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zur Angewandten Mathematik

Coupling MPC and DP methods for an efficient
solution of optimal control problems

A. Alla, G. Fabrini, and M. Falcone

Nr. 2015-38
October 2015



Coupling MPC and DP methods for an efficient
solution of optimal control problems.

A. Alla, G. Fabrini, and M. Falcone

University of Hamburg, Department of Mathematics, Hamburg, Germany
(e-mail: alessandro.alla@uni-hamburg.de),
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Abstract. We study the approximation of optimal control problems
via the approximation of a Hamilton-Jacobi equation in a tube around
a reference trajectory which is first obtained solving a Model Predictive
Control problem. The coupling between the two methods is introduced
to improve the initial local solution and to reduce the computational
complexity of the Dynamic Programming algorithm. We present some
features of the method and show some results obtained via this technique
showing that it can produce an improvement with respect to the two
uncoupled methods.
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1 Introduction

The numerical solution of partial differential equations obtained by applying the
Dynamic Programming Principle (DPP) to nonlinear optimal control problems
is a challenging topic that can have a great impact in many areas, e.g. robotics,
aeronautics, electrical and aerospace engineering. Indeed, by means of the DPP
one can characterize the value function of a fully–nonlinear control problem
(including also state/control constraints) as the unique viscosity solution of a
nonlinear Hamilton–Jacobi equation, and, even more important, from the solu-
tion of this equation one can derive the approximation of a feedback control.
This result is the main motivation for the PDE approach to control problems
and represents the main advantage over other methods, such as those based on
the Pontryagin minimum principle. It is worth to mention that the characteriza-
tion via the Pontryagin principle gives only necessary conditions for the optimal
trajectory and optimal open-loop control. Although from the numerical point of
view the control system can be solved via shooting methods for the associated
two point boundary value problem, in real applications a good initial guess for
the co-state is particularly difficult and often requires a long and tedious trial-
and-error procedure to be found. In any case, it can be interesting to obtain
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a local version of the DP method around a reference trajectory to improve a
sub-optimal strategy. The reference trajectory can be obtained via the Pontrya-
gin principle (with open-loop controls), via a Model Predictive Control (MPC)
approach (using feedback sub-optimal controls) or simply via the already known
engineering experience. The application of DP in an appropriate neighborhood
of the reference trajectory will not guarantee the global optimality of the new
feedback controls but could improve the result within the given constraints.

In this paper we focus our attention on the coupling between the MPC ap-
proach and the DP method. Although this coupling can be applied to rather
general nonlinear control problems governed by ordinary differential equations
we present the main ideas of this approach using the infinite horizon optimal
control, which is associated to the following Hamilton-Jacobi-Bellman equation:

λv(x) + max
u∈U
{−f(x, u) ·Dv(x)− `(x, u)} = 0, for x ∈ Rd .

For numerical purposes, the equation is solved in a bounded domain Ω ⊂ Rd,
so that also boundary conditions on ∂Ω are needed. A rather standard choice
when one does not have additional information on the solution is to impose state
constraints boundary conditions. It is clear that the domain Ω should be large
enough in order to contain as much information as possible. It is, in general,
computed without any information about the optimal trajectory. Here we con-
struct the domain Ω around a reference trajectory obtained by a fast solution
with a Model Predictive Control (MPC). MPC is a receding horizon method
which allows to compute optimal solution for a given initial condition by solving
iteratively a finite horizon open-loop problem (see [5, 7]).

2 A local version of DP via MPC models

Let us present the method for the classical infinite horizon problem. Let the
controlled dynamics be given by{

ẏ(t) = f(y(t), u(t)), t > 0
y(0) = x

(1)

where y ∈ Rd, u ∈ Rm and u ∈ U ≡ {u : R+ → U, measurable}. If f is Lipschitz
continuous with respect to the state variable and continuous with respect to
(x, u), the classical assumptions for the existence and uniqueness result for the
Cauchy problem (1) are satisfied. To be more precise, the Carathéodory theo-
rem (see [2]) implies that for any given control u(·) ∈ U there exists a unique
trajectory y(·;u) satisfying (1) almost everywhere. Changing the control policy
the trajectory will change and we will have a family of infinitely many solutions
of the controlled system (1) parametrized with respect to the control u.
Let us introduce the cost functional J : U → R which will be used to select the
optimal trajectory. For the infinite horizon problem the cost functional is

Jx(u(·)) =

∫ ∞
0

`(y(s), u(s))e−λsds , (2)
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where ` is Lipschitz continuous in both arguments and λ > 0 is a given parame-
ter. The function ` represents the running cost and λ is the discount factor which
allows to compare the costs at different times rescaling the costs at time 0. From
the technical point of view, the presence of the discount factor guarantees that
the integral is finite whenever ` is bounded, i.e. ||`||∞ ≤ M`. In this section we
will summarize the basic results for the two methods as they are the building
blocks for our new method.

2.1 Hamilton–Jacobi–Bellman equations

The essential features will be briefly sketched, and more details in the framework
of viscosity solutions can be found in [2, 4].
Let us define the value function of the problem as

v(x) = inf
u(·)∈U

Jx(u(·)) . (3)

It is well known that passing to the limit in the Dynamic Programming Principle
one can obtain a characterization of the value function in terms of the following
first order non linear Bellman equation

λv(x) + max
u∈U
{−f(x, u) ·Dv(x)− `(x, u)} = 0, for x ∈ Rd . (4)

Several approximation schemes on a fixed grid G have been proposed for (4).
To simplify the presentation, let us consider a uniform structured grid with
constant space step k := ∆x. We will use a semi-Lagrangian method based on
a Discrete Time Dynamic Programming Principle, a first discretization in time
of the original control problem leads to a characterization of the corresponding
value function vh (for the time step h := ∆t) as

vh(x) = min
u∈U
{e−λhvh (x+ hf (x, u)) + h` (x, u)}. (5)

Then, we have to project on the grid and reconstruct the value vh (x+ hf (x, u))
by interpolation (for example by a linear interpolation). Finally, we obtain the
following fixed point formulation of the DP equation

w(xi) = min
u∈U
{e−λhw (xi + hf (xi, u)) + h` (xi, u)}, for xi ∈ G, (6)

where w(xi) = vh,k(xi) is the approximation of the value function at the node xi.
Under appropriate assumptions, vh,k converges to v(x) when (∆t,∆x) goes to 0
(precise a-priori-estimates are available, e.g. [3] for more details). This method is
referred in the literature as the value iteration method because, starting from an
initial guess for the value function, it modifies the values on the grid according
to the foot of the characteristics. It is well-known that the convergence of the
value iteration can be very slow, since the contraction constant e−λ∆t is close
to 1 when ∆t is close to 0. This means that a higher accuracy will also require
more iterations. Then, there is a need for an acceleration technique in order
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to cut the link between accuracy and complexity of the value iteration. One
possible choice is the iteration in the policy space or the coupling between value
iteration and the policy iteration in [1]. We refer the interested reader to the
book [4] for a complete guide on the numerical approximation of the equation
and the reference therein. One of the strength of this method is that it provides
the feedback control once the value function is computed (and the feedback
is computed at every node even in the fixed point iteration). In fact, we can
characterize the optimal feedback control everywhere in Ω

u∗(x) = arg min
u∈U
{−f(x, u) ·Dv(x)− `(x, u)}, x ∈ Ω,

where Dv is an approximation of the value function obtained by the values at
the nodes.

2.2 Model Predictive Control

Nonlinear model predictive control (NMPC) is an optimization based method
for the feedback control of nonlinear systems. It consists on solving iteratively
a finite horizon open loop optimal control problem subject to system dynamics
and constraints involving states and controls.
The infinite horizon problem, described at the beginning of Section 2, turns out
to be computationally unfeasible for the open-loop approach therefore we solve
a sequence of finite horizon problems. In order to formulate the algorithm we
need to introduce the finite horizon cost functional:

JNy0(u(·)) =

∫ tN0

t0

`(y(s), u(s))e−λsds

where N is a natural number, tN0 = t0 +N∆t is the final time, N∆t denotes the
length of the prediction horizon for the chosen time step ∆t > 0 and the state y
solves ẏ(t) = f(y(t), u(t)), y(t0) = y0, t ∈ [t0, t

N
0 ) and is denoted by y(·, t0;u(·)).

We also note that y0 = x at t = 0 as in equation (1).
The basic idea of NMPC algorithm is summarized at the end of sub-section.

The method works as follows: we store the optimal control on the first subin-
terval [t0, t0 + ∆t] together with the associated optimal trajectory. Then, we
initialize a new finite horizon optimal control problem whose initial condition
is given by the optimal trajectory y(t) = y(t; t0, u

N (t)) at t = t0 + ∆t using
the sub-optimal control uN (t) for t ∈ (t0, t0 + ∆t]. We iterate this process by
setting t0 = t0 + ∆t. Note that (7) is an open loop problem on a finite time
horizon [t0, t0 +N∆t] which can be treated by classical techniques, see e.g. [6].
The interested reader can find in [5] a detailed presentation of the method and
a long list of references.

In general, the larger the prediction horizon, the better the feedback law one
can obtain. However, one is interested in short prediction horizons (or even
horizon of minimal length) while guaranteeing stabilization properties of the
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MPC scheme (see [5]). The computation of this minimal horizon is related to a
relaxed dynamic programming principle in terms of the value function for the
finite horizon problem (7).

Start: choose ∆t > 0, N ∈ N, λ > 0.
for n = 0, 1, 2, . . .
Step 1: Compute the state y(tn) of the system at tn = n∆t,
Step 2: Set t0 = tn = n∆t, y0 = y(tn) and compute a global solution,

uN (t) := arg min
u∈U

JNy0(u(t0)). (7)

Step 3: Define the MPC feedback value uN (t), t ∈ (t0, t0 +∆t] and use

this control to compute the associated state y = y(t; t0, u
N (t)) by solving

the dynamical system in (1) on [t0, t0 +∆t].
end for

end

2.3 Coupling MPC with Bellman Equations

The idea behind the coupling is to combine the advantages from both methods
as follows. Let us assume that we are interested only on the approximation of
the control problem for a given initial condition x and we would like to use the
knowledge of the value function. First of all we have to select a domain where
we are going to compute the approximate value function.

The idea of MPC is to compute optimal solution starting by a given initial
condition whereas the knowledge of the value function allows the reconstruction
of feedback control for any initial condition in the domain Ω. For this reason
MPC can give a quick and reasonable reference trajectory yMPC in order to
build the domain Ωρ centered around it. The choice of the prediction horizon
N here is crucial, we will assume to select a short prediction horizon in order to
have a fast approximation of the initial guess and then build Ωρ where we are
going to apply the DP approach. It is clear that MPC may provide inaccurate
solutions due to this choice but it is relevant to have some rough information
about the trajectory and we set the HJB equation in a tube around yMPC . The
tube is defined as

Ωρ := {x ∈ Ω : dist(x, yMPC) ≤ ρ} (8)

and is computed via the eikonal equation, i.e. we solve the Dirichlet problem

|∇v(x)| = 1, x ∈ RN\T , with v(x) = 0, x ∈ T (9)

where T = yMPC is our target. We just want to mention that for that equation
several fast methods (Fast Marching [8] and Fast Sweeping [9] )have been pro-
posed so that this step can be solved very efficiently (we refer to [4] for details on
the weak solutions of the eikonal equation and their numerical approximations).

Solving the eikonal equation (9) (in the viscosity sense) we obtain the dis-
tance function from the target. Then, we choose a radius ρ > 0 in order to build
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the tube Ωρ. In this way the domain of the HJB is not built by scratch but takes
into account some information on the controlled system. To localize the solution
in the tube we impose state constraints boundary conditions on ∂Ωρ penalizing
in the scheme (6) the points outside the domain. It is clear that a larger ρ will
allow for a better approximation of the value function but at the same time
enlarging ρ we will lose the localization around our trajectory increasing the
number of nodes (and the CPU time). Finally, we compute the optimal feedback
from the value function computed and the corresponding optimal trajectories in
Ωρ The algorithm is summarized below:

Start: Inizialization

Step 1: Solve MPC and compute yMPC
x for a given initial condition x

Step 2: Compute the distance from yMPC
x via the Eikonal equation

Step 3: Select the tube Ωρ with distance ρ with respect to yMPC
x

Step 4: Compute the constrained value function vtube in Ωρ via HJB

Step 5: Compute the optimal feedbacks and trajectory using vtube.
End

3 Numerical tests

In this section we present two numerical tests for the infinite horizon problem to
illustrate the performances of the proposed algorithm. However, the localization
procedure can be applied to more general optimal control problems.
All the numerical simulations have been made on a MacBook Pro with 1 CPU
Intel Core i5 2.4 Ghz and 8GB RAM. The codes used for the simulations are
written in Matlab. The routine for the approximation of MPC is provided in [5].

Test 1: 2D Linear Dynamics Let us consider the following controlled dynamics:{
ẏ(t) = u(t) t ∈ [0, T ]
y(0) = x

(10)

where u = (u1, u2) is the control, y : [0, T ] → R2 is the dynamic and x is the
initial condition. The cost functional we want to minimize is:

Jx(u) :=

∫ ∞
0

min{y(t;u)2, (y(t;u)− y2)2 − 1}e−λt dt (11)

where λ > 0 is the discount factor.
In this example, the running cost has two local minima: in y1 = (0, 0) and
in y2 = (2, 2) (where the running cost is −1). Note that we have included a
discount factor λ, which guarantees the integrability of the cost functional Jx(u)
and the existence and uniqueness of the viscosity solution. The main task of the
discount factor is to penalize long prediction horizons. Since we want to make
a comparison we introduce it also in the setting of MPC, although this is not a
standard choice. As we mentioned, MPC will just provide a first guess which is
used to define the domain where we are solving the HJB equation.
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In this test the chosen parameters are: u ∈ [−1, 1]2, ρ = 0.2, Ω = [−4, 6]2,
∆tMPC = 0.05 = ∆tHJB ,∆xHJB = 0.025,∆τ = 0.01 (the time step to integrate
the trajectories). In particular, we focus on λ = 0.1 and λ = 1. The number of
controls are 212 for the value function and 32 for the trajectories. Note that
the time step used in the HJB approach for the approximation of the trajectory
(∆τ) is smaller than the one used for MPC: this is because with MPC we want
to have a rough and quick approximation of the solution. In Figure 1, we show
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Fig. 1. Test 1: MPC solver with λ = 0.1 (left) and λ = 1 (right)

the results of MPC with λ = 0.1 on the left and λ = 1 on the right. As one can
see, none of them is an accurate solution. In the first case, the solution goes to
the local minimum (0, 0) and is trapped there, whereas when we increase λ the
optimal solution does not stop at the global minimum y2. On the other hand
these two approximations help us to localize the behavior of the optimal solution
in order to apply the Bellman equation in a reference domain Ωρ.
In Figure 2, we show the contour lines of value function in the whole interval
Ω for λ = 1 and the corresponding value function in Ωρ. Finally, the optimal
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Fig. 2. Test 1: Contour lines of the value function in the tube Ωρ (left) and in Ω (right).
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trajectories for λ = 1 are shown in Figure 3. On the right we propose the optimal
solution obtained by the approximation of the value function in Ω whereas, on
the left we can see the first approximation of the MPC solver (dotted line), the
tube (solid lines) and the optimal solution via Bellman equation (dashed line).
As you can see in the pictures the solutions provided from the DP approach in Ω
and Ωρ are able to reach the global desired minimum y2. In Table 1, we present
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Fig. 3. Test 1: Optimal trajectory via MPC (dotted line) and via HJB (dashed line)
in the tube (solid lines) (left), optimal trajectory via HJB in Ω (right).

λ = 1 MPC N=5 HJB in Ωρ HJB in Ω

CPU 16s 239s 638s

Jx(u) 5.41 5.33 5.3

Table 1. A comparison of CPU time(seconds) and values of the cost functional.

the CPU time and the evaluation of the cost functional for different tests. As
far as the CPU time is concerned, in the fourth column we show the global time
needed to get the approximation of the value function in the whole domain and
the time to obtain the optimal trajectory, whereas in the third column there is
global time needed to compute the trajectory obtained via MPC, to build the
tube, to compute the value function in the reduced domain and to compute the
optimal trajectory. As we expected, the value of the cost functional is lower when
we compute the value function in the whole domain (just because Ωρ ⊂ Ω). It is
important to note that the approximation in Ωρ guarantees a reduction of the
CPU time of the 62.5%.



Coupling MPC and DP methods for oprimal control problems 9

Test 2: Van der Pol dynamics. In this test we consider the two-dimensional
nonlinear system dynamics given by the Van Der Pol oscillator: ẋ(t) = y(t)

ẏ(t) = (1− x(t)2)y(t)− x(t) + u(t)
x(0) = x0, y(0) = y0.

(12)

The cost functional we want to minimize with respect to u is:

Jx(u) :=

∫ ∞
0

(x2 + y2)e−λt dt. (13)

We are dealing with a standard tracking problem where the state we want to
reach is the origin. The chosen parameters are: λ = {0.1, 1}, u ∈ [−1, 1], ρ = 0.4,
Ω = [−6, 6]2, ∆tMPC = 0.05 = ∆tHJB , ∆xHJB = 0.025, ∆τ = 0.01, x0 = −3,
y0 = 2. We took 21 controls for the approximation of the value function and 3
for the optimal trajectory. In Figure 4, we present the optimal trajectory: on the
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Fig. 4. Test 2: Optimal trajectory via MPC (dotted line) and via HJB (dashed line)
in the tube Ωρ (left) and in Ω (right) for λ = 0.1.

right, the one obtained solving the HJB equation in the whole domain, on the
left, the one obtained applying the algorithm we propose.
In Table 2 we present the CPU time and the evaluation of the cost functional

with λ = 0.1 and λ = 1. In both case we can observe that the algorithm we
popose is faster than solving HJB in the whole domain and the cost functional
provides a value which improves the one obtained with the MPC algorithm.

4 Conclusions

We have proposed a local version of the dynamic programming approach for
the solution of the infinite horizon problem showing that the coupling between
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λ = 0.1 MPC N=10 HJB in Ωρ HJB in Ω

CPU 79s 155s 228s

Jx(u) 14.31 13.13 12.41

λ = 1 MPC N=10 HJB in Ωρ HJB in Ω

CPU 23s 49s 63s

Jx(u) 6.45 6.09 6.07

Table 2. Test 2: A comparison of CPU time (seconds) and values of the cost functional
for λ = {0.1, 1}.

MPC and DP methods can produce rather accurate results. The coupling im-
proves the original guess obtained by the MPC method and allows to save mem-
ory allocations and CPU time with respect to the global solution computed via
Hamilton-Jacobi equations. An extension of this approach to other classical con-
trol problems and more technical details on the choice of the parameters λ and
ρ will be given in a future paper.
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