Hamburger Beiträge zur Angewandten Mathematik

Real-analytic weak mixing diffeomorphisms preserving a measurable Riemannian metric

Philipp Kunde

Nr. 2015-33
October 2015

Real-analytic weak mixing diffeomorphisms preserving a measurable Riemannian metric

Philipp Kunde

Abstract

On the torus \mathbb{T}^{m} of dimension $m \geq 2$ we prove the existence of a real-analytic weak mixing diffeomorphism preserving a measurable Riemannian metric. The proof is based on a real-analytic version of the approximation by conjugation-method with explicitly defined conjugation maps and partition elements.

1 Introduction

Until 1970 it was an open question if there exists an ergodic area-preserving smooth diffeomorphism on the disc \mathbb{D}^{2}. This problem was solved by the so-called "approximation by conjugation"method developed by D. Anosov and A. Katok in AK70. In fact, on every smooth compact connected manifold M of dimension $m \geq 2$ admitting a non-trivial circle action $\mathcal{R}=\left\{R_{t}\right\}_{t \in \mathbb{S}^{1}}$ preserving a smooth volume μ this method enables the construction of smooth diffeomorphisms with specific ergodic properties (e.g. weak mixing ones in AK70, section 5) or non-standard smooth realizations of measure-preserving systems (e.g. AK70, section 6, Be13] and [FSW07]). See also [FK04] for more details and other results of this method. These diffeomorphisms are constructed as limits of conjugates $f_{n}=H_{n} \circ R_{\alpha_{n+1}} \circ H_{n}^{-1}$, where $\alpha_{n+1}=\alpha_{n}+\frac{1}{k_{n} \cdot l_{n} \cdot q_{n}^{2}} \in \mathbb{Q}$, $H_{n}=H_{n-1} \circ h_{n}$ and h_{n} is a measure-preserving diffeomorphism satisfying $R_{\frac{1}{q_{n}}} \circ h_{n}=h_{n} \circ R_{\frac{1}{q_{n}}}$. In each step the conjugation map h_{n} and the parameter l_{n} are chosen such that the diffeomorphism f_{n} imitates the desired property with a certain precision. Then the parameter k_{n} is chosen large enough to guarantee closeness of f_{n} to f_{n-1} in the C^{∞}-topology and so the convergence of the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ to a limit diffeomorphism is provided. It is even possible to keep this limit diffeomorphism within any given C^{∞}-neighbourhood of the initial element $S_{\alpha_{1}}$ or, by applying a fixed diffeomorphism g first, of $g \circ S_{\alpha_{1}} \circ g^{-1}$. So the construction can be carried out in a neighbourhood of any diffeomorphism conjugate to an element of the action. Thus, $\mathcal{A}(M)=\overline{\left\{h \circ R_{t} \circ h^{-1}: t \in \mathbb{S}^{1}, h \in \operatorname{Diff}^{\infty}(M, \mu)\right\}}{ }^{C^{\infty}}$ is a natural space for the produced diffeomorphisms.
In their influential paper AK70] Anosov and Katok proved amongst others that in $\mathcal{A}(M)$ the set of weak mixing diffeomorphisms is generic (i. e. it is a dense G_{δ}-set) in the $C^{\infty}(M)$-topology. For it they used the "approximation by conjugation"-method. In GKa00 the conjugation maps are constructed more explicitly such that they can be equipped with the additional structure of being locally very close to an isometry. Hereby, it is shown that there exists a weak mixing smooth diffeomorphism preserving a smooth measure and a measurable Riemannian metric. Actually, it follows from the respective proofs that both results are true in the restricted space $\mathcal{A}_{\alpha}(M)=\overline{\left\{h \circ R_{\alpha} \circ h^{-1}: h \in \operatorname{Diff}^{\infty}(M, \mu)\right\}}{ }^{C^{\infty}}$ for a G_{δ}-set of $\alpha \in \mathbb{S}^{1}$. However, both proofs do not give a full description of the set of $\alpha \in \mathbb{S}^{1}$ for which the particular result holds in $\mathcal{A}_{\alpha}(M)$. Such a result is the content of GKu15: If $\alpha \in \mathbb{R}$ is Liouville, the set of volume-preserving
diffeomorphisms, that are weak mixing and preserve a measurable Riemannian metric, is dense in the C^{∞}-topology in $\mathcal{A}_{\alpha}(M)$.
While the "approximation by conjugation"-method is one of the most powerful tools of constructing smooth diffeomorphisms with prescribed ergodic or topological properties, there are great challenging differences in the real-analytic case as discussed in [FK04], §7.1: Since maps with very large derivatives in the real domain or its inverses are expected to have singularities in a small complex neighbourhood, for a real analytic family $S_{t}, 0 \leq t \leq t_{0}, S_{0}=\mathrm{id}$, the family $h \circ S_{t} \circ h^{-1}$ is expected to have singularities very close to the real domain for any $t>0$. So, the domain of analycity for maps of our form $f_{n}=H_{n} \circ R_{\alpha_{n+1}} \circ H_{n}^{-1}$ will shrink at any step of the construction and the limit diffeomorphism will not be analytic. Thus, it is necessary to find conjugation maps of a special form which may be inverted more or less explicitly in such a way that one can guarantee analycity of the map and its inverse in a large complex domain.
Using very explicit conjugation maps M. Saprykina was able to construct examples of volumepreserving uniquely ergodic real-analytic diffeomorphims on \mathbb{T}^{2} (Sa03]). Fayad and Katok designed such examples on any odd-dimensional sphere in [FK14. By a similar approach as Saprykina we can prove the existence of weak mixing real-analytic diffeomorphisms on \mathbb{T}^{2} that are uniformly rigid with respect to a prescribed sequence satisfying a growth condition (Ku15). Recently, S. Banerjee constructed non-standard real-analytic realizations on \mathbb{T}^{2} of some irrational circle rotations ($\widehat{\mathrm{Ba} 15}$). His key idea is to use entire functions that approximate certain carefully chosen step functions, which is the important mechanism in our constructions in this paper as well. We will prove the following main theorem:
Theorem. Let $\rho>0, m \geq 2$ and \mathbb{T}^{m} be the torus with Lebesgue measure μ. There exists a weak mixing real-analytic diffeomorphism $f \in \operatorname{Diff} f_{\rho}^{\omega}\left(\mathbb{T}^{m}, \mu\right)$ preserving a measurable Riemannian metric.

Hereby, we solve GKa00, Problem 3.9., about the existence of real-analytic volume-preserving IM-diffeomorphisms (i.e. diffeomorphisms preserving an absolutely continuous probability measure and a measurable Riemannian metric) in the case of tori $\mathbb{T}^{m}, m \geq 2$. See [GKa00, section 3, for a comprehensive consideration of IM-diffeomorphisms and IM-group actions. In particular, the existence of a measurable invariant metric for a diffeomorphism is equivalent to the existence of an invariant measure for the projectivized derivative extension which is absolutely continuous in the fibers. In K1 the ergodic behaviour of the derivative extension with respect to such a measure is examined. It provides the only known examples of measure-preserving diffeomorphisms whose differential is ergodic with respect to a smooth measure in the projectivization of the tangent bundle.

2 Preliminaries

2.1 Analytic topology

Real-analytic diffeomorphisms of \mathbb{T}^{m} homotopic to the identity have a lift of type

$$
F\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}+f_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, x_{m}+f_{m}\left(x_{1}, \ldots, x_{m}\right)\right)
$$

where the functions $f_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ are real-analytic and \mathbb{Z}^{m}-periodic for $i=1, \ldots, m$. For these functions we introduce the subsequent definition:
Definition 2.1. For any $\rho>0$ we consider the set of real-analytic \mathbb{Z}^{m}-periodic functions on \mathbb{R}^{m}, that can be extended to a holomorphic function on

$$
A^{\rho}:=\left\{\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{C}^{m}:\left|\operatorname{im}\left(z_{i}\right)\right|<\rho \text { for } i=1, \ldots, m\right\}
$$

1. For these functions let $\|f\|_{\rho}:=\sup _{\left(z_{1}, \ldots, z_{m}\right) \in A^{\rho}}\left|f\left(z_{1}, \ldots, z_{m}\right)\right|$.
2. The set of these functions satisfying the condition $\|f\|_{\rho}<\infty$ is denoted by $C_{\rho}^{\omega}\left(\mathbb{T}^{m}\right)$.

Furthermore, we consider the space $\operatorname{Diff}{ }_{\rho}^{\omega}\left(\mathbb{T}^{m}, \mu\right)$ of those volume-preserving diffeomorphisms homotopic to the identity, for whose lift we have $f_{i} \in C_{\rho}^{\omega}\left(\mathbb{T}^{m}\right)$ for $i=1, \ldots, m$.
Definition 2.2. For $f, g \in \operatorname{Diff}_{\rho}^{\omega}\left(\mathbb{T}^{m}, \mu\right)$ we define

$$
\|f\|_{\rho}=\max _{i=1, \ldots, m}\left\|f_{i}\right\|_{\rho}
$$

and the distance

$$
d_{\rho}(f, g)=\max _{i=1, \ldots, m}\left\{\inf _{p \in \mathbb{Z}}\left\|f_{i}-g_{i}-p\right\|_{\rho}\right\}
$$

Remark 2.3. Diff ${ }_{\rho}^{\omega}\left(\mathbb{T}^{m}, \mu\right)$ is a Banach space (see $[\mathrm{Sa03]}$ for a more extensive treatment of these spaces).

Moreover, for a diffeomorphism T with lift $\tilde{T}\left(x_{1}, \ldots, x_{m}\right)=\left(T_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, T_{m}\left(x_{1}, \ldots, x_{m}\right)\right)$ we define

$$
\|D T\|_{\rho}=\max \left\{\left\|\frac{\partial T_{i}}{\partial x_{j}}\right\|_{\rho} \text { for } i, j=1, \ldots, m\right\}
$$

2.2 Outline of the proof

We consider the torus \mathbb{T}^{m} equipped with Lebesgue measure μ and the circle action $\mathcal{R}=\left\{R_{t}\right\}_{t \in \mathbb{S}^{1}}$ comprising of the diffeomorphisms $R_{t}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}+t, x_{2}, \ldots, x_{m}\right)$. According to the "approximation by conjugation-method" the aimed weak mixing diffeomorphism f preserving a measurable invariant Riemannian metric is constructed as the limit of volume-preserving realanalytic diffeomorphisms f_{n} defined by $f_{n}=H_{n} \circ R_{\alpha_{n+1}} \circ H_{n}^{-1}$. Here, the rational numbers $\alpha_{n+1} \in \mathbb{S}^{1}$ and the conjugation maps $H_{n} \in \operatorname{Diff}{ }^{\omega}\left(\mathbb{T}^{m}, \mu\right)$ are constructed inductively:

$$
\alpha_{n+1}=\frac{p_{n+1}}{q_{n+1}}=\alpha_{n}+\frac{1}{k_{n} \cdot l_{n} \cdot q_{n}} \text { and } H_{n}=h_{1} \circ \ldots \circ h_{n},
$$

where the conjugation map $h_{n} \in \operatorname{Diff}^{\omega}\left(\mathbb{T}^{m}, \mu\right)$ has to satisfy $h_{n} \circ R_{\alpha_{n}}=R_{\alpha_{n}} \circ h_{n}$ and $k_{n}, l_{n} \in \mathbb{N}$ are parameters that have to be chosen appropriately.
In our constructions, $h_{n}=g_{n} \circ \phi_{n}$ is the composition of two real-analytic diffeomorphisms, which are defined explicitly in subsection 3.3 and 3.4 respectively. Moreover, we define two types of partial partitions η_{n} and ζ_{n} in subsection 3.2. The elements of η_{n} have to be (γ, ε)-distributed under the map $\Phi_{n}:=\phi_{n} \circ R_{\alpha_{n+1}}^{m_{n}} \circ \phi_{n}^{-1}$, where the numbers $m_{n} \in \mathbb{N}$ are defined in subsection 3.1. This concept of (γ, ε)-distribution is introduced in section 4. Descriptively, it says that the partition elements, which are contained in a cuboid of small edge length $\frac{1}{l_{n}}$, are mapped in a almost uniformly distributed way onto a set of almost full volume in the x_{2}, \ldots, x_{m}-coordinates and x_{1}-width smaller than γ. This property is the central notion in the criterion for weak mixing deduced in section 5 . At this juncture, the map g_{n} is required to introduce some kind of shear into the x_{1}-coordinate. On the other hand, h_{n} has to act as an "almost isometry" on the elements of the partial partition ζ_{n} in order to enable us to construct the invariant measurable Riemannian metric.

Definition 2.4. For a diffeomorphism f defined on a compact subset U of a smooth Riemannian manifold we define the deviation from being an isometry by

$$
\operatorname{dev}_{U}(f):=\max _{v \in T U,\|v\|=1}|\log \|d f(v)\||
$$

Remark 2.5. We observe that this quantity has the following properties:

- $\operatorname{dev}_{U}(f)=0$ if and only if f is a smooth isometry of U.
- $\operatorname{dev}_{U}(f)=\operatorname{dev}_{f(U)}\left(f^{-1}\right)$
- $\operatorname{dev}_{U}(\tilde{f} \circ f) \leq \operatorname{dev}_{f(U)}(\tilde{f})+\operatorname{dev}_{U}(f)$

Hereby, the invariant measurable Riemannian metric is constructed by the same approach as in GKa00. Finally, by choosing k_{n} large enough we can prove the convergence of the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $\operatorname{Diff}_{\rho}^{\omega}\left(\mathbb{T}^{m}, \mu\right)$ in section 6

3 Explicit constructions

We present step n in our inductive process of construction. Hence, we assume that we have already defined $H_{n-1}=h_{1} \circ \ldots \circ h_{n-1}$ and the rational numbers $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{S}^{1}$. Let l_{n} be a large enough integer satisfying condition A and

$$
\begin{equation*}
l_{n}>m \cdot n^{2} \cdot q_{n} \cdot\left\|D H_{n-1}\right\|_{0} \tag{1}
\end{equation*}
$$

We will use this parameter to ensure that the sequence of partial partitions under consideration converge to the decomposition into points (see the proof of Lemma 5.3) and that the constructed form ω_{∞} is positive definite (see Lemma 7.3). In this connection, the parameters

$$
\begin{equation*}
\delta_{n}=\frac{1}{10 \cdot n^{2} \cdot q_{n} \cdot l_{n}^{m+1}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{n}=\frac{1}{400 \cdot m \cdot n^{4} \cdot q_{n}^{2} \cdot l_{n}^{2 m+2}} \tag{3}
\end{equation*}
$$

are important as well.

3.1 Choice of the mixing sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$

By condition 13 our chosen sequence $\left(q_{n}\right)_{n \in \mathbb{N}}$ satisfies

$$
\begin{equation*}
q_{n+1}=k_{n} \cdot l_{n} \cdot q_{n}>40 n^{2} \cdot q_{n} \cdot l_{n}^{m+1} \tag{4}
\end{equation*}
$$

Define

$$
\begin{aligned}
m_{n} & =\min \left\{m \leq q_{n+1} \quad: \quad m \in \mathbb{N}, \quad \inf _{k \in \mathbb{Z}}\left|m \cdot \frac{p_{n+1}}{q_{n+1}}-\frac{1}{2 \cdot q_{n}}+\frac{k}{q_{n}}\right| \leq \frac{1}{q_{n+1}}\right\} \\
& =\min \left\{m \leq q_{n+1} \quad: \quad m \in \mathbb{N}, \quad \inf _{k \in \mathbb{Z}}\left|m \cdot \frac{q_{n} \cdot p_{n+1}}{q_{n+1}}-\frac{1}{2}+k\right| \leq \frac{q_{n}}{q_{n+1}}\right\}
\end{aligned}
$$

Lemma 3.1. The set $\left\{m \leq q_{n+1}: m \in \mathbb{N}, \inf _{k \in \mathbb{Z}}\left|m \frac{q_{n} \cdot p_{n+1}}{q_{n+1}}-\frac{1}{2}+k\right| \leq \frac{q_{n}}{q_{n+1}}\right\}$ is nonempty for every $n \in \mathbb{N}$, i.e. m_{n} exists.

Proof. We construct the sequence $\alpha_{n}=\frac{p_{n}}{q_{n}}$ in such a way, that $\alpha_{n+1}=\alpha_{n}+\frac{1}{l_{n} \cdot k_{n} \cdot q_{n}}$. In particular, p_{n+1} and q_{n+1} are relatively prime. Therefore, the set $\left\{j \cdot \frac{q_{n} \cdot p_{n+1}}{q_{n+1}}: j=1, \ldots, q_{n+1}\right\}$ contains $\frac{q_{n+1}}{\operatorname{gcd}\left(q_{n}, q_{n+1}\right)}$ different equally distributed points on \mathbb{S}^{1}. Hence, there are at least $\frac{q_{n+1}}{q_{n}}$ different such points and so for every $x \in \mathbb{S}^{1}$ there is a $j \in\left\{1, \ldots, q_{n+1}\right\}$ such that

$$
\inf _{k \in \mathbb{Z}}\left|x-j \cdot \frac{q_{n} \cdot p_{n+1}}{q_{n+1}}+k\right| \leq \frac{q_{n}}{q_{n+1}}
$$

In particular, this is true for $x=\frac{1}{2}$.
Remark 3.2. We define

$$
a_{n}=\left(m_{n} \cdot \frac{p_{n+1}}{q_{n+1}}-\frac{1}{2 \cdot q_{n}}\right) \bmod \frac{1}{q_{n}}
$$

By the above construction of m_{n} it holds that $\left|a_{n}\right| \leq \frac{1}{q_{n+1}}$. By equation 4 we get:

$$
\left|a_{n}\right| \leq \frac{1}{40 n^{2} \cdot q_{n} \cdot l_{n}^{m+1}}=\frac{\delta_{n}}{4} .
$$

3.2 Sequences of partial partitions

In this subsection we define the two announced sequences of partial partitions $\left(\eta_{n}\right)_{n \in \mathbb{N}}$ and $\left(\zeta_{n}\right)_{n \in \mathbb{N}}$ of \mathbb{T}^{m}.

3.2.1 Partial partition η_{n}

Remark 3.3. For convenience we will use the notation $\prod_{i=2}^{m}\left[a_{i}, b_{i}\right]$ for $\left[a_{2}, b_{2}\right] \times \ldots \times\left[a_{m}, b_{m}\right]$.
Initially, η_{n} will be constructed on the fundamental sector $\left[0, \frac{1}{q_{n}}\right] \times \mathbb{T}^{m-1}$. With a view to the piecewise definition of the conjugation map ϕ_{n} in the following subsection we divide the fundamental sector in two sections:

- On $\left[0, \frac{1}{2 \cdot q_{n}}\right] \times \mathbb{T}^{m-1}$ we consider the following sets:

$$
\begin{aligned}
& I_{j_{1}, \ldots, j_{m}}:= \\
& \bigcup\left[\frac{j_{1}}{2 q_{n} \cdot l_{n}}+\frac{t^{(1)}}{2 q_{n} l_{n}^{2}}+\ldots+\frac{t^{(m-1)}}{2 q_{n} l_{n}^{m}}+\delta_{n}, \frac{j_{1}}{2 q_{n} l_{n}}+\frac{t^{(1)}}{2 q_{n} l_{n}^{2}}+\ldots+\frac{t^{(m-1)}+1}{2 q_{n} l_{n}^{m}}-\delta_{n}\right] \\
& \quad \times \prod_{i=2}^{m}\left[\frac{j_{i}}{l_{n}}+\delta_{n}, \frac{j_{i}+1}{l_{n}}-\delta_{n}\right],
\end{aligned}
$$

where the union is taken over $t^{(s)} \in \mathbb{Z}, 0 \leq t^{(s)} \leq l_{n}-1$, for $s=1, \ldots, m-1$. The partial partition η_{n} consists of all such sets $I_{j_{1}, \ldots, j_{m-1}}$, at which $j_{i} \in \mathbb{Z}, 1 \leq j_{1} \leq l_{n}-3$ and $1 \leq j_{i} \leq l_{n}-2$ for $i=2, \ldots, m$.

- On $\left[\frac{1}{2 \cdot q_{n}}, \frac{1}{q_{n}}\right] \times \mathbb{T}^{m-1}$ we consider sets of the following form:

$$
\begin{aligned}
& \bar{I}_{j_{1}, \ldots, j_{m}}:= \\
& \bigcup\left[\frac{1}{2 q_{n}}+\frac{j_{1}}{2 q_{n} \cdot l_{n}}+\frac{t^{(1)}}{2 q_{n} \cdot l_{n}^{2}}+\ldots+\frac{t^{(m-1)}}{2 q_{n} \cdot l_{n}^{m}}+\delta_{n},\right. \\
& \left.\quad \frac{1}{2 q_{n}}+\frac{j_{1}}{2 q_{n} \cdot l_{n}}+\frac{t^{(1)}}{2 q_{n} \cdot l_{n}^{2}}+\ldots+\frac{t^{(m-1)}+1}{2 q_{n} \cdot l_{n}^{m}}-\delta_{n}\right] \\
& \quad \times \prod_{i=2}^{m}\left[\frac{j_{i}}{l_{n}}+\delta_{n}, \frac{j_{i}+1}{l_{n}}-\delta_{n}\right],
\end{aligned}
$$

where the union is taken over $t^{(s)} \in \mathbb{Z}, 0 \leq t^{(s)} \leq l_{n}-1$, for $s=1, \ldots, m-1$.
The partial partition η_{n} consists of all such sets $\bar{I}_{j_{1}, \ldots, j_{m-1}}$, at which $j_{i} \in \mathbb{Z}, 1 \leq j_{1} \leq l_{n}-3$ and $1 \leq j_{i} \leq l_{n}-2$ for $i=2, \ldots, m$.
As the image under $R_{l / q_{n}}$ with $l \in \mathbb{Z}$ this partial partition of $\left[0, \frac{1}{q_{n}}\right] \times \mathbb{T}^{m-1}$ is extended to a partial partition of \mathbb{T}^{m}.

Remark 3.4. By construction this sequence of partial partitions converges to the decomposition into points.

3.2.2 Partial partition ζ_{n}

On the fundamental sector $\left[0, \frac{1}{q_{n}}\right] \times \mathbb{T}^{m-1}$ the partial partition ζ_{n} consists of all multidimensional intervals of the following form:

$$
\begin{aligned}
& {\left[\frac{j_{1}^{(1)}}{2 q_{n} \cdot l_{n}}+\frac{j_{1}^{(2)}}{2 q_{n} l_{n}^{2}}+\ldots+\frac{j_{1}^{(m)}}{2 q_{n} l_{n}^{m}}+\delta_{n}, \frac{j_{1}^{(1)}}{2 q_{n} l_{n}}+\frac{j_{1}^{(2)}}{2 q_{n} l_{n}^{2}}+\ldots+\frac{j_{1}^{(m)}+1}{2 q_{n} l_{n}^{m}}-\delta_{n}\right]} \\
& \times \prod_{i=2}^{m}\left[\frac{j_{i}^{(1)}}{l_{n}}+\frac{j_{i}^{(2)}}{10 n^{2} \cdot q_{n} \cdot l_{n}^{m+1}}+\frac{\delta_{n}}{10 n^{2} \cdot q_{n} \cdot l_{n}^{m+1}}, \frac{j_{i}^{(1)}}{l_{n}}+\frac{j_{i}^{(2)}+1}{10 n^{2} \cdot q_{n} \cdot l_{n}^{m+1}}-\frac{\delta_{n}}{10 n^{2} \cdot q_{n} \cdot l_{n}^{m+1}}\right],
\end{aligned}
$$

where $j_{1}^{(1)} \in \mathbb{Z}, 0 \leq j_{1}^{(1)} \leq 2 l_{n}-1$, and $j_{1}^{(s)} \in \mathbb{Z}, 1 \leq j_{1}^{(s)} \leq l_{n}-2$, for $s=2, \ldots, m$ as well as for $i=2, \ldots, m: j_{i}^{(1)} \in \mathbb{Z}, 1 \leq j_{i}^{(1)} \leq l_{n}-2$, and $j_{i}^{(2)} \in \mathbb{Z}, 1 \leq j_{i}^{(2)} \leq 10 n^{2} \cdot q_{n} \cdot l_{n}^{m}-2$.
As above we extend it to a partial partition of \mathbb{T}^{m} as the image under $R_{l / q_{n}}$ with $l \in \mathbb{Z}$.
Remark 3.5. For every $n \geq 3$ the partial partition ζ_{n} consists of disjoint sets, covers a set of measure at least $1-\frac{1}{n^{2}}$ and the sequence $\left(\zeta_{n}\right)_{n \in \mathbb{N}}$ converges to the decomposition into points.

3.3 The conjugation map ϕ_{n}

First of all, we consider the following step functions for $d=2, \ldots, m$:

$$
\begin{array}{ll}
\tilde{\psi}_{1, n}^{(d)}:[0,1) \rightarrow \mathbb{R} & \text { defined by } \tilde{\psi}_{1, n}^{(d)}(x)=\sum_{i=1}^{l_{n}-1} \frac{l_{n}-i}{2 q_{n} \cdot l_{n}^{d}} \cdot \chi_{\left[\frac{i}{l_{n}}, \frac{i+1}{l_{n}}\right)}(x) \\
\tilde{\psi}_{3, n}^{(d)}:[0,1) \rightarrow \mathbb{R} & \text { defined by } \tilde{\psi}_{3, n}^{(d)}(x)=\sum_{i=1}^{l_{n}-1} \frac{i}{2 q_{n} \cdot l_{n}^{d}} \cdot \chi_{\left[\frac{i}{l_{n}}, \frac{i+1}{l_{n}}\right)}(x)
\end{array}
$$

Furthermore, we require another type of step function: For $i \in \mathbb{Z}, 0 \leq i \leq l_{n}^{d}-1$, we put $\beta_{i}^{(2)}:=\frac{j}{l_{n}}$ if $i \equiv j \bmod l_{n}$. For $i \in \mathbb{Z}, l_{n}^{d} \leq i \leq 2 l_{n}^{d}-1$, we put $\beta_{i}^{(2)}:=0$. Then we consider

$$
\tilde{\psi}_{2, n}^{(d)}:\left[0, \frac{1}{q_{n}}\right) \rightarrow \mathbb{R} \quad \text { defined by } \tilde{\psi}_{2, n}^{(d)}(x)=\sum_{i=0}^{2 l_{n}^{d}-1} \beta_{i}^{(2)} \cdot \chi_{\left[\frac{i}{2 q_{n} \cdot l_{n}^{d}}, \frac{i+1}{2 q_{n} \cdot l_{n}^{d}}\right)}(x)
$$

and extend it to a map on $[0,1)$ periodically.
Hereby, we define

$$
\begin{array}{lr}
\tilde{\phi}_{1, n}^{(d)}: \mathbb{T}^{m} \rightarrow \mathbb{T}^{m}, & \tilde{\phi}_{1, n}^{(d)}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}+\tilde{\psi}_{1, n}^{(d)}\left(x_{d}\right)\right. \\
\left.\bmod 1, x_{2}, \ldots, x_{m}\right) \\
\tilde{\phi}_{2, n}^{(d)}: \mathbb{T}^{m} \rightarrow \mathbb{T}^{m}, & \tilde{\phi}_{2, n}^{(d)}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}, \ldots, x_{d-1}, x_{d}+\tilde{\psi}_{2, n}^{(d)}\left(x_{1}\right) \bmod 1, x_{d+1}, \ldots, x_{m}\right) \\
\tilde{\phi}_{3, n}^{(d)}: \mathbb{T}^{m} \rightarrow \mathbb{T}^{m}, & \tilde{\phi}_{3, n}^{(d)}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}-\tilde{\psi}_{3, n}^{(d)}\left(x_{d}\right)\right. \\
\left.\bmod 1, x_{2}, \ldots, x_{m}\right)
\end{array}
$$

and $\tilde{\phi}_{n}^{(d)}:=\tilde{\phi}_{3, n}^{(d)} \circ \tilde{\phi}_{2, n}^{(d)} \circ \tilde{\phi}_{1, n}^{(d)}$. Moreover, let $\tilde{\phi}_{n}=\tilde{\phi}_{n}^{(2)} \circ \ldots \circ \tilde{\phi}_{n}^{(m)}$. These maps will help us to understand the combinatorics in the proof (see the proof of Lemma 4.3). Unfortunately, they are discontinuous. In order to construct entire conjugation maps we will use the subsequent Lemma about approximation of step functions by real-analytic diffeomorphisms inspired by Ba15, Lemma 4.1, where we call an entire function real if it maps the real line into itself:

Lemma 3.6. Let $l, N \in \mathbb{N}$ and $\beta=\left(\beta_{0}, \ldots, \beta_{l-1}\right) \in[0,1]^{l}$. We consider a step function of the form

$$
\tilde{s}_{\beta, N}:[0,1) \rightarrow \mathbb{R} \text { defined by } \tilde{s}_{\beta, N}(x)=\sum_{i=0}^{l N-1} \tilde{\beta}_{i} \cdot \chi_{\left[\frac{i}{l N}, \frac{i+1}{l N}\right)}(x),
$$

where $\tilde{\beta}_{i}:=\beta_{j}$ in case of $j \equiv i \bmod l$. Then, given any $\varepsilon>0$ and $\delta>0$, there exists a $\frac{1}{N}$-periodic real entire function $s_{\beta, N, \varepsilon, \delta}$ satisfying

$$
\begin{equation*}
\sup _{x \in[0,1) \backslash F}\left|s_{\beta, N, \varepsilon, \delta}(x)-\tilde{s}_{\beta, N}(x)\right|<\varepsilon \quad \text { and } \quad \sup _{x \in[0,1) \backslash F}\left|s_{\beta, N, \varepsilon, \delta}^{\prime}(x)\right|<\varepsilon, \tag{5}
\end{equation*}
$$

where $F=\bigcup_{i=0}^{l N-1} I_{i} \subset[0,1)$ is a union of intervals centered around $\frac{i}{l N}, i=1, \ldots, l N-1$, $I_{0}=\left[0, \frac{\delta}{2 l N}\right] \cup\left[1-\frac{\delta}{2 l N}, 1\right)$ and $\lambda\left(I_{i}\right)=\frac{\delta}{l N}$ for every i.
Proof. By the same approach as in Ba15, Lemma 4.1., we define the function

$$
s_{\beta, N, \varepsilon, \delta}(x)=\sum_{n=-\infty}^{\infty}\left(\sum _ { i = 0 } ^ { l - 1 } \beta _ { i } \cdot \left(\exp ^{\left.-\exp ^{-A \cdot\left(x-\frac{n l+i}{l N}\right)}-\exp ^{\left.\left.-\exp ^{-A \cdot\left(x-\frac{n l+i+1}{N N}\right)}\right)\right) .} . . . \begin{array}{ll}
\end{array}\right) .}\right.\right.
$$

We point out that $s_{\beta, N, \varepsilon, \delta}$ is a $\frac{1}{N}$-periodic real entire function. After choosing a large enough constant A, we can guarantee that $s_{\beta, N, \varepsilon, \delta}$ satisfies the conditions 5 .

Recall ε_{n} and δ_{n}, that were defined in equation 3 and 2 respectively. With the aid of Lemma 3.6 we construct entire functions approximating the step functions defined above:

$$
\begin{aligned}
& \psi_{1, n}^{(d)}=s_{\beta^{(1)}, N^{(1)}, \varepsilon_{n}, \delta_{n}}, \text { where } \beta_{0}^{(1)}=0, \beta_{i}^{(1)}=\frac{l_{n}-i}{2 q_{n} \cdot l_{n}^{d}} \text { for } i=1, \ldots, l_{n}-1, N^{(1)}=1 \\
& \psi_{2, n}^{(d)}=s_{\beta^{(2)}, N^{(2)}, \varepsilon_{n}, \delta_{n}}, \text { where } \beta_{i}^{(2)} \text { as above for } i=0, \ldots, 2 l_{n}^{d-1}-1, N^{(2)}=q_{n} \\
& \psi_{3, n}^{(d)}=s_{\beta^{(3)}, N^{(3)}, \varepsilon_{n}, \delta_{n}}, \text { where } \beta_{0}^{(3)}=0, \beta_{i}^{(3)}=\frac{i}{2 q_{n} \cdot l_{n}^{d}} \text { for } i=1, \ldots, l_{n}-1, N^{(3)}=1
\end{aligned}
$$

Hereby, we define

$$
\begin{array}{lr}
\phi_{1, n}^{(d)}: \mathbb{T}^{m} \rightarrow \mathbb{T}^{m}, & \phi_{1, n}^{(d)}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}+\psi_{1, n}^{(d)}\left(x_{d}\right) \bmod 1, x_{2}, \ldots, x_{m}\right) \\
\phi_{2, n}^{(d)}: \mathbb{T}^{m} \rightarrow \mathbb{T}^{m}, & \phi_{2, n}^{(d)}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}, \ldots, x_{d-1}, x_{d}+\psi_{2, n}^{(d)}\left(x_{1}\right) \bmod 1, x_{d+1}, \ldots, x_{m}\right) \\
\phi_{3, n}^{(d)}: \mathbb{T}^{m} \rightarrow \mathbb{T}^{m}, & \phi_{3, n}^{(d)}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}-\psi_{3, n}^{(d)}\left(x_{d}\right) \bmod 1, x_{2}, \ldots, x_{m}\right)
\end{array}
$$

Let $\phi_{n}^{(d)}:=\phi_{3, n}^{(d)} \circ \phi_{2, n}^{(d)} \circ \phi_{1, n}^{(d)}$. Since $\psi_{2, n}^{(d)}$ is $\frac{1}{q_{n}}$-periodic, we have $\phi_{n}^{(d)} \circ R_{\alpha_{n}}=R_{\alpha_{n}} \circ \phi_{n}^{(d)}$.
Finally, we define

$$
\phi_{n}=\phi_{n}^{(2)} \circ \ldots \circ \phi_{n}^{(m)}
$$

and observe $\phi_{n} \circ R_{\alpha_{n}}=R_{\alpha_{n}} \circ \phi_{n}$.
Remark 3.7. We compute

$$
\begin{gathered}
\phi_{n}^{(d)}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}+\psi_{1, n}^{(d)}\left(x_{d}\right)-\psi_{3, n}^{(d)}\left(x_{d}+\psi_{2, n}^{(d)}\left(x_{1}+\psi_{1, n}^{(d)}\left(x_{d}\right)\right)\right), x_{2}, \ldots,\right. \\
\\
\left.x_{d-1}, x_{d}+\psi_{2, n}^{(d)}\left(x_{1}+\psi_{1, n}^{(d)}\left(x_{d}\right)\right), x_{d+1}, \ldots, x_{m}\right)
\end{gathered}
$$

By the choice $4 \cdot m \cdot \varepsilon_{n}<\delta_{n}$, the exact positioning of the partition elements of η_{n} as well as ζ_{n} and since the $\tilde{\psi}_{i, n}^{(d)}$ are step functions, we have for a point z contained in one of the partition elements $\left|\left[\phi_{n}^{(d)}\right]_{1}(z)-\left[\tilde{\phi}_{n}^{(d)}\right]_{1}(z)\right|<2 \varepsilon_{n}$ and $\left|\left[\phi_{n}^{(d)}\right]_{d}(z)-\left[\tilde{\phi}_{n}^{(d)}\right]_{d}(z)\right|<\varepsilon_{n}$. Continuing in this way we conclude $\left|\left[\phi_{n}\right]_{1}(z)-\left[\tilde{\phi}_{n}\right]_{1}(z)\right|<2 \cdot(m-1) \cdot \varepsilon_{n}$ and $\left|\left[\phi_{n}\right]_{i}(z)-\left[\tilde{\phi}_{n}\right]_{i}(z)\right|<\varepsilon_{n}$ in case of $i=2, \ldots, m$. For the inverse $\phi_{n}^{(-1)}$ the same observations hold true.

We introduce the so-called "good set" $J_{n} \subset \mathbb{T}^{m-1}$ in the x_{2}, \ldots, x_{m}-coordinates:

$$
\begin{equation*}
J_{n}=\bigcup \prod_{i=2}^{m}\left[\frac{j_{i}}{l_{n}}+\delta_{n}+2 \varepsilon_{n}, \frac{j_{i}+1}{l_{n}}-\delta_{n}-2 \varepsilon_{n}\right] \tag{6}
\end{equation*}
$$

where the union is taken over $j_{i} \in \mathbb{Z}, 0 \leq j_{i} \leq l_{n}-1$, for $i=2, \ldots, m$.

3.4 The conjugation map g_{n}

We aim at a real-analytic map, which introduces shear into the x_{1}-coordinate similar to the map $\bar{g}_{\left[n q_{n}^{\sigma}\right]}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}+\left[n q_{n}^{\sigma}\right] \cdot x_{2}, x_{2}, \ldots, x_{m}\right)$, but acts as an almost-isometry on the elements of the partial partition ζ_{n}. For this purpose, we consider the following step function
$\tilde{\psi}_{n}:[0,1) \rightarrow \mathbb{R}$ defined by $\tilde{\psi}_{n}(x)=\sum_{i=0}^{10 n^{2} \cdot q_{n} \cdot l_{n}^{m+1}-1} \frac{i}{10 n^{2} \cdot q_{n} \cdot l_{n}^{m+1}} \cdot \chi_{\left[\frac{i}{10 n^{2} \cdot q_{n} \cdot l_{n}^{m+1}}, \frac{i+1}{10 n^{2} \cdot q_{n} \cdot l_{n}^{m+1}}\right)}(x)$
and the discontinuous map $\tilde{g}_{n}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}+\left[n q_{n}^{\sigma}\right] \cdot \tilde{\psi}_{n}\left(x_{2}\right), x_{2}, \ldots, x_{m}\right)$.
In order to find a real-analytic approximation of this map we use the subsequent result similar to Lemma 3.6 .

Lemma 3.8. Let $a \in \mathbb{N}$. We consider a step function of the form

$$
\tilde{s}_{a}:[0,1) \rightarrow \mathbb{R} \text { defined by } \tilde{s}_{a}(x)=\sum_{i=0}^{a-1} \frac{i}{a} \cdot \chi_{\left[\frac{i}{a}, \frac{i+1}{a}\right)}(x) .
$$

Then, given any $\varepsilon>0$ and $\delta>0$, there exists a 1-periodic real entire function $\bar{s}_{a, \varepsilon, \delta}$ satisfying

$$
\begin{equation*}
\sup _{x \in[0,1) \backslash F}\left|\bar{s}_{a, \varepsilon, \delta}(x)-\tilde{s}_{a}(x)\right|<\varepsilon \quad \text { and } \quad \sup _{x \in[0,1) \backslash F}\left|\bar{s}_{a, \varepsilon, \delta}^{\prime}(x)\right|<\varepsilon, \tag{7}
\end{equation*}
$$

where $F=\bigcup_{i=0}^{l-1} I_{i} \subset[0,1)$ is a union of intervals centered around $\frac{i}{a}, i=1, \ldots, a-1, I_{0}=$ $\left[0, \frac{\delta}{2 a}\right] \cup\left[1-\frac{\delta}{2 a}, 1\right)$ and $\lambda\left(I_{i}\right)=\frac{\delta}{a}$ for every i.
Proof. By the same approach as in Lemma 3.6 we define the function

$$
s_{a, N, \varepsilon, \delta}(x)=\sum_{n=-\infty}^{\infty}\left(\sum _ { i = 1 } ^ { a - 1 } \frac { 1 } { a } \cdot \left(\exp ^{\left.\left.-\exp ^{-A \cdot\left(x-\frac{n a+i}{a}\right)}-\exp ^{-\exp ^{-A \cdot(x-n-1)}}\right)\right) ~ . ~}\right.\right.
$$

We point out that $\bar{s}_{a, \varepsilon, \delta}$ is a 1-periodic real entire function. After choosing a large enough constant A, we can guarantee that $\bar{s}_{a, \varepsilon, \delta}$ satisfies the conditions 7 .

With the aid of Lemma 3.8 we can approximate the step function by an entire map:

$$
\psi_{n}=\bar{s}_{10 n^{2} \cdot q_{n} \cdot l_{n}^{m+1}, \varepsilon_{n}, \delta_{n}}
$$

Hereby, we define the real-analytic diffeomorphism

$$
g_{n}: \mathbb{T}^{m} \rightarrow \mathbb{T}^{m}, \quad g_{n}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}+\left[n q_{n}^{\sigma}\right] \cdot \psi_{n}\left(x_{2}\right), x_{2}, \ldots, x_{m}\right)
$$

and observe $g_{n} \circ R_{\frac{1}{q_{n}}}=R_{\frac{1}{q_{n}}} \circ g_{n}$.

$4(\gamma, \epsilon)$-distribution

For the sake of convenience, we denote the coordinates on \mathbb{T}^{m} by $\left(\theta, r_{1}, \ldots, r_{m-1}\right)$ below.
We introduce the central notion in the proof of the criterion for weak mixing deduced in the next section:

Definition 4.1. Let $\Phi: \mathbb{T}^{m} \rightarrow \mathbb{T}^{m}$ be a diffeomorphism and $J \subset \mathbb{T}^{m-1}$. We say that an element \hat{I} of a partial partition is (γ, ϵ)-distributed on J under Φ, if the following properties are satisfied:

- $\Phi(\hat{I})$ is contained in a set of the form $[c, c+\gamma] \times \mathbb{T}^{m-1}$ for some $c \in \mathbb{S}^{1}$.
- $\pi_{\vec{r}}(\Phi(\hat{I})) \supseteq J$.
- For every $(m-1)$-dimensional interval $\tilde{J} \subseteq J$ it holds:

$$
\left|\frac{\mu\left(\hat{I} \cap \Phi^{-1}\left(\mathbb{S}^{1} \times \tilde{J}\right)\right)}{\mu(\hat{I})}-\frac{\tilde{\mu}(\tilde{J})}{\tilde{\mu}(J)}\right| \leq \epsilon \cdot \frac{\tilde{\mu}(\tilde{J})}{\tilde{\mu}(J)}
$$

at which $\tilde{\mu}$ is the Lebesgue measure on \mathbb{T}^{m-1}.

Remark 4.2. Analogous to FS05] we will call the third property "almost uniform distribution" of \hat{I} in the $r_{1}, . ., r_{m-1}$-coordinates. In the following we will often write it in the form of

$$
\left|\mu\left(\hat{I} \cap \Phi^{-1}\left(\mathbb{S}^{1} \times \tilde{J}\right)\right) \cdot \tilde{\mu}(J)-\mu(\hat{I}) \cdot \tilde{\mu}(\tilde{J})\right| \leq \epsilon \cdot \mu(\hat{I}) \cdot \tilde{\mu}(\tilde{J})
$$

Our constructions are done in such a way that the following property is satisfied:
Lemma 4.3. We consider the "good set" J_{n} defined in equation 6 as well as the diffeomorphism $\Phi_{n}:=\phi_{n} \circ R_{\alpha_{n+1}}^{m_{n}} \circ \phi_{n}^{-1}$ with the conjugating maps ϕ_{n} defined in section 3.3 and the numbers m_{n} as in section 3.1. Then the elements of the partition η_{n} are $\left(\frac{3}{q_{n} \cdot l_{n}}, \frac{1}{n}\right)$-distributed on J_{n} under Φ_{n}.

Proof. For $I_{j_{1}, \ldots, j_{m}} \in \eta_{n}$ we compute $\Phi_{n}\left(I_{j_{1}, \ldots, j_{m}}\right)$. By the choice of m_{n} and Remark 3.2 we obtain modulo $\frac{1}{q_{n}}$ in the x_{1}-coordinate:

$$
\begin{aligned}
& \quad R_{\alpha_{n+1}}^{m_{n}} \circ \tilde{\phi}_{n}^{-1}\left(I_{j_{1}, \ldots, j_{m}}\right)= \\
& \bigcup\left[\frac{1}{2 q_{n}}+\frac{j_{1}}{2 q_{n} l_{n}}+\frac{j_{2}}{2 q_{n} \cdot l_{n}^{2}}+\ldots+\frac{j_{m}}{2 q_{n} \cdot l_{n}^{m}}+\delta_{n}+a_{n}, \frac{1}{2 q_{n}}+\frac{j_{1}}{2 q_{n} l_{n}}+\ldots+\frac{j_{m}+1}{2 q_{n} \cdot l_{n}^{m}}-\delta_{n}+a_{n}\right] \\
& \quad \times \prod_{i=2}^{m}\left[1-\frac{t^{(i-1)}}{l_{n}}+\delta_{n}, 1-\frac{t^{(i-1)}-1}{l_{n}}-\delta_{n}\right] .
\end{aligned}
$$

The application of $\tilde{\phi}_{n}$ on this set yields:

$$
\begin{aligned}
\bigcup & {\left[\frac{1}{2 q_{n}}+\frac{j_{1}}{2 q_{n} \cdot l_{n}}+\frac{j_{2}+2 \cdot t^{(1)}-l_{n}}{2 q_{n} \cdot l_{n}^{2}}+\ldots+\frac{j_{m}+2 \cdot t^{(m-1)}-l_{n}}{2 q_{n} \cdot l_{n}^{m}}+\delta_{n}+a_{n}\right.} \\
& \left.\frac{1}{2 q_{n}}+\frac{j_{1}}{2 q_{n} \cdot l_{n}}+\frac{j_{2}+2 \cdot t^{(1)}-l_{n}}{2 q_{n} \cdot l_{n}^{2}}+\ldots+\frac{j_{m}+1+2 \cdot t^{(m-1)}-l_{n}}{2 q_{n} \cdot l_{n}^{m}}-\delta_{n}+a_{n}\right] \\
& \times \prod_{i=2}^{m}\left[1-\frac{t^{(i-1)}}{l_{n}}+\delta_{n}, 1-\frac{t^{(i-1)}-1}{l_{n}}-\delta_{n}\right]
\end{aligned}
$$

(apart from the case $t^{(i)}=0$ where we get j_{i+1} instead of $j_{i+1}+2 t^{(i)}-l_{n}$).
In the same way we compute $\tilde{\phi}_{n} \circ R_{\alpha_{n+1}}^{m_{n}} \circ \tilde{\phi}_{n}^{-1}\left(\bar{I}_{j_{1}, \ldots, j_{m}}\right)$:

$$
\begin{aligned}
& \bigcup\left[\frac{j_{1}}{2 q_{n} \cdot l_{n}}-\frac{j_{2}}{2 q_{n} \cdot l_{n}^{2}}-\ldots-\frac{j_{m}}{2 q_{n} \cdot l_{n}^{m}}+\delta_{n}+a_{n}, \frac{j_{1}}{2 q_{n} \cdot l_{n}}-\ldots-\frac{j_{m}-1}{2 q_{n} \cdot l_{n}^{m}}-\delta_{n}+a_{n}\right] \\
& \quad \times \prod_{i=2}^{m}\left[\frac{2 j_{i}+t^{(i-1)}}{l_{n}}+\delta_{n}, \frac{2 j_{i}+t^{(i-1)}+1}{l_{n}}-\delta_{n}\right]
\end{aligned}
$$

regarded as a subset of \mathbb{T}^{m}.
We have to take the approximation error into account. By Remark 3.7 we observe for every $\hat{I}_{n} \in \eta_{n} \pi_{\vec{r}}\left(\Phi_{n}\left(\hat{I}_{n}\right)\right) \supseteq J_{n}$ and that every of the l_{n}^{m-1} cuboids belonging to $\Phi_{n}\left(\hat{I}_{n}\right)$ is contained in a cuboid of θ-width $\frac{1}{2 q_{n} \cdot l_{n}^{m}}-2 \delta_{n}+8 m \cdot \varepsilon_{n}$ and contains a cuboid of θ-width $\frac{1}{2 q_{n} \cdot l_{n}^{m}}-2 \delta_{n}-8 m \cdot \varepsilon_{n}$. In particular, we can choose $\gamma=\frac{3}{q_{n} \cdot l_{n}}$. Let $\tilde{J} \subseteq J_{n} \subset \mathbb{T}^{m-1}$ be a multidimensional interval of

Figure 1: Qualitative shape of the action of $\tilde{\phi}_{n}^{-1}$ on $I_{j_{1}, \ldots, j_{m}} \in \eta_{n}$ in case of dimension $m=2$.

Figure 2: Qualitative shape of the action of $\tilde{\phi}_{n}$ on $R_{\alpha_{n+1}}^{m_{n}} \circ \tilde{\phi}_{n}^{-1}\left(I_{j_{1}, \ldots, j_{m}}\right)$ in case of dimension $m=2$.
length d_{i} in coordinate x_{i}. Then we can estimate:

$$
\begin{aligned}
& \frac{\mu\left(\hat{I}_{n} \cap \Phi_{n}^{-1}\left(\mathbb{S}^{1} \times \tilde{J}\right)\right)}{\mu\left(\hat{I}_{n}\right)} \leq \frac{\left(\frac{1}{2 q_{n} \cdot l_{n}^{m}}-2 \delta_{n}+8 m \cdot \varepsilon_{n}\right) \cdot d_{2} \cdot \ldots \cdot d_{m}}{l_{n}^{m-1} \cdot\left(\frac{1}{2 q_{n} \cdot l_{n}^{m}}-2 \delta_{n}\right) \cdot\left(\frac{1}{l_{n}}-2 \delta_{n}\right)^{m-1}} \\
= & \left(1+\frac{8 m \cdot \varepsilon_{n} \cdot 2 q_{n} \cdot l_{n}^{m}}{1-4 \delta_{n} \cdot l_{n}^{m} \cdot q_{n}}\right) \cdot \frac{\left(\frac{1}{l_{n}}-2 \delta_{n}-4 \varepsilon_{n}\right)^{m-1}}{\left(\frac{1}{l_{n}}-2 \delta_{n}\right)^{m-1}} \cdot \frac{d_{2} \cdot \ldots \cdot d_{m}}{l_{n}^{m-1} \cdot\left(\frac{1}{l_{n}}-2 \delta_{n}-4 \varepsilon_{n}\right)^{m-1}} \\
\leq & \left(1+32 m \cdot \varepsilon_{n} \cdot q_{n} \cdot l_{n}^{m}\right) \cdot \frac{\tilde{\mu}(\tilde{J})}{\tilde{\mu}\left(J_{n}\right)} .
\end{aligned}
$$

Analogously we estimate

$$
\begin{aligned}
\frac{\mu\left(\hat{I}_{n} \cap \Phi_{n}^{-1}\left(\mathbb{S}^{1} \times \tilde{J}\right)\right)}{\mu\left(\hat{I}_{n}\right)} & \geq \frac{\left(\frac{1}{2 q_{n} \cdot l_{n}^{m}}-2 \delta_{n}-8 m \cdot \varepsilon_{n}\right) \cdot d_{2} \cdot \ldots \cdot d_{m}}{l_{n}^{m-1} \cdot\left(\frac{1}{2 q_{n} \cdot l_{n}^{m}}-2 \delta_{n}\right) \cdot\left(\frac{1}{l_{n}}-2 \delta_{n}\right)^{m-1}} \\
& \geq\left(1-\frac{8 m \cdot \varepsilon_{n} \cdot 2 q_{n} m_{n}^{m}}{1-4 \delta_{n} l_{n}^{m} \cdot q_{n}}\right) \cdot\left(1-8 \varepsilon_{n} l_{n}\right)^{m-1} \cdot \frac{d_{2} \cdot \ldots \cdot d_{m}}{l_{n}^{m-1} \cdot\left(\frac{1}{l_{n}}-2 \delta_{n}-4 \varepsilon_{n}\right)^{m-1}} \\
& \geq\left(1-32 m \cdot \varepsilon_{n} \cdot q_{n} \cdot l_{n}^{m}\right) \cdot\left(1-(m-1) \cdot 8 \varepsilon_{n} \cdot l_{n}\right) \cdot \frac{\tilde{\mu}(\tilde{J})}{\tilde{\mu}\left(J_{n}\right)} \\
& \geq\left(1-40 m \cdot \varepsilon_{n} \cdot q_{n} \cdot l_{n}^{m}\right) \cdot \frac{\tilde{\mu}(\tilde{J})}{\tilde{\mu}\left(J_{n}\right)} .
\end{aligned}
$$

By our assumption on the number ε_{n} from equation 3 we conclude

$$
\left|\frac{\mu\left(\hat{I}_{n} \cap \Phi^{-1}\left(\mathbb{S}^{1} \times \tilde{J}\right)\right)}{\mu\left(\hat{I}_{n}\right)}-\frac{\mu^{(m-1)}(\tilde{J})}{\mu^{(m-1)}\left(J_{n}\right)}\right| \leq \frac{1}{n} \cdot \frac{\mu^{(m-1)}(\tilde{J})}{\mu^{(m-1)}\left(J_{n}\right)}
$$

5 Criterion for weak mixing

In this section we will prove a criterion for weak mixing on $M=\mathbb{T}^{m}$ in the setting of the beforehand constructions. It is inspired by the criterion in FS05, but modified in many places because of the new conjugation map g_{n} and the new type of partitions. For the derivation we need a couple of lemmas. The first one expresses the weak mixing property on the elements of a partial partition η_{n} generally:

Lemma 5.1. Let $f \in \operatorname{Diff} f_{\rho}^{\omega}\left(\mathbb{T}^{m}, \mu\right),\left(m_{n}\right)_{n \in \mathbb{N}}$ be a sequence of natural numbers and $\left(\nu_{n}\right)_{n \in \mathbb{N}}$ be a sequence of partial partitions, where $\nu_{n} \rightarrow \varepsilon$ and for every $n \in \mathbb{N} \nu_{n}$ is the image of a partial partition η_{n} under a measure-preserving diffeomorphism F_{n}, satisfying the following property: For every m-dimensional cube $A \subseteq \mathbb{T}^{m}$ and for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that for every $n \geq N$ and for every $\Gamma_{n} \in \nu_{n}$ we have

$$
\begin{equation*}
\left|\mu\left(\Gamma_{n} \cap f^{-m_{n}}(A)\right)-\mu\left(\Gamma_{n}\right) \cdot \mu(A)\right| \leq 3 \cdot \epsilon \cdot \mu\left(\Gamma_{n}\right) \cdot \mu(A) . \tag{8}
\end{equation*}
$$

Then f is weak mixing.
Proof. By Skl67] a diffeomorphism f is weak mixing if for all measurable sets $A, B \subseteq M$ it holds:

$$
\lim _{n \rightarrow \infty}\left|\mu\left(B \cap f^{-m_{n}}(A)\right)-\mu(B) \cdot \mu(A)\right|=0
$$

Since every measurable set in $M=\mathbb{T}^{m}$ can be approximated by a countable disjoint union of m-dimensional cubes in \mathbb{T}^{m} in arbitrary precision, we only have to prove the statement in case that A is a m-dimensional cube in \mathbb{T}^{m}.
Hence, we consider an arbitrary m-dimensional cube $A \subset \mathbb{T}^{m}$. Moreover, let $B \subseteq M$ be a measurable set. Since $\nu_{n} \rightarrow \varepsilon$ for every $\epsilon \in(0,1]$ there are $n \in \mathbb{N}$ and a set $\hat{B}=\bigcup_{i \in \Lambda} \Gamma_{n}^{i}$, where $\Gamma_{n}^{i} \in \nu_{n}$ and Λ is a countable set of indices, such that $\mu(B \triangle \hat{B})<\epsilon \cdot \mu(B) \cdot \mu(A)$. We obtain for sufficiently large n :

$$
\begin{aligned}
\mid \mu & \left(B \cap f^{-m_{n}}(A)\right)-\mu(B) \cdot \mu(A) \mid \\
\leq & \left|\mu\left(B \cap f^{-m_{n}}(A)\right)-\mu\left(\hat{B} \cap f^{-m_{n}}(A)\right)\right|+\left|\mu\left(\hat{B} \cap f^{-m_{n}}(A)\right)-\mu(\hat{B}) \cdot \mu(A)\right| \\
& +|\mu(\hat{B}) \cdot \mu(A)-\mu(B) \cdot \mu(A)| \\
= & \left|\mu\left(B \cap f^{-m_{n}}(A)\right)-\mu\left(\hat{B} \cap f^{-m_{n}}(A)\right)\right| \\
& +\left|\mu\left(\bigcup_{i \in \Lambda}\left(\Gamma_{n}^{i} \cap f^{-m_{n}}(A)\right)\right)-\mu\left(\bigcup_{i \in \Lambda} \Gamma_{n}^{i}\right) \cdot \mu(A)\right|+\mu(A) \cdot|\mu(\hat{B})-\mu(B)| \\
\leq & \mu(\hat{B} \triangle B)+\left|\sum_{i \in \Lambda} \mu\left(\Gamma_{n}^{i} \cap f^{-m_{n}}(A)\right)-\mu\left(\Gamma_{n}^{i}\right) \cdot \mu(A)\right|+\mu(A) \cdot \mu(\hat{B} \triangle B) \\
\leq & \epsilon \cdot \mu(B) \cdot \mu(A)+\sum_{i \in \Lambda}\left(\left|\mu\left(\Gamma_{n}^{i} \cap f^{-m_{n}}(A)\right)-\mu\left(\Gamma_{n}^{i}\right) \cdot \mu(A)\right|\right)+\epsilon \cdot \mu(A)^{2} \cdot \mu(B) \\
\leq & \sum_{i \in \Lambda}\left(3 \cdot \epsilon \cdot \mu\left(\Gamma_{n}^{i}\right) \cdot \mu(A)\right)+2 \cdot \epsilon \cdot \mu(A) \cdot \mu(B)=3 \cdot \epsilon \cdot \mu(A) \cdot \mu\left(\bigcup_{i \in \Lambda} \hat{I}_{n}^{i}\right)+2 \cdot \epsilon \cdot \mu(A) \cdot \mu(B) \\
= & 3 \cdot \epsilon \cdot \mu(A) \cdot \mu(\hat{B})+2 \cdot \epsilon \cdot \mu(A) \cdot \mu(B) \leq 3 \epsilon \cdot \mu(A) \cdot(\mu(B)+\mu(\hat{B} \triangle B))+2 \epsilon \cdot \mu(A) \cdot \mu(B) \\
\leq & 5 \cdot \epsilon \cdot \mu(A) \cdot \mu(B)+3 \cdot \epsilon^{2} \cdot \mu(A)^{2} \cdot \mu(B) .
\end{aligned}
$$

This estimate shows $\lim _{n \rightarrow \infty}\left|\mu\left(B \cap f^{-m_{n}}(A)\right)-\mu(B) \cdot \mu(A)\right|=0$, because ϵ can be chosen arbitrarily small.

In property (8) we want to replace f by f_{n} :
Lemma 5.2. Let $f=\lim _{n \rightarrow \infty} f_{n}$ be a diffeomorphism obtained by the constructions in the preceding sections and $\left(m_{n}\right)_{n \in \mathbb{N}}$ be a sequence of natural numbers fulfilling $d_{0}\left(f^{m_{n}}, f_{n}^{m_{n}}\right)<\frac{1}{2^{n}}$. Furthermore, let $\left(\nu_{n}\right)_{n \in \mathbb{N}}$ be a sequence of partial partitions, where $\nu_{n} \rightarrow \varepsilon$ and for every $n \in \mathbb{N} \nu_{n}$ is the image of a partial partition η_{n} under a measure-preserving diffeomorphism F_{n}, satisfying the following property: For every m-dimensional cube $A \subseteq \mathbb{T}^{m}$ and for every $\epsilon \in(0,1]$ there exists $N \in \mathbb{N}$ such that for every $n \geq N$ and for every $\Gamma_{n} \in \nu_{n}$ we have

$$
\begin{equation*}
\left|\mu\left(\Gamma_{n} \cap f_{n}^{-m_{n}}(A)\right)-\mu\left(\Gamma_{n}\right) \cdot \mu(A)\right| \leq \epsilon \cdot \mu\left(\Gamma_{n}\right) \cdot \mu(A) . \tag{9}
\end{equation*}
$$

Then f is weak mixing.

Proof. We want to show that the requirements of Lemma 5.1 are fulfilled. This implies that f is weak mixing. For it let $A \subseteq \mathbb{T}^{m}$ be an arbitrary m-dimensional cube and $\epsilon \in(0,1]$. We consider two m-dimensional cubes $A_{1}, A_{2} \subset \mathbb{T}^{m}$ with $A_{1} \subset A \subset A_{2}$ as well as $\mu\left(A \triangle A_{i}\right)<\epsilon \cdot \mu(A)$ and for sufficiently large $n: \operatorname{dist}\left(\partial A, \partial A_{i}\right)>\frac{1}{2^{n}}$ for $i=1,2$.

If n is sufficiently large, we obtain for $\Gamma_{n} \in \nu_{n}$ and for $i=1,2$ by the assumptions of this Lemma:

$$
\left|\mu\left(\Gamma_{n} \cap f_{n}^{-m_{n}}\left(A_{i}\right)\right)-\mu\left(\Gamma_{n}\right) \cdot \mu\left(A_{i}\right)\right| \leq \epsilon \cdot \mu\left(\Gamma_{n}\right) \cdot \mu\left(A_{i}\right) .
$$

Herefrom we conclude $(1-\epsilon) \cdot \mu\left(\Gamma_{n}\right) \cdot \mu\left(A_{1}\right) \leq \mu\left(\Gamma_{n} \cap f_{n}^{-m_{n}}\left(A_{1}\right)\right)$ on the one hand and $\mu\left(\Gamma_{n} \cap f_{n}^{-m_{n}}\left(A_{2}\right)\right) \leq(1+\epsilon) \cdot \mu\left(\Gamma_{n}\right) \cdot \mu\left(A_{2}\right)$ on the other hand. Because of $d_{0}\left(f^{m_{n}}, f_{n}^{m_{n}}\right)<\frac{1}{2^{n}}$ the following relations are true:

$$
\begin{aligned}
f_{n}^{m_{n}}(x) \in A_{1} & \Longrightarrow f^{m_{n}}(x) \in A \\
f^{m_{n}}(x) \in A & \Longrightarrow f_{n}^{m_{n}}(x) \in A_{2}
\end{aligned}
$$

Thus: $\mu\left(\Gamma_{n} \cap f_{n}^{-m_{n}}\left(A_{1}\right)\right) \leq \mu\left(\Gamma_{n} \cap f^{-m_{n}}(A)\right) \leq \mu\left(\Gamma_{n} \cap f_{n}^{-m_{n}}\left(A_{2}\right)\right)$.
Altogether, it holds: $(1-\epsilon) \cdot \mu\left(\Gamma_{n}\right) \cdot \mu\left(A_{1}\right) \leq \mu\left(\Gamma_{n} \cap f^{-m_{n}}(A)\right) \leq(1+\epsilon) \cdot \mu\left(\Gamma_{n}\right) \cdot \mu\left(A_{2}\right)$. Therewith, we obtain the following estimate from above:

$$
\begin{aligned}
& \mu\left(\Gamma_{n} \cap f^{-m_{n}}(A)\right)-\mu\left(\Gamma_{n}\right) \cdot \mu(A) \\
& \leq(1+\epsilon) \cdot \mu\left(\Gamma_{n}\right) \cdot \mu\left(A_{2}\right)-\mu\left(\Gamma_{n}\right) \cdot \mu\left(A_{2}\right)+\mu\left(\Gamma_{n}\right) \cdot\left(\mu\left(A_{2}\right)-\mu(A)\right) \\
& \leq \epsilon \cdot \mu\left(\Gamma_{n}\right) \cdot \mu\left(A_{2}\right)+\mu\left(\Gamma_{n}\right) \cdot \mu\left(A_{2} \triangle A\right) \leq \epsilon \cdot \mu\left(\Gamma_{n}\right) \cdot\left(\mu(A)+\mu\left(A_{2} \triangle A\right)\right)+\epsilon \cdot \mu\left(\Gamma_{n}\right) \cdot \mu(A) \\
& \leq 2 \cdot \epsilon \cdot \mu\left(\Gamma_{n}\right) \cdot \mu(A)+\epsilon^{2} \cdot \mu\left(\Gamma_{n}\right) \cdot \mu(A) \leq 3 \cdot \epsilon \cdot \mu\left(\Gamma_{n}\right) \cdot \mu(A) .
\end{aligned}
$$

Furthermore, we deduce the following estimate from below in an analogous way:

$$
\mu\left(\Gamma_{n} \cap f^{-m_{n}}(A)\right)-\mu\left(\Gamma_{n}\right) \cdot \mu(A) \geq-3 \cdot \epsilon \cdot \mu\left(\Gamma_{n}\right) \cdot \mu(A)
$$

Hence, we get: $\left|\mu\left(\Gamma_{n} \cap f^{-m_{n}}(A)\right)-\mu\left(\Gamma_{n}\right) \cdot \mu(A)\right| \leq 3 \cdot \epsilon \cdot \mu\left(\Gamma_{n}\right) \cdot \mu(A)$, i.e. the requirements of Lemma 5.1 are met.

Now we concentrate on the setting of our explicit constructions:
Lemma 5.3. Consider the sequence of partial partitions $\left(\eta_{n}\right)_{n \in \mathbb{N}}$ constructed in section 3.2.1 and the diffeomorphisms g_{n} from chapter 3.4. Furthermore, we define the partial partitions $\nu_{n}=\left\{\Gamma_{n}=H_{n-1} \circ g_{n}\left(\hat{I}_{n}\right): \hat{I}_{n} \in \eta_{n}\right\}$.
Then we get $\nu_{n} \rightarrow \varepsilon$.
Proof. By construction $\eta_{n}=\left\{\hat{I}_{n}^{i}: i \in \Lambda_{n}\right\}$, where Λ_{n} is a countable set of indices. Because of $\eta_{n} \rightarrow \varepsilon$ it holds $\lim _{n \rightarrow \infty} \mu\left(\bigcup_{i \in \Lambda_{n}} \hat{I}_{n}^{i}\right)=1$. Since $H_{n-1} \circ g_{n}$ is measure-preserving, we conclude:

$$
\lim _{n \rightarrow \infty} \mu\left(\bigcup_{i \in \Lambda_{n}} \Gamma_{n}^{i}\right)=\lim _{n \rightarrow \infty} \mu\left(\bigcup_{i \in \Lambda_{n}} H_{n-1} \circ g_{n}\left(\hat{I}_{n}^{i}\right)\right)=\lim _{n \rightarrow \infty} \mu\left(H_{n-1} \circ g_{n}\left(\bigcup_{i \in \Lambda_{n}} \hat{I}_{n}^{i}\right)\right)=1
$$

Taking the approximation error of the map g_{n} into account, $g_{n}\left(\hat{I}_{n}\right)$ is contained in a cuboid with θ-width $\frac{1}{2 q_{n} l_{n}}+\frac{\left[n q_{n}^{\sigma}\right]}{l_{n}}$ and edge length $\frac{1}{l_{n}}-2 \delta_{n}$ in the r_{1}, \ldots, r_{m-1}-coordinates. Hence, the diameter of $g_{n}\left(\hat{I}_{n}\right)$ is bounded by $\frac{m \cdot\left[n q_{n}^{\sigma}\right]}{l_{n}}+\frac{1}{2 q_{n} \cdot l_{n}}$. Then, we conclude for every $\Gamma_{n}^{i}=H_{n-1} \circ g_{n}\left(\hat{I}_{n}^{i}\right)$:

$$
\operatorname{diam}\left(\Gamma_{n}^{i}\right) \leq\left\|D H_{n-1}\right\|_{0} \cdot \operatorname{diam}\left(g_{n}\left(\hat{I}_{n}^{i}\right)\right) \leq\left\|D H_{n-1}\right\|_{0} \cdot\left(\frac{m \cdot\left[n q_{n}^{\sigma}\right]}{l_{n}}+\frac{1}{2 q_{n} \cdot l_{n}}\right)
$$

Because of $\sigma<1$ and the requirement on l_{n} in equation 1 we conclude $\lim _{n \rightarrow \infty} \operatorname{diam}\left(\Gamma_{n}^{i}\right)=0$ and consequently $\nu_{n} \rightarrow \varepsilon$.

In the following the Lebesgue measures on $\mathbb{S}^{1}, \mathbb{T}^{m-2}, \mathbb{T}^{m-1}$ are denoted by $\tilde{\lambda}, \mu^{(m-2)}$ and $\tilde{\mu}$ respectively. The next technical result is needed in the proof of Lemma 5.5. For the sake of convenience, we introduce the notation $a=10 n^{2} \cdot q_{n} \cdot l_{n}^{m+1}$.

Lemma 5.4. Given an interval K on the r_{1}-axis and $a(m-2)$-dimensional interval Z in the $\left(r_{2}, \ldots, r_{m-1}\right)$-coordinates $K_{c, \gamma}$ denotes the cuboid $[c, c+\gamma] \times K \times Z$ for some $\gamma>0$. We consider the diffeomorphism g_{n} constructed in subsection 3.4 and an interval $L=\left[l_{1}, l_{2}\right]$ of \mathbb{S}^{1} satisfying $\tilde{\lambda}(L) \geq \frac{4 \cdot\left[n q_{n}^{\sigma}\right]}{a}$.
If $\left[n q_{n}^{\sigma}\right] \cdot \lambda(K)>2$, then for the set $Q:=\pi_{\vec{r}}\left(K_{c, \gamma} \cap g_{n}^{-1}(L \times K \times Z)\right)$ we have:

$$
\begin{aligned}
& \left|\tilde{\mu}(Q)-\lambda(K) \cdot \tilde{\lambda}(L) \cdot \mu^{(m-2)}(Z)\right| \\
& \leq\left(\frac{2}{\left[n q_{n}^{\sigma}\right]} \cdot \tilde{\lambda}(L)+\frac{2 \cdot \gamma}{\left[n q_{n}^{\sigma}\right]}+\gamma \cdot \lambda(K)+\frac{\left[n q_{n}^{\sigma}\right] \cdot \lambda(K) \cdot 4}{a}+\frac{8}{a}\right) \cdot \mu^{(m-2)}(Z) .
\end{aligned}
$$

Proof. We consider the diffeomorphism $\bar{g}_{b}: M \rightarrow M,\left(\theta, r_{1}, \ldots, r_{m-1}\right) \mapsto\left(\theta+b \cdot r_{1}, r_{1}, \ldots, r_{m-1}\right)$ and the set:

$$
\begin{aligned}
Q_{b} & :=\pi_{\vec{r}}\left(K_{c, \gamma} \cap \bar{g}_{b}^{-1}(L \times K \times Z)\right) \\
& =\left\{\left(r_{1}, r_{2}, \ldots, r_{m-1}\right) \in K \times Z:\left(\theta+b \cdot r_{1}, \vec{r}\right) \in L \times K \times Z, \theta \in[c, c+\gamma]\right\} \\
& =\left\{\left(r_{1}, r_{2}, \ldots, r_{m-1}\right) \in K \times Z: b \cdot r_{1} \in\left[l_{1}-c-\gamma, l_{2}-c\right] \bmod 1\right\} .
\end{aligned}
$$

The interval $b \cdot K$ seen as an interval in \mathbb{R} does not intersect more than $b \cdot \lambda(K)+2$ and not less than $b \cdot \lambda(K)-2$ intervals of the form $[i, i+1]$ with $i \in \mathbb{Z}$.
Claim: A resulting interval on the r_{1}-axis of $K_{c, \gamma} \cap \bar{g}_{\left[n q_{n}^{\sigma}\right]}^{-1}(L \times K \times Z)$ and the corresponding r_{1}-projection of $K_{c, \gamma} \cap g_{n}^{-1}(L \times K \times Z)$ can differ by a length of at most $\frac{4}{a}$.
Proof: Recall that g_{n} is constructed as the approximation of the step function \tilde{g}_{n}. Obviously, $\tilde{g}_{n}\left(K_{c, \gamma}\right)$ may hit (respectively leave) $L \times K \times Z$ at most one $\frac{1}{a}$-domain on the r_{1}-axis later than $\bar{g}_{\left[n q_{n}^{\sigma}\right]}\left(K_{c, \gamma}\right)$ (see figure 3).
Moreover, the approximation error between g_{n} and \tilde{g}_{n} can cause an additional deviation of at most one $\frac{1}{a}$-domain on the r_{1}-axis and can cause an additional deviation of at most $\left[n q_{n}^{\sigma}\right] \cdot \varepsilon_{n}$ on the θ-axis. Since $\left[n q_{n}^{\sigma}\right] \cdot \varepsilon_{n}<\frac{1}{a}$ this discrepancy will be equalised after at most one $\frac{1}{a}$-domain on the r_{1}-axis. This last difference can occur on both ends of the resulting interval on the r_{1}-axis.

Therefore, we compute on the one side:

$$
\begin{align*}
& \tilde{\mu}(Q) \leq\left(\left[n q_{n}^{\sigma}\right] \cdot \lambda(K)+2\right) \cdot\left(\frac{l_{2}-\left(l_{1}-\gamma\right)}{\left[n q_{n}^{\sigma}\right]}+\frac{4}{a}\right) \cdot \mu^{(m-2)}(Z) \\
& =\left(\lambda(K) \cdot \tilde{\lambda}(L)+2 \cdot \frac{\tilde{\lambda}(L)}{\left[n q_{n}^{\sigma}\right]}+\lambda(K) \cdot \gamma+\frac{2 \cdot \gamma}{\left[n q_{n}^{\sigma}\right]}+\frac{\left[n q_{n}^{\sigma}\right] \cdot \lambda(K) \cdot 4}{a}+\frac{8}{a}\right) \cdot \mu^{(m-2)} \tag{Z}
\end{align*}
$$

and on the other side

$$
\begin{aligned}
& \tilde{\mu}(Q) \geq\left(\left[n q_{n}^{\sigma}\right] \cdot \lambda(K)-2\right) \cdot\left(\frac{l_{2}-\left(l_{1}-\gamma\right)}{\left[n q_{n}^{\sigma}\right]}-\frac{4}{a}\right) \cdot \mu^{(m-2)}(Z) \\
& =\left(\lambda(K) \cdot \tilde{\lambda}(L)-2 \cdot \frac{\tilde{\lambda}(L)}{\left[n q_{n}^{\sigma}\right]}+\lambda(K) \cdot \gamma-\frac{2 \cdot \gamma}{\left[n q_{n}^{\sigma}\right]}-\frac{\left[n q_{n}^{\sigma}\right] \cdot \lambda(K) \cdot 4}{a}+\frac{8}{a}\right) \cdot \mu^{(m-2)}(Z) .
\end{aligned}
$$

Figure 3: Qualitative shape of the action of g_{n} as well as \tilde{g}_{n} on $K_{c, \gamma}$.

Both equations together yield:

$$
\begin{aligned}
& \left|\tilde{\mu}(Q)-\lambda(K) \cdot \tilde{\lambda}(L) \cdot \mu^{(m-2)}(Z)-\gamma \cdot \lambda(K) \cdot \mu^{(m-2)}(Z)-\frac{8}{a} \cdot \mu^{(m-2)}(Z)\right| \\
& \leq\left(\frac{2}{\left[n q_{n}^{\sigma}\right]} \cdot \tilde{\lambda}(L)+\frac{2 \cdot \gamma}{\left[n q_{n}^{\sigma}\right]}+\frac{\left[n q_{n}^{\sigma}\right] \cdot \lambda(K) \cdot 4}{a}\right) \cdot \mu^{(m-2)}(Z) .
\end{aligned}
$$

The claim follows because

$$
\begin{aligned}
& \left|\tilde{\mu}(Q)-\lambda(K) \cdot \tilde{\lambda}(L) \cdot \mu^{(m-2)}(Z)\right|-\gamma \cdot \lambda(K) \cdot \mu^{(m-2)}(Z)-\frac{8}{a} \cdot \mu^{(m-2)}(Z) \\
& \leq\left|\tilde{\mu}(Q)-\lambda(K) \cdot \tilde{\lambda}(L) \cdot \mu^{(m-2)}(Z)-\gamma \cdot \lambda(K) \cdot \mu^{(m-2)}(Z)-\frac{8}{a} \cdot \mu^{(m-2)}(Z)\right| .
\end{aligned}
$$

Lemma 5.5. Let $n \geq 5, g_{n}$ as in section 3.4 and $\hat{I}_{n} \in \eta_{n}$, where η_{n} is the partial partition constructed in section 3.2.1. For the diffeomorphism ϕ_{n} constructed in section 3.3 and m_{n} as in section 3.1 we consider $\Phi_{n}=\phi_{n} \circ R_{\alpha_{n+1}}^{m_{n}} \circ \phi_{n}^{-1}$ and $J_{n} \subset \mathbb{T}^{m-1}$ defined in equation σ,
Then for every m-dimensional cube S of side length $q_{n}^{-\sigma}$ lying in \mathbb{T}^{m} we get

$$
\begin{equation*}
\left|\mu\left(\hat{I} \cap \Phi_{n}^{-1} \circ g_{n}^{-1}(S)\right) \cdot \tilde{\mu}\left(J_{n}\right)-\mu(\hat{I}) \cdot \mu(S)\right| \leq \frac{22}{n} \cdot \mu(\hat{I}) \cdot \mu(S) \tag{10}
\end{equation*}
$$

In other words this Lemma tells us that a partition element is "almost uniformly distributed" under $g_{n} \circ \Phi_{n}$ on the whole manifold $M=\mathbb{T}^{m}$.

Proof. Let S be a m-dimensional cube with sidelength $q_{n}^{-\sigma}$ lying in \mathbb{T}^{m}. Furthermore, we denote:

$$
\begin{equation*}
S_{\theta}=\pi_{\theta}(S) \tag{S}
\end{equation*}
$$

$$
S_{r_{1}}=\pi_{r_{1}}(S)
$$

$$
S_{\tilde{\vec{r}}}=\pi_{\left(r_{2}, \ldots, r_{m-1}\right)}
$$

$$
S_{r}=S_{r_{1}} \times S_{\tilde{r}}=\pi_{\vec{r}}(S)
$$

Obviously: $\tilde{\lambda}\left(S_{\theta}\right)=\lambda\left(S_{r_{1}}\right)=q_{n}^{-\sigma}$ and $\tilde{\lambda}\left(S_{\theta}\right) \cdot \lambda\left(S_{r_{1}}\right) \cdot \mu^{(m-2)}\left(S_{\tilde{r}}\right)=\mu(S)=q_{n}^{-m \sigma}$.
According to Lemma $4.3 \Phi_{n}\left(\frac{3}{q_{n} \cdot l_{n}}, \frac{1}{n}\right)$-distributes the partition element $\hat{I} \in \eta_{n}$ on J_{n}, in particular $\Phi_{n}(\hat{I}) \subseteq[c, c+\gamma] \times \mathbb{T}^{m-1}$ for some $c \in \mathbb{S}^{1}$ and some $\gamma \leq \frac{3}{q_{n} \cdot l_{n}}$.
We introduce the set $\tilde{S}_{r}:=S_{r} \cap J_{n}$ and therewith $\tilde{S}:=S_{\theta} \times \tilde{S}_{r}$. In order to estimate $\mu(S \backslash \tilde{S})$ we observe that in each coordinate r_{1}, \ldots, r_{m-1} there is a "bad domain" of ϕ_{n} of length $2 \delta_{n}+4 \varepsilon_{n}$ in each $\frac{1}{l_{n}}$-domain. Hence, S_{r} contains at most $\left(l_{n} \cdot q_{n}^{-\sigma}+2\right)^{m-1}$ "bad domains" of measure $\frac{2 \delta_{n}+4 \varepsilon_{n}}{l_{n}^{m-2}}$ in \mathbb{T}^{m-1}. Then:

$$
\mu(S \backslash \tilde{S}) \leq \frac{2 \delta_{n}+4 \varepsilon_{n}}{l_{n}^{m-2}} \cdot\left(l_{n} \cdot q_{n}^{-\sigma}+2\right)^{m-1} \cdot q_{n}^{-\sigma} \leq\left(4 \delta_{n}+8 \varepsilon_{n}\right) \cdot l_{n} \cdot \mu(S)<5 \delta_{n} \cdot l_{n} \cdot \mu(S)
$$

Using the triangle inequality we obtain

$$
\begin{aligned}
& \left|\mu\left(\hat{I} \cap \Phi_{n}^{-1}\left(g_{n}^{-1}(S)\right)\right) \cdot \tilde{\mu}\left(J_{n}\right)-\mu(\hat{I}) \cdot \mu(S)\right| \\
\leq & \left|\mu\left(\hat{I} \cap \Phi_{n}^{-1}\left(g_{n}^{-1}(S)\right)\right)-\mu\left(\hat{I} \cap \Phi_{n}^{-1}\left(g_{n}^{-1}(\tilde{S})\right)\right)\right| \cdot \tilde{\mu}\left(J_{n}\right) \\
& +\left|\mu\left(\hat{I} \cap \Phi_{n}^{-1}\left(g_{n}^{-1}(\tilde{S})\right)\right) \cdot \tilde{\mu}\left(J_{n}\right)-\mu(\hat{I}) \cdot \mu(\tilde{S})\right|+\mu(\hat{I}) \cdot|\mu(\tilde{S})-\mu(S)| .
\end{aligned}
$$

Since Φ_{n} and g_{n} are measure-preserving, we observe by our choice of δ_{n} in equation 2 ,

$$
\begin{aligned}
& \left|\mu\left(\hat{I} \cap \Phi_{n}^{-1}\left(g_{n}^{-1}(S)\right)\right)-\mu\left(\hat{I} \cap \Phi_{n}^{-1}\left(g_{n}^{-1}(\tilde{S})\right)\right)\right| \cdot \tilde{\mu}\left(J_{n}\right) \leq \mu(S \backslash \tilde{S}) \cdot \tilde{\mu}\left(J_{n}\right) \\
& \leq 5 \delta_{n} \cdot l_{n} \cdot \mu(S) \cdot \tilde{\mu}\left(J_{n}\right) \leq \frac{1}{n} \cdot \mu(S) \cdot \mu(\hat{I})
\end{aligned}
$$

Thus, we obtain:

$$
\begin{align*}
& \left|\mu\left(\hat{I} \cap \Phi_{n}^{-1}\left(g_{n}^{-1}(S)\right)\right) \cdot \tilde{\mu}\left(J_{n}\right)-\mu(\hat{I}) \cdot \mu(S)\right| \\
& \leq\left|\mu\left(\hat{I} \cap \Phi_{n}^{-1}\left(g_{n}^{-1}(\tilde{S})\right)\right) \cdot \tilde{\mu}\left(J_{n}\right)-\mu(\hat{I}) \cdot \mu(\tilde{S})\right|+\frac{2}{n} \cdot \mu(S) \cdot \mu(\hat{I}) . \tag{11}
\end{align*}
$$

Next, we want to estimate the first summand. By construction of the map g_{n} and the definition of \tilde{S} it holds: $\Phi_{n}(\hat{I}) \cap g_{n}^{-1}(\tilde{S}) \subseteq[c, c+\gamma] \times \tilde{S}_{r}=: K_{c, \gamma}$. Because of Lemma 4.3 we have $2 \gamma \leq \frac{6}{q_{n} \cdot l_{n}}<q_{n}^{-\sigma}$. So we can define a cuboid $S_{1} \subseteq \tilde{S}$, where $S_{1}:=\left[s_{1}+\gamma, s_{2}-\gamma\right] \times \tilde{S}_{r}$ using the notation $S_{\theta}=\left[s_{1}, s_{2}\right]$. We examine the two sets

$$
Q:=\pi_{\vec{r}}\left(K_{c, \gamma} \cap g_{n}^{-1}\left(S_{\theta} \times \tilde{S}_{r}\right)\right) \quad Q_{1}:=\pi_{\vec{r}}\left(K_{c, \gamma} \cap g_{n}^{-1}\left(\left[s_{1}+\gamma, s_{2}-\gamma\right] \times \tilde{S}_{r}\right)\right)
$$

As seen above $\Phi_{n}(\hat{I}) \cap g_{n}^{-1}(\tilde{S}) \subseteq K_{c, \gamma}$. Hence $\Phi_{n}(\hat{I}) \cap g_{n}^{-1}(\tilde{S}) \subseteq \Phi_{n}(\hat{I}) \cap g_{n}^{-1}(\tilde{S}) \cap K_{c, \gamma}$, which implies $\Phi_{n}(\hat{I}) \cap g_{n}^{-1}(\tilde{S}) \subseteq \Phi_{n}(\hat{I}) \cap\left(\mathbb{S}^{1} \times Q\right)$.
Claim: On the other hand: $\Phi_{n}(\hat{I}) \cap\left(\mathbb{S}^{1} \times Q_{1}\right) \subseteq \Phi_{n}(\hat{I}) \cap g_{n}^{-1}(\tilde{S})$.
Proof of the claim: For $(\theta, \vec{r}) \in \Phi_{n}(\hat{I}) \cap\left(\mathbb{S}^{1} \times Q_{1}\right)$ arbitrary it holds $(\theta, \vec{r}) \in \Phi_{n}(\hat{I})$, i.e. $\theta \in[c, c+\gamma]$, and $\vec{r} \in \pi_{\vec{r}}\left(K_{c, \gamma} \cap g_{n}^{-1}\left(\left[s_{1}+\gamma, s_{2}-\gamma\right] \times \tilde{S}_{r}\right)\right)$. This implies the existence of $\bar{\theta} \in[c, c+\gamma]$ satisfying $(\bar{\theta}, \vec{r}) \in K_{c, \gamma} \cap g_{n}^{-1}\left(S_{1}\right)$. Hence, there is $\beta \in\left[s_{1}+\gamma, s_{2}-\gamma\right]$ such that $g_{n}(\bar{\theta}, \vec{r})=(\beta, \vec{r})$. Additionally, we observe that g_{n} maps sets of the form $I \times \vec{r}$, where
$I \subset \mathbb{S}^{1}$ is an interval, on a set of the form $\tilde{I} \times \vec{r}$ with an interval $\tilde{I} \subset \mathbb{S}^{1}$ and preserves the length of the interval. Since $|\theta-\bar{\theta}| \leq \gamma$ there is $\bar{\beta} \in\left[s_{1}, s_{2}\right]$ satisfying $g_{n}(\theta, \vec{r})=(\bar{\beta}, \vec{r})$. Thus, $(\theta, \vec{r}) \in \Phi_{n}(\hat{I}) \cap g_{n}^{-1}(\tilde{S})$.
Altogether, the following inclusions are true:

$$
\Phi_{n}(\hat{I}) \cap\left(\mathbb{S}^{1} \times Q_{1}\right) \subseteq \Phi_{n}(\hat{I}) \cap g_{n}^{-1}(\tilde{S}) \subseteq \Phi_{n}(\hat{I}) \cap\left(\mathbb{S}^{1} \times Q\right)
$$

Thus, we obtain:

$$
\begin{array}{r}
\left|\mu\left(\hat{I} \cap \Phi_{n}^{-1}\left(g_{n}^{-1}(\tilde{S})\right)\right) \cdot \tilde{\mu}\left(J_{n}\right)-\mu(\hat{I}) \cdot \mu(\tilde{S})\right| \\
\leq \max \left(\left|\mu\left(\hat{I} \cap \Phi_{n}^{-1}\left(\mathbb{S}^{1} \times Q\right)\right) \cdot \tilde{\mu}\left(J_{n}\right)-\mu(\hat{I}) \cdot \mu(\tilde{S})\right|\right. \tag{12}\\
\left.\left|\mu\left(\hat{I} \cap \Phi_{n}^{-1}\left(\mathbb{S}^{1} \times Q_{1}\right)\right) \cdot \tilde{\mu}\left(J_{n}\right)-\mu(\hat{I}) \cdot \mu(\tilde{S})\right|\right)
\end{array}
$$

We want to apply Lemma 5.4 for $K=\tilde{S}_{r_{1}}, L=S_{\theta}, Z=S_{\tilde{r}}$ and $b=\left[n \cdot q_{n}^{\sigma}\right]$ (note that $\frac{4 \cdot\left[n q_{n}^{\sigma}\right]}{10 n^{2} \cdot q_{n} \cdot l_{n}^{m+1}}<\frac{1}{q_{n}^{\sigma}}=\tilde{\lambda}(L)$ and for $\left.n>4: b \cdot \lambda(K)=\left[n q_{n}^{\sigma}\right] \cdot q_{n}^{-\sigma} \geq \frac{1}{2} n q_{n}^{\sigma} \cdot q_{n}^{-\sigma}>2\right)$:

$$
\begin{aligned}
& |\tilde{\mu}(Q)-\mu(\tilde{S})| \\
& \leq\left(\frac{2}{\left[n \cdot q_{n}^{\sigma}\right]} \cdot \tilde{\lambda}\left(S_{\theta}\right)+\frac{2 \gamma}{\left[n \cdot q_{n}^{\sigma}\right]}+\gamma \cdot \lambda\left(\tilde{S}_{r_{1}}\right)+\frac{\left[n q_{n}^{\sigma}\right] \cdot \lambda\left(\tilde{S}_{r_{1}}\right) \cdot 4}{a}+\frac{8}{a}\right) \cdot \mu^{(m-2)}\left(S_{\tilde{r}}\right) \\
& \leq\left(\frac{4}{n \cdot q_{n}^{\sigma}} \cdot \tilde{\lambda}\left(S_{\theta}\right)+\frac{4}{n \cdot q_{n}^{\sigma} \cdot q_{n}^{\sigma}}+\frac{1}{n \cdot q_{n}^{\sigma}} \cdot \lambda\left(S_{r_{1}}\right)+\frac{1}{n \cdot q_{n}^{2 \sigma}}\right) \cdot \mu^{(m-2)}\left(S_{\tilde{r}}\right) \\
& \leq \frac{14}{n} \cdot \mu(S) .
\end{aligned}
$$

In particular, we receive from this estimate: $\frac{14}{n} \cdot \mu(S) \geq \tilde{\mu}(Q)-\mu(\tilde{S}) \geq \tilde{\mu}(Q)-\mu(S)$, hence: $\tilde{\mu}(Q) \leq\left(1+\frac{14}{n}\right) \cdot \mu(S) \leq 4 \cdot \mu(S)$.
Analogously we obtain: $\tilde{\mu}\left(Q_{1}\right) \leq 4 \cdot \mu(S)$ as well as $\left|\tilde{\mu}\left(Q_{1}\right)-\mu\left(S_{1}\right)\right| \leq \frac{14}{n} \cdot \mu(S)$.
Since Q as well as Q_{1} are a finite union of disjoint $(m-1)$-dimensional intervals contained in J_{n} and $\Phi_{n}\left(\frac{3}{q_{n} \cdot l_{n}}, \frac{1}{n}\right)$-distributes the interval \hat{I} on J_{n}, we get:

$$
\left|\mu\left(\hat{I} \cap \Phi_{n}^{-1}\left(\mathbb{S}^{1} \times Q\right)\right) \cdot \tilde{\mu}\left(J_{n}\right)-\mu(\hat{I}) \cdot \tilde{\mu}(Q)\right| \leq \frac{1}{n} \cdot \mu(\hat{I}) \cdot \tilde{\mu}(Q) \leq \frac{4}{n} \cdot \mu(\hat{I}) \cdot \mu(S)
$$

as well as

$$
\left|\mu\left(\hat{I} \cap \Phi_{n}^{-1}\left(\mathbb{S}^{1} \times Q_{1}\right)\right) \cdot \tilde{\mu}\left(J_{n}\right)-\mu(\hat{I}) \cdot \tilde{\mu}\left(Q_{1}\right)\right| \leq \frac{1}{n} \cdot \mu(\hat{I}) \cdot \tilde{\mu}\left(Q_{1}\right) \leq \frac{4}{n} \cdot \mu(\hat{I}) \cdot \mu(S)
$$

Now we can proceed

$$
\begin{aligned}
& \left|\mu\left(\hat{I} \cap \Phi_{n}^{-1}\left(\mathbb{S}^{1} \times Q\right)\right) \cdot \tilde{\mu}\left(J_{n}\right)-\mu(\hat{I}) \cdot \mu(\tilde{S})\right| \\
& \leq\left|\mu\left(\hat{I} \cap \Phi_{n}^{-1}\left(\mathbb{S}^{1} \times Q\right)\right) \cdot \tilde{\mu}\left(J_{n}\right)-\mu(\hat{I}) \cdot \tilde{\mu}(Q)\right|+\mu(\hat{I}) \cdot|\tilde{\mu}(Q)-\mu(\tilde{S})| \\
& \leq \frac{4}{n} \cdot \mu(\hat{I}) \cdot \mu(S)+\mu(\hat{I}) \cdot \frac{14}{n} \cdot \mu(S)=\frac{18}{n} \cdot \mu(\hat{I}) \cdot \mu(S) .
\end{aligned}
$$

Noting that $\mu\left(S_{1}\right)=\mu(\tilde{S})-2 \gamma \cdot \tilde{\mu}\left(\tilde{S}_{r}\right)$ and so $\mu(\tilde{S})-\mu\left(S_{1}\right) \leq 2 \cdot \frac{1}{n \cdot q_{n}^{\sigma}} \cdot \tilde{\mu}\left(\tilde{S}_{r}\right) \leq \frac{2}{n} \cdot \mu(S)$ we obtain in the same way as above:

$$
\left|\mu\left(\hat{I} \cap \Phi_{n}^{-1}\left(\mathbb{S}^{1} \times Q_{1}\right)\right) \cdot \tilde{\mu}\left(J_{n}\right)-\mu(\hat{I}) \cdot \mu(\tilde{S})\right| \leq \frac{20}{n} \cdot \mu(\hat{I}) \cdot \mu(S)
$$

Using equation 12 this yields:

$$
\left|\mu\left(\hat{I} \cap \Phi_{n}^{-1}\left(g_{n}^{-1}(\tilde{S})\right)\right) \cdot \tilde{\mu}\left(J_{n}\right)-\mu(\hat{I}) \cdot \mu(\tilde{S})\right| \leq \frac{20}{n} \cdot \mu(\hat{I}) \cdot \mu(S)
$$

Finally, we conclude with the aid of equation 11 .

$$
\left|\mu\left(\hat{I} \cap \Phi_{n}^{-1}\left(g_{n}^{-1}(S)\right)\right) \cdot \tilde{\mu}\left(J_{n}\right)-\mu(\hat{I}) \cdot \mu(S)\right| \leq \frac{22}{n} \cdot \mu(\hat{I}) \cdot \mu(S)
$$

Now we are able to prove the aimed criterion for weak mixing.
Proposition 5.6 (Criterion for weak mixing). Let $f_{n}=H_{n} \circ R_{\alpha_{n+1}} \circ H_{n}^{-1}$ and the sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ be constructed as in the previous sections. Suppose additionally that $d_{0}\left(f^{m_{n}}, f_{n}^{m_{n}}\right)<\frac{1}{2^{n}}$ and $\left\|D H_{n-1}\right\|_{0}<\ln \left(q_{n}\right)$ for every $n \in \mathbb{N}$ and that the limit $f=\lim _{n \rightarrow \infty} f_{n}$ exists.
Then f is weak mixing.
Proof. To apply Lemma 5.2 we consider the partial partitions $\nu_{n}:=H_{n-1} \circ g_{n}\left(\eta_{n}\right)$. As proven in Lemma 5.3 these partial partitions satisfy $\nu_{n} \rightarrow \varepsilon$. We have to establish equation 9 . For this purpose, let $\varepsilon>0$ and a m-dimensional cube $A \subseteq \mathbb{T}^{m}$ be given.
Furthermore, we note $f_{n}^{m_{n}}=H_{n} \circ R_{\alpha_{n+1}}^{m_{n}} \circ H_{n}^{-1}=H_{n-1} \circ g_{n} \circ \Phi_{n} \circ g_{n}^{-1} \circ H_{n-1}^{-1}$.
Let S_{n} be a m-dimensional cube of side length $q_{n}^{-\sigma}$ contained in \mathbb{T}^{m}. We look at $C_{n}:=H_{n-1}\left(S_{n}\right)$, $\Gamma_{n} \in \nu_{n}$, and compute (since g_{n} and H_{n-1} are measure-preserving):

$$
\begin{aligned}
& \left|\mu\left(\Gamma_{n} \cap f_{n}^{-m_{n}}\left(C_{n}\right)\right)-\mu\left(\Gamma_{n}\right) \cdot \mu\left(C_{n}\right)\right|=\left|\mu\left(\hat{I}_{n} \cap \Phi_{n}^{-1} \circ g_{n}^{-1}\left(S_{n}\right)\right)-\mu\left(\hat{I}_{n}\right) \cdot \mu\left(S_{n}\right)\right| \\
& \leq \frac{1}{\tilde{\mu}\left(J_{n}\right)} \cdot\left|\mu\left(\hat{I}_{n} \cap \Phi_{n}^{-1} \circ g_{n}^{-1}\left(S_{n}\right)\right) \cdot \tilde{\mu}\left(J_{n}\right)-\mu\left(\hat{I}_{n}\right) \cdot \mu\left(S_{n}\right)\right|+\frac{1-\tilde{\mu}\left(J_{n}\right)}{\tilde{\mu}\left(J_{n}\right)} \cdot \mu\left(\hat{I}_{n}\right) \cdot \mu\left(S_{n}\right)
\end{aligned}
$$

Bernoulli's inequality yields: $\tilde{\mu}\left(J_{n}\right) \geq\left(1-\frac{1}{n}\right)^{m-1} \geq 1+(m-1) \cdot\left(-\frac{1}{n}\right)=1-\frac{m-1}{n}$. Hence, we obtain for $n>2 \cdot(m-1): \tilde{\mu}\left(J_{n}\right) \geq \frac{1}{2}$ and so: $\frac{1-\tilde{\mu}\left(J_{n}\right)}{\tilde{\mu}\left(J_{n}\right)} \leq 2 \cdot\left(1-\tilde{\mu}\left(J_{n}\right)\right) \leq \frac{2 \cdot(m-1)}{n}$. We continue by applying Lemma 5.5 .

$$
\begin{aligned}
\left|\mu\left(\Gamma_{n} \cap f_{n}^{-m_{n}}\left(C_{n}\right)\right)-\mu\left(\Gamma_{n}\right) \cdot \mu\left(C_{n}\right)\right| & \leq 2 \cdot \frac{22}{n} \cdot \mu\left(\hat{I}_{n}\right) \cdot \mu\left(S_{n}\right)+\frac{2 \cdot(m-1)}{n} \cdot \mu\left(\hat{I}_{n}\right) \cdot \mu\left(S_{n}\right) \\
& =\frac{42+2 \cdot m}{n} \cdot \mu\left(\hat{I}_{n}\right) \cdot \mu\left(S_{n}\right)
\end{aligned}
$$

Moreover, by our assumptions it holds $\operatorname{diam}\left(C_{n}\right) \leq\left\|D H_{n-1}\right\|_{0} \cdot \operatorname{diam}\left(S_{n}\right) \leq \ln \left(q_{n}\right) \cdot \frac{\sqrt{m}}{q_{n}^{\sigma}}$, i. e. $\operatorname{diam}\left(C_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus, we can approximate A by a countable disjoint union of sets $C_{n}=H_{n-1}\left(S_{n}\right)$ with $S_{n} \subseteq \mathbb{T}^{m}$ a m-dimensional cube of sidelength $q_{n}^{-\sigma}$ in given precision, when n is chosen large enough. Consequently for n sufficiently large there are sets $A_{1}=\dot{U}_{i \in \Sigma_{n}^{1}} C_{n}^{i}$ and $A_{2}=\dot{\bigcup}_{i \in \Sigma_{n}^{2}} C_{n}^{i}$ with countable sets Σ_{n}^{1} and Σ_{n}^{2} of indices satisfying $A_{1} \subseteq A \subseteq A_{2}$ as well as $\left|\mu(A)-\mu\left(A_{i}\right)\right| \leq \frac{\epsilon}{3} \cdot \mu(A)$ for $i=1,2$.
Additionally we choose n such that $\frac{42+2 \cdot m}{n}<\frac{\epsilon}{3}$ holds. It follows:

$$
\begin{aligned}
& \mu\left(\Gamma_{n} \cap f_{n}^{-m_{n}}(A)\right)-\mu\left(\Gamma_{n}\right) \cdot \mu(A) \\
& \leq \mu\left(\Gamma_{n} \cap f_{n}^{-m_{n}}\left(A_{2}\right)\right)-\mu\left(\Gamma_{n}\right) \cdot \mu\left(A_{2}\right)+\mu\left(\Gamma_{n}\right) \cdot\left(\mu\left(A_{2}\right)-\mu(A)\right) \\
& \leq \sum_{i \in \Sigma_{n}^{2}}\left(\mu\left(\Gamma_{n} \cap f_{n}^{-m_{n}}\left(C_{n}^{i}\right)\right)-\mu\left(\Gamma_{n}\right) \cdot \mu\left(C_{n}^{i}\right)\right)+\frac{\epsilon}{3} \cdot \mu\left(\Gamma_{n}\right) \cdot \mu(A) \\
& \leq \sum_{i \in \Sigma_{n}^{2}}\left(\frac{42+2 \cdot m}{n} \cdot \mu\left(\hat{I}_{n}\right) \cdot \mu\left(S_{n}^{i}\right)\right)+\frac{\epsilon}{3} \cdot \mu\left(\Gamma_{n}\right) \cdot \mu(A) \\
& =\frac{42+2 \cdot m}{n} \cdot \mu\left(\Gamma_{n}\right) \cdot \mu\left(\bigcup_{i \in \Sigma_{n}^{2}} C_{n}^{i}\right)+\frac{\epsilon}{3} \cdot \mu\left(\Gamma_{n}\right) \cdot \mu(A) \leq \frac{\epsilon}{3} \cdot \mu\left(\Gamma_{n}\right) \cdot \mu\left(A_{2}\right)+\frac{\epsilon}{3} \cdot \mu\left(\Gamma_{n}\right) \cdot \mu(A) \\
& =\frac{\epsilon}{3} \cdot \mu\left(\Gamma_{n}\right) \cdot \mu(A)+\frac{\epsilon}{3} \cdot \mu\left(\Gamma_{n}\right) \cdot\left(\mu\left(A_{2}\right)-\mu(A)\right)+\frac{\epsilon}{3} \cdot \mu\left(\Gamma_{n}\right) \cdot \mu(A) \leq \epsilon \cdot \mu\left(\Gamma_{n}\right) \cdot \mu(A) .
\end{aligned}
$$

Analogously we estimate: $\mu\left(\Gamma_{n} \cap f_{n}^{-m_{n}}(A)\right)-\mu\left(\Gamma_{n}\right) \cdot \mu(A) \geq-\epsilon \cdot \mu\left(\Gamma_{n}\right) \cdot \mu(A)$. Both estimates enable us to conclude: $\left|\mu\left(\Gamma_{n} \cap f_{n}^{-m_{n}}(A)\right)-\mu\left(\Gamma_{n}\right) \cdot \mu(A)\right| \leq \epsilon \cdot \mu\left(\Gamma_{n}\right) \cdot \mu(A)$.

6 Proof of convergence of $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $\operatorname{Diff}_{\rho}^{w}\left(\mathbb{T}^{m}, \mu\right)$

Let $\varepsilon>0$ and $\left(\epsilon_{n}\right)_{n \in \mathbb{N}}$ be a monotone decreasing sequence of positive real numbers satisfying $\sum_{n=1}^{\infty} \epsilon_{n}<\varepsilon$. We recall the relations $\alpha_{n+1}=\alpha_{n}+\frac{1}{k_{n} \cdot l_{n} \cdot q_{n}}$ and $h_{n} \circ R_{\alpha_{n}}=R_{\alpha_{n}} \circ h_{n}$. Hereby, we observe for any $m \in \mathbb{N}$
$H_{n} \circ R_{\alpha_{n+1}}^{m} \circ H_{n}^{-1}=H_{n-1} \circ h_{n} \circ R_{\alpha_{n}}^{m} \circ R_{\overline{k_{n} \cdot l_{n} \cdot q_{n}}}^{m} \circ h_{n}^{-1} \circ H_{n-1}^{-1}=H_{n-1} \circ R_{\alpha_{n}}^{m} \circ h_{n} \circ R_{\frac{m}{k_{n} \cdot l_{n} \cdot q_{n}}} \circ h_{n}^{-1} \circ H_{n-1}^{-1}$.
Since the construction of the conjugation map h_{n} was independent of the number k_{n}, we can obtain

$$
d_{\rho}\left(f_{n-1}, f_{n}\right)=d_{\rho}\left(H_{n-1} \circ R_{\alpha_{n}} \circ H_{n-1}^{-1}, H_{n-1} \circ R_{\alpha_{n}} \circ h_{n} \circ R_{\frac{1}{k_{n} \cdot l_{n} \cdot q_{n}}} \circ h_{n}^{-1} \circ H_{n-1}^{-1}\right)<\epsilon_{n}
$$

as well as for every $m \leq q_{n}$

$$
d_{0}\left(f_{n-1}^{m}, f_{n}^{m}\right)=d_{0}\left(H_{n-1} \circ R_{\alpha_{n}}^{m} \circ H_{n-1}^{-1}, H_{n-1} \circ R_{\alpha_{n}}^{m} \circ h_{n} \circ R_{\frac{m}{k_{n} \cdot l_{n} \cdot q_{n}}} \circ h_{n}^{-1} \circ H_{n-1}^{-1}\right)<\frac{1}{2^{n}}
$$

by choosing $k_{n} \in \mathbb{N}$ large enough under the additional conditions

$$
\begin{equation*}
k_{n}>40 n^{2} \cdot l_{n}^{m} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\ln \left(q_{n+1}\right)=\ln \left(k_{n} \cdot l_{n} \cdot q_{n}\right)>\left\|D H_{n}\right\|_{0} . \tag{14}
\end{equation*}
$$

By

$$
d_{\rho}\left(f_{m}, f_{n}\right) \leq \sum_{k=n+1}^{m} d_{\rho}\left(f_{k-1}, f_{k}\right)<\sum_{k=n+1}^{m} \epsilon_{k}
$$

we can show that $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in $\operatorname{Diff}{ }_{\rho}^{\omega}\left(\mathbb{T}^{m}, \mu\right)$. Since Diff ${ }_{\rho}^{\omega}\left(\mathbb{T}^{m}, \mu\right)$ is a complete space, we obtain convergence $\lim _{n \rightarrow \infty} f_{n}=f \in \operatorname{Diff}_{\rho}^{\omega}\left(\mathbb{T}^{m}, \mu\right)$.

Remark 6.1. Moreover, we estimate for every $m \leq q_{n+1}$:

$$
d_{0}\left(f^{m}, f_{n}^{m}\right) \leq \sum_{k=n+1}^{\infty} d_{0}\left(f_{k-1}^{m}, f_{k}^{m}\right)<\sum_{k=n+1}^{\infty} \frac{1}{2^{k}}=\frac{1}{2^{n}}
$$

By construction of the sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ in subsection 3.1 we have $m_{n} \leq q_{n+1}$. Hence, the condition $d_{0}\left(f^{m_{n}}, f_{n}^{m_{n}}\right)<\frac{1}{2^{n}}$ from Proposition 5.6 is satisfied as well. Then we can apply the deduced criterion for weak mixing and conclude that f is weak mixing.

7 Construction of the f-invariant measurable Riemannian metric

In the following we construct the f-invariant measurable Riemannian metric. This construction parallels the approach in GKa00, section 4.8.. For it we put $\omega_{n}:=\left(H_{n}^{-1}\right)^{*} \omega_{0}$, where ω_{0} is the standard Riemannian metric on \mathbb{T}^{m}. Each ω_{n} is a smooth Riemannian metric because it is the pullback of a smooth metric via a Diff ${ }_{\rho}^{\omega}\left(\mathbb{T}^{m}, \mu\right)$-diffeomorphism. Since $R_{\alpha_{n+1}}^{*} \omega_{0}=\omega_{0}$ the metric ω_{n} is f_{n}-invariant:

$$
\begin{aligned}
f_{n}^{*} \omega_{n} & =\left(H_{n} \circ R_{\alpha_{n+1}} \circ H_{n}^{-1}\right)^{*}\left(H_{n}^{-1}\right)^{*} \omega_{0}=\left(H_{n}^{-1}\right)^{*} R_{\alpha_{n+1}}^{*} H_{n}^{*}\left(H_{n}^{-1}\right)^{*} \omega_{0}=\left(H_{n}^{-1}\right)^{*} R_{\alpha_{n+1}}^{*} \omega_{0} \\
& =\left(H_{n}^{-1}\right)^{*} \omega_{0}=\omega_{n}
\end{aligned}
$$

With the succeeding Lemmas we show that the limit $\omega_{\infty}:=\lim _{n \rightarrow \infty} \omega_{n}$ exists μ-almost everywhere and is the aimed f-invariant Riemannian metric.

Lemma 7.1. On any partition element $\check{I}_{n} \in \zeta_{n}$ we have dev $\check{I}_{n}\left(h_{n}\right)<\frac{\delta_{n}}{l_{n}^{2}}$.
Proof. First of all, we observe for a vector $\vec{v}=\left(v_{1}, \ldots, v_{m}\right)$ with $\|v\|=1$ and for maps of the form $J\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}, \ldots, x_{d-1}, x_{d}+s\left(x_{j}\right), x_{d+1}, \ldots, x_{m}\right)$ with $\sup _{x}\left|s^{\prime}(x)\right|<\varepsilon<1$:

$$
\|D J(\vec{v})\| \leq \sqrt{1+2 \varepsilon \cdot v_{d} \cdot v_{j}+\varepsilon^{2} \cdot v_{d}^{2}} \leq 1+\frac{1}{2} \cdot\left(2 \varepsilon+\varepsilon^{2}\right)<1+2 \varepsilon
$$

Then we have $\log \|D J(\vec{v})\|<2 \varepsilon$.
By the exact positioning of the partition elements and Remark 3.7 every occurring conjugation map is applied on a domain, where the associated step function $s_{\beta, N, \varepsilon, \delta}$ satisfies $\left|s_{\beta, N, \varepsilon, \delta}^{\prime}\right|<\varepsilon$. With the aid of Remark 2.5 and the above observations we obtain

$$
\operatorname{dev}_{\check{I}_{n}}\left(h_{n}\right) \leq \operatorname{dev}_{\phi_{n}\left(\check{I}_{n}\right)}\left(g_{n}\right)+\operatorname{dev}_{\check{I}_{n}}\left(\phi_{n}\right) \leq 2 \cdot\left[n q_{n}^{\sigma}\right] \cdot \varepsilon_{n}+3 \cdot(m-1) \cdot 2 \varepsilon_{n}
$$

By our choice of ε_{n} in equation 3 we proved the claim.
Lemma 7.2. The sequence $\left(\omega_{n}\right)_{n \in \mathbb{N}}$ converges μ-a.e. to a limit ω_{∞}.
Proof. On the union of the partition elements of ζ_{n} we conclude by Lemma 7.1

$$
\begin{aligned}
d\left(\omega_{n}, \omega_{n-1}\right) & =d\left(\left(h_{n}^{-1} \circ H_{n-1}^{-1}\right)^{*} \omega_{0},\left(H_{n-1}^{-1}\right)^{*} \omega_{0}\right) \leq\left\|H_{n-1}^{*}\right\| \cdot d\left(\left(h_{n}^{-1}\right)^{*} \omega_{0}, \omega_{0}\right) \\
& \leq\left\|D H_{n-1}\right\|_{0}^{2} \cdot \frac{\delta_{n}}{l_{n}^{2}}<\delta_{n} .
\end{aligned}
$$

Since the elements of the partition ζ_{n} cover \mathbb{T}^{m} except a set of measure at most $\frac{1}{n^{2}}$ by Remark 3.5 for every $n \geq 3$, this calculation shows $d\left(\omega_{N+k}, \omega_{N-1}\right) \leq \sum_{n=N}^{N+k} d\left(\omega_{n}, \omega_{n-1}\right)<\sum_{n=N}^{N+k} \delta_{n}$ on a set of measure at least $1-\sum_{n=N}^{N+k} \frac{1}{n^{2}} \geq 1-\sum_{n=N}^{\infty} \frac{1}{n^{2}}$. As this measure approaches 1 for $N \rightarrow \infty$, the sequence $\left(\omega_{n}\right)_{n \in \mathbb{N}}$ converges on a set of full measure.
Lemma 7.3. The limit ω_{∞} is a measurable Riemannian metric.
Proof. The limit ω_{∞} is a measurable map because it is the pointwise limit of the smooth metrics ω_{n}, which in particular are measurable. By the same reasoning $\left.\omega_{\infty}\right|_{p}$ is symmetric for μ-almost every $p \in M$. Furthermore, ω_{n} is positive definite for every $n \in \mathbb{N}$ and ω_{∞} is $\sum_{k=n}^{\infty} \delta_{k}$-close to ω_{n-1} on $T_{1} M \otimes T_{1} M$ minus a set of measure at most $\sum_{k=n}^{\infty} \frac{1}{k^{2}}$. By choosing $\delta_{k}, k \geq n$, small enough (depending on ω_{n-1}),

$$
\begin{equation*}
\text { which can be satisfied by choosing } l_{n} \text { large enough, } \tag{A}
\end{equation*}
$$

we can guarantee that ω_{∞} is positive definite on $T_{1} M \otimes T_{1} M$ minus a set of measure at most $\sum_{k=n}^{\infty} \frac{1}{k^{2}}$. Since this is true for every $n \in \mathbb{N}, \omega_{\infty}$ is positive definite on a set of full measure.
Remark 7.4. In the proof of the subsequent Lemma we will need Egoroff's theorem (for example Ha65], $\S 21$, Theorem A): Let (N, d) denote a separable metric space. Given a sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ of N-valued measurable functions on a measure space (X, Σ, μ) and a measurable subset $A \subseteq X$, $\mu(A)<\infty$, such that $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ converges μ-a.e. on A to a limit function φ. Then for every $\varepsilon>0$ there exists a measurable subset $B \subset A$ such that $\mu(B)<\varepsilon$ and $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ converges to φ uniformly on $A \backslash B$.
Lemma 7.5. ω_{∞} is f-invariant, i.e. $f^{*} \omega_{\infty}=\omega_{\infty} \mu$-a.e..
Proof. By Lemma 7.2 the sequence $\left(\omega_{n}\right)_{n \in \mathbb{N}}$ converges in the C^{∞}-topology pointwise almost everywhere. Hence, we obtain using Egoroff's theorem: For every $\delta>0$ there is a set $C_{\delta} \subseteq M$ such that $\mu\left(M \backslash C_{\delta}\right)<\delta$ and the convergence $\omega_{n} \rightarrow \omega_{\infty}$ is uniform on C_{δ}.
The function f was constructed as the limit of the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in the $\operatorname{Diff}{ }_{\rho}^{w}\left(\mathbb{T}^{m}, \mu\right)$-topology. Thus, $\tilde{f}_{n}:=f_{n}^{-1} \circ f \rightarrow i d$ in the $\operatorname{Diff}{ }_{\rho}^{\omega}\left(\mathbb{T}^{m}, \mu\right)$-topology. Since \mathbb{T}^{m} is compact, this convergence is uniform, too.
Furthermore, the smoothness of f implies $f^{*} \omega_{\infty}=f^{*} \lim _{n \rightarrow \infty} \omega_{n}=\lim _{n \rightarrow \infty} f^{*} \omega_{n}$. Therewith we compute on $C_{\delta}: f^{*} \omega_{\infty}=\lim _{n \rightarrow \infty}\left(\left(f_{n} \tilde{f}_{n}\right)^{*} \omega_{n}\right)=\lim _{n \rightarrow \infty}\left(\tilde{f}_{n}^{*} f_{n}^{*} \omega_{n}\right)=\lim _{n \rightarrow \infty} \tilde{f}_{n}^{*} \omega_{n}=\omega_{\infty}$, where we used the uniform convergence on C_{δ} in the last step. As this holds on every set C_{δ} with $\delta>0$, it also holds on the set $\bigcup_{\delta>0} C_{\delta}$. This is a set of full measure and, therefore, the claim follows.

Hence, the aimed f-invariant measurable Riemannian metric ω_{∞} is constructed. Since f is also weak mixing by Remark 6.1, the main theorem is proven.

References

[AK70] D. V. Anosov and A. Katok: New examples in smooth ergodic theory. Ergodic diffeomorphisms. Trudy Moskov. Mat. Obsc., 23: 3-36, 1970.
[Ba15] S. Banerjee: Non-standard real-analytic realizations of some rotations of the circle. Preprint, arXiv:1501.01531, 2015.
[Be13] M. Benhenda: Non-standard Smooth Realization of Shifts on the Torus. Journal of Modern Dynamics, 7 (3): 329-367, 2013.
[FK04] B. Fayad and A. Katok: Constructions in elliptic dynamics. Ergodic Theory Dynam. Systems, 24 (5): 1477-1520, 2004.
[FK14] B. Fayad and A. Katok: Analytic uniquely ergodic volume preserving maps on odd spheres. Commentarii mathematici Helvetici, 89 N4: 963-977, 2014.
[FS05] B. Fayad and M. Saprykina: Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary. Ann. Scient. École. Norm. Sup.(4), 38(3): 339-364, 2005.
[FSW07] B. Fayad, M. Saprykina and A. Windsor: Nonstandard smooth realizations of Liouville rotations. Ergodic Theory Dynam. Systems, 27: 1803-1818, 2007.
[GKa00] R. Gunesch and A. Katok: Construction of weakly mixing diffeomorphisms preserving measurable Riemannian metric and smooth measure. Discrete Contin. Dynam. Systems, 6: 61-88, 2000.
[GKu15] R. Gunesch and P. Kunde: Weak mixing diffeomorphisms preserving a measurable Riemannian metric in $\mathcal{A}_{\alpha}(M)$ for arbitrary Liouvillean number α. In Preparation.
[Ha65] P. R. Halmos: Measure theory. Van Nostrand, Princeton, 1965.
[Ku15] P. Kunde: Uniform rigidity sequences for weak mixing diffeomorphisms on \mathbb{D}^{2}, \mathbb{A} and \mathbb{T}^{2}. Journal of Mathematical Analysis and Applications, 429: 111-130, 2015.
[K1] P. Kunde: Weak mixing diffeomorphism with ergodic derivative extension in $\mathcal{A}_{\alpha}(M)$ for arbitrary Liouvillean number α. In Preparation.
[Sa03] M. Saprykina: Analytic non-linearizable uniquely ergodic diffeomorphisms on \mathbb{T}^{2}. Ergodic Theory Dynamical Systems, 23: 935-955, 2003.
[Skl67] M. D. Sklover: Classical dynamical systems on the torus with continuous spectrum. Izv. Vys. Ucebn. Zaved. Mat., 10: 113-124, 1967.

