(x) =
2ldn−1∑
i=0

β
(2)
i · χ[ i

2qn·ldn
, i+1
2qn·ldn

)(x)

and extend it to a map on [0, 1) periodically.
Hereby, we define

φ̃
(d)
1,n : Tm → Tm, φ̃

(d)
1,n (x1, ..., xm) =

(
x1 + ψ̃

(d)
1,n (xd) mod 1, x2, ..., xm

)
φ̃

(d)
2,n : Tm → Tm, φ̃

(d)
2,n (x1, ..., xm) =

(
x1, ..., xd−1, xd + ψ̃

(d)
2,n (x1) mod 1, xd+1, ..., xm

)
φ̃

(d)
3,n : Tm → Tm, φ̃

(d)
3,n (x1, ..., xm) =

(
x1 − ψ̃(d)

3,n (xd) mod 1, x2, ..., xm

)
and φ̃

(d)
n := φ̃

(d)
3,n ◦ φ̃

(d)
2,n ◦ φ̃

(d)
1,n. Moreover, let φ̃n = φ̃

(2)
n ◦ ... ◦ φ̃(m)

n . These maps will help us
to understand the combinatorics in the proof (see the proof of Lemma 4.3). Unfortunately,
they are discontinuous. In order to construct entire conjugation maps we will use the subse-
quent Lemma about approximation of step functions by real-analytic diffeomorphisms inspired
by [Ba15], Lemma 4.1, where we call an entire function real if it maps the real line into itself:

Lemma 3.6. Let l, N ∈ N and β = (β0, ..., βl−1) ∈ [0, 1]l. We consider a step function of the
form

s̃β,N : [0, 1)→ R defined by s̃β,N (x) =
lN−1∑
i=0

β̃i · χ[ i
lN ,

i+1
lN )(x),

where β̃i := βj in case of j ≡ i mod l. Then, given any ε > 0 and δ > 0, there exists a
1
N -periodic real entire function sβ,N,ε,δ satisfying

(5) sup
x∈[0,1)\F

|sβ,N,ε,δ(x)− s̃β,N (x)| < ε and sup
x∈[0,1)\F

∣∣s′β,N,ε,δ(x)
∣∣ < ε,

where F =
⋃lN−1
i=0 Ii ⊂ [0, 1) is a union of intervals centered around i

lN , i = 1, ..., lN − 1,
I0 =

[
0, δ

2lN

]
∪
[
1− δ

2lN , 1
)
and λ (Ii) = δ

lN for every i.

Proof. By the same approach as in [Ba15], Lemma 4.1., we define the function

sβ,N,ε,δ(x) =
∞∑

n=−∞

(
l−1∑
i=0

βi ·
(

exp− exp
−A·(x−nl+ilN )

− exp− exp
−A·(x−nl+i+1

lN )
))

.

We point out that sβ,N,ε,δ is a 1
N -periodic real entire function. After choosing a large enough

constant A, we can guarantee that sβ,N,ε,δ satisfies the conditions 5.

Recall εn and δn, that were defined in equation 3 and 2 respectively. With the aid of Lemma
3.6 we construct entire functions approximating the step functions defined above:

ψ
(d)
1,n = sβ(1),N(1),εn,δn , where β

(1)
0 = 0, β(1)

i =
ln − i

2qn · ldn
for i = 1, ..., ln − 1, N (1) = 1

ψ
(d)
2,n = sβ(2),N(2),εn,δn , where β

(2)
i as above for i = 0, ..., 2ld−1

n − 1, N (2) = qn

ψ
(d)
3,n = sβ(3),N(3),εn,δn , where β

(3)
0 = 0, β(3)

i =
i

2qn · ldn
for i = 1, ..., ln − 1, N (3) = 1
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Hereby, we define

φ
(d)
1,n : Tm → Tm, φ

(d)
1,n (x1, ..., xm) =

(
x1 + ψ

(d)
1,n (xd) mod 1, x2, ..., xm

)
φ

(d)
2,n : Tm → Tm, φ

(d)
2,n (x1, ..., xm) =

(
x1, ..., xd−1, xd + ψ

(d)
2,n (x1) mod 1, xd+1, ..., xm

)
φ

(d)
3,n : Tm → Tm, φ

(d)
3,n (x1, ..., xm) =

(
x1 − ψ(d)

3,n (xd) mod 1, x2, ..., xm

)
Let φ(d)

n := φ
(d)
3,n ◦ φ

(d)
2,n ◦ φ

(d)
1,n. Since ψ(d)

2,n is 1
qn
-periodic, we have φ(d)

n ◦ Rαn = Rαn ◦ φ
(d)
n .

Finally, we define
φn = φ(2)

n ◦ ... ◦ φ(m)
n

and observe φn ◦Rαn = Rαn ◦ φn.

Remark 3.7. We compute

φ(d)
n (x1, ..., xm) =

(
x1 + ψ

(d)
1,n (xd)− ψ(d)

3,n

(
xd + ψ

(d)
2,n

(
x1 + ψ

(d)
1,n (xd)

))
, x2, ...,

xd−1, xd + ψ
(d)
2,n

(
x1 + ψ

(d)
1,n (xd)

)
, xd+1, ..., xm

)
.

By the choice 4 · m · εn < δn, the exact positioning of the partition elements of ηn as well as
ζn and since the ψ̃(d)

i,n are step functions, we have for a point z contained in one of the partition

elements
∣∣∣[φ(d)

n

]
1

(z)−
[
φ̃

(d)
n

]
1

(z)
∣∣∣ < 2εn and

∣∣∣[φ(d)
n

]
d

(z)−
[
φ̃

(d)
n

]
d

(z)
∣∣∣ < εn. Continuing in this

way we conclude
∣∣∣[φn]1 (z)−

[
φ̃n

]
1

(z)
∣∣∣ < 2 · (m− 1) · εn and

∣∣∣[φn]i (z)−
[
φ̃n

]
i
(z)
∣∣∣ < εn in case

of i = 2, ...,m. For the inverse φ(−1)
n the same observations hold true.

We introduce the so-called “good set” Jn ⊂ Tm−1 in the x2, ..., xm-coordinates:

(6) Jn =
⋃ m∏

i=2

[
ji
ln

+ δn + 2εn,
ji + 1
ln
− δn − 2εn

]
,

where the union is taken over ji ∈ Z, 0 ≤ ji ≤ ln − 1, for i = 2, ...,m.

3.4 The conjugation map gn

We aim at a real-analytic map, which introduces shear into the x1-coordinate similar to the map
ḡ[nqσn] (x1, ..., xm) = (x1 + [nqσn] · x2, x2, ..., xm), but acts as an almost-isometry on the elements
of the partial partition ζn. For this purpose, we consider the following step function

ψ̃n : [0, 1)→ R defined by ψ̃n(x) =
10n2·qn·lm+1

n −1∑
i=0

i

10n2 · qn · lm+1
n

·χ[
i

10n2·qn·l
m+1
n

, i+1

10n2·qn·l
m+1
n

)(x)

and the discontinuous map g̃n (x1, ..., xm) =
(
x1 + [nqσn] · ψ̃n (x2) , x2, ..., xm

)
.

In order to find a real-analytic approximation of this map we use the subsequent result similar
to Lemma 3.6.
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Lemma 3.8. Let a ∈ N. We consider a step function of the form

s̃a : [0, 1)→ R defined by s̃a(x) =
a−1∑
i=0

i

a
· χ[ ia , i+1

a )(x).

Then, given any ε > 0 and δ > 0, there exists a 1-periodic real entire function s̄a,ε,δ satisfying

(7) sup
x∈[0,1)\F

|s̄a,ε,δ(x)− s̃a(x)| < ε and sup
x∈[0,1)\F

∣∣s̄′a,ε,δ(x)
∣∣ < ε,

where F =
⋃l−1
i=0 Ii ⊂ [0, 1) is a union of intervals centered around i

a , i = 1, ..., a − 1, I0 =[
0, δ2a

]
∪
[
1− δ

2a , 1
)
and λ (Ii) = δ

a for every i.

Proof. By the same approach as in Lemma 3.6 we define the function

sa,N,ε,δ(x) =
∞∑

n=−∞

(
a−1∑
i=1

1
a
·
(

exp− exp
−A·(x−na+ia )

− exp− exp−A·(x−n−1)
))

.

We point out that s̄a,ε,δ is a 1-periodic real entire function. After choosing a large enough
constant A, we can guarantee that s̄a,ε,δ satisfies the conditions 7.

With the aid of Lemma 3.8 we can approximate the step function by an entire map:

ψn = s̄10n2·qn·lm+1
n ,εn,δn

.

Hereby, we define the real-analytic diffeomorphism

gn : Tm → Tm, gn (x1, ..., xm) = (x1 + [nqσn] · ψn (x2) , x2, ..., xm)

and observe gn ◦R 1
qn

= R 1
qn
◦ gn.

4 (γ, ε)-distribution

For the sake of convenience, we denote the coordinates on Tm by (θ, r1, ..., rm−1) below.
We introduce the central notion in the proof of the criterion for weak mixing deduced in the next
section:

Definition 4.1. Let Φ : Tm → Tm be a diffeomorphism and J ⊂ Tm−1. We say that an element
Î of a partial partition is (γ, ε)-distributed on J under Φ, if the following properties are satisfied:

• Φ
(
Î
)
is contained in a set of the form [c, c+ γ]× Tm−1 for some c ∈ S1.

• π~r
(

Φ
(
Î
))
⊇ J .

• For every (m− 1)-dimensional interval J̃ ⊆ J it holds:∣∣∣∣∣∣
µ
(
Î ∩ Φ−1

(
S1 × J̃

))
µ
(
Î
) −

µ̃
(
J̃
)

µ̃ (J)

∣∣∣∣∣∣ ≤ ε ·
µ̃
(
J̃
)

µ̃ (J)
,

at which µ̃ is the Lebesgue measure on Tm−1.
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Remark 4.2. Analogous to [FS05] we will call the third property “almost uniform distribution”
of Î in the r1, .., rm−1-coordinates. In the following we will often write it in the form of∣∣∣µ(Î ∩ Φ−1

(
S1 × J̃

))
· µ̃ (J)− µ

(
Î
)
· µ̃
(
J̃
)∣∣∣ ≤ ε · µ(Î) · µ̃(J̃) .

Our constructions are done in such a way that the following property is satisfied:

Lemma 4.3. We consider the “good set” Jn defined in equation 6 as well as the diffeomorphism
Φn := φn ◦Rmnαn+1

◦φ−1
n with the conjugating maps φn defined in section 3.3 and the numbers mn

as in section 3.1. Then the elements of the partition ηn are
(

3
qn·ln ,

1
n

)
-distributed on Jn under

Φn.

Proof. For Ij1,...,jm ∈ ηn we compute Φn (Ij1,...,jm). By the choice of mn and Remark 3.2 we
obtain modulo 1

qn
in the x1-coordinate:

Rmnαn+1
◦ φ̃−1

n (Ij1,...,jm) =⋃[
1

2qn
+

j1
2qnln

+
j2

2qn · l2n
+ ...+

jm
2qn · lmn

+ δn + an,
1

2qn
+

j1
2qnln

+ ...+
jm + 1
2qn · lmn

− δn + an

]
×

m∏
i=2

[
1− t(i−1)

ln
+ δn, 1−

t(i−1) − 1
ln

− δn
]
.

The application of φ̃n on this set yields:

⋃[ 1
2qn

+
j1

2qn · ln
+
j2 + 2 · t(1) − ln

2qn · l2n
+ ...+

jm + 2 · t(m−1) − ln
2qn · lmn

+ δn + an,

1
2qn

+
j1

2qn · ln
+
j2 + 2 · t(1) − ln

2qn · l2n
+ ...+

jm + 1 + 2 · t(m−1) − ln
2qn · lmn

− δn + an

]

×
m∏
i=2

[
1− t(i−1)

ln
+ δn, 1−

t(i−1) − 1
ln

− δn
]

(apart from the case t(i) = 0 where we get ji+1 instead of ji+1 + 2t(i) − ln).
In the same way we compute φ̃n ◦Rmnαn+1

◦ φ̃−1
n

(
Īj1,...,jm

)
:

⋃[
j1

2qn · ln
− j2

2qn · l2n
− ...− jm

2qn · lmn
+ δn + an,

j1
2qn · ln

− ...− jm − 1
2qn · lmn

− δn + an

]
×

m∏
i=2

[
2ji + t(i−1)

ln
+ δn,

2ji + t(i−1) + 1
ln

− δn
]

regarded as a subset of Tm.
We have to take the approximation error into account. By Remark 3.7 we observe for every
În ∈ ηn π~r

(
Φn
(
În

))
⊇ Jn and that every of the lm−1

n cuboids belonging to Φn
(
În

)
is contained

in a cuboid of θ-width 1
2qn·lmn

−2δn+8m·εn and contains a cuboid of θ-width 1
2qn·lmn

−2δn−8m·εn.
In particular, we can choose γ = 3

qn·ln . Let J̃ ⊆ Jn ⊂ Tm−1 be a multidimensional interval of



(γ, ε)-distribution 11

Figure 1: Qualitative shape of the action of φ̃−1
n on Ij1,...,jm ∈ ηn in case of dimension m = 2.

Figure 2: Qualitative shape of the action of φ̃n on Rmnαn+1
◦ φ̃−1

n (Ij1,...,jm) in case of dimension
m = 2.



Criterion for weak mixing 12

length di in coordinate xi. Then we can estimate:

µ
(
În ∩ Φ−1

n

(
S1 × J̃

))
µ
(
În

) ≤

(
1

2qn·lmn
− 2δn + 8m · εn

)
· d2 · ... · dm

lm−1
n ·

(
1

2qn·lmn
− 2δn

)
·
(

1
ln
− 2δn

)m−1

=
(

1 +
8m · εn · 2qn · lmn
1− 4δn · lmn · qn

)
·

(
1
ln
− 2δn − 4εn

)m−1

(
1
ln
− 2δn

)m−1 · d2 · ... · dm

lm−1
n ·

(
1
ln
− 2δn − 4εn

)m−1

≤ (1 + 32m · εn · qn · lmn ) ·
µ̃
(
J̃
)

µ̃ (Jn)
.

Analogously we estimate

µ
(
În ∩ Φ−1

n

(
S1 × J̃

))
µ
(
În

) ≥

(
1

2qn·lmn
− 2δn − 8m · εn

)
· d2 · ... · dm

lm−1
n ·

(
1

2qn·lmn
− 2δn

)
·
(

1
ln
− 2δn

)m−1

≥
(

1− 8m · εn · 2qnlmn
1− 4δnlmn · qn

)
· (1− 8εnln)m−1 · d2 · ... · dm

lm−1
n ·

(
1
ln
− 2δn − 4εn

)m−1

≥ (1− 32m · εn · qn · lmn ) · (1− (m− 1) · 8εn · ln) ·
µ̃
(
J̃
)

µ̃ (Jn)

≥ (1− 40m · εn · qn · lmn ) ·
µ̃
(
J̃
)

µ̃ (Jn)
.

By our assumption on the number εn from equation 3 we conclude∣∣∣∣∣∣
µ
(
În ∩ Φ−1

(
S1 × J̃

))
µ
(
În

) −
µ(m−1)

(
J̃
)

µ(m−1) (Jn)

∣∣∣∣∣∣ ≤ 1
n
·
µ(m−1)

(
J̃
)

µ(m−1) (Jn)
.

5 Criterion for weak mixing

In this section we will prove a criterion for weak mixing on M = Tm in the setting of the
beforehand constructions. It is inspired by the criterion in [FS05], but modified in many places
because of the new conjugation map gn and the new type of partitions. For the derivation we
need a couple of lemmas. The first one expresses the weak mixing property on the elements of
a partial partition ηn generally:

Lemma 5.1. Let f ∈ Diffωρ (Tm, µ), (mn)n∈N be a sequence of natural numbers and (νn)n∈N be
a sequence of partial partitions, where νn → ε and for every n ∈ N νn is the image of a partial
partition ηn under a measure-preserving diffeomorphism Fn, satisfying the following property:
For every m-dimensional cube A ⊆ Tm and for every ε > 0 there exists N ∈ N such that for
every n ≥ N and for every Γn ∈ νn we have

(8)
∣∣µ (Γn ∩ f−mn (A)

)
− µ (Γn) · µ (A)

∣∣ ≤ 3 · ε · µ (Γn) · µ (A) .
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Then f is weak mixing.

Proof. By [Skl67] a diffeomorphism f is weak mixing if for all measurable sets A,B ⊆ M it
holds:

lim
n→∞

∣∣µ (B ∩ f−mn (A)
)
− µ (B) · µ (A)

∣∣ = 0.

Since every measurable set in M = Tm can be approximated by a countable disjoint union of
m-dimensional cubes in Tm in arbitrary precision, we only have to prove the statement in case
that A is a m-dimensional cube in Tm.
Hence, we consider an arbitrary m-dimensional cube A ⊂ Tm. Moreover, let B ⊆ M be a
measurable set. Since νn → ε for every ε ∈ (0, 1] there are n ∈ N and a set B̂ =

⋃
i∈Λ Γin, where

Γin ∈ νn and Λ is a countable set of indices, such that µ
(
B4B̂

)
< ε · µ (B) · µ (A). We obtain

for sufficiently large n:∣∣µ (B ∩ f−mn (A)
)
− µ (B) · µ (A)

∣∣
≤
∣∣∣µ (B ∩ f−mn (A)

)
− µ

(
B̂ ∩ f−mn (A)

)∣∣∣+
∣∣∣µ(B̂ ∩ f−mn (A)

)
− µ

(
B̂
)
· µ (A)

∣∣∣
+
∣∣∣µ(B̂) · µ (A)− µ (B) · µ (A)

∣∣∣
=
∣∣∣µ (B ∩ f−mn (A)

)
− µ

(
B̂ ∩ f−mn (A)

)∣∣∣
+

∣∣∣∣∣µ
(⋃
i∈Λ

(
Γin ∩ f−mn (A)

))
− µ

(⋃
i∈Λ

Γin

)
· µ (A)

∣∣∣∣∣+ µ (A) ·
∣∣∣µ(B̂)− µ (B)

∣∣∣
≤ µ

(
B̂4B

)
+

∣∣∣∣∣∑
i∈Λ

µ
(
Γin ∩ f−mn (A)

)
− µ

(
Γin
)
· µ (A)

∣∣∣∣∣+ µ (A) · µ
(
B̂4B

)
≤ ε · µ(B) · µ(A) +

∑
i∈Λ

(∣∣µ (Γin ∩ f−mn(A)
)
− µ

(
Γin
)
· µ(A)

∣∣)+ ε · µ(A)2 · µ(B)

≤
∑
i∈Λ

(
3 · ε · µ

(
Γin
)
· µ(A)

)
+ 2 · ε · µ(A) · µ(B) = 3 · ε · µ(A) · µ

(⋃
i∈Λ

Îin

)
+ 2 · ε · µ(A) · µ(B)

= 3 · ε · µ(A) · µ
(
B̂
)

+ 2 · ε · µ(A) · µ(B) ≤ 3ε · µ(A) ·
(
µ(B) + µ

(
B̂4B

))
+ 2ε · µ(A) · µ(B)

≤ 5 · ε · µ(A) · µ(B) + 3 · ε2 · µ(A)2 · µ(B).

This estimate shows limn→∞ |µ (B ∩ f−mn (A))− µ (B) · µ (A)| = 0, because ε can be chosen
arbitrarily small.

In property (8) we want to replace f by fn:

Lemma 5.2. Let f = limn→∞ fn be a diffeomorphism obtained by the constructions in the
preceding sections and (mn)n∈N be a sequence of natural numbers fulfilling d0 (fmn , fmnn ) < 1

2n .
Furthermore, let (νn)n∈N be a sequence of partial partitions, where νn → ε and for every n ∈ N νn
is the image of a partial partition ηn under a measure-preserving diffeomorphism Fn, satisfying
the following property: For every m-dimensional cube A ⊆ Tm and for every ε ∈ (0, 1] there
exists N ∈ N such that for every n ≥ N and for every Γn ∈ νn we have

(9)
∣∣µ (Γn ∩ f−mnn (A)

)
− µ (Γn) · µ (A)

∣∣ ≤ ε · µ (Γn) · µ (A) .

Then f is weak mixing.
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Proof. We want to show that the requirements of Lemma 5.1 are fulfilled. This implies that f is
weak mixing. For it let A ⊆ Tm be an arbitrary m-dimensional cube and ε ∈ (0, 1]. We consider
two m-dimensional cubes A1, A2 ⊂ Tm with A1 ⊂ A ⊂ A2 as well as µ (A4Ai) < ε · µ (A) and
for sufficiently large n: dist(∂A, ∂Ai) > 1

2n for i = 1, 2.
If n is sufficiently large, we obtain for Γn ∈ νn and for i = 1, 2 by the assumptions of this

Lemma: ∣∣µ (Γn ∩ f−mnn (Ai)
)
− µ (Γn) · µ (Ai)

∣∣ ≤ ε · µ (Γn) · µ (Ai) .

Herefrom we conclude (1− ε) · µ (Γn) · µ (A1) ≤ µ (Γn ∩ f−mnn (A1)) on the one hand and
µ (Γn ∩ f−mnn (A2)) ≤ (1 + ε) · µ (Γn) · µ (A2) on the other hand. Because of d0 (fmn , fmnn ) < 1

2n

the following relations are true:

fmnn (x) ∈ A1 =⇒ fmn(x) ∈ A,
fmn(x) ∈ A =⇒ fmnn (x) ∈ A2.

Thus: µ (Γn ∩ f−mnn (A1)) ≤ µ (Γn ∩ f−mn (A)) ≤ µ (Γn ∩ f−mnn (A2)).
Altogether, it holds: (1− ε) · µ (Γn) · µ (A1) ≤ µ (Γn ∩ f−mn (A)) ≤ (1 + ε) · µ (Γn) · µ (A2).
Therewith, we obtain the following estimate from above:

µ
(
Γn ∩ f−mn (A)

)
− µ (Γn) · µ (A)

≤ (1 + ε) · µ (Γn) · µ (A2)− µ (Γn) · µ (A2) + µ (Γn) · (µ (A2)− µ (A))
≤ ε · µ (Γn) · µ (A2) + µ (Γn) · µ (A24A) ≤ ε · µ (Γn) · (µ(A) + µ (A24A)) + ε · µ (Γn) · µ (A)

≤ 2 · ε · µ (Γn) · µ (A) + ε2 · µ (Γn) · µ (A) ≤ 3 · ε · µ (Γn) · µ (A) .

Furthermore, we deduce the following estimate from below in an analogous way:

µ
(
Γn ∩ f−mn (A)

)
− µ (Γn) · µ (A) ≥ −3 · ε · µ (Γn) · µ (A) .

Hence, we get: |µ (Γn ∩ f−mn (A))− µ (Γn) · µ (A)| ≤ 3 ·ε ·µ (Γn) ·µ (A), i.e. the requirements
of Lemma 5.1 are met.

Now we concentrate on the setting of our explicit constructions:

Lemma 5.3. Consider the sequence of partial partitions (ηn)n∈N constructed in section 3.2.1
and the diffeomorphisms gn from chapter 3.4. Furthermore, we define the partial partitions
νn =

{
Γn = Hn−1 ◦ gn

(
În

)
: În ∈ ηn

}
.

Then we get νn → ε.

Proof. By construction ηn =
{
Îin : i ∈ Λn

}
, where Λn is a countable set of indices. Because of

ηn → ε it holds limn→∞ µ
(⋃

i∈Λn
Îin

)
= 1. Since Hn−1 ◦ gn is measure-preserving, we conclude:

lim
n→∞

µ

( ⋃
i∈Λn

Γin

)
= lim
n→∞

µ

( ⋃
i∈Λn

Hn−1 ◦ gn
(
Îin

))
= lim
n→∞

µ

(
Hn−1 ◦ gn

( ⋃
i∈Λn

Îin

))
= 1.

Taking the approximation error of the map gn into account, gn
(
În

)
is contained in a cuboid with

θ-width 1
2qnln

+ [nqσn]
ln

and edge length 1
ln
−2δn in the r1, ..., rm−1-coordinates. Hence, the diameter

of gn
(
În

)
is bounded by m·[nqσn]

ln
+ 1

2qn·ln . Then, we conclude for every Γin = Hn−1 ◦ gn
(
Îin

)
:

diam
(
Γin
)
≤ ‖DHn−1‖0 · diam

(
gn

(
Îin

))
≤ ‖DHn−1‖0 ·

(
m · [nqσn]

ln
+

1
2qn · ln

)
.
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Because of σ < 1 and the requirement on ln in equation 1 we conclude limn→∞diam
(
Γin
)

= 0
and consequently νn → ε.

In the following the Lebesgue measures on S1, Tm−2, Tm−1 are denoted by λ̃, µ(m−2) and
µ̃ respectively. The next technical result is needed in the proof of Lemma 5.5. For the sake of
convenience, we introduce the notation a = 10n2 · qn · lm+1

n .

Lemma 5.4. Given an interval K on the r1-axis and a (m − 2)-dimensional interval Z in the
(r2, ..., rm−1)-coordinates Kc,γ denotes the cuboid [c, c+ γ]×K×Z for some γ > 0. We consider
the diffeomorphism gn constructed in subsection 3.4 and an interval L = [l1, l2] of S1 satisfying
λ̃ (L) ≥ 4·[nqσn]

a .
If [nqσn] · λ(K) > 2, then for the set Q := π~r

(
Kc,γ ∩ g−1

n (L×K × Z)
)
we have:∣∣∣µ̃ (Q)− λ (K) · λ̃ (L) · µ(m−2) (Z)

∣∣∣
≤
(

2
[nqσn]

· λ̃ (L) +
2 · γ
[nqσn]

+ γ · λ (K) +
[nqσn] · λ(K) · 4

a
+

8
a

)
· µ(m−2) (Z) .

Proof. We consider the diffeomorphism ḡb : M →M , (θ, r1, ..., rm−1) 7→ (θ + b · r1, r1, ..., rm−1)
and the set:

Qb := π~r
(
Kc,γ ∩ ḡ−1

b (L×K × Z)
)

= {(r1, r2, ..., rm−1) ∈ K × Z : (θ + b · r1, ~r) ∈ L×K × Z, θ ∈ [c, c+ γ]}
= {(r1, r2, ..., rm−1) ∈ K × Z : b · r1 ∈ [l1 − c− γ, l2 − c] mod 1} .

The interval b ·K seen as an interval in R does not intersect more than b · λ(K) + 2 and not less
than b · λ (K)− 2 intervals of the form [i, i+ 1] with i ∈ Z.
Claim: A resulting interval on the r1-axis of Kc,γ ∩ ḡ−1

[nqσn] (L×K × Z) and the corresponding
r1-projection of Kc,γ ∩ g−1

n (L×K × Z) can differ by a length of at most 4
a .

Proof: Recall that gn is constructed as the approximation of the step function g̃n. Obviously,
g̃n (Kc,γ) may hit (respectively leave) L×K×Z at most one 1

a -domain on the r1-axis later than
ḡ[nqσn] (Kc,γ) (see figure 3).
Moreover, the approximation error between gn and g̃n can cause an additional deviation of at

most one 1
a -domain on the r1-axis and can cause an additional deviation of at most [nqσn] · εn on

the θ-axis. Since [nqσn] · εn < 1
a this discrepancy will be equalised after at most one 1

a -domain
on the r1-axis. This last difference can occur on both ends of the resulting interval on the
r1-axis.

Therefore, we compute on the one side:

µ̃ (Q) ≤ ([nqσn] · λ (K) + 2) ·
(
l2 − (l1 − γ)

[nqσn]
+

4
a

)
· µ(m−2) (Z)

=

(
λ (K) · λ̃ (L) + 2 · λ̃ (L)

[nqσn]
+ λ (K) · γ +

2 · γ
[nqσn]

+
[nqσn] · λ(K) · 4

a
+

8
a

)
· µ(m−2) (Z)

and on the other side

µ̃ (Q) ≥ ([nqσn] · λ (K)− 2) ·
(
l2 − (l1 − γ)

[nqσn]
− 4
a

)
· µ(m−2) (Z)

=

(
λ (K) · λ̃ (L)− 2 · λ̃ (L)

[nqσn]
+ λ (K) · γ − 2 · γ

[nqσn]
− [nqσn] · λ(K) · 4

a
+

8
a

)
· µ(m−2) (Z) .
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Figure 3: Qualitative shape of the action of gn as well as g̃n on Kc,γ .

Both equations together yield:∣∣∣∣µ̃ (Q)− λ (K) · λ̃ (L) · µ(m−2) (Z)− γ · λ (K) · µ(m−2) (Z)− 8
a
· µ(m−2) (Z)

∣∣∣∣
≤
(

2
[nqσn]

· λ̃ (L) +
2 · γ
[nqσn]

+
[nqσn] · λ(K) · 4

a

)
· µ(m−2) (Z) .

The claim follows because∣∣∣µ̃ (Q)− λ (K) · λ̃ (L) · µ(m−2) (Z)
∣∣∣− γ · λ (K) · µ(m−2) (Z)− 8

a
· µ(m−2) (Z)

≤
∣∣∣∣µ̃ (Q)− λ (K) · λ̃ (L) · µ(m−2) (Z)− γ · λ (K) · µ(m−2) (Z)− 8

a
· µ(m−2) (Z)

∣∣∣∣ .
Lemma 5.5. Let n ≥ 5, gn as in section 3.4 and În ∈ ηn, where ηn is the partial partition
constructed in section 3.2.1. For the diffeomorphism φn constructed in section 3.3 and mn as in
section 3.1 we consider Φn = φn ◦Rmnαn+1

◦ φ−1
n and Jn ⊂ Tm−1 defined in equation 6.

Then for every m-dimensional cube S of side length q−σn lying in Tm we get

(10)
∣∣∣µ(Î ∩ Φ−1

n ◦ g−1
n (S)

)
· µ̃ (Jn)− µ

(
Î
)
· µ (S)

∣∣∣ ≤ 22
n
· µ
(
Î
)
· µ (S) .

In other words this Lemma tells us that a partition element is “almost uniformly distributed”
under gn ◦ Φn on the whole manifold M = Tm.

Proof. Let S be a m-dimensional cube with sidelength q−σn lying in Tm. Furthermore, we
denote:

Sθ = πθ (S) Sr1 = πr1 (S) S~̃r = π(r2,...,rm−1) (S) Sr = Sr1 × S~̃r = π~r (S)
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Obviously: λ̃ (Sθ) = λ (Sr1) = q−σn and λ̃ (Sθ) · λ (Sr1) · µ(m−2)
(
S~̃r
)

= µ (S) = q−mσn .

According to Lemma 4.3 Φn
(

3
qn·ln ,

1
n

)
-distributes the partition element Î ∈ ηn on Jn, in par-

ticular Φn
(
Î
)
⊆ [c, c+ γ]× Tm−1 for some c ∈ S1 and some γ ≤ 3

qn·ln .

We introduce the set S̃r := Sr∩Jn and therewith S̃ := Sθ×S̃r. In order to estimate µ
(
S \ S̃

)
we

observe that in each coordinate r1, ..., rm−1 there is a “bad domain” of φn of length 2δn + 4εn in
each 1

ln
-domain. Hence, Sr contains at most (ln · q−σn + 2)m−1 “bad domains” of measure 2δn+4εn

lm−2
n

in Tm−1. Then:

µ
(
S \ S̃

)
≤ 2δn + 4εn

lm−2
n

·
(
ln · q−σn + 2

)m−1 · q−σn ≤ (4δn + 8εn) · ln · µ(S) < 5δn · ln · µ(S).

Using the triangle inequality we obtain∣∣∣µ(Î ∩ Φ−1
n

(
g−1
n (S)

))
· µ̃ (Jn)− µ

(
Î
)
· µ (S)

∣∣∣
≤
∣∣∣µ(Î ∩ Φ−1

n

(
g−1
n (S)

))
− µ

(
Î ∩ Φ−1

n

(
g−1
n

(
S̃
)))∣∣∣ · µ̃ (Jn)

+
∣∣∣µ(Î ∩ Φ−1

n

(
g−1
n

(
S̃
)))

· µ̃ (Jn)− µ
(
Î
)
· µ
(
S̃
)∣∣∣+ µ

(
Î
)
·
∣∣∣µ(S̃)− µ (S)

∣∣∣ .
Since Φn and gn are measure-preserving, we observe by our choice of δn in equation 2:∣∣∣µ(Î ∩ Φ−1

n

(
g−1
n (S)

))
− µ

(
Î ∩ Φ−1

n

(
g−1
n

(
S̃
)))∣∣∣ · µ̃ (Jn) ≤ µ

(
S \ S̃

)
· µ̃ (Jn)

≤ 5δn · ln · µ(S) · µ̃ (Jn) ≤ 1
n
· µ (S) · µ

(
Î
)
.

Thus, we obtain:∣∣∣µ(Î ∩ Φ−1
n

(
g−1
n (S)

))
· µ̃ (Jn)− µ

(
Î
)
· µ (S)

∣∣∣
≤
∣∣∣µ(Î ∩ Φ−1

n

(
g−1
n

(
S̃
)))

· µ̃ (Jn)− µ
(
Î
)
· µ
(
S̃
)∣∣∣+

2
n
· µ (S) · µ

(
Î
)
.

(11)

Next, we want to estimate the first summand. By construction of the map gn and the definition
of S̃ it holds: Φn

(
Î
)
∩ g−1

n

(
S̃
)
⊆ [c, c+ γ] × S̃r =: Kc,γ . Because of Lemma 4.3 we have

2γ ≤ 6
qn·ln < q−σn . So we can define a cuboid S1 ⊆ S̃, where S1 := [s1 + γ, s2 − γ]× S̃r using the

notation Sθ = [s1, s2]. We examine the two sets

Q := π~r

(
Kc,γ ∩ g−1

n

(
Sθ × S̃r

))
Q1 := π~r

(
Kc,γ ∩ g−1

n

(
[s1 + γ, s2 − γ]× S̃r

))
.

As seen above Φn
(
Î
)
∩ g−1

n

(
S̃
)
⊆ Kc,γ . Hence Φn

(
Î
)
∩ g−1

n

(
S̃
)
⊆ Φn

(
Î
)
∩ g−1

n

(
S̃
)
∩Kc,γ ,

which implies Φn
(
Î
)
∩ g−1

n

(
S̃
)
⊆ Φn

(
Î
)
∩
(
S1 ×Q

)
.

Claim: On the other hand: Φn
(
Î
)
∩
(
S1 ×Q1

)
⊆ Φn

(
Î
)
∩ g−1

n

(
S̃
)
.

Proof of the claim: For (θ, ~r) ∈ Φn
(
Î
)
∩
(
S1 ×Q1

)
arbitrary it holds (θ, ~r) ∈ Φn

(
Î
)
,

i.e. θ ∈ [c, c+ γ], and ~r ∈ π~r

(
Kc,γ ∩ g−1

n

(
[s1 + γ, s2 − γ]× S̃r

))
. This implies the existence

of θ̄ ∈ [c, c+ γ] satisfying
(
θ̄, ~r
)
∈ Kc,γ ∩ g−1

n (S1). Hence, there is β ∈ [s1 + γ, s2 − γ] such
that gn

(
θ̄, ~r
)

= (β,~r). Additionally, we observe that gn maps sets of the form I × ~r, where
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I ⊂ S1 is an interval, on a set of the form Ĩ × ~r with an interval Ĩ ⊂ S1 and preserves the
length of the interval. Since

∣∣θ − θ̄∣∣ ≤ γ there is β̄ ∈ [s1, s2] satisfying gn (θ, ~r) =
(
β̄, ~r
)
. Thus,

(θ, ~r) ∈ Φn
(
Î
)
∩ g−1

n

(
S̃
)
.

Altogether, the following inclusions are true:

Φn
(
Î
)
∩
(
S1 ×Q1

)
⊆ Φn

(
Î
)
∩ g−1

n

(
S̃
)
⊆ Φn

(
Î
)
∩
(
S1 ×Q

)
Thus, we obtain:

∣∣∣µ(Î ∩ Φ−1
n

(
g−1
n

(
S̃
)))

· µ̃ (Jn)− µ
(
Î
)
· µ
(
S̃
)∣∣∣

≤ max

(∣∣∣µ(Î ∩ Φ−1
n

(
S1 ×Q

))
· µ̃ (Jn)− µ

(
Î
)
· µ
(
S̃
)∣∣∣ ,

∣∣∣µ(Î ∩ Φ−1
n

(
S1 ×Q1

))
· µ̃ (Jn)− µ

(
Î
)
· µ
(
S̃
)∣∣∣)

(12)

We want to apply Lemma 5.4 for K = S̃r1 , L = Sθ, Z = S~̃r and b = [n · qσn] (note that
4·[nqσn]

10n2·qn·lm+1
n

< 1
qσn

= λ̃ (L) and for n > 4: b · λ(K) = [nqσn] · q−σn ≥ 1
2nq

σ
n · q−σn > 2):∣∣∣µ̃ (Q)− µ

(
S̃
)∣∣∣

≤

 2
[n · qσn]

· λ̃ (Sθ) +
2γ

[n · qσn]
+ γ · λ

(
S̃r1

)
+

[nqσn] · λ
(
S̃r1

)
· 4

a
+

8
a

 · µ(m−2)
(
S~̃r
)

≤
(

4
n · qσn

· λ̃ (Sθ) +
4

n · qσn · qσn
+

1
n · qσn

· λ (Sr1) +
1

n · q2σ
n

)
· µ(m−2)

(
S~̃r
)

≤ 14
n
· µ (S) .

In particular, we receive from this estimate: 14
n · µ (S) ≥ µ̃ (Q)− µ

(
S̃
)
≥ µ̃ (Q)− µ (S), hence:

µ̃ (Q) ≤
(
1 + 14

n

)
· µ (S) ≤ 4 · µ (S).

Analogously we obtain: µ̃ (Q1) ≤ 4 · µ (S) as well as |µ̃ (Q1)− µ (S1)| ≤ 14
n · µ (S).

Since Q as well as Q1 are a finite union of disjoint (m− 1)-dimensional intervals contained in Jn
and Φn

(
3

qn·ln ,
1
n

)
-distributes the interval Î on Jn, we get:∣∣∣µ(Î ∩ Φ−1

n

(
S1 ×Q

))
· µ̃ (Jn)− µ

(
Î
)
· µ̃ (Q)

∣∣∣ ≤ 1
n
· µ
(
Î
)
· µ̃ (Q) ≤ 4

n
· µ
(
Î
)
· µ (S)

as well as∣∣∣µ(Î ∩ Φ−1
n

(
S1 ×Q1

))
· µ̃ (Jn)− µ

(
Î
)
· µ̃ (Q1)

∣∣∣ ≤ 1
n
· µ
(
Î
)
· µ̃ (Q1) ≤ 4

n
· µ
(
Î
)
· µ (S) .

Now we can proceed∣∣∣µ(Î ∩ Φ−1
n

(
S1 ×Q

))
· µ̃ (Jn)− µ

(
Î
)
· µ
(
S̃
)∣∣∣

≤
∣∣∣µ(Î ∩ Φ−1

n

(
S1 ×Q

))
· µ̃ (Jn)− µ

(
Î
)
· µ̃ (Q)

∣∣∣+ µ
(
Î
)
·
∣∣∣µ̃ (Q)− µ

(
S̃
)∣∣∣

≤ 4
n
· µ
(
Î
)
· µ (S) + µ

(
Î
)
· 14
n
· µ (S) =

18
n
· µ
(
Î
)
· µ (S) .
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Noting that µ (S1) = µ
(
S̃
)
− 2γ · µ̃

(
S̃r

)
and so µ

(
S̃
)
− µ (S1) ≤ 2 · 1

n·qσn
· µ̃
(
S̃r

)
≤ 2

n · µ (S)
we obtain in the same way as above:∣∣∣µ(Î ∩ Φ−1

n

(
S1 ×Q1

))
· µ̃ (Jn)− µ

(
Î
)
· µ
(
S̃
)∣∣∣ ≤ 20

n
· µ
(
Î
)
· µ (S) .

Using equation 12 this yields:∣∣∣µ(Î ∩ Φ−1
n

(
g−1
n

(
S̃
)))

· µ̃ (Jn)− µ
(
Î
)
· µ
(
S̃
)∣∣∣ ≤ 20

n
· µ
(
Î
)
· µ (S) .

Finally, we conclude with the aid of equation 11:∣∣∣µ(Î ∩ Φ−1
n

(
g−1
n (S)

))
· µ̃ (Jn)− µ

(
Î
)
· µ (S)

∣∣∣ ≤ 22
n
· µ
(
Î
)
· µ (S) .

Now we are able to prove the aimed criterion for weak mixing.

Proposition 5.6 (Criterion for weak mixing). Let fn = Hn ◦ Rαn+1 ◦ H−1
n and the sequence

(mn)n∈N be constructed as in the previous sections. Suppose additionally that d0 (fmn , fmnn ) < 1
2n

and ‖DHn−1‖0 < ln (qn) for every n ∈ N and that the limit f = limn→∞ fn exists.
Then f is weak mixing.

Proof. To apply Lemma 5.2 we consider the partial partitions νn := Hn−1 ◦ gn (ηn). As proven
in Lemma 5.3 these partial partitions satisfy νn → ε. We have to establish equation 9. For this
purpose, let ε > 0 and a m-dimensional cube A ⊆ Tm be given.
Furthermore, we note fmnn = Hn ◦Rmnαn+1

◦H−1
n = Hn−1 ◦ gn ◦ Φn ◦ g−1

n ◦H−1
n−1.

Let Sn be am-dimensional cube of side length q−σn contained in Tm. We look at Cn := Hn−1 (Sn),
Γn ∈ νn, and compute (since gn and Hn−1 are measure-preserving):∣∣µ (Γn ∩ f−mnn (Cn)

)
− µ (Γn) · µ (Cn)

∣∣ =
∣∣∣µ(În ∩ Φ−1

n ◦ g−1
n (Sn)

)
− µ

(
În

)
· µ (Sn)

∣∣∣
≤ 1
µ̃ (Jn)

·
∣∣∣µ(În ∩ Φ−1

n ◦ g−1
n (Sn)

)
· µ̃ (Jn)− µ

(
În

)
· µ (Sn)

∣∣∣+
1− µ̃ (Jn)
µ̃ (Jn)

· µ
(
În

)
· µ (Sn)

Bernoulli’s inequality yields: µ̃(Jn) ≥
(
1− 1

n

)m−1 ≥ 1 + (m− 1) ·
(
− 1
n

)
= 1− m−1

n . Hence, we
obtain for n > 2 · (m− 1): µ̃ (Jn) ≥ 1

2 and so: 1−µ̃(Jn)
µ̃(Jn) ≤ 2 · (1− µ̃ (Jn)) ≤ 2·(m−1)

n . We continue
by applying Lemma 5.5:∣∣µ (Γn ∩ f−mnn (Cn)

)
− µ (Γn) · µ (Cn)

∣∣ ≤ 2 · 22
n
· µ
(
În

)
· µ (Sn) +

2 · (m− 1)
n

· µ
(
În

)
· µ (Sn)

=
42 + 2 ·m

n
· µ
(
În

)
· µ (Sn)

Moreover, by our assumptions it holds diam(Cn) ≤ ‖DHn−1‖0 · diam (Sn) ≤ ln (qn) ·
√
m
qσn

, i. e.
diam(Cn) → 0 as n → ∞. Thus, we can approximate A by a countable disjoint union of sets
Cn = Hn−1 (Sn) with Sn ⊆ Tm a m-dimensional cube of sidelength q−σn in given precision, when
n is chosen large enough. Consequently for n sufficiently large there are sets A1 =

⋃̇
i∈Σ1

n
Cin and

A2 =
⋃̇
i∈Σ2

n
Cin with countable sets Σ1

n and Σ2
n of indices satisfying A1 ⊆ A ⊆ A2 as well as

|µ(A)− µ(Ai)| ≤ ε
3 · µ(A) for i = 1, 2.

Additionally we choose n such that 42+2·m
n < ε

3 holds. It follows:
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µ
(
Γn ∩ f−mnn (A)

)
− µ (Γn) · µ (A)

≤ µ
(
Γn ∩ f−mnn (A2)

)
− µ (Γn) · µ (A2) + µ (Γn) · (µ (A2)− µ (A))

≤
∑
i∈Σ2

n

(
µ
(
Γn ∩ f−mnn

(
Cin
))
− µ (Γn) · µ

(
Cin
))

+
ε

3
· µ (Γn) · µ (A)

≤
∑
i∈Σ2

n

(
42 + 2 ·m

n
· µ
(
În

)
· µ
(
Sin
))

+
ε

3
· µ (Γn) · µ (A)

=
42 + 2 ·m

n
· µ (Γn) · µ

 ⋃
i∈Σ2

n

Cin

+
ε

3
· µ (Γn) · µ (A) ≤ ε

3
· µ (Γn) · µ (A2) +

ε

3
· µ (Γn) · µ (A)

=
ε

3
· µ (Γn) · µ (A) +

ε

3
· µ (Γn) · (µ (A2)− µ (A)) +

ε

3
· µ (Γn) · µ (A) ≤ ε · µ (Γn) · µ (A) .

Analogously we estimate: µ (Γn ∩ f−mnn (A))−µ (Γn) ·µ (A) ≥ −ε ·µ (Γn) ·µ (A). Both estimates
enable us to conclude: |µ (Γn ∩ f−mnn (A))− µ (Γn) · µ (A)| ≤ ε · µ (Γn) · µ (A).

6 Proof of convergence of (fn)n∈N in Diffωρ (Tm, µ)

Let ε > 0 and (εn)n∈N be a monotone decreasing sequence of positive real numbers satisfying∑∞
n=1 εn < ε. We recall the relations αn+1 = αn + 1

kn·ln·qn and hn ◦ Rαn = Rαn ◦ hn. Hereby,
we observe for any m ∈ N

Hn◦Rmαn+1
◦H−1

n = Hn−1◦hn◦Rmαn◦R
m

1
kn·ln·qn

◦h−1
n ◦H−1

n−1 = Hn−1◦Rmαn◦hn◦R m
kn·ln·qn

◦h−1
n ◦H−1

n−1.

Since the construction of the conjugation map hn was independent of the number kn, we can
obtain

dρ (fn−1, fn) = dρ

(
Hn−1 ◦Rαn ◦H−1

n−1, Hn−1 ◦Rαn ◦ hn ◦R 1
kn·ln·qn

◦ h−1
n ◦H−1

n−1

)
< εn

as well as for every m ≤ qn

d0

(
fmn−1, f

m
n

)
= d0

(
Hn−1 ◦Rmαn ◦H

−1
n−1, Hn−1 ◦Rmαn ◦ hn ◦R m

kn·ln·qn
◦ h−1

n ◦H−1
n−1

)
<

1
2n

by choosing kn ∈ N large enough under the additional conditions

(13) kn > 40n2 · lmn

and

(14) ln (qn+1) = ln (kn · ln · qn) > ‖DHn‖0 .

By

dρ (fm, fn) ≤
m∑

k=n+1

dρ (fk−1, fk) <
m∑

k=n+1

εk

we can show that (fn)n∈N is a Cauchy sequence in Diffωρ (Tm, µ). Since Diffωρ (Tm, µ) is a complete
space, we obtain convergence limn→∞ fn = f ∈ Diffωρ (Tm, µ).
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Remark 6.1. Moreover, we estimate for every m ≤ qn+1:

d0 (fm, fmn ) ≤
∞∑

k=n+1

d0

(
fmk−1, f

m
k

)
<

∞∑
k=n+1

1
2k

=
1
2n
.

By construction of the sequence (mn)n∈N in subsection 3.1 we have mn ≤ qn+1. Hence, the
condition d0 (fmn , fmnn ) < 1

2n from Proposition 5.6 is satisfied as well. Then we can apply the
deduced criterion for weak mixing and conclude that f is weak mixing.

7 Construction of the f-invariant measurable Riemannian
metric

In the following we construct the f -invariant measurable Riemannian metric. This construction
parallels the approach in [GKa00], section 4.8.. For it we put ωn :=

(
H−1
n

)∗
ω0, where ω0 is the

standard Riemannian metric on Tm. Each ωn is a smooth Riemannian metric because it is the
pullback of a smooth metric via a Diffωρ (Tm, µ)-diffeomorphism. Since R∗αn+1

ω0 = ω0 the metric
ωn is fn-invariant:

f∗nωn =
(
Hn ◦Rαn+1 ◦H−1

n

)∗ (
H−1
n

)∗
ω0 =

(
H−1
n

)∗
R∗αn+1

H∗n
(
H−1
n

)∗
ω0 =

(
H−1
n

)∗
R∗αn+1

ω0

=
(
H−1
n

)∗
ω0 = ωn.

With the succeeding Lemmas we show that the limit ω∞ := limn→∞ ωn exists µ-almost every-
where and is the aimed f -invariant Riemannian metric.

Lemma 7.1. On any partition element Ǐn ∈ ζn we have devǏn (hn) < δn
l2n
.

Proof. First of all, we observe for a vector ~v = (v1, ..., vm) with ‖v‖ = 1 and for maps of the
form J (x1, ..., xm) = (x1, ..., xd−1, xd + s (xj) , xd+1, ..., xm) with supx |s′(x)| < ε < 1:

‖DJ (~v)‖ ≤
√

1 + 2ε · vd · vj + ε2 · v2
d ≤ 1 +

1
2
·
(
2ε+ ε2

)
< 1 + 2ε.

Then we have log ‖DJ (~v)‖ < 2ε.
By the exact positioning of the partition elements and Remark 3.7 every occurring conjugation
map is applied on a domain, where the associated step function sβ,N,ε,δ satisfies

∣∣∣s′β,N,ε,δ∣∣∣ < ε.
With the aid of Remark 2.5 and the above observations we obtain

devǏn (hn) ≤ devφn(Ǐn) (gn) + devǏn (φn) ≤ 2 · [nqσn] · εn + 3 · (m− 1) · 2εn.

By our choice of εn in equation 3 we proved the claim.

Lemma 7.2. The sequence (ωn)n∈N converges µ-a.e. to a limit ω∞.

Proof. On the union of the partition elements of ζn we conclude by Lemma 7.1:

d (ωn, ωn−1) = d
((
h−1
n ◦H−1

n−1

)∗
ω0,
(
H−1
n−1

)∗
ω0

)
≤
∥∥H∗n−1

∥∥ · d((h−1
n

)∗
ω0, ω0

)
≤ ‖DHn−1‖20 ·

δn
l2n

< δn.
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Since the elements of the partition ζn cover Tm except a set of measure at most 1
n2 by Remark

3.5 for every n ≥ 3, this calculation shows d (ωN+k, ωN−1) ≤
∑N+k
n=N d (ωn, ωn−1) <

∑N+k
n=N δn

on a set of measure at least 1 −
∑N+k
n=N

1
n2 ≥ 1 −

∑∞
n=N

1
n2 . As this measure approaches 1 for

N →∞, the sequence (ωn)n∈N converges on a set of full measure.

Lemma 7.3. The limit ω∞ is a measurable Riemannian metric.

Proof. The limit ω∞ is a measurable map because it is the pointwise limit of the smooth metrics
ωn, which in particular are measurable. By the same reasoning ω∞|p is symmetric for µ-almost
every p ∈ M . Furthermore, ωn is positive definite for every n ∈ N and ω∞ is

∑∞
k=n δk-close to

ωn−1 on T1M ⊗ T1M minus a set of measure at most
∑∞
k=n

1
k2 . By choosing δk, k ≥ n, small

enough (depending on ωn−1),

(A) which can be satisfied by choosing ln large enough,

we can guarantee that ω∞ is positive definite on T1M ⊗ T1M minus a set of measure at most∑∞
k=n

1
k2 . Since this is true for every n ∈ N, ω∞ is positive definite on a set of full measure.

Remark 7.4. In the proof of the subsequent Lemma we will need Egoroff’s theorem (for example
[Ha65], §21, Theorem A): Let (N, d) denote a separable metric space. Given a sequence (ϕn)n∈N
of N -valued measurable functions on a measure space (X,Σ, µ) and a measurable subset A ⊆ X,
µ (A) < ∞, such that (ϕn)n∈N converges µ-a.e. on A to a limit function ϕ. Then for every
ε > 0 there exists a measurable subset B ⊂ A such that µ (B) < ε and (ϕn)n∈N converges to ϕ
uniformly on A \B.

Lemma 7.5. ω∞ is f -invariant, i.e. f∗ω∞ = ω∞ µ-a.e..

Proof. By Lemma 7.2 the sequence (ωn)n∈N converges in the C∞-topology pointwise almost
everywhere. Hence, we obtain using Egoroff’s theorem: For every δ > 0 there is a set Cδ ⊆ M
such that µ (M \ Cδ) < δ and the convergence ωn → ω∞ is uniform on Cδ.
The function f was constructed as the limit of the sequence (fn)n∈N in the Diffωρ (Tm, µ)-topology.
Thus, f̃n := f−1

n ◦ f → id in the Diffωρ (Tm, µ)-topology. Since Tm is compact, this convergence
is uniform, too.
Furthermore, the smoothness of f implies f∗ω∞ = f∗ limn→∞ ωn = limn→∞ f∗ωn. Therewith we
compute on Cδ: f∗ω∞ = limn→∞

((
fnf̃n

)∗
ωn

)
= limn→∞

(
f̃∗nf

∗
nωn

)
= limn→∞ f̃∗nωn = ω∞,

where we used the uniform convergence on Cδ in the last step. As this holds on every set Cδ
with δ > 0, it also holds on the set

⋃
δ>0 Cδ. This is a set of full measure and, therefore, the

claim follows.

Hence, the aimed f -invariant measurable Riemannian metric ω∞ is constructed. Since f is
also weak mixing by Remark 6.1, the main theorem is proven.
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