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Abstract

We introduce the funnel observer as a novel and simple adaptive observer of “high-gain type”. We show that this observer is feasible
for a large class of nonlinear systems described by functional differential equations which have a known strict relative degree, the
internal dynamics map bounded signals to bounded signals, and the operators involved are sufficiently smooth. Apart from that the
funnel observer does not need specific knowledge of the system parameters, and we show that it guarantees prescribed transient
behavior of the observation error. We compare the funnel observer to existing (adaptive) high-gain observers and illustrate it by
a simulation of a bioreactor model. As an application in feedback control, a cascade of funnel observers is exploited to obtain
an artificial output with explicitly known derivatives which tracks the system output with prescribed transient behavior. In some
important cases the interconnection of the system with the observer cascade is shown to have stable internal dynamics.

Keywords: nonlinear systems; funnel observer; observer design; high-gain observer; feedback control; internal dynamics.

Nomenclature:
R≥0 = [0,∞)
C− = { λ ∈ C | Reλ < 0 }
Gln(R) the group of invertible matrices in Rn×n

σ(A) the spectrum of A ∈ Rn×n

L ∞
loc(I→Rn) the set of locally essentially bounded func-

tions f : I→Rn, I ⊆ R an interval
L ∞(I→Rn) the set of essentially bounded functions f :

I→Rn with norm
∥ f∥∞ = ess supt∈I∥ f (t)∥
W k,∞(I→Rn) the set of k-times weakly differentiable

functions f : I→Rn such that f , . . . , f (k) ∈
L ∞(I→Rn)

C k(I→Rn) the set of k-times continuously differen-
tiable functions f : I→Rn

C (I→Rn) = C 0(I→Rn)
f |J restriction of the function f : I→Rn to J ⊆ I

1. Introduction

In the present paper we propose a novel and simple adaptive
observer of “high-gain type”, the funnel observer. The high-
gain parameter is determined adaptively online such that the
observer output error satisfies a prescribed transient behavior.

High-gain observers have been developed around 30 years
ago in the works [7, 22, 24, 28], see also [1] and the recent
survey [21]. Choosing the observer gain k large enough, the
observer error can be made arbitrarily small, see e.g. [29]. The
advantage of high-gain observers is that they can be used to es-
timate the system states without knowing the exact parameters
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(in contrast to observer synthesis, see e.g. [5, 6] and the ref-
erences therein); only some structural assumptions, such as a
known relative degree, are necessary. Furthermore, they are ro-
bust with respect to input noise. The drawback is that in most
cases it is not known a priori how large k must be chosen and ap-
propriate values must be identified by offline simulations. If k
is chosen unnecessarily large, the sensitivity to measurement
noise increases dramatically.

In order to resolve these problems, the constant high-gain
parameter k has been replaced by an adaptation scheme in [3].
The gain k(t) is determined by a differential equation depend-
ing on the observation error. This leads to a monotonically in-
creasing k(t) as long as the observation error lies outside a pre-
defined λ -strip [−λ ,λ ], and it stops increasing as soon as the
error enters the strip. The advantage of this observer is that k(t)
is adapted online to the actual needed value, which also leads to
lower high-gain parameters in general. However, k(t) is mono-
tonically non-decreasing and hence susceptible to unwarranted
increase due to perturbations to the system. Furthermore, while
convergence of the observation error to the λ -strip is guaran-
teed, its transient behavior cannot be influenced.

Another high-gain observer with gain adaptation law is pro-
posed in [25]. Compared to [3] it resolves the drawback of
monotonically non-decreasing gain, however a certain condi-
tion on the system is necessary which either requires exact
knowledge of the high-gain parameter of the system or bound-
edness of the input u(t). Furthermore, the adaptation law in [25]
is not able to influence the transient behavior of the observation
error, but only its mean value.

To resolve the above mentioned issues we introduce the fol-
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lowing funnel observer:

ż1(t) = z2(t)+
(
q1 + p1k(t)

)
(y(t)− z1(t)),

ż2(t) = z3(t)+
(
q2 + p2k(t)

)
(y(t)− z1(t)),

...

żr−1(t) = zr(t)+
(
qr−1 + pr−1k(t)

)
(y(t)− z1(t)),

żr(t) = Γ̃u(t)+
(
qr + prk(t)

)
(y(t)− z1(t)),

k(t) =
1

1−φ(t)2∥y(t)− z1(t)∥2 ,

(1)

where the design parameters pi > 0, qi > 0, Γ̃ ∈ Rm×m and the
function φ : R≥0 → R≥0 are explained in detail in Section 3.

We like to emphasize that:

• The proposed adaptation scheme for k(t) is simple, non-
dynamic, and non-monotone,

• it guarantees prescribed transient behavior of the obser-
vation error, and

• has typical advantages of high-gain observers like no spe-
cific knowledge of system parameters required and excel-
lent robustness properties.

To illustrate the observer (1) we consider, as a prototype,
the following minimum-phase linear time-invariant system

ẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t)
(2)

with strict relative degree r ∈ N, i.e., A ∈ Rn×n, B ∈ Rn×m and
C ∈ Rm×n with the properties:

(A1) rkC

[
λ I −A B

C 0

]
= n+m for all λ ∈ C with Reλ ≥ 0;

(A2) CB =CAB = . . .=CAr−2B = 0 and CAr−1B ∈ Glm(R).

Condition (A1) characterizes the minimum-phase assumption
and condition (A2) the strict relative degree.

We will show in Theorem 4.1 that for any solution (x,u,y)
of the system (2) such that y, . . . ,y(r−1) are bounded, the funnel
observer (1) has an absolutely continuous and bounded solution
(z1, . . . ,zr) such that k is bounded and

∃ε > 0 ∀ t > 0 : ∥y(t)− z1(t)∥< φ(t)−1 − ε. (3)

We stress that condition (3) means prescribed transient be-
havior of the observation error e1(t) := y(t)− z1(t) in the sense
that it is pointwise below a given funnel function 1/φ , see Fig-
ure 1. To achieve this, the observer gain will be increased when-
ever ∥e1(t)∥ approaches the funnel boundary. High values of
the gain function lead to a faster decay of the observation error.

The funnel observer is not limited to linear systems (2). We
show that the funnel observer (1) is feasible for a large class
of nonlinear systems described by functional differential equa-
tions which satisfy that

t

φ(t)−1
∥e1(t)∥

Figure 1: Observation error and funnel function

(i) the system has known strict relative degree r,

(ii) the internal dynamics map bounded signals to bounded
signals,

(iii) the operators involved are sufficiently smooth to guaran-
tee local maximal existence of solutions.

We exploit the funnel observer for feedback control. While
a drawback of (1) is that the transient behavior of the deriva-
tives of e1 cannot be influenced, the derivative of z1 is known
explicitly. We show that an application of a cascade of funnel
observers yields

• an estimate z for the output y with prescribed transient
behavior and

• the derivatives ż, . . . ,z(r−1) are known explicitly.

Furthermore, we investigate the internal dynamics of the inter-
connection of the system with the observer cascade. We show
that for a special class of systems with stable internal dynamics,
this interconnection has again stable internal dynamics. How-
ever, this result is limited to systems with relative degree two or
three; for higher relative degree it remains an open problem.

The present paper is organized as follows: In Section 2 we
specify the considered system class and discuss several impor-
tant subclasses. The funnel observer is introduced in Section 3
and feasibility is proved in Section 4. A simulation of the funnel
observer for a bioreactor model is provided in Section 5 and the
results are compared to the simulation in [3]. Applications in
feedback control are discussed in Section 6. Some conclusions
are given in Section 7.

2. System Class

In the present paper we consider a large class of nonlin-
ear systems described by functional differential equations of the
form

y(r)(t) = f
(
d(t),T (y, ẏ, . . . ,y(r−1))(t)

)
+Γ
(
d(t),T (y, ẏ, . . . ,y(r−1))(t)

)
u(t),

y|[−h,0] = y0 ∈ W r−1,∞([−h,0]→ Rm),

(4)

where h > 0 is the “memory” of the system, r ∈ N is the strict
relative degree, and
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• d ∈ L ∞(R≥0 → Rp), p ∈ N, is a disturbance;

• f ∈ C (Rp ×Rq → Rm), q ∈ N;

• Γ ∈ C 1(Rp ×Rq → Glm(R)) is the high-frequency gain
matrix function;

• T : C ([−h,∞)→Rm)r →L ∞
loc(R≥0 →Rq) is an operator

with the following properties:

a) T maps bounded trajectories to bounded trajectories,
i.e., for all c1 > 0 there exists c2 > 0 such that for all
ζ ∈ C ([−h,∞)→ Rm)r :

sup
t∈[−h,∞)

∥ζ (t)∥ ≤ c1 =⇒ sup
t∈[0,∞)

∥T (ζ )(t)∥ ≤ c2;

b) T is causal, i.e., for all t ≥ 0 and all ζ ,ξ ∈
C ([−h,∞)→ Rm)r:

ζ |[−h,t) = ξ |[−h,t) =⇒ T (ζ )|[0,t]
a.e.
= T (ξ )|[0,t] ;

c) T is “locally Lipschitz” continuous in the following
sense: for all t ≥ 0 there exist τ,δ ,c > 0 such that for
all ζ ,∆ζ ∈C ([−h,∞)→Rm)r with ∆ζ |[−h,t] = 0 and
∥ ∆ζ |[t,t+τ] ∥∞ < δ we have∥∥∥(T (ζ +∆ζ )−T (ζ )

)∣∣
[t,t+τ]

∥∥∥
∞
≤ c∥ ∆ζ |[t,t+τ] ∥∞.

• for every bounded ζ ∈ C ([−h,∞)→ Rm)r the map

ψ : R≥0 → Glm(R), t 7→ Γ
(
d(t),T (ζ )(t)

)−1 (5)

is continuously differentiable and d
dt ψ is bounded.

The functions u : R≥0 → Rm and y : [−h,∞) → Rm are
called input and output of the system (4), respectively. For fixed
u ∈ L ∞

loc(R≥0 →Rm) we call y ∈ C r−1([−h,ω)→Rm) a solu-
tion of (4) on [−h,ω), ω ∈ (0,∞], if y|[−h,0] = y0 and y(r−1)|[0,ω)

is absolutely continuous and satisfies the differential equation
in (4) for almost all t ∈ [0,ω); y is called maximal, if it has
no right extension that is also a solution. Existence of maxi-
mal solutions of (4) for every y0 ∈ W r−1,∞([−h,0]→ Rm) and
every u ∈ L ∞

loc(R≥0 → Rm) is guaranteed by [14, Thm. 5]; if
y, ẏ, . . . ,y(r−1) are bounded, then ω = ∞.

We stress that in (4) we consider systems with the same
number of inputs and outputs. A generalization to u :R≥0 →Rµ

with µ ≤ m is possible, provided we require for Γ ∈ C 1(Rp ×
Rq → Rm×µ) that Γ(d,w) has full column rank for all d ∈ Rp

and all w∈Rq. Then we may use the pseudoinverse of Γ instead
of the inverse in the subsequent considerations.

In the case of relative degree one, i.e., r = 1, systems sim-
ilar to (4) are well studied, see [13, 14, 17, 23]. For relative
degree two systems see [10], and for higher relative degree
see [16]. In the aforementioned references it is shown that the
class of systems (4) encompasses linear and nonlinear systems
with existing strict relative degree and exponentially stable in-
ternal dynamics (zero dynamics in the linear case) and the oper-
ator T allows for infinite-dimensional linear systems, systems

with hysteretic effects or nonlinear delay elements, input-to-
state stable systems, and combinations thereof. Compared to
these works we have added the condition of boundedness of ψ̇
as in (5) which ensures an input-independent formulation of the
observer error dynamics.

Important subclasses of the systems (4) are linear sys-
tems (2) with (A1) and (A2) and infinite-dimensional linear
systems (2), where for some real Hilbert space X , the linear
operator A : D(A) ⊆ X → X is the generator of a strongly con-
tinuous semigroup, and B : Rm → X , C : X →Rm are linear and
bounded. In this case, we further need to assume:

• The zero dynamics of (2) are exponentially stable, that
is, there exist M,ω > 0 such that for all solutions of
ẋ = Ax + Bu with Cx = 0 we have ∥x(t)∥X + ∥u(t)∥ ≤
M∥x(0)∥X e−ωt for all t ≥ 0;

• imB ⊆ D(Ar), imC∗ ⊆ D((A∗)r), CB = CAB = . . . =
CAr−2B = 0 and CAr−1B ∈ Glm(R).

We note that, in the finite-dimensional case, exponential sta-
bility of the zero dynamics is equivalent to the system being
minimum-phase. It was shown in [18] that this class allows
the transformation into a Byrnes-Isidori form, and it can then
be shown that it belongs to the class (4) by a straightforward
argument.

We have a closer look at nonlinear systems: Consider the
nonlinear input-affine system

ẋ(t) = f
(
x(t)
)
+g
(
x(t)
)
u(t),

y(t) = h
(
x(t)
) (6)

with f ∈ C (Rn → Rn), g ∈ C (Rn → Rn×m) and h ∈ C (Rn →
Rm). We assume that there exists a global diffeomor-
phism χ : Rn → Rn such that the coordinate transforma-
tion [x1(t)⊤, . . . ,xr(t)⊤,η(t)⊤]⊤ = χ

(
x(t)
)

transforms (6) into
input-normalized Byrnes-Isidori form (see e.g. [19]):

ẋ1(t) = x2(t),
...

ẋr−1(t) = xr(t),

ẋr(t) = g1(x̂(t),η(t))+g2(x̂(t),η(t))u(t),

η̇(t) = g3(x̂(t),η(t)),

y(t) = x1(t),

with x̂(t) = [x1(t)⊤, . . . ,xr(t)⊤]⊤, where g1 ∈ C (Rn → Rm),
g3 ∈ C 1(Rn → Rn−rm) and g2 ∈ C 1(Rn → Glm(R)); the lat-
ter means that the system has (global) strict relative degree r.
We assume that

∂g2(·)−1

∂xr
g2(·) = 0. (7)

For fixed x̂ ∈ C (R≥0 → Rrm) and η0 ∈ Rn−rm we denote the
unique maximal solution of the initial value problem

η̇(t) = g3(x̂(t),η(t)), η(0) = η0
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by η(· ;η0, x̂) : [0,ω)→ Rn−rm, ω ∈ (0,∞]. Similar to [14] we
assume that there exists κ ∈ C (R≥0 → R≥0) and c > 0 such
that for all x̂ ∈ C (R≥0 → Rrm) and all t ∈ [0,ω) we have

∥η(t;η0, x̂)∥ ≤ c
(

1+ max
s∈[0,t]

κ(∥x̂(s)∥)
)

; (8)

this condition in particular implies ω = ∞. Condition (8) on
the internal dynamics of (6) resembles Sontag’s [27] input-to-
state stability, but in fact it is weaker. To show that systems (6)
satisfying the above properties belong to the class (4) we set

T (y, . . . ,y(r−1))(t)

:=
(
y(t)⊤, . . . ,y(r−1)(t)⊤,η(t;η0,y, . . . ,y(r−1))⊤

)⊤
and calculate that

y(r)(t) = g1
(
T (y, . . . ,y(r−1))(t)

)
+g2

(
T (y, . . . ,y(r−1))(t)

)
u(t),

which is of the form (4) with f = g1 and Γ = g2. The opera-
tor T is parameterized by η0 and obviously causal and locally
Lipschitz. Condition (8) implies the required bounded-input,
bounded-output property of T , cf. also [14]. To show that ψ̇ as
in (5) is bounded we calculate

d
dt T (x̂)

=
(

ẏ⊤, . . . ,(y(r))⊤, η̇(t;η0, x̂)⊤
)⊤

=
(

ẏ⊤, . . . ,(y(r−1))⊤,
(
g1
(
T (x̂)

)
+g2

(
T (x̂)

)
u
)⊤

,g3
(
T (x̂)

)⊤)⊤
and hence

ψ̇(t) =
∂g2(·)−1

∂T

(
T (x̂)

) d
dt T (x̂)

(7)
=

∂g2(·)−1

∂x1

(
T (x̂)

)
ẏ+ . . .+

∂g2(·)−1

∂xr−1

(
T (x̂)

)
y(r−1)

+
∂g2(·)−1

∂xr

(
T (x̂)

)
g1
(
T (x̂)

)
+

∂g2(·)−1

∂η
(
T (x̂)

)
g3
(
T (x̂)

)
,

which proves the desired condition.
In the aforementioned classes of systems which can be

transformed into a functional differential equation (4), the op-
erator T is basically the solution operator of a differential equa-
tion. We can further consider systems which are of the form (4)
with T being of some more involved nature: For instance, T
may encompass time delays as well as hysteresis. For a detailed
explanation of these classes we refer to [14].

Remark 2.1. It is possible to incorporate a more involved de-
pendence on the input and its derivatives in the system class (4)
by adding a term

g
(
d(t),T (y, ẏ, . . . ,y(r−1))(t),u(t), . . . ,u(k)(t)

)
(9)

to the right-hand side of the differential equation in (4), where
g ∈ C (Rp ×Rq ×R(k+1)m → Rm) and u ∈ L ∞

loc(R≥0 → Rm)
is k-times weakly differentiable. If u is fix and there exist g̃ ∈

C (R(k+1)m → R j) and G ∈ C (Rp ×Rq ×R j → Rm), where g̃
is bounded, such that

g
(
d(t),T (y, ẏ, . . . ,y(r−1))(t),u(t), . . . ,u(k)(t)

)
= G

(
d(t),T (y, ẏ, . . . ,y(r−1))(t), g̃

(
u(t), . . . ,u(k)(t)

))
,

then g̃
(
u(t), . . . ,u(k)(t)

)
can be rewritten as a bounded “dis-

turbance” d̃(t) and hence the system is again of type (4). If
u, . . . ,u(k) are bounded, then this is always possible.

3. Observer Design

In this section we consider the funnel observer (1) as a
new adaptive high-gain observer. Following the methodology
of funnel control, see [14, 12] and the references therein, it
is our aim that the funnel observer (1) achieves that the error
e1 = y− z1 evolves within a prescribed performance funnel

Fφ := { (t,e1) ∈ R≥0 ×Rm | φ(t)∥e1∥< 1 } , (10)

which is determined by a function φ belonging to

Φ :=

φ ∈ C 1(R≥0 → R)

∣∣∣∣∣∣
φ, φ̇ are bounded,
φ(s)> 0 for all s > 0,
and liminfs→∞ φ(s)> 0

 .

Note that the funnel boundary is given by the reciprocal of φ ,
see Figure 2. The case φ(0) = 0 is explicitly allowed and puts
no restriction on the initial value since φ(0)∥e1(0)∥< 1; in this
case the funnel boundary 1/φ has a pole at t = 0.

λ

b

(0,e(0))
φ(t)−1

t

Figure 2: Error evolution in a funnel Fφ with boundary φ(t)−1 for t > 0.

An important property of the funnel class Φ is that each
performance funnel Fφ with φ ∈ Φ is bounded away from
zero, i.e., due to boundedness of φ there exists λ > 0 such that
1/φ(t) ≥ λ for all t > 0. The funnel boundary is not neces-
sarily monotonically decreasing, while in most situations it is
convenient to choose a monotone funnel. However, there are
situations where widening the funnel over some later time in-
terval might be beneficial, e.g., when the output signal changes
strongly or the system is perturbed by some calibration so that
a large observation error would enforce a large observer gain.

The objective is robust estimation of the output y of the sys-
tem (4) and its derivatives ẏ, . . . ,y(r−1) so that the observation
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error e1 = y− z1 evolves within the funnel Fφ and all variables
are bounded. To achieve this objective we consider the funnel
observer (1) for system (4) with initial conditions

zi(0) = z0
i ∈ Rm, i = 1, . . . ,r, (11)

where φ ∈ Φ, Γ̃ ∈ Rm×m and qi > 0, pi > 0 for all i = 1, . . . ,r.
The functions zi :R≥0 →Rm, i= 1, . . . ,r, are the observer states
and k : R≥0 → [1,∞) is the observer gain. The constants qi > 0
are such that the matrix

A =

 −q1 1
...

. . .
−qr−1 1
−qr 0

 ∈ Rr×r

is Hurwitz, i.e., σ(A) ⊆ C−. The constants pi depend on the
choice of the qi in the following way: Let Q = Q⊤ > 0 and

P=

[
P11 P12
P⊤

12 P22

]
, P11 ∈R, P12 ∈R1×(r−1), P22 ∈R(r−1)×(r−1)

be such that

A⊤P+PA+Q = 0, P = P⊤ > 0.

The matrix P depends only on the choice of the constants qi and
the matrix Q. The constants pi must then satisfy

p1
...

pr

= P−1


P11 −P12P−1

22 P⊤
12

0
...
0

=

(
1

−P−1
22 P⊤

12

)
. (12)

This condition guarantees that P defines a quadratic Lyapunov
function for the observer error dynamics.

The funnel observer (1) is different in its structure when
compared to the high-gain observers in [29, 3], where the gain
enters with power ki into the equation for żi. Furthermore, the
constants qi are not present in [29, 3], but we show that they are
important to ensure boundedness of the error dynamics even
when k(t) is small.

Although the observer (1) is a nonlinear and time-varying
system, it is simple in its structure and its dimension depends
only on the relative degree r of the system (4). Apart from
the relative degree, no knowledge of the system (4) is required
for the construction of the funnel observer (1); it only uses
the input signal u(t) and the output signal y(t), see Figure 3.
The bounded-input, bounded-output property of the operator T
in (4) can be exploited for an inherent high-gain property of the
system (4) and hence to maintain error evolution within the fun-
nel: by the design of the observer (1), the gain k(t) increases
if the norm of the error ∥y(t)− z1(t)∥ approaches the funnel
boundary 1/φ(t), and decreases if a high gain is not necessary.

For a sketch of the construction of the funnel observer (1)
see also Figure 4.

System (4)

Funnel Observer

u(t) y(t)

z(t)

Figure 3: Interconnection of system (4) with the funnel observer (1).

4. Properties of the funnel observer

In this section we prove one of the main results of the
present paper: The funnel observer (1), using u(t) and y(t),
provides estimates for all bounded signals y, ẏ, . . . ,y(r−1) of the
system (4) such that y− z1 evolves in a prescribed performance
funnel Fφ and all signals are bounded; this is true for any dis-
turbance d, i.e., the observer is robust. We only consider the
relevant case of strict relative degree r ≥ 2.

Theorem 4.1. Consider a system (4) with r ≥ 2. Let
y0 ∈ W r−1,∞([−h,0] → Rm), u ∈ L ∞

loc(R≥0 → Rm) and
let y ∈ C r−1([−h,∞) → Rm) be a solution of (4) such
that y, ẏ, . . . ,y(r−1) are bounded. Consider the funnel ob-
server (1), (11) with φ ∈ Φ such that

φ(0)∥y(0)− z0
1∥< 1,

Γ̃ ∈ Rm×m and qi > 0, pi > 0 such that (12) is satisfied for cor-
responding matrices A,P,Q.
Then (1), (11) has an absolutely continuous solution z =
(z1, . . . ,zr) ∈ L ∞ (R≥0 → (Rm)r) with k ∈ L ∞(R≥0 → [1,∞))
and

∃ε > 0 ∀ t > 0 : ∥y(t)− z1(t)∥< φ(t)−1 − ε. (13)

Furthermore, using the constants M1 and M2 in the esti-

mates (19) and (20), resp., with M =
√

M2
1 +M2

2 we have

limsup
t→∞

∥e(t)∥ ≤ 4M λmax(P)2

λmin(Q)λmin(P)
. (14)

Here λmax(P) denotes the largest eigenvalue of the positive def-
inite matrix P, and λmin(P) denotes its smallest eigenvalue.

Proof. We proceed in several steps.
Step 1: We show existence of a local solution of (1), (11).

Set D := { (t,e1, . . . ,er) ∈ R≥0 × (Rm)r | φ(t)∥e1∥< 1 } and

Y := (y, ẏ, . . . ,y(r−1)),

F(t,Y ) := Γ
(
d(t),T (Y )(t)

)−1 f
(
d(t),T (Y )(t)

)
+
(

d
dt Γ
(
d(t),T (Y )(t)

)−1
)

y(r−1)(t),

G(t,Y ) := (I − Γ̃Γ
(
d(t),T (Y )(t)

)−1
).

Defining
ei := y(i−1)− zi, i = 1, . . . ,r−1

er := Γ̃Γ
(
d,T (Y )

)−1y(r−1)− zr,
(15)
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Choose qi > 0 such that

A =

 −q1 1
...

. . .
−qr−1 1
−qr 0

 is Hurwitz

Choose Q = Q⊤ > 0 and solve

A⊤P+PA+Q = 0, P > 0;

Let P =
[

P11 P12
P⊤

12 P22

]
, P11 ∈ R and set( p1

...
pr

)
=

(
1

−P−1
22 P⊤

12

)

Choose φ ∈ Φ

t

φ(t)−1

Funnel observer:
ż1(t) = z2(t)+

(
q1 + p1k(t)

)
(y(t)− z1(t)),

ż2(t) = z3(t)+
(
q2 + p2k(t)

)
(y(t)− z1(t)),

...

żr−1(t) = zr(t)+
(
qr−1 + pr−1k(t)

)
(y(t)− z1(t)),

żr(t) = Γ̃u(t)+
(
qr + prk(t)

)
(y(t)− z1(t)),

k(t) =
1

1−φ(t)2∥y(t)− z1(t)∥2

Choose Γ̃ ∈ Rm×m

qi

φ

pi Γ̃

Figure 4: Construction of the funnel observer (1) depending on its design parameters.

and invoking r ≥ 2 we find

ė1(t) = e2(t)−
(
q1 + p1k(t)

)
e1(t),

...

ėr−2(t) = er−1(t)−
(
qr−2 + pr−2k(t)

)
e1(t),

ėr−1(t) = er(t)−
(
qr−1 + pr−1k(t)

)
e1(t)+G(t,Y )y(r−1)(t),

ėr(t) =−
(
qr + prk(t)

)
e1(t)+ Γ̃F(t,Y )

(16a)
for

k(t) =
1

1−φ(t)2∥e1(t)∥2 . (16b)

By the existence theorem for ordinary differential equations
(see e.g. [30, § 10, Thm. VI]), there exists a maximal abso-
lutely continuous solution e = (e1, . . . ,er) : [0,ω) → (Rm)r,
ω ∈ (0,∞], of (16) satisfying the initial conditions

ei(0) = y(i−1)(0)− z0
i , i = 1, . . . ,r,

er(0) = Γ̃Γ
(
d(0),T (Y )(0)

)−1y(r−1)(0)− z0
r ,

and (t,e(t)) ∈ D for all t ∈ [0,ω). Furthermore, the closure of
the graph of e, i.e., the set

graph e := { (t,e(t)) | t ∈ [0,ω) },

is not a compact subset of D . Thus, a local solution (z1, . . . ,zr)
of (1), (11) can be reconstructed.

Step 2: We show that e ∈ L ∞ ([0,ω)→ (Rm)r). Recalling
that the Kronecker product of two matrices V ∈ Rl×n and W ∈
Rp×q is given by

V ⊗W =

v11W · · · v1nW
...

...
vl1W · · · vlnW

 ∈ Rl p×nq, (17)

let

Â := A⊗ Im =

 −q1Im Im
...

. . .
−qr−1Im Im
−qrIm 0

 ∈ Rrm×rm,

and

P̂ := P⊗ Im ∈ Rrm×rm, Q̂ = Q⊗ Im ∈ Rrm×rm.

Since the Kronecker product (17) satisfies that, if l = n and
p = q, then

det(V ⊗W ) = (detV )p (detW )l ,

we obtain that

σ(Â) = σ(A), σ(Q̂) = σ(Q), σ(P̂) = σ(P). (18)

Then it follows from A⊤P+PA+Q = 0 that P̂ = P̂⊤ > 0, Q̂ =
Q̂⊤ > 0 and

Â⊤P̂+ P̂Â+ Q̂ = 0.

Since P⊤
12 +P22

( p2
...

pr

)
= 0 we find

P̂

p1Im
...

prIm

=


(P11 −P12P−1

22 P⊤
12)Im

0
...
0

 ,
where P11 −P12P−1

22 P⊤
12 > 0. Observe that we may write (16) in

the form

ė(t) = Âe(t)− k(t)

p1Im
...

prIm

e1(t)+


0
...
0

G(t,Y )y(r−1)(t)
Γ̃F(t,Y )

 .
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By boundedness of Y and the bounded-input, bounded-output
property of T it follows that T (Y ) is bounded, and since d is
bounded and Γ(·)−1 is continuous we further obtain bounded-
ness of Γ

(
d(·),T (Y )(·)

)−1. Hence there exists M1 > 0 such
that

for a.a. t ∈ [0,ω) : ∥G(t,Y )y(r−1)(t)∥ ≤ M1. (19)

Since f is continuous we have that f
(
d(·),T (Y )(·)

)
is bounded

on [0,ω). By boundedness of ψ̇ as in (5) we then find M2 > 0
such that

for a.a. t ∈ [0,ω) : ∥Γ̃F(t,Y )∥ ≤ M2. (20)

Let M :=
√

M2
1 +M2

2 . We may now calculate that, for almost
all t ∈ [0,ω),

d
dt e(t)⊤P̂e(t)

= e(t)⊤Â⊤P̂e(t)+ e(t)⊤P̂Âe(t)−2k(t)e(t)⊤P̂

p1Im
...

prIm

e1(t)

+2e(t)⊤P̂


0
...
0

G(t,Y )y(r−1)(t)
Γ̃F(t,Y )



≤−e(t)⊤Q̂e(t)−2k(t)(P11 −P12P−1
22 P⊤

12)∥e1(t)∥2

+2M∥P̂∥∥e(t)∥
≤ −µe(t)⊤P̂e(t)+2M∥P̂∥∥e(t)∥,

where µ = λmin(Q̂)/λmax(P̂). Now let δ ∈
(
0,µλmin(P̂)

)
be

arbitrary and

R =
2M∥P̂∥

δ
.

Then
2M∥P̂∥∥e(t)∥ ≤ δ∥e(t)∥2 +2M∥P̂∥R (21)

provided that ∥e(t)∥ ≤ R, and if ∥e(t)∥> R, then

2M∥P̂∥∥e(t)∥−δ∥e(t)∥2 ≤
(
2M∥P̂∥−δR

)
∥e(t)∥= 0,

and hence (21) is also true in this case. Therefore,

d
dt e(t)⊤P̂e(t)≤

(
−µ +

δ
λmin(P̂)

)
e(t)⊤P̂e(t)+2M∥P̂∥R

for almost all t ∈ [0,ω). Gronwall’s lemma now implies that,
with ν = µ − δ

λmin(P̂)
> 0,

e(t)⊤P̂e(t)≤ e(0)⊤P̂e(0)e−νt +
2M∥P̂∥R

ν
,

and hence

∥e(t)∥2 ≤ λmax(P̂)
λmin(P̂)

e−νt∥e(0)∥2 +
2M∥P̂∥R
νλmin(P̂)

(22)

for all t ∈ [0,ω). Equation (22) in particular implies that e ∈
L ∞ ([0,ω)→ (Rm)r).

Step 3: We show that k ∈ L ∞ ([0,ω)→ R). Let κ ∈ (0,ω)
be arbitrary but fixed and λ := inft∈(0,ω) φ(t)−1 > 0. Since φ̇
is bounded and liminft→∞ φ(t)> 0 we find that d

dt φ |[κ,∞) (·)−1

is bounded and hence there exists a Lipschitz bound L > 0 of
φ|[κ,∞) (·)−1. By Step 2, e2 is bounded and we may choose
ε > 0 small enough so that

ε ≤ min
{

λ
2
, inf

t∈(0,κ]
(φ(t)−1 −∥e1(t)∥)

}
and

L ≤− sup
t∈[0,ω)

∥e2(t)∥−M1 +
q1λ

2
+

λ 2

4ε
; (23)

feasibility of this choice is guaranteed by r ≥ 2. We show that

∀ t ∈ (0,ω) : φ(t)−1 −∥e1(t)∥ ≥ ε. (24)

By definition of ε this holds on (0,κ]. Seeking a contradiction
suppose that

∃ t1 ∈ [κ,ω) : φ(t1)−1 −∥e1(t1)∥< ε.

Then for

t0 := max
{

t ∈ [κ, t1)
∣∣ φ(t)−1 −∥e1(t)∥= ε

}
we have for all t ∈ [t0, t1] that

φ(t)−1 −∥e1(t)∥ ≤ ε,

∥e1(t)∥ ≥ φ(t)−1 − ε ≥ λ − ε ≥ λ
2

and

k(t) =
1

1−φ(t)2∥e1(t)∥2 ≥ 1
2εφ(t)

≥ λ
2ε

.

Now we have, for all t ∈ [t0, t1],

1
2

d
dt ∥e1(t)∥2 = e1(t)⊤

(
e2(t)−

(
q1 + p1k(t)

)
e1(t)

+G(t,Y )ẏ(t)
)︸ ︷︷ ︸

if r = 2

≤ −(q1 + p1k(t))∥e1(t)∥2 +

(
sup

t∈[0,ω)

∥e2(t)∥+M1

)
∥e1(t)∥

≤ −
(

q1λ
2

+
λ 2

4ε

)
∥e1(t)∥+

(
sup

t∈[0,ω)

∥e2(t)+M1∥

)
∥e1(t)∥

(23)
≤ −L∥e1(t)∥.

Therefore, using

1
2

d
dt ∥e1(t)∥2 = ∥e1(t)∥ d

dt ∥e1(t)∥,
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and that ∥e1(t)∥> 0 for all t ∈ [t0, t1], we find that

∥e1(t1)∥−∥e1(t0)∥=
∫ t1

t0

1
2
∥e1(t)∥−1 d

dt ∥e1(t)∥2 dt

≤−L(t1 − t0)≤−|φ(t1)−1 −φ(t0)−1|
≤ φ(t1)−1 −φ(t0)−1,

and hence

ε = φ(t0)−1 −∥e1(t0)∥ ≤ φ(t1)−1 −∥e1(t1)∥< ε,

a contradiction. Therefore, (24) holds and this implies bound-
edness of k.

Step 4: We show ω = ∞. Assume that ω < ∞. Then, since e
and k are bounded by Steps 2 and 3, it follows that graph e is
a compact subset of D , a contradiction. Therefore, ω = ∞. In
particular, Steps 3 and 4 imply (13).

Step 5: We show (14). Consider the estimate (22) and
observe that by (18) we have λmin(P̂) = λmin(P), λmax(P̂) =
λmax(P) and λmin(Q̂) = λmin(Q). Furthermore, since P̂ is pos-
itive definite we have ∥P̂∥ = λmax(P̂) = λmax(P). Then (22)
gives

limsup
t→∞

∥e(t)∥ ≤

√
2M λmax(P)R

ν λmin(P)
.

A close look at the δ -dependent expression

R
ν
=

2M λmax(P)

δ
(

µ − δ
λmin(P)

)
reveals that it is minimal for

δ =
µ λmin(P)

2
.

With this choice we obtain

R
ν
=

8M λmax(P)
µ2 λmin(P)

from which the assertion (14) follows.

In [25, Thm. 2.2], using the adaptive high-gain observer
proposed therein, bounds for the mean value of ei are given;
we stress that both the bounds in [25, (14)] and in (14) cannot
be made arbitrarily small in general, they depend on the system
data.

Remark 4.2. If the input u and its first k derivatives are
bounded, then the funnel observer works for an even larger sys-
tem class than (4) and strict relative degree is not required. Con-
sider a system of the form

y(r)(t) = F
(
d0(t),T (y, ẏ, . . . ,y(r−1))(t),u(t), . . . ,u(k)(t)

)
y|[−h,0] = y0 ∈ W r−1,∞([−h,0]→ Rm),

(25)
where F ∈ C (Rp ×Rq ×R(k+1)m → Rm), d0 ∈ L ∞(R≥0 →
Rp), u ∈ W k,∞(R≥0 → Rm) and T : C ([−h,∞) → Rm)r →

L ∞
loc(R≥0 →Rq) is an operator with the properties as discussed

in Section 2. It is then possible to reformulate (25) as a sys-
tem of the form (4). To this end, let d1 :=

(
u⊤, . . . ,(u(k))⊤

)⊤,
d2 := u, d :=

(
d⊤

0 ,d⊤
1 ,d⊤

2 )⊤ ∈L ∞(R≥0 →Rp×Rm×R(k+1)m)
and

f :Rp×Rm×R(k+1)m×Rq, (d0,d1,d2,T ) 7→ F(d0,T,d1)−d2.

Then (25) is equivalent to

y(r)(t) = f
(
d(t),T (y, ẏ, . . . ,y(r−1))(t)

)
+u(t),

i.e., it is of the form (4) with Γ ≡ Im and in particular the condi-
tion of bounded ψ̇ as in(5) is always satisfied.

Furthermore, exact knowledge of the number r of deriva-
tives of y involved in (25) (the relative degree in case of (4))
is not required for feasibility of the funnel observer. Only an
upper bound ρ ∈ N is required, i.e., r ≤ ρ . If y, . . . ,y(ρ) are
bounded, then the funnel observer (1) (with r = ρ in (1)) works
for (25) in the sense of Theorem 4.1. To see this, the proof of
Theorem (4.1) has to be recapitulated with the new observation
errors ei := y(i−1)− zi for i = 1, . . . ,ρ .

Remark 4.3. We consider two special cases for (4) and the
funnel observer (1), and the resulting estimate (14).

(i) Γ̃ = 0. A careful inspection of the proof of Theorem 4.1
reveals that in this case the condition of bounded ψ̇ is
superfluous. Furthermore, M1 in (19) can be chosen as
M1 = ∥y(r−1)∥∞ and M2 = 0 in (20). Therefore, we find
that M = ∥y(r−1)∥∞ in (14). Note that the choice of Γ̃ is
independent of (4).

(ii) Γ̃=Γ∈Glm(R) and f = 0. This means to assume that (4)
is of the very special form y(r)(t) = Γu(t) and we have
exact knowledge of the invertible matrix Γ. Then M1 =
M2 = 0 in (19) and (20), resp., and hence M = 0 in (14).
In particular, this implies that e(t)→ 0 and k(t)→ 1 for
t → ∞.

Remark 4.4. If the output of the system (4) is subject to mea-
surement noise, i.e., the funnel observer (1) receives y+ n in-
stead of y, where n ∈ C r([−h,∞)→ Rm) and its first r deriva-
tives are bounded, then the funnel observer achieves that

∀ t > 0 : φ(t)∥y(t)+n(t)− z1(t)∥< 1,

which implies

∀ t > 0 :
φ(t)

1+φ(t)∥n(t)∥
∥y(t)− z1(t)∥< 1,

i.e., y− z1 evolves in the funnel Fψ , where ψ = φ(t)
1+φ(t)∥n(t)∥ . If

an upper bound for n is known, say ∥n(t)∥ ≤ ν for all t ≥ 0,
then

∀ t > 0 : ∥y(t)− z1(t)∥< φ(t)−1 +ν.

Hence, the actual error remains in the wider funnel obtained
by adding the corresponding bound of the noise to the funnel
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bounds used for the observer. The bound in (14) changes as
follows: Modify M1 to M̃1 such that

for a.a. t ∈ [0,∞) : ∥G(t,Y )(y+n)(r−1)(t)∥ ≤ M̃1

and modify M2 to M̃2 such that∥∥∥Γ̃F(t,Y )+ Γ̃
(

Γ
(
d(t),T (Y )(t)

)−1n(r)(t)

+
(

d
dt Γ
(
d(t),T (Y )(t)

)−1
)

n(r−1)(t)
)∥∥∥≤ M̃2.

for a.a. t ∈ [0,∞). Then, with M̃ :=
√

M̃2
1 + M̃2

2 , we have that

limsup
t→∞

∥e(t)∥ ≤ 4M̃ λmax(P)2

λmin(Q)λmin(P)

+
∥∥∥(n, ṅ, . . . ,n(r−2), Γ̃Γ

(
d,T (Y )

)−1n(r−1)
)∥∥∥

∞
.

If the input of the system (4) is subject to noise before the funnel
observer receives it, i.e., u enters system (4) and u+v enters the
observer (1), where v ∈ L ∞(R≥0 →Rm), then the statement of
Theorem 4.1 remains the same (the funnel observer still works)
and the proof only changes slightly: on the right hand side of
the equation for ėr in (16) the term −Γ̃v(t) has to be added. Due
to boundedness of v, the remaining calculations stay the same
and only the constant M2 possibly needs to be increased.

5. Simulations

We illustrate the funnel observer by comparing it to the sim-
ulations of the λ -strip observer for a bioreactor model in [3].
We consider the generic model as in [3], cf. also [8]:

ṁ(t) =
a1m(t)s(t)

a2m(t)+ s(t)
−m(t)u(t),

ṡ(t) =− a1a3m(t)s(t)
a2m(t)+ s(t)

+
(
a4 − s(t)

)
u(t),

y(t) = m(t),

(26)

where m(t) and s(t) denote the concentrations of the microor-
ganism and the substrate, resp., and u(t) is the substrate inflow
rate. All state variables are strictly positive and the parameters
are a1 = a2 = a3 = 1, a4 = 0.1, m(0) = 0.075, and s(0) = 0.03.
For the simulation we choose the following substrate inflow
rate:

u(t) =

 0.08, t ∈ [0,30− ε]
0.02, t ∈ [30+ ε,50− ε]
0.08, t ≥ 50+ ε,

where ε ≪ 1 is some positive constant and on the intervals
(30− ε,30+ ε) and (50− ε,50+ ε) the function u is chosen
such that it is continuously differentiable on R≥0. This setup
for the bioreactor coincides with that considered in [3], where
it is also explained that (26) can be reformulated in the form

ÿ(t) = Φ
(
y(t), ẏ(t),u(t), u̇(t)

)
.

Therefore, invoking Remark 4.2, system (26) belongs to the
class (4) with r = 2 and Γ ≡ Im. Theorem 4.1 thus implies that
the funnel observer works for (26). We note that we applied
the funnel observer to the original system (26) in the simulation
and not to the reformulated system as above.

As design parameters for the funnel observer (1) (see also
Figure 4) we choose Γ̃ = 0, q1 = 1, q2 = 0.2 and

φ : R≥0 → R≥0, t 7→ 1
2 te−t + 100

π arctan t.

Note that this prescribes an exponentially (exponent 1) decay-
ing funnel in the transient phase [0,T ], where T ≈ 3, and a
tracking accuracy quantified by λ = 0.02 thereafter. The so-
lution of the Lyapunov equation A⊤P+PA+ I2 = 0 is given by

P =

[
0.6 −0.5
−0.5 5.5

]
and hence p1 = 1 and p2 =

1
11 . A numerical computation yields

that the eigenvalues of P are given by λ1 ≈ 0.5495 and λ2 ≈
5.5505. Therefore, the estimate (14) becomes

limsup
t→∞

∥e(t)∥ ≤ 4M λ 2
2

λ1
≈ 224.26M. (27)

Since no knowledge of the initial values for (26) is assumed we
set the observer initial values to z0

1 = z0
2 = 0.

The simulation has been performed in MATLAB (solver:
ode15s, relative tolerance: 10−14, absolute tolerance: 10−10).
In Figure 5 the simulation of the funnel observer (1) for the
bioreactor model (26) with the above stated parameters is de-
picted. Figure 5a shows the output m and its estimate me, while
Figure 5b show the concentration of the substrate s and its esti-
mate se. In fact, the estimate is much better than the bound (27)
guarantees. An action of the gain function k in Figure 5c is
required only if the error |m(t)−me(t)| is close to the funnel
boundary 1/φ(t). It can be seen that initially the error is very
close to the funnel boundary and hence the gain rises rather
sharply by about 0.25. After this initial error correction the gain
is nearly equal to 1 for most of the time; only slight corrections
are necessary when the input u(t) changes its value at t = 30
and t = 50. This in particular shows that the gain function k is
non-monotone.

Compared to the simulation in [3] we see that the funnel ob-
server achieves better estimation results for m and s, while the
gain function is much smaller (k is equal to its minimal value 1
most of the time). The main reason for this is that the funnel
observer is able to influence the transient behavior of the obser-
vation error.

6. Application in feedback control

While Theorem 4.1 shows that the funnel observer is able
to achieve prescribed transient behavior of the observation error
e1 = y− z1 and that the errors e2, . . . ,er as in (15) converge to
a certain strip, we like to stress that no transient behavior can
be prescribed for e2, . . . ,er since ẏ, . . . ,y(r−1) are not known.
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Figure 5: Simulation of the funnel observer (1) for the bioreactor model (26).

Therefore, z2, . . . ,zr from the funnel observer cannot be viewed
as estimates for ẏ, . . . ,y(r−1). Nevertheless, an advantage of the
funnel observer is that the derivative of z1 is known explicitly.
In Subsection 6.1 we show that the successive application of
the funnel observer to the observer-plant system with output z1
results in a cascade of observers which yields

• an estimate z for the output y with prescribed transient

behavior (i.e., (t,y(t)− z(t)) ∈ Fφ ) and

• the derivatives ż, . . . ,z(r−1) are known explicitly.

Furthermore, the high-frequency gain matrix Γ̃ of the observer-
plant system may be prescribed. This allows for the application
of different feedback control techniques, which would usually
need the first r− 1 derivatives of the output of system (4) (see
e.g. [2, 10, 11, 12]), by just applying the controller to the artifi-
cial output z produced by the cascade of funnel observers.

When tracking problems for systems (4) are considered, a
crucial condition is the stability of the internal dynamics (the
minimum phase property in case of linear systems, see also
Section 2), cf. [4, 12, 26]. This condition is modelled by the
property a) of the operator T in (4). When tracking controllers
are to be applied to the interconnection of the system (4) with
a cascade of funnel observers, it is thus desirable that this in-
terconnection again has stable internal dynamics in the sense
that it can be described by an appropriate functional differential
equation where the involved operator has property a). In Sub-
section 6.2 we show that this can be achieved for a special class
of systems which are linear up to the influence of an operator T
and have relative degree two or three. For relative degree larger
than three this remains an open problem; we show explicitly
where our proof does not work in this case.

6.1. The observer cascade

We introduce a cascade of funnel observers as follows:

żi,1(t) = zi,2(t)+
(
qi,1 + pi,1ki(t)

)
(zi−1,1(t)− zi,1(t)),

żi,2(t) = zi,3(t)+
(
qi,2 + pi,2ki(t)

)
(zi−1,1(t)− zi,1(t)),

...

żi,r−1(t) = zi,r(t)+
(
qi,r−1 + pi,r−1ki(t)

)
(zi−1,1(t)− zi,1(t)),

żi,r(t) = Γ̃iu(t)+
(
qi,r + pi,rki(t)

)
(zi−1,1(t)− zi,1(t)),

ki(t) =
1

1−φi(t)2∥zi−1,1(t)− zi,1(t)∥2 ,

(28)
for i = 1, . . . ,r−1, where z0,1 := y, Γ̃i ∈ Rm×m,

φi ∈Φr :=Φ∩
{

φ ∈ C r−1(R≥0→R)
∣∣∣φ̇, . . . ,φ(r−1) bounded

}
and qi, j > 0, pi, j > 0 are such that (12) is satisfied for corre-
sponding matrices Ai,Pi,Qi for i = 1, . . . ,r − 1. We consider
initial values

zi, j(0) = z0
i, j ∈ Rm, i, j = 1, . . . ,r−1. (29)

The situation is illustrated in Figure 6.
We show that the cascade (28) applied to (4) yields an inter-

connection with new output z = zr−1,1 such that y− z has pre-
scribed transient behavior and ż, . . . ,z(r−1) are known explicitly.
In order to derive the dependence of ż, . . . ,z(r−1) on the states of
the individual observers in (28) we define the following func-
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System (4) Funnel Observer Funnel Observer
Funnel Observer

Feedback Controller

u(t) y(t) z1,1(t) z2,1(t) zr−2,1(t)
z(t)

Figure 6: Cascade of funnel observers (1) applied to a system (4) in conjunction with a feedback controller.

tions in a recursive way:

Pa,b
0 (k,φ0,e0) := (qa,b + pa,bk)e0,

Pa,b
i+i (k,φ0, . . . ,φi+1,e0, . . . ,ei+1)

:=
∂Pa,b

i
∂k

(
2k2(φ0φ1e⊤0 e0 +φ2

0 e⊤0 e1)
)
+

∂Pa,b
i

∂φ0
φ1 + . . .

. . .+
∂Pa,b

i
∂φi

φi+1 +
∂Pa,b

i
∂e0

e1 + . . .+
∂Pa,b

i
∂ei

ei+1

for a,b ∈ {1, . . . ,r−1} and i ≥ 0, where k,φi ∈ R and ei ∈ Rm

for each i ≥ 0. Further define, using (28),

P̃i
j(t) :=

j−1

∑
l=0

Pi, j−l
l

(
ki(t),φi(t), . . . ,φ

(l)
i (t),

zi−1,1(t)− zi,1(t), . . . ,z
(l)
i−1,1(t)− z(l)i,1(t)

)
for i = 1, . . . ,r−1 and j = 0, . . . ,r−1. We will show that

z( j)
i,1 (t) = zi, j+1(t)+ P̃i

j(t), i = 1, . . . ,r−1, j = 0, . . . ,r−1.
(30)

Theorem 6.1. Consider a system (4) with r ≥ 2. Let
y0 ∈ W r−1,∞([−h,0] → Rm), u ∈ L ∞

loc(R≥0 → Rm) and let
y ∈ C r−1([−h,∞) → Rm) be a solution of (4) such that
y, ẏ, . . . ,y(r−1) are bounded. Consider the cascade of funnel ob-
servers (28), (29) with φi ∈ Φr such that

φi(0)∥zi−1,1(0)− z0
i,1∥< 1,

where z0,1 := y, Γ̃ ∈ Rm×m and qi, j > 0, pi, j > 0 are such
that (12) is satisfied for corresponding matrices Ai,Pi,Qi for
all i = 1, . . . ,r−1.
Then (28), (29) has absolutely continuous solutions zi, j ∈
L ∞ (R≥0 → Rm) with ki ∈L ∞(R≥0 → [1,∞)) for i= 1, . . . ,r−
1, j = 1, . . . ,r and

∀ i ∈ {1, . . . ,r−1} ∃εi > 0 ∀ t > 0 :

∥zi−1,1(t)− zi,1(t)∥< φi(t)−1 − εi. (31)

Furthermore, for z := zr−1,1 we have that

∀ t > 0 : ∥y(t)− z(t)∥<
r−1

∑
i=1

φi(t)−1 − εi (32)

and ż, . . . ,z(r−1) are known explicitly in the sense that (30)
holds.

Proof. Step 1: We show existence of bounded absolutely con-
tinuous solutions for each observer in (28) and the property (31)
by induction. For i = 1 we have z0,1 = y and hence the exis-
tence of bounded global solutions follows from Theorem 4.1.
We may calculate that

z( j)
i,1 (t) = zi, j+1(t)

+
j−1

∑
l=0

( d
dt

)l (
qi, j−l + pi, j−lki(t)

)(
zi−1,1(t)− zi,1(t)

)
(33)

for i= 1, . . . ,r−1 and j = 0, . . . ,r−1. With wi(t) := zi−1,1(t)−
zi,1(t) we calculate

k̇i(t) = 2ki(t)2
(

φi(t)φ̇i(t)wi(t)⊤wi(t)+φi(t)2wi(t)⊤ẇi(t)
)

(34)
for all i = 1, . . . ,r − 1. In particular, for i = 1 we obtain that
ż1,1, . . . ,z

(r−1)
1,1 are bounded since y, . . . ,y(r−1),φ1, . . . ,φ

(r−1)
1 are

bounded and z1,1, . . . ,z1,r, and k1 are bounded by Theorem 4.1.
Now assume that the statement is true for i ∈ {1, . . . ,r−2} such
that żi,1, . . . ,z

(r−1)
i,1 are bounded. Then an application of Theo-

rem 4.1 again yields existence of bounded global solutions such
that ki+1 is bounded. Again invoking (33) yields boundedness
of żi+1,1, . . . ,z

(r−1)
i+1,1 .

Step 2: Property (32) is obvious, so it remains to show (30).
First observe that it follows from (34) and a simple induction
that( d

dt

)l (
qi, j−l + pi, j−lki(t)

)
wi(t)

=Pi, j−l
l

(
ki(t),φi(t), φ̇i(t), . . . ,φ

(l)
i (t),wi(t), ẇi(t), . . . ,w

(l)
i (t)

)
for i = 1, . . . ,r − 1, j = 0, . . . ,r − 1 and l = 0, . . . , j − 1.
Then (33) immediately implies (30) and this finishes the
proof.

The derivatives of z = zr−1,1 are given by (30) for i = r−1
as

z( j)(t) = zr−1, j+1(t)+ P̃r−1
j (t), j = 0, . . . ,r−1.

By definition, P̃r−1
j (t) depends on the derivatives of zr−2,1

and zr−1,1 = z up to order j − 1. The dependencies on
ż, . . . ,z( j−1) may be immediately resolved by applying the same
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formula again, thus z( j) depends on zr−1,1, . . . ,zr−1, j+1 and on
zr−2,1, żr−2,1, . . . ,z

( j−1)
r−2,1 . Applying (30) in a recursive way to

żr−2,1, . . . ,z
( j−1)
r−2,1 we obtain dependencies as depicted in Fig-

ure 7.

6.2. Internal dynamics

In the following we restrict ourselves to a subclass of sys-
tems (4) which are linear up to the influence of an operator T
which may enter nonlinearly, but is bounded whenever y is
bounded:

y(r)(t) =
r

∑
i=1

Riy(i−1)(t)+ f
(
d(t),T (y, ẏ, . . . ,y(r−1))(t)

)
+Γu(t),

y|[−h,0] = y0 ∈ W r−1,∞([−h,0]→ Rm),
(35)

where h > 0, f ∈ C (Rp ×Rq → Rm), d ∈ L ∞(R≥0 → Rp) is
a disturbance, Γ ∈ Glm(R) is the high-frequency gain matrix
and T : C ([−h,∞)→ Rm)r → L ∞

loc(R≥0 → Rq) is an operator
with the properties b) and c) described in Section 2, and the
following (stronger) replacement of a):

a’) for all c1 > 0 there exists c2 > 0 such that for all
ζ1, . . . ,ζr ∈ C ([−h,∞)→ Rm) :

sup
t∈[−h,∞)

∥ζ1(t)∥≤ c1 =⇒ sup
t∈[0,∞)

∥T (ζ1, . . . ,ζr)(t)∥≤ c2.

We like to stress that the class (35) includes finite- and infinite-
dimensional linear systems as well as nonlinear systems, as dis-
cussed in Section 2, provided that the latter satisfy that g1 is
linear, g2 is constant and κ in (8) depends only on ∥y(s)∥. In
particular, it contains the system classes discussed in [9, 15, 16]
and the nonlinear systems in [20] provided that the internal dy-
namics are input-to-state stable.

We show that, if r = 2 or r = 3, the composition of (35) with
the cascade of funnel observers, where Γ̃i = Γ̃ is invertible, has
again relative degree r and stable internal dynamics in the sense
that it can be rewritten as

z(r)(t) = F
(
d̃(t), T̃ (z, ż, . . . ,z(r−1))(t)

)
+ Γ̃u(t),

where T̃ is an operator with the properties a)–c).

Theorem 6.2. Consider a system (35) with r ∈ {2,3}, y0 ∈
W r−1,∞([−h,0] → Rm) and assume that Γ > 0. Further con-
sider the cascade of funnel observers (28), (29) with φi ∈ Φr
such that

φi(0)∥zi−1,1(0)− z0
i,1∥< 1,

where z0,1 := y and qi, j = q j > 0, pi, j = p j > 0 are such
that (12) is satisfied for corresponding matrices A,P,Q for all
i = 1, . . . ,r − 1, j = 1, . . . ,r. Moreover, assume that Γ̃i = Γ̃ ∈
Rm×m, i = 1, . . . ,r−1, such that Γ̃ > 0 and,

if r = 3, then I −ΓΓ̃−1 =
(
I −ΓΓ̃−1)⊤ > 0. (36)

Then the conjunction of (35) and (28) with input u and out-
put z := zr−1,1 can be equivalently written as

z(r)(t) = F
(
d̃(t), T̃ (z, ż, . . . ,z(r−1))(t)

)
+ Γ̃u(t), z(0) = z0

r−1,1,
(37)

for d̃(t) :=
(
φr−1(t), φ̇r−1(t), . . . ,φ

(r−1)
r−1 (t)

)⊤ ∈ L ∞(R≥0 →
Rr), some F ∈ C (Rr × Rq̃ → Rm) and an operator T̃ :
C ([−h,∞) → Rm)r → L ∞

loc(R≥0 → Rq̃) which satisfies the
properties a)–c) as in Section 2. Furthermore, for any solution
of (28), (35) we have (32) and the derivatives of the observer
states satisfy (30).

Proof. Step 1: We start with several transformations of the error
dynamics between two successive systems.

Step 1a: Define vi, j := zi−1, j − zi, j for i = 2, . . . ,r − 1 and
j = 1, . . . ,r. Then

v̇i,1(t) = vi,2(t)−
(
q1 + p1ki(t)

)
vi,1(t)

+
(
q1 + p1ki−1(t)

)
vi−1,1(t),

...

v̇i,r−1(t) = vi,r(t)−
(
qr−1 + pr−1ki(t)

)
vi,1(t)

+
(
qr−1 + pr−1ki−1(t)

)
vi−1,1(t),

v̇i,r(t) =−
(
qr + prki(t)

)
vi,1(t)+

(
qr + prki−1(t)

)
vi−1,1(t).

Step 1b: Defining e1, j(t) := y( j−1)(t)− z1, j(t) for j = 1, . . . ,r−
1 and e1,r(t) := y(r−1)(t)−ΓΓ̃−1z1,r(t) we obtain

ė1,1(t) = e1,2(t)−
(
q1 + p1k1(t)

)
e1,1(t),

...

ė1,r−2(t) = e1,r−1(t)−
(
qr−2 + pr−2k1(t)

)
e1,1(t),

ė1,r−1(t) = e1,r(t)−
(
qr−1 + pr−1k1(t)

)
e1,1(t)

+(ΓΓ̃−1 − I)z1,r(t),

ė1,r(t) =−ΓΓ̃−1(qr + prk1(t)
)
e1,1(t)

+
r

∑
i=1

Riy(i−1)(t)+ f
(
d(t),T (y, ẏ, . . . ,y(r−1))(t)

)
.

Set v1,1(t) := e1,1(t) and ṽ(t) := ∑r−1
i=1 vi,1(t), then we may de-

fine v1, j(t) := e1, j(t)−∑ j−1
k=1 Rr− j+k+1ṽ(k−1)(t) and obtain

v̇1,1(t) = v1,2(t)−
(
q1 + p1k1(t)

)
v1,1(t)+Rrṽ(t),

v̇1,2(t) = v1,3(t)−
(
q2 + p2k1(t)

)
v1,1(t)+Rr−1ṽ(t),

...

v̇1,r−2(t) = v1,r−1(t)−
(
qr−2 + pr−2k1(t)

)
v1,1(t)+R3ṽ(t),

v̇1,r−1(t) = v1,r(t)−
(
qr−1 + pr−1k1(t)

)
v1,1(t)+R2ṽ(t)

+(ΓΓ̃−1 − I)z1,r(t),
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z( j)

zr−1,1 zr−2,1

zr−1,2 żr−2,1
...

...

zr−1, j+1 z( j−1)
r−2,1

zr−2,1 zr−3,1

zr−2,2 żr−3,1
...

...

zr−2, j z( j−2)
r−3,1

zr− j+1,1 zr− j,1

zr− j+1,2 żr− j,1

zr− j+1,3

zr− j,1 zr− j−1,1
zr− j,2

Figure 7: Dependency of z( j) on the observer states. Note that zr− j−1,1 = z0,1 = y for j = r−1.

v̇1,r(t) =−ΓΓ̃−1(qr + prk1(t)
)
v1,1(t)+R1ṽ(t)

+
r

∑
i=1

Ri

(
y(i−1)(t)− ṽ(i−1)(t)

)
+ f
(
d(t),T (y, ẏ, . . . ,y(r−1))(t)

)
.

Now we observe that

y(t)− ṽ(t) = y(t)− v1,1(t)− v2,1(t)− . . .− vr−1,1(t)

= y(t)−
(
y(t)− z1,1(t)

)
−
(
z1,1(t)− z2,1(t)

)
− . . .−

(
zr−2,1(t)− zr−1,1(t)

)
= zr−1,1(t) = z(t).

Furthermore,

z1,r(t) = z(r−1)
1,1 (t)−

r−2

∑
i=0

( d
dt

)i [(
qr−i−1 + pr−i−1k1(t)

)
v1,1(t)

]
and

z1,1(t) = y(t)−v1,1(t) = z(t)+ ṽ(t)−v1,1(t) = z(t)+
r−1

∑
i=2

vi,1(t),

hence

z1,r(t) = z(r−1)(t)+
r−1

∑
i=2

vi,1(t)

−
r−2

∑
i=0

( d
dt

)i [(
qr−i−1 + pr−i−1k1(t)

)
v1,1(t)

]
.

Step 1c: Define wi, j(t) := vi, j(t) for i = 2, . . . ,r−1 and j =
1, . . . ,r and

w1,r(t) := v1,r(t),

w1,r− j(t) := v1,r− j(t)+G

[
r−1

∑
i=2

v(r− j−1)
i,1 (t)

−
r−2

∑
i= j

( d
dt

)i− j [(
qr−i−1 + pr−i−1k1(t)

)
v1,1(t)

]]

for j = 1, . . . ,r − 1, where G := (I −ΓΓ̃−1); in particular we
have

w1,1(t) = v1,1(t)+G
r−1

∑
i=2

vi,1(t).

With w̃(t) := ∑r−1
i=2 wi,1(t) we find

ẇ1,1(t) = w1,2(t)−ΓΓ̃−1(q1 + p1k1(t)
)(

w1,1(t)−Gw̃(t)
)

+Rrw1,1(t)+RrΓΓ̃−1w̃(t),

ẇ1,2(t) = w1,3(t)−ΓΓ̃−1(q2 + p2k1(t)
)(

w1,1(t)−Gw̃(t)
)

+Rr−1w1,1(t)+Rr−1ΓΓ̃−1w̃(t),
...

ẇ1,r−2(t) = w1,r−1(t)−ΓΓ̃−1(qr−2 + pr−2k1(t)
)(

w1,1(t)−Gw̃(t)
)

+R3w1,1(t)+R3ΓΓ̃−1w̃(t),

ẇ1,r−1(t) = w1,r(t)−ΓΓ̃−1(qr−1 + pr−1k1(t)
)(

w1,1(t)−Gw̃(t)
)

+R2w1,1(t)+R2ΓΓ̃−1w̃(t)−Gz(r−1)(t),

ẇ1,r(t) =−ΓΓ̃−1(qr + prk1(t)
)(

w1,1(t)−Gw̃(t)
)

+R1w1,1(t)+R1ΓΓ̃−1w̃(t)

+
r

∑
i=1

Riz(i−1)(t)+ f
(
d(t),T (y, ẏ, . . . ,y(r−1))(t)

)
,

k1(t) =
1

1−φ1(t)2∥w1,1(t)−Gw̃(t)∥2 .

(38a)
and

ẇi,1(t) = wi,2(t)−
(
q1 + p1ki(t)

)
wi,1(t)

+
(
q1 + p1ki−1(t)

)
wi−1,1(t)︸ ︷︷ ︸

=
(

w1,1(t)−Gw̃(t)
)

if i = 2

,

...

ẇi,r−1(t) = wi,r(t)−
(
qr−1 + pr−1ki(t)

)
wi,1(t)

+
(
qr−1 + pr−1ki−1(t)

)
wi−1,1(t)︸ ︷︷ ︸

=
(

w1,1(t)−Gw̃(t)
)

if i = 2

,

ẇi,r(t) =−
(
qr + prki(t)

)
wi,1(t)

+
(
qr + prki−1(t)

)
wi−1,1(t)︸ ︷︷ ︸

=
(

w1,1(t)−Gw̃(t)
)

if i = 2

,

ki(t) =
1

1−φi(t)2∥wi,1(t)∥2 .

(38b)
for i = 2, . . . ,r−1.

Step 2: We define the operator T̃ : C ([−h,∞) → Rm)r →
L ∞

loc(R≥0 → Rq̃), where q̃ = (r−1)rm+ r, (essentially) as the
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solution operator of (38), i.e., for ζ1, . . . ,ζr ∈C ([−h,∞)→Rm)
let wi j : [0,β )→Rm, β ∈ (0,∞], be the unique maximal solution
of (38) for z = ζ1, ż = ζ2, . . . ,z(r−1) = ζr with appropriate initial
values according to the transformation which leads to (38), and
define

T̃ (ζ1, . . . ,ζr)(t) :=
(
w1,1(t), . . . ,w1,r(t),w2,1(t),

. . . ,wr−1,r(t),k1(t), . . . ,kr(t)
)⊤

, t ∈ [0,β ).

We stress that y, ẏ, . . . ,y(r−1) in (38a)can be replaced by wi, j

and z, ż, . . . ,z(r−1) using y(i) = z(i) + w(i)
1,1 + ΓΓ̃−1w̃(i) and the

differential equations (38). Furthermore, the operator T̃ de-
pends on the disturbance d and several initial values. In
the following we show that T̃ is well-defined, i.e., β = ∞,
and has the properties a)–c) as defined in Section 2. Note
that

(
t,w1,1(t), . . . ,w1,r(t),w2,1(t), . . . ,wr−1,r(t)

)
∈D for all t ∈

[0,β ), with D as defined in (39), and the closure of the graph
of the solution

(
w1,1, . . . ,w1,r,w2,1, . . . ,wr−1,r

)
is not a compact

subset of D .
Step 2a: First assume that ζ1, . . . ,ζr are bounded on [0,β ).

We show that wi, j and ki are bounded as well. As the solu-
tion evolves in D , it is clear that w1,1 −Gw̃, w2,1, . . . ,wr−1,1 are
bounded, and thus also w1,1 is bounded. Since y = z+w1,1 +

ΓΓ̃−1w̃, it follows that y is bounded and hence T (y, ẏ, . . . ,y(r−1))
is bounded by property a’). Boundedness of d and continuity
of f then imply that f

(
d(·),T (y, ẏ, . . . ,y(r−1))(·)

)
is bounded.

Now let wi :=(w⊤
i,1, . . . ,w

⊤
i,r)

⊤, then it follows from (38) that

ẇ1(t) = Âw1(t)− k1(t)P̄ΓΓ̃−1(w1,1(t)−Gw̃(t)
)
+B1(t),

ẇ2(t) = Âw2(t)− k2(t)P̄w2,1(t)

+ k1(t)P̄
(
w1,1(t)−Gw̃(t)

)
+B2(t),

ẇi(t) = Âwi(t)− ki(t)P̄wi,1(t)+ ki−1(t)P̄wi−1,1(t)+Bi(t)
(40)

for i = 3, . . . ,r− 1, where Â is as in the proof of Theorem 4.1,
Bi is some suitable bounded function and

P̄ :=

p1Im
...

prIm

 .
Recall that Â⊤P̂+ P̂Â+Q̂ = 0, where P̂ > 0 and Q̂ > 0, and that

P̄⊤P̂ = [p̃Im,0, . . . ,0], p̃ := (P11 −P12P−1
22 P⊤

12)> 0.

We consider the cases r = 2 and r = 3 separately.
Step 2b: Assume that r = 2. Then (40) reads

ẇ1(t) = Âw1(t)− k1(t)P̄ΓΓ̃−1w1,1(t)+B1(t).

Using the Lyapunov function V (w1) = w⊤
1 P̂w1 one can then

show, as in the proof of Theorem 4.1, that w1 and k1 are
bounded on [0,β ).

Step 2c: Assume that r = 3. Then (40) reads

ẇ1(t) = Âw1(t)− k1(t)P̄ΓΓ̃−1(w1,1(t)−Gw2,1(t)
)
+B1(t),

ẇ2(t) = Âw2(t)− k2(t)P̄w2,1(t)

+ k1(t)P̄
(
w1,1(t)−Gw2,1(t)

)
+B2(t).

From condition (36) we obtain that G = G⊤ > 0, hence
GΓΓ̃−1 > 0 has a unique matrix square root. Let K :=

Im ⊗
(
GΓΓ̃−1

) 1
2 > 0 (recall the Kronecker product ⊗ from

the proof of Theorem 4.1) and define the Lyapunov function
V (w1,w2) := w⊤

1 P̂w1 +w⊤
2 K⊤P̂Kw2 for w1,w2 ∈ R3m. Then,

for all t ∈ [0,β ),

d
dt V
(
w1(t),w2(t)

)
= w1(t)⊤

(
Â⊤P̂+ P̂Â

)
w1(t)

−2k1(t)w1(t)⊤P̂P̄ΓΓ̃−1(w1,1(t)−Gw̃(t)
)

+2w1(t)⊤B1(t)+w2(t)⊤
(
Â⊤K⊤P̂K +K⊤P̂KÂ

)
w2(t)

−2k2(t)w2(t)⊤K⊤P̂KP̄w2,1(t)+2w2(t)⊤K⊤P̂KB2(t)

+2k1(t)w2(t)⊤K⊤P̂KP̄
(
w1,1(t)−Gw2,1(t)

)
,

and since it is easy to see that Â and K commute and
K⊤P̂KP̄ = p̃[Im,0, . . . ,0]⊤GΓΓ̃−1, it follows that, for some pos-
itive α1,α2,M1,M2,

d
dt V
(
w1(t),w2(t)

)
≤−α1∥w1(t)∥2 −α2∥w2(t)∥2

−2k1(t)
(

p̃w⊤
1,1ΓΓ̃−1 − p̃w⊤

2,1GΓΓ̃−1
)(

w1,1(t)−Gw2,1(t)
)

+M1∥w1(t)∥+M2∥w2(t)∥
=−α1∥w1(t)∥2 −α2∥w2(t)∥2 +M1∥w1(t)∥+M2∥w2(t)∥

−2 p̃k1(t)(w1,1 −Gw2,1)
⊤ ΓΓ̃−1(w1,1(t)−Gw2,1(t)

)
≤−α1∥w1(t)∥2 −α2∥w2(t)∥2 +M1∥w1(t)∥+M2∥w2(t)∥.

As in the proof of Theorem 4.1 we may now show that w1 and
w2 are bounded and that k1 and k2 are bounded as well on [0,β ).

Step 2d: We show β = ∞ (not assuming boundedness of
ζ1, . . . ,ζr). Assume that β < ∞. Then ζ1, . . . ,ζr are bounded
on [0,β ) and hence wi, j and ki are bounded by Steps 4a–4c.
Therefore, it follows that the closure of the graph of the solu-
tion

(
w1,1, . . . ,w1,r,w2,1, . . . ,wr−1,r

)
is a compact subset of D ,

a contradiction, thus β = ∞.
Step 2e: It remains to show that T̃ has the properties a)–c).

Properties b) and c) are clear and property a) is an immediate
consequence of Steps 4a–4c.

Step 3: By Step 2 we may write the conjunction of (35)
and (28) with input u and output z = zr−1,1 in the form

z(r)(t) = Γ̃u(t)+
r−1

∑
j=0

( d
dt

) j [(
qr− j + pr− jkr−1(t)

)
wr−1,1(t)

]
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D :=

{ (
t,w1,1, . . . ,w1,r,w2,1, . . . ,wr−1,r

)
∈ R≥0 ×Rrm

∣∣∣∣∣ φ1(t)

∥∥∥∥∥w1,1 −G
r−1

∑
i=2

wi,1

∥∥∥∥∥< 1, φi(t)∥wi,1∥< 1, i = 2, . . . ,r−1

}
(39)

and hence

z(r)(t) = F
(
d̃(t), T̃ (z, ż, . . . ,z(r−1))(t)

)
+ Γ̃u(t)

for d̃(t) :=
(
φr−1(t), φ̇r−1(t), . . . ,φ

(r−1)
r−1 (t)

)⊤ ∈ L ∞(R≥0 →
Rr), some F ∈ C (Rr × Rq̃ → Rm) and the operator T̃ :
C ([−h,∞) → Rm)r → L ∞

loc(R≥0 → Rq̃) which satisfies the
properties a)–c). It is clear that any solution of (28), (35) satis-
fies the properties (30) and (32).

Remark 6.3. A careful inspection of the proof of Theorem 6.2
reveals that in order for Theorem 6.2 to holds true for r ≥ 4 we
would need to show that (40) has bounded solutions. However,
we were only able to find suitable Lyapunov functions in the
cases r = 2 and r = 3, thus the proof for r ≥ 4 remains an open
problem.

An immediate application of Theorem 6.2 is the following:
Trajectory tracking with prescribed transient behavior of the
tracking error for single-input, single-output systems (35) (i.e.,
m = 1) of relative degree r = 2 is possible without having to
calculate the derivative of the output. To achieve this we may
apply the funnel controller introduced in [10] in conjunction
with the funnel observer (1) (the cascade consists only of one
observer in this case). Using the assumptions in Theorem 6.2
we obtain that the assumptions of [10, Thm. 3.1] are satisfied
when applied to the observer-plant system with output z and
hence we obtain tracking of any yref ∈ W 2,∞(R≥0 → R) such
that, for given φ ∈ Φ,

∃ε > 0 ∀ t > 0 : ∥z(t)− yref∥< φ(t)−1 − ε.

Combining this with (32) we obtain

∥y(t)− yref∥< φ(t)−1 +φ1(t)−1 − ε − ε1.

7. Conclusion

In the present paper we have introduced the funnel observer
as a novel and simple adaptive high-gain observer. We showed
that the funnel observer is feasible for a large class of nonlinear
systems described by functional differential equations which
have a known strict relative degree, the internal dynamics map
bounded signals to bounded signals, and the operators involved
are sufficiently smooth to guarantee local maximal existence
of solutions. The proposed adaptation scheme for the observer
gain is simple and non-monotone, and we showed that it guar-
antees prescribed transient behavior of the observation error.
Using a cascade of funnel observers, we proved that it is pos-
sible to obtain an artificial output with explicitly known deriva-
tives which tracks the system output with prescribed transient

behavior. Furthermore, the interconnection of the system with
the observer cascade is shown to have stable internal dynamics
provided the relative degree does not exceed three.

The results that we obtained in Section 6 suggest that the
funnel observer is a suitable tool for resolving the problem of
higher relative degree in stabilization and tracking problems. If
a system has a higher relative degree and derivatives of the out-
put are not available, then a filter or observer is frequently used
to obtain approximations of the output derivatives, see the sur-
vey [12] and the references therein. As explained there, the con-
cept of funnel control is usually combined with a back-stepping
procedure to overcome the higher relative degree, which how-
ever complicates the feedback structure. However, in the last
sentence of [12, Sec. 6] it is conjectured that the combination
of a high-gain observer with a funnel-type controller might be
beneficial for tracking of higher relative degree systems. In Sec-
tion 6 we have shown that the funnel observer may be used to
achieve this for systems with relative degree two. Systems of
higher relative degree are the topic of future research.
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[2] Bullinger, E., Allgöwer, F., 2005. Adaptive λ -tracking for nonlinear
higher relative degree systems. Automatica 41, 1191–1200.

[3] Bullinger, E., Ilchmann, A., Allgöwer, F., 1998. A simple adaptive ob-
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