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Abstract

Computerized tomography requires suitable numerical methods for the approximation of a bivariate
function f from a finite set of discrete Radon data, each of whose data samples represents one line
integral of f. In standard reconstruction methods, specific assumptions concerning the geometry of
the Radon lines are usually made. In relevant applications of image reconstruction, however, such
assumptions are often too restrictive. In this case, one would rather prefer to work with reconstruction
methods allowing for arbitrary distributions of scattered Radon lines.

This paper proposes a novel image reconstruction method for scattered Radon data, which combines
kernel-based scattered data approximation with a well-adapted regularization of the Radon transform.
This results in a very flexible numerical algorithm for image reconstruction, which works for arbitrary
distributions of Radon lines. This is in contrast to the classical filtered back projection, which essentially
relies on a regular distribution of the Radon lines, e.g. parallel beam geometry. The good performance of
the kernel-based image reconstruction method is illustrated by numerical examples and comparisons.

1 Introduction

Computed Axial Tomography (CAT or CT) is a powerful technique to generate images from measurements of X-ray scans. One
X-ray scan typically consists of several million of data samples, each of which corresponds to an X-ray beam passing through
the computational domain, travelling from an emitter to a detector. The sensors of the operational CT scanner (positioned at
the emitter and at the detector) then measures, for each X-ray beam, the loss of energy, resulting from the X-ray beam passing
through the medium. The loss of energy reflects the ability of the medium to absorb energy, and so it depends on its specific
structure and material properties. The amount of absorption can be described as a function of the computational domain £,
termed attenuation coefficient function, f : 2 — [0, 00).

Medical imaging is one relevant application for CT, where the primary goal is to reconstruct the unknown attenuation
coefficient function f from given X-ray scans in order to generate clinically useful medical images. This requires robust numerical
algorithms to reconstruct characteristic features of medical images at sufficiently high accuracy, on the one hand, and at sufficiently
small computational costs, on the other hand. For details concerning the acquisition of X-ray scans, their underlying mathematical
models, and standard computational methods for medical image reconstruction, we refer to the textbook [5] of Feeman.

To describe the mathematical problem of medical image reconstruction from X-ray scans, let us first regard the Radon transform
Rf of f, given by

Rf(t,G):ff(tcosG—ssinG,tsinO+scos€)ds (D
R

for t € R and @ € [0, 7r), where we assume f : Q — R to be a bivariate function on a compact domain Q C R?, or, in other
words, we assume that f is compactly supported on R?, where we extend f to R? by letting f = 0 outside Q. In many relevant
application scenarios, we may assume that the image domain 2 is the unit square, i.e., Q = [0, 1], but this restriction is rather
immaterial for our following discussion. We will merely assume f € L1, so that for any pair of t € R and 6 € [0, ) the Radon
integral in (1) is well-defined.

We remark that the Radon transform Rf (¢, 8) gives, for any fixed pair (t,0) € R x [0, ), a line integral for f over a specific
straight line £ = {, 5. In order to see this, let £, C R? denote the unique straight line, which is perpendicular to unit vector
ny = (cos 6,sin 6) and which passes through point p = (t cos 8, t sin 6) = tn,. In this case, the line £, 4 can be parameterized as

(3¢1(s), x5(s)) = (tcos 8 —ssin O, t sin O +s cos 0). (2)

By this specific choice for a parameterization of £, 4 in (2), we immediately see that, for t € R and 6 € [0, 7),
f fE)dx=Rf(t,0),
Leo

where we let x = (x}, X,), and so the line integral of f over {,  coincides with the Radon transform (1) of f at (t, 8).
On the other hand, any straight line £ in the plane can be described by a unique pair (t, 6) of a radial parameter t € R and an
angular parameter 6 € [0, 1) satisfying £ = {, 4. In this way, the Radon transform Rf of f can be viewed as a linear integral
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transformation, which maps any bivariate function f € L' (in Cartesian coordinates) onto a bivariate function Rf (in polar
coordinates), where the image Rf contains all line integrals of f over the set of straight lines in the plane.

Due the seminal work [12] of Johann Radon (in 1917), any (sufficiently regular) function f can be reconstructed from
its Radon transform Rf. The inversion of the Radon transform is given by the filtered back projection (FBP) formula (see [5,
Chapter 6]),

f&x)= %B{FI [ISIF(RF)(S, 0)1} (), 3

where F is, for any fixed angle 0, the univariate Fourier transform w.r.t. the radial variable t, and so is ! the univariate
inverse Fourier transform w.r.t. the frequency variable S. Moreover, the back projection B is, for any function h = h(t, 6) (in polar
coordinates), given by the average

Bh(x) = %J h(x; cos6 + x,sinH,0)d6
0

of h(t, 0) over the angular variable 6, where we let
t=x;c080 + x,sinf =x-n, “@

according to the one-to-one relation between the Cartesian coordinates x = (x1, x,) and the polar coordinates (¢, 8), as described
above along with the parameterization of the lines £, 4 in (2). For basic details concerning the derivation of the filtered back
projection formula, we refer to [5], and for a more comprehensive mathematical treatment of the Radon transform and its
inversion, we refer to the textbooks [7, 10].

In practical application scenarios, however, only a finite set of Radon data,

Re(f)={Rf (tr, O}, )
given as integrals of f over a finite set of m pairwise distinct lines,
L={l, g :(tx,6) ERx[0,00) fork=1,...,m},

is available. In this case, an approximate reconstruction of f from Radon data R, f is sought. In standard techniques of medical
imaging, the reconstruction of f is accomplished by using a suitable discretization of the FBP in (3). For this class of Fourier-based
reconstruction methods, the discrete lines in £, over which the line integrals of f are known, are usually required to be regularly
spaced in the plane, e.g. by assuming parallel beam geometry or fan beam geometry (see [5] for the geometric assumptions on £).

In many clinical scenarios of data acquisition, however, we may face a limited range of angles or a limited dosage of X-ray
expositions, so that the Radon data are partly corrupt or incomplete. In such relevant cases, the Radon data in (5) are scattered,
i.e., the distribution of lines in £ is essentially not regular but scattered, in which case standard Fourier methods, such as the
Fourier-based FBP discretization in (3), do no longer apply. This requires more flexible approximation methods which work for
arbitrary geometries of (scattered) Radon lines L.

To approximate f from scattered Radon data R . f, algebraic reconstruction techniques (ART) [6] can be applied. The concept
of ART is essentially different from that of Fourier-based reconstructions: in the setting of ART one fixes a set G = { gj};?zl of basis
functions beforehand to solve the reconstruction problem

Re(8)=R.(f) (6)

by using a linear combination
n
§= 2.8
j=1
of the basis functions in G. This ansatz amounts to solving the linear system
Ac=b 7
for the unknown coefficients ¢ = (cy,...,c,)" € R" of g, where the m x n matrix A has the form

A=(Rg;(t,6,))  ER™"

k=1,...,m;j=1,...,
and the right hand side b is given by the m Radon observations b, = Rf (ti, 6;), for k=1,...,m.

Unless the number m of Radon samples coincides with the number n of coefficients, the linear system in (7) is either
overdetermined, for m > n, or underdetermined, for n > m. In case of an overdetermined system, the classical method of linear
least squares approximation [2] is applied to minimize the residual (Euclidean) norm ||Ac — b||, whereas for an underdetermined
system the iterative method of Kaczmarz [5, Section 9.3] is a standard tool to compute an approximate solution ¢ satisfying
Ac ~ b. We remark that in either case the linear system in (7) is not guaranteed to have a unique solution, not even in the rare
case, where m = n. In fact, the latter is due to the Mairhuber theorem [4, Chapter 1] from multivariate approximation theory.

In this paper, we propose a kernel-based algebraic reconstruction method, whose solution is always unique. Our proposed
reconstruction scheme relies on the concept of kernel-based multivariate approximation from generalized Hermite-Birkhoff
data [8], which we adapt to the special case of reconstruction from scattered Radon data. For the well-posedness of the
reconstruction scheme we apply weighted Radon transforms for the purpose of regularization, as explained later in this paper.
This way we obtain a very flexible reconstruction scheme, which works for arbitrary scattered Radon data.
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The outline of this paper is as follows. In the following Section 2, we briefly review generalized Hermite-Birkhoff interpolation,
where we show how to adapt this particular reconstruction method to scattered Radon data. This is followed by a discussion
on the regularization of the Radon transform in Section 5, where we work with weighted Radon transforms. In Section 6,
numerical results are finally provided for illustration. Our numerical experiments of Section 6 include comparisons between
Fourier-based reconstructions relying on the FBP formula (3) and the kernel-based ART proposed in this paper, where we apply
the two reconstructions methods to three popular phantoms.

2 Generalized Hermite-Birkhoff Interpolation

To solve the reconstruction problem (6), we consider applying Hermite-Birkhoff interpolation [8]. To explain the general
framework of this particular interpolation method, let A = {A,,...,A,} denote a set of linearly independent linear functionals.
Moreover, suppose we are given a vector f, = (1,(f),...,A,(f))T € R" of samples taken from an unknown function f. Now
the solution of the general Hermite-Birkhoff reconstruction problem requires finding a function g satisfying the interpolation
conditions g, = f,, i.e.,

2(8) = 2A() forallk=1,...,n. ®
This general framework covers our reconstruction problem (6), when the linear functionals A, are defined as
A(f) :=Rf (tr, 60:) fork=1,...,n. (©)]

By the interpolation conditions in (8), we obtain n linear equations of the form
n
chlk(gj)zkk(f) fork=1,...,n,
j=1
corresponding to the linear system in (7), and by the choice of our particular ansatz, the number of data matches the number of
basis functions, i.e., n = m. To obtain a well-posed reconstruction scheme, we assume that the basis functions g; are of the form

gi(x) = )L?K(x,y) forj=1,...,n, (10)

where AJY.K (%,y) denotes action of the functional A; to K w.r.t. variable y € R2. Moreover, the kernel function K = K(x,y) is
required to be symmetric, i.e.,

K(x,y) =K(y,x) forallx,yeR?
and positive definite.

Rather than dwelling much on explaining positive definite functions, we remark that for the purposes of this paper it is
sufficient to say that a symmetric function K = K(x,y) is positive definite, iff the matrix

A= (RRKEY)_,, €R™" a1

n

is symmetric positive definite for any set A = {A j}?=1 of linearly independent functionals A;. For a comprehensive account to the

construction and characterization of positive definite kernels, we refer the reader to [9, 13].
To make relevant examples for positive definite kernels, we resort to radially symmetric kernels, in which case K is assumed
to have the form

Kxy)=¢(x—yl)  forx,yeR?
where ¢ (|| - ||) is radial w.r.t. the Euclidean norm || - ||. Classical choices for radial kernels are the Gaussians

¢.(Ix]) = e " for x e R* and £ > 0,
which are for any ¢ > 0 positive definite, i.e.,

K(x,y) = exp(—(ellx—yl)*) 12)

is positive definite. Other popular examples for radial positive definite kernels are the inverse multiquadrics

. (Ixl) = (1+ (elxl)?) *  forxeR*and e >0,
and Askey’s compactly supported radial characteristic functions [1],

_ B
Bullii = (el = { DT foribdt < e

which are positive definite for any 8 > 3/2.

In the following discussion, we show that Gaussian kernels are suitable choices for ¢,, especially for reconstructions from
Radon data, where we need to assembly the reconstruction matrix A=A, x in (11) by applying the Radon transform R on the
chosen kernel K.

Our preference for the Gaussian kernel is also supported by our extensive numerical experiments in [14], where we have
observed that the approximation quality of Gaussian reconstruction is superior to that of other commonly used positive definite
kernels. This complies with available error estimates for (plain) Lagrange interpolation by Gaussian kernels [15, Section 11.3],
which are shown to provide spectral convergence orders.
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3 Construction of the Basis Functions

We remark that the basis functions g; in (10) are rather straightforward to compute. In the case of the inverse multiquadrics,
however, the basis functions g; are not well-defined. In fact, note that the Radon transform

RYK(x,y)(t,0)= f K(x,(tcos(6)—ssin(0), t sin(6) + s cos(6)))ds (13)
R
of the basis functions g; in (10) may be undefined for specific choices of (t,0) € R x [0, ) and x € R2?. Indeed, in this case, we

have
K(x,(tcos(8)—ssin(@), t sin(0) +scos(8))) = O(s™)

for s — +00, so that the integral in (14) is singular for any (t,0) € R x [0, ) and x € R?.
To solve this problem, we apply a Gabor transform, with window function

1 r?
G,(r)= Joro exp By for o >0,

to the kernel K(x,y) = ¢.(|lx — yl)), i.e., we replace the inverse multiquadrics ¢, by the windowed inverse multiquadrics kernel

beo(r) = ¢ (r)Go(r),

where the width 20 > 0 of the Gabor window G, is chosen to match the diameter of the computational domain, i.e., we let
o = diam(£)/2. Note that ¢, , is positive definite, since each factor, ¢, and G,,, is positive definite, i.e., ¢, is for any £,0 > 0
a positive definite radial kernel function. In this way, we obtain a well-defined integral (14), since the integrand

llx—yl

1 €xp (_T)

Voro 1+ (ellx—y)?

K(X,.Y) = ¢s,o’(”x _.y”) =

is for any x € R? in L'(R?) w.r.t. variable
y =y(s) = (tcos(8)—ssin(0), t sin(0) + s cos(H)).

Note that for the other two examples of kernel functions, i.e., for the Gaussians and for the compactly supported radial
kernels, this problem does not occur. Indeed, in either of these two cases, we have ¢,(r) € L1([0, 00)), so that the function
K(x,-)=¢.(Jlx—-||) is, for any € > 0 and x € R?, integrable over R?. In particular, the integral in (14) is in this case well-defined
for any combination of (t,0) € R x [0, 7) and x € R?, and so the basis functions g; in (10) are well-defined.

For all of the three abovementioned examples — Gaussians, inverse multiquadrics (with using Gabor transform) and compactly
supported radial kernels — we have computed the basis functions g; in (10). This is done in all details in [14]. For the compactly
supported radial kernels, the basis functions are found in of [14, § 5.4.1], and for the inverse multiquadrics they are computed
in [14, § 5.2]. For instance, the basis functions for the compactly supported kernel ¢,(r) = (1 — er)fr are given as

8,(0) = (R'K(x, ))(t;, 6,) = { h(t; —x -n;) for [t; —x -n;| < 1/e,

for [t; —x -n;| > 1/e,

where n; = (cos(6)),sin(6;)), and where

£

2 —
= for t =0.

h(t) = { : [ _1_3(602 (2(et)* +1)— (at)zacosh(s‘1|t|‘l)] for t #0,

We decided to omit the tedious details of the required computations for the two cases of the inverse multiquadrics and
compactly supported radial kernel, but rather refer to [14]. For the purposes of this paper, it is sufficient and quite instructive to
show how the computations for the Gaussian kernels are done. This is discussed in the next section.

4 Construction of the Gaussian Basis Functions

Let K(x,y) = ¢.(|[x —yl|]) denote the Gaussian kernel in (12). To discuss the assembly of the reconstruction matrix A in (11), let
us first compute the Gaussian basis functions g;(x) = R'K(x,y)(t;, 0;) in (10).
To this end, note that ¢.(r) € L'([0, 00)), and so the Radon transform

RYK(x,y)(t,0) = f K(x,y(s,t,0))ds a4
R
where y(s, t,0) = (t cos(0) —ssin(0), t sin(8) +s cos(0)), is for any combination of (t,0) € R x [0, ) and x € R? well-defined,
i.e., the Gaussian basis functions g; are well-defined. Note that this is in contrast to reconstruction by inverse multiquadrics,
where the integral in (14) is singular for any (t,0) € R x [0, 1) and x € R?,
For the following of our analysis it will be convenient to use the shift property of the Radon transform.
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Lemma 4.1. Let K(x,y) = ¢(||lx—y]|) with ¢ € L*(R). Then, for any x € R? the Radon transform RYK(x,y) at (t,0) € R x [0, 1)
can be expressed as
(R7K(x,y))(¢,0) = (R'K(0,y))(t —x-ny, ), (15)

where ny = (cos 0,sin 9).

Although this is a rather standard fact about Radon transforms [7], we provide a short proof of this property.

Proof. First note that identity (15) can be rewritten as

J ¢(|Iy—XII)dY=J ¢ (llzl)) dz.
Lo 14

t—xng,0
To see this is true, further note that y = (y,, y,) € {, o implies
t=y-ny=y,cos0+y,sinf0
from (4). But this in turn yields y—x € {,_,,, o, since
t—x-ny=y-ng—x-ny =(y—x)-n,.
In other words, fory € {, o, we see that {,_.,, ¢ is, for fixed 0, the unique straight line passing through y —x. O

Now we are in a position to compute the Gaussian basis functions g; = (R'K(-,y))(t;, 0;) in (10).

Theorem 4.2. For any (t,0) € R x [0, ), the Gaussian basis function g = g(t, 0) is given as

¢00 = (R y)(t, 6) = Yoo comns) 16)
€
where ny = (cos 0,sin 9).
Proof. For the Radon transform RK, of K,(y) = K(0,y) at (¢t,0) € R x [0, ) we get
RKy(t,0) = f Ko(y)dy = J Ko(tcos6 —ssin®,tsinf +scos6)ds
Lig R
— J' e—sz(tCOSQ—ssinG)z—EZ(tsin6+sc056)2 ds =J' e—sz(t2+sz) ds = e_(Et)ZJ e—(ss)2 ds
R R R
_ ﬁ e—sz 2
= = |
which in turn yields the Gaussian basis function
(RIKGIN(E, 6) = (RIKo) (€ —x- i, 0) = e emsmn’
€
from the Radon transform’s shift property, Lemma 4.1. O

Now let us turn to the entries of the reconstruction matrix A = (ay;)1<; <, in (11). Note that the matrix entry a;; is given by
the application of the Radon transform R = R(t, 6;) to the basis function g; = RYK(-,y)(t;, 6;), so that

ay; = RIRIK(, ))&, )1t 6;)- a”n
We can compute the entries of matrix A as follows.

Theorem 4.3. For the Gaussian kernel ¢,, the entries (17) of the reconstruction matrix A are given as

T

= 1
U= g sin (6, — 6;) (18)

Proof. We let (t,0) :=(t;,0;) and (r, ¢) := (ty, 6;) for the sake of notational simplicity. Recalling the form of the Gaussian basis

function in (16), we can compute the entry a; by
RX [e—(t—x-ng)Z] (r’ QP) — j e—[t—(rcos (p—ssin ) cos O—(r sin p-+s cos @) sin 012 ds
R

—[t—r(cos ¢ cos 6+sin ¢ sin 0)+s(sin ¢ cos 6—cos ¢ sin 0)1% ds

—[as+b]? ds,

f ‘

R

— J e—[t—rcos(«p—@)+ssin(<p—6)]2 ds
R
f ‘
R
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where we let a :=sin(¢ —0) and b :=t —r cos(¢ — 0). Hence, for a # 0, we get
a; = R* [ﬁeﬂz(“x'“”e)z] (r,p)= J e lastbP gg — % =57 i
£ e Jr €2a  e2sin(p —0)
as stated. O
Note that the above entries a,; do not depend on the radial parameters, t; and t;, but only on the angular parameters, 6; and
6. This is due to the radial symmetry of the Gaussian kernel K.
For different angles 6;, 6, € [0, ), 6; # 6, the entry a;; of Ain (18) is well-defined. For coincident angles 6; = 6,, however,

the entry a,; is singular, i.e., the Radon transform a;; = (R(g;))(ty, 0;) is singular, iff the angular parameters of the Radon lines
th’gj and ¢, g coincide, i.e., iff 6, = 6,. So, in particular, are the diagonal entries of A in (11) singular.

5 Regularization by Gaussian Weights

To obtain non-singular entries in the reconstruction matrix A in (11), we require suitable regularizations for the Radon transform
‘R. To this end, we work with weighted Radon transforms of the form

R, f(t,0):= R(fW)(f,9)=f FEw(x)dx (19
Leg

where w = w(x) is a fixed weight function. This yields a standard regularization for the Radon transform R, which also arises in
relevant applications of single photon emission computed tomography (SPECT), where R,, is called attenuated Radon transform [11].
As for the choice of the weight w, we prefer to use the radially symmetric Gaussian function

w,(x) = exp(—(v||x|)?) for » > 0. (20)

This particular choice is well-motivated, since the product ¢, - w, of the two positive definite Gaussians, ¢, and w,, is positive
definite, due to the classical Bochner theorem [3]. Indeed, according to Bochner’s theorem, any function f € L! with positive
Fourier transform f is positive definite. Hence, for any pair of functions f, g € L' with positive Fourier transforms f , &, their
product f - g is positive definite, since their convolution f * § (giving their Fourier transform) is positive.

In this way, the resulting reconstruction problem

ng(tki Qk)zRf(tk,Gk) for allk=1,...,n,

assuming (10) for the form of the Gaussian basis functions, leads to a well-posed reconstruction scheme with reconstruction
matrix
A=A, = (Rygi(ti, 6), ;e ER™™ 21
We compute the entries of A analytically as follows.
Theorem 5.1. For the Gaussian kernel ¢, € > 0, and the Gaussian weight w,, v > 0, the entries (21) of the reconstruction matrix
A, = (axj)1<jk<n are given as

2p2
T 2 .2 € ﬁkj
Q= ————=exp| =V | i+ ——— ||,
g,/ €2ar + v? etay; + v
J
where [B; = t; — t, cos (0, — 0;) and a,; = sin (6 — 0;).

Proof. For notational convenience, we let (t,0) = (¢;,6;) and (r, ¢) = (¢, 6)). Recalling the representation of the Gaussian basis
function g = g(¢, 0) in Theorem 4.2, we can compute the weighted Radon transform R, g by following along the lines of our
proof in Theorem 4.3, which yields

(R, &), p) = J

g(x(s))e—vz\lx(s)uz dS — \/EJ 6_62(a5+b)2€_v2(r2+52)dS,
£
R R

where we let a = sin(p — 0) and b = t —r cos(p — ), and where we have used the identity
Ix()|?> =12 +s2 for x(s) = (r cos p —ssinp,rsinp +scosp).

This immediately yields the entries of A,, by

(ng)(r, SO) ﬁ6752b27v2r2 J‘ e*[(62a2+v2)52+2ab552] ds
€
R

2
2,24 abe?
VT _2p2_,2,2, a®b’e ,[1/€za2+v25+ ]
— eEb vr+€2az+v2Je Ve2aZ 2 ds
€ R
T —? r2+762b2
= B —— £2a2+v2

evelaz+ v2
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Note that for any v > 0, the entries a;; of A, are well-defined, even for coincident angles 6, and 6. Indeed, for 6, = 6, we
have a;; =0, f; = t, —t;, and so in this case

2 2
_m o 5, et—t;)
akj—;exp[—v (tk+T .

We have implemented the proposed kernel-based reconstruction scheme for the three kernels ¢, — Gaussians, inverse multi-
quadrics, and compactly supported radial kernels — in combination with the Radon transform’s regularization and by using the
Gaussian weight function w,. We have performed quite comprehensive numerical experiments for various possible combinations
of kernels ¢, and weights w, a selection of which we present here for the purpose of illustration.

In our series of numerical experiments concerning the popular phantoms bull’s eye, the crescent-shaped phantom, and the
Shepp-Logan phantom, we found that the Gaussian kernel performs much better than the inverse multiquadrics and the compactly
supported kernel ¢,.(r) = (1— er)i, where the performance of the latter two kernels is comparable. This is supported by our
numerical example in Figure 3. Indeed, we obtained the best numerical results — in terms of the reconstructions’ visual quality
and the root mean square error (RMSE) in (22) - for the Gaussian kernel ¢,(r) = exp(—(er)?) in combination with the Gaussian
weight function w,(x) = exp(—(v||x||)?), provided that the shape parameters ¢ and v were properly chosen.

In fact, we found that the performance of the Gaussian reconstruction method is quite sensitive to the choice of the method
parameters ¢ and v. Therefore, we decided to perform a "fine-tuning" of the Gaussian parameters € and v, whose numerical
results are presented in Subsection 6.2. Moreover, in Subsection 6.4 we provide numerical comparisons with Fourier-based
reconstructions, relying on the filtered back projection formula, for Radon data on parallel beam geometry. In Subsection 6.5, we
present numerical results concerning Gaussian reconstruction from scattered Radon data, and in Subsection 6.3 from regular
Radon data (on parallel beam geometry), where we also provide a comparison between different kernels. Comparisons concerning
Gaussian reconstruction on regular Radon data vs scattered Radon data are provided in the following Subsection 6.1. For a more
comprehensive documentation on our numerical experiments, we refer to [14].

6 Numerical Results

6.1 Reconstruction of the Crescent-Shaped Phantom
Let us first regard the popular test case crescent-shaped phantom, given by the function

1.0 for (x,y) € Q,

f(x;.)’)z{ 0'5 for(x’y)eDiﬁ
0.0 for (x,y) € R\ D,,

on the unit square Q = [0, 1]?, where
D.

; {(x,y) €R?*:(x —1/8)* + y> < 9/64}
D

{(x,y) €R?*: x2 + y? < 1/4},

o

as shown in Figure 1 (a). Figures 1 (b),(c) show the reconstruction of the crescent-shaped phantom obtained with the Gaussian
kernel ¢, and the Gaussian weight function w, for parameters ¢ = 40 and v = 0.7, and for n = 3888 different Radon lines.
The Radon samples were taken on a set of n regularly distributed lines generated by parallel beam geometry, and on a set of n
scattered Radon lines. In either case, the crescent-shaped phantom f is localized and reconstructed fairly well by the proposed
kernel-based reconstruction scheme. But the quality of the reconstruction on parallel beams, Figure 1 (b), is superior to that
on scattered lines, Figure 1 (c). This is due to the uniform coverage of the Radon lines over the computational domain Q. The
geometry of the Radon lines are visible in the display of the reconstructions in Figures 1 (b),(c), especially between the boundary
of the domain 2 and the phantom’s boundary.

(a) crescent-shaped phantom (b) parallel beam geometry (c) scattered Radon data

Figure 1: Crescent-shaped phantom. (a) Original phantom; (b)-(c) reconstruction of crescent-shaped phantom using the Gaussian kernel ¢,
with & = 40 and the Gaussian weight function w, with v = 0.7 from n = 3888 Radon samples taken on (b) regularly spaced Radon lines (parallel
beam geometry), (c) scattered Radon lines.
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6.2 Selection of the Gaussian Shape Parameters

In this subsection, we discuss the selection of the method parameters ¢ (for the Gaussian kernel ¢,) and v (for the Gaussian
weight function w,), here applied to the phantom bull’s eye, defined as

1/2 iff x* + y> < 1/16;
] 1/4 iff 1/16 <x?+y* < 1/4;
floy)= 1 iff 1/4 < x?+ y? < 9/16;
0 iff9/16 < x? + y2.

The phantom bull’s eye is displayed in Figure 3, second row, first column. In our numerical experiments, we have analyzed the
behaviour of the Gaussian reconstruction error as a bivariate function of the parameters ¢ and v. For the error measure, we
consider using the standard root mean square error

RMSE =

J
AGEHD 22)
j=1

where J is the size of the image (i.e., the number of pixels) and {f; JJ-:p
original image bull’s eye and of the reconstructed image, respectively.

Let us first consider the variation of the shape parameter ¢ of the Gaussian kernel ¢,. In our numerical experiments, we have
fixed the weight parameter at v = 0.7. For different choices of N and M, we have used parallel beam geometry with N angles and
2M + 1 parallel lines per angle, resulting in a number of n = N x (2M + 1) Radon samples for each numerical experiment. With
the variation of the shape parameter ¢, we have recorded an "optimal" value &*, where, according to our numerical observations,
the RMSE is minimal. The following Table 1 reflects our results. Note that the "optimal" value ¢* increases with the number n of
Radon data taken. This is not too surprising insofar as in plain kernel-based interpolation, the shape parameter of the Gaussian
kernel is recommended to be proportional to the density of the sample points: the higher the density of points, the larger ¢
should be chosen. In our numerical experiments, the sample density increases with the number n of lines, which explains the
monotonicity of ¢* in Table 1.

{ fJ JJ‘:1 are the greyscale values at the pixels of the

36 54 72 90 108 126 144 162 180
20 30 40 50 60 70 80 90 100
1,476 3,204 5832 9,000 13,068 17,766 23,184 29,322 36,180
21.05 28.42 37.36 4842 5947  72.10 84.21  90.52  97.37

o= K| =2

Table 1: Parameter-tuning for Gaussian kernel ¢.. Reconstruction of phantom bull’s eye by Gaussian kernel ¢, with variation of the kernel
parameter ¢. For fixed weight parameter v = 0.7, and for different choices of N angles 6 and 2M + 1 lines per angle in a parallel beam geometry.
For each experiment, the "optimal" shape parameter ¢*, whose resulting RMSE is minimal, is shown.

0.35

Figure 2: Parameter-tuning for Gaussian weight function w,. Reconstruction of phantom bull’s eye by the Gaussian kernel ¢.(r) =
exp(—(er)?) for & = 30. The graph of the RMSE as a function of the weight parameter v is shown.

Next we consider the variation of the shape parameter v for the Gaussian weight function w, in (20). Figure 2 shows the
RMSE as a function of v, for constant kernel shape parameter ¢ = 30 and for a fixed number n = 1230 of Radon lines (on a
parallel beam geometry). We have observed that the minimal RMSE is attained at v* = 0.4522 (cf. Figure 2). Note that the graph
in Figure 2 illustrates the dependence between the RMSE and the weight parameter v quite well.

We have further performed a series of rather extensive numerical experiments concerning the phantoms bull’s eye, the
crescent-shaped phantom, and the Shepp-Logan phantom, where our reconstructions were computed on a parallel beam geometry
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with N = 30 angles and 2M + 1 = 41 lines per angle, so that the number of Radon samples is n = 1230. Table 2 shows "optimal"
combinations of values ¢* for the Gaussian kernel and v* for the Gaussian weight, whose resulting RMSE = RMSE(¢, v) is minimal.

Phantom kernel ¢, | weightw,
crescent-shaped phantom || &*=19.66 | v*=0.51
bull’s eye e"=15.52 | v* =045
Shepp-Logan phantom e*=18.28 | v*=2.06

Table 2: "Optimal" shape parameters for Gaussian kernel and Gaussian weight. Fine-tuning of shape parameter ¢* and weight parameter
v* for three different phantoms by Gaussian reconstruction on parallel beam geometry (for N = 30 angles and 2M + 1 = 41 lines per angle).

6.3 Comparison of Kernel-based Reconstructions on Parallel Beam Geometry

In Figure 3 we show a comparison between reconstructions from the three different kernels, where for each kernel, we have
performed a fine-tuning of the method parameters ¢ and v. For the Gaussian kernel, the "optimal" parameters £¢* and v* are in
Table 2.

Figure 3: Kernel-based reconstructions on parallel beam geometry. The reconstructions are obtained from n = 1230 Radon samples, on a
parallel beam geometry with N = 30 angles and 2M + 1 = 41 lines per angle. The original phantoms (1st col), their reconstruction by inverse
multiquadric (2nd col), by the compactly supported kernel (3rd col), and by the Gaussian kernel (4th col) are shown. The "optimal" values for
the Gaussian parameters ¢ and v are in Table 2.

On our numerical results of Figure 3 we can conclude that the reconstruction quality obtained from the Gaussian kernel is
clearly superior to those obtained from the compactly supported and the inverse multiquadric kernel, provided that the Gaussian
method parameters ¢ and v are well-chosen. Note that the performance of the compactly supported kernel and the inverse
multiquadric kernel is comparable. This complies with our numerical results, as documented in [14].
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6.4 Kernel-based vs Fourier-based Reconstruction

We compare the proposed kernel-based Gaussian reconstruction method with Fourier-based reconstructions, relying on the filtered
back projection formula (3), where we considered using the standard Shepp-Logan low pass filter, given as

i L. |sin(nw/(2L)  iffw| < L;
Alw) = |o| - (M) (@)= { w w

nw/(2L) 0 iff || > L.
so that the filter |S| in (3) is being replaced by A(S). Note that A(S) ~ |S| for small frequencies S.

Crescent-shaped phantom Bull’s eye Shepp-Logan phantom

Figure 4: Three popular phantoms. Crescent-shaped phantom, bull’s eye, and Shepp-Logan (each of size 256 x 256).

We remark that the standard implementation of the Fourier-based filtered back projection formula (3) relies on a regular
distribution of Radon lines. To this end, we work with a parallel beam geometry. In this case, by the discretization 8, = kt/N, for
k=0,...,N —1, of the angular variable 6 € [0, ) and t; = jd (for some fixed sampling spacing d > 0), where j =—M,...,M,
for the radial variable t € R, the data acquisition relies on (2M + 1) x N regularly distributed Radon lines [tj’gk. Note that for any
fixed angle 6, the Radon lines ftj’gk, —M < j < M, are parallel (at uniform distance d and symmetric about the origin), which
explains the naming parallel beam geometry. For illustration, Figure 5 (a) shows a set of (2M +1) x N = 110 Radon lines Ktj,gk on
parallel beam geometry, where we let N =10, M =5, and d = 0.2.

0.8

0.6

0.4

0.2

-0.8

a H "v
A AN NS Vi,
» 1\ AN 11~

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1 -1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

(a) Radon lines on parallel beam geometry (b) Scattered Radon lines

Figure 5: (a) Radon lines on parallel beam geometry. A set of 110 Radon lines Etj’ek is shown, using increments of 7t/10 for the radial variable
O, i.e., N =10, with 2M + 1 = 11 different Radon lines per angle, letting t; = jd, for j =—5,...,5, at sampling spacing d = 0.2. (b) Scattered
Radon lines. A set of 170 randomly distributed Radon lines 6[].’9]. is shown, j=1,...,170.

Now let us turn to our numerical comparisons between Fourier-based and kernel-based reconstructions. In each test case, we
let N =45 and M = 40, so that (2M + 1) x N = 3645 Radon samples are taken. In the kernel-based Gaussian reconstruction, we
have used the "optimal" parameters shown in Table 2. The resulting reconstructions obtained from the two methods are displayed
in Figure 6. Given our numerical results, we can conclude that our kernel-based reconstruction method is competitive to the
Fourier-based reconstruction method, by the visual quality of their reconstructions and by the RMSE.

6.5 Reconstruction from Scattered Radon Data

Let us turn to the reconstruction from scattered Radon data. In our numerical experiments, we have generated sets of unstructured
Radon lines by random, so that the geometry of the sample lines is unstructured. Figure 5 (b) shows one example for a set of 170
randomly distributed Radon lines in the domain [—1,1]%.
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Crescent-shaped phantom Bull’s eye Shepp-Logan phantom

Figure 6: Kernel-based vs Fourier-based reconstruction. For the phantoms crescent-shaped, bull’s eye, and Shepp-Logan, their Fourier-based
reconstructions (1st row) and kernel-based reconstructions (2nd row) are shown. The six reconstructions are computed from (2M +1) x N = 3645
Radon samples (where we let N = 45 and M = 40) on parallel beam geometry, respectively. The corresponding root mean square errors (RMSE)

are displayed in Table 3.

Table 3: Kernel-based vs Fourier-based reconstruction. For the reconstructions in Figure 6, their RMSE are shown.

Phantom | Kernel-based | Fourier-based
crescent-shaped 0.10 0.12
bull’s eye 0.14 0.13
Shepp-Logan 0.16 0.18

We applied our kernel-based reconstruction method to a sequence of n = 2000, 5000, 10000, 20000 randomly chosen scattered
Radon lines, taken from the phantoms bull’s eye and crescent-shaped.

Figure 7 shows the obtained sequences of reconstructions, where in each test case we have used "optimal" shape parameters
from Table 2. The corresponding RMSE values are shown in Table 4.

Although the geometry of the scattered Radon lines are visible in the displays of Figure 7, the basic features of the two
phantoms are captured very well, where the reconstruction quality is improved as the number n of Radon samples increases.

Note that the RMSE values (in Table 4) are not monotonically decreasing. This is due to the random distribution of the
scattered Radon lines, cf. Figure 7. Nevertheless, the global trend of the RMSE values is, at increasing n, monotonically decreasing.

Table 4: Scattered Radon lines. RMSE for kernel-based reconstructions in Figure 7, for n = 2000, ...,20000 scattered Radon lines.

Phantom | 2000 5000 10000 20000
crescent-shaped || 0.15 0.14 0.14 0.12
bull’s eye 0.19 0.17 0.21 0.19

7 Final Remarks and Conclusion

We developed a kernel-based image reconstruction method for scattered Radon data. The proposed reconstruction method relies
on Hermite-Birkhoff interpolation by positive definite Gaussian kernels in combination with a regularization of the Radon transform
by Gaussian weights. Our kernel-based reconstruction method is shown to be competitive with Fourier-based reconstructions
from Radon data on parallel beam geometry. The main advantage of the proposed kernel-based reconstruction method is its
enhanced flexibility. In fact, the kernel-based method can unconditionally be applied to arbitrary distributions of Radon lines.
This is in contrast to classical Fourier-based reconstructions whose implementation relies on the filtered back projection formula.

Dolomites Research Notes on Approximation ISSN 2035-6803



/Q"Q\.\ De Marchi - Iske - Sironi 12

0000

Figure 7: Kernel-based reconstruction from scattered Radon data. For the test cases bull’s eye (first row) and crescent-shaped phantom
(second row), a sequence of scattered Radon data is taken. The figure shows the corresponding reconstructions for an increasing number
n = 2000, 5000, 10000, 20000 of scattered Radon samples (from left to right), obtained from the proposed kernel-based reconstruction method.
The corresponding root mean square errors (RMSE) are displayed in Table 4.
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