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C. Gräßle, M. Gubisch, S. Metzdorf, S. Rogg, and S. Volkwein

POD basis updates for nonlinear PDE control
Abstract: In the present paper a semilinear boundary
control problem is considered. For its numerical solution
proper orthogonal decomposition (POD) is applied. POD
is based on a Galerkin type discretization with basis el-
ements created from the evolution problem itself. In the
context of optimal control this approach may suffer from
the fact that the basis elements are computed from a ref-
erence trajectory containing features which are quite dif-
ferent from those of the optimally controlled trajectory.
Therefore, different POD basis update strategies which
avoids this problem of unmodelled dynamics are com-
pared numerically.

1 Introduction
In this paper we consider an optimal control problem gov-
erned by a semilinear parabolic equation together with
control constraints. For the numerical solution we apply
a Galerkin approximation, which is based on proper or-
thogonal decomposition (POD), a method for deriving
reduced-order models of dynamical systems; cf. Holmes
et al. (2012). However, to obtain the state data under-
lying the POD model, it is necessary to solve once the
full state system using a reference control. Consequently,
the POD approximations depend on the chosen reference
control, so that the choice of a reference control turned
out to be essential for the computation of a POD basis for
the optimal control problem. To overcome this problem
we investigate two different basis update strategies for im-
proving the POD basis: optimality-system POD (cf. Ku-
nisch, Volkwein (2008)) and trust-region POD (cf. Arian
et al. (2000)). In both update strategies the POD basis
is changed in the optimization method in order to ensure
convergence and a certain accuracy for the obtained con-
trols. Let us also refer to the papers Yue, Meerbergen
(2013) and Qian et al. (2016), where the trust-region op-
timization is efficiently combined with the reduced-basis
method.
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The paper is organized as follows: In Section 2 we in-
troduce our semilinear control problem and review op-
timality conditions. Our applied numerical methods are
explained in Section 3. Section 4 is devoted to explain
the application of the POD method to our optimal con-
trol problem and in Section 5 we present our numerical
experiments.

2 Optimal control problem
Let Ω ⊂ Rn, n ∈ {1, 2, 3}, be a bounded, open do-
main with Lipschitz-continuous boundary Γ = ∂Ω. The
boundary is divided into m disjunct segments Γi with
Γ = ∪mi=1Γi. The corresponding characteristic functions
are denoted by χΓi , i = 1, . . . ,m. We consider the time in-
terval [0, T ] with T > 0 and define the sets Q = (0, T )×Ω,
Σ = (0, T )× Γ. The quadratic objective has the form

J(y, u) = 1
2

∫
Ω

∣∣y(T,x)− yd(x)
∣∣2 dx

+ σu
2

T∫
0

∫
Γ

∣∣∣∣∣
m∑
i=1

ui(t)χΓi(x)

∣∣∣∣∣
2

dxdt.

(1)

In (1) the desired state yd : Ω → R is assumed to be
bounded and σu > 0 holds. The admissible controls be-
long to the closed, convex set

Uad =
{
u : [0, T ]→ Rm

∣∣ua ≤ u ≤ ub in [0, T ]
}
, (2)

where ua, ub : [0, T ] → Rm are bounded functions and
“≤” is understood componentwise in Rm. For a given con-
trol u ∈ Uad the state y = y(t,x) satisfies the semilinear
parabolic differential equation

cyt(t,x)−∆y(t,x) + y(t,x)3 = 0, (t,x) ∈ Q,

∂y

∂n
(t,x) + qy(t,x) =

m∑
i=1

ui(t)χΓi(x), (t,x) ∈ Σ,

y(0,x) = y◦(x), x ∈ Ω.

(3)

We suppose that the initial condition y◦ : Ω → R is
bounded and c, q are positive constants. Throughout the
paper we focus on the specific nonlinearity y3, which is
utilized in our numerical tests. Of course, other nonlinear-
ities – satisfying certain boundedness and monotonicity
conditions – are also possible; see (Tröltzsch, 2010, Chap-
ter 5.1). In (3) the vector n = n(x) stands for the normal



2 Gräßle, Gubisch, Metzdorf, Rogg & Volkwein, POD basis updates for nonlinear PDE control

vector defined on Γ and ∂y
∂n is the normal derivative. Re-

call that H = L2(Ω) and V = H1(Ω) are defined as

H =
{
ϕ : Ω→ R

∣∣∣ ‖ϕ‖H =
(∫

Ω

|ϕ(x)|2 dx
)1/2

<∞
}
,

V =
{
ϕ ∈ H

∣∣∣ ‖ϕ‖V =
(
‖ϕ‖2H +

n∑
i=1

∥∥ϕxi‖2H)1/2
<∞

}
,

respectively, where ϕxi denotes the (weak) partial deriva-
tive of ϕ with respect to i-th component xi of x ∈ Ω. A
solution to (3) is understood in the following weak sense:
y(t) = y(t, ·) ∈ V satisfies y(0) = y◦ in Ω and∫

Ω

cyt(t)ϕ+∇y(t) · ∇ϕ+ y(t)3ϕ dx

+
∫
Γ

qy(t)ϕdx =
m∑
i=1

ui(t)
∫
Γi

ϕ dx

(4)

for all ϕ ∈ V , where we set |Γi| =
∫

Γi 1dx. Let us define

〈e(y, u), (p, p◦)〉 =
∫
Ω

(
y(0)− y◦

)
p◦ dx

+
∫
Ω

cyt(t)p(t) +∇y(t) · ∇p(t) + y(t)3p(t) dx

+
∫
Γ

qy(t)p(t) dx−
m∑
i=1

ui(t)
∫
Γi

p(t) dx

for all (test) functions p : Q→ R with
∫ T

0 ‖p(t)‖
2
V dt <∞

and p◦ ∈ H. Then, the operator equation e(y, u) = 0 is
equivalent to the fact that y = y(u) is a weak solution to
(3) for given u ∈ Uad. Now the optimal control problem
is expressed as

min J(y, u) s.t. e(y, u) = 0 and u ∈ Uad, (P)

where “s.t.” stands for “subject to”. Under appropriate
assumptions on y◦ we can ensure that (3) has a unique
weak solution y(u) for any admissible control u ∈ Uad; i.e.,
we have e(y(u), u) = 0. This motivates the introduction
of the reduced objective Ĵ(u) = J(y(u), u). We consider
– instead of (P) – the reduced problem

min Ĵ(u) s.t. u ∈ Uad. (P̂)

The notion “reduced” expresses the fact that Ĵ depends
on the control only, whereas J is dependent on the state
and control. It follows from (Tröltzsch, 2010, Chapter 5.3)
that (P̂) admits an optimal solution ū ∈ Uad. If ȳ = y(ū)
is the unique weak solution to (3), then x̄ = (ȳ, ū) is an
optimal solution to (P). To compute a locally optimal

solution we make use of the following first-order neces-
sary optimality condition for a locally optimal solution
(Tröltzsch, 2010, Chapter 2.8):

Ĵ ′(ū)(u− ū) ≥ 0 for all u ∈ Uad, (5)

where Ĵ ′(ū) denotes the (Gateaux) derivative of Ĵ at
ū. Following the general approach in Chapter 5.5 in
Tröltzsch (2010) or the one for our present optimal con-
trol problem in Gräßle (2014); Rogg (2014) we derive that
(5) is equivalent to the variational inequality

T∫
0

m∑
i=1

(
σuūi(t)−

∫
Γi

p̄(t) dx

)
(ui(t)− ūi(t)) dt ≥ 0 (6)

for all u ∈ Uad, where p̄(t) = p̄(t, ·) ∈ V is the (unique)
weak solution to the dual or adjoint equation

− cp̄t(t,x)−∆p̄(t,x) = −3ȳ(t,x)2p(t,x), (t,x) ∈ Q,
∂p̄

∂n
(t,x) + qp̄(t,x) = 0, (t,x) ∈ Σ,

p̄(T,x) = yd(x)− ȳ(T,x), x ∈ Ω
(7)

and ȳ = y(ū) is solves (4) for the optimal control u = ū.
The associated dual variable p̄◦ is determined by p̄◦ =
cp̄(0,x) for all x ∈ Ω. Note that (P̂) and also (P) are
nonlinear (and therefore non convex) problems. To en-
sure that the solution ū to (5) is a locally optimal solu-
tion to (P̂) we have to investigate second-order sufficient
optimality conditions; see, e.g., Chapter 5.7 in Tröltzsch
(2010) and Section 2.3 in Gräßle (2014).

3 Optimization methods
In this section we briefly review the numerical algorithms
utilized to numerically solve (P) and (P̂), respectively.
For more details we refer to Gräßle (2014); Metzdorf
(2015); Rogg (2014).

3.1 Sequential quadratic programming

We introduce the Lagrangian associated with (P) as

L(y, u, p, p◦) = J(y, u) + 〈e(y, u), (p, p◦)〉,

where the mapping e(y, u) has already been defined in
Section 2. It can be shown that the Lagrangian is twice
continuously (Fréchet) differentiable. The principal idea
of the sequential quadratic programming (SQP) method
is to solve (P) in an iterative procedure, whereby in
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each SQP iteration k a linear-quadratic SQP subprob-
lem has to be solved. This SQP subproblem is obtained
by a quadratic approximation of the Lagrangian L and
a linearization of the equality constraint at the current
iterates xk = (yk, uk) and zk = (pk, pk◦). For brevity, we
set Lk = L(xk, zk) and ek = e(xk). The linear-quadratic
SQP subproblem is given as

min
xk
δ
=(yk

δ
,uk
δ
)
Lk + Lkxxkδ + 1

2L
k
xx(xkδ , xkδ )

s.t. ek + ekxx
k
δ = 0 and uk + ukδ ∈ Uad.

(8)

By x we denote the partial (Fréchet) derivative with re-
spect to the argument x = (y, u). Problem (8) is well-
defined if second-order sufficient optimality conditions
hold at the point (xk, zk). If xδ is determined, the new
SQP iterate is xk+1 = xk + xkδ . For the Lagrange mul-
tiplier zk the update is given in Algorithm 1. It can be
shown that the SQP method is locally equivalent to the
Newton method, which consists in finding a stationary
point of the Lagrangian. Hence, the rate of convergence
is locally quadratic, provided that the second-order suffi-
cient optimality condition holds; cf. Hinze et al. (2009).

3.2 Primal-dual active set strategy

Since (8) involves inequality constraints, we utilize a
primal-dual active set strategy (PDASS); cf. Bergounioux
et al. (1997). Let k and j denote the current SQP and
PDASS iteration level, respectively. The PDASS method
works on the primal variable ukδ , which has to satisfy the
inequality constraint uk+ukδ ∈ Uad, and on the dual vari-
able µk, which corresponds to the control constraint. For
a given iterate (uk,jδ , µk,j) of the PDASS algorithm we
define the active and inactive sets

Ak,ja =
{
t ∈ [0, T ] : uk,j(t) + uk,jδ (t) + µk,j(t) < ua(t)

}
,

A
k,j
b =

{
t ∈ [0, T ] : uk,j(t) + uk,jδ (t) + µk,j(t) > ub(t)

}
,

Ak,j = Ak,ja ∪A
k,j
b , Ik,j = [0, T ] \Ak,j ,

where the inequalities are understood componentwise.
Then, the solution of (8) is computed by solving its asso-
ciated KKT system:Lkyy 0 ek,?y

0 Lkuu ek,?u
eky eku 0

yδuδ
zδ

+

 0
µk,j+1|Ak,j

0

 =

−Lky−Lku
−ek


uδ|Ak,j = χ

A
k,j
a

(ua − uk) + χ
A
k,j
b

(ub − uk), (9)

where we set xk,j+1
δ = (yδ, uδ) and zk,j+1

δ = zδ. By
ek,?y and ek,?u we denote the dual operators of eky and eku,

Algorithm 1: SQP method with PDASS
Require: Initial value (x0, z0), set k = 0;

1: repeat
2: Initialize (uk,0δ , µk,0) and set j = 0;
3: repeat
4: Set j = j + 1;
5: Determine A

k,j
a , Ak,jb , Ak,j and Ik,j ;

6: Solve (9) for (yδ, uδ, zδ) and µk,j |Ak,j ;
7: Set j = j + 1, xk,jδ = (yδ, uδ), zk,jδ = zδ, and

µk,j |Ik,j−1 = 0;
8: until j ≥ 1, Ak,ja = A

k,j−1
a , Ak,jb = A

k,j−1
b ;

9: Set xk+1 = xk + xk,jδ and zk+1 = zk + zk,jδ ;
10: until SQP stopping criterium is fulfilled;

respectively. The SQP method with PDASS is summa-
rized in Algorithm 1. In general, Algorithm 1 is only lo-
cally convergent. In order to ensure convergence for any
starting point (x0, z0), a globalization strategy is utilized,
which is made from two ingredients: a modification of the
second-order term Lkxx to ensure coercivity and the inclu-
sion of an Armijo backtracking line search for an `1-merit
function. For more details we refer to Hintermüller (2001)
for the general theory and to Gräßle (2014) for our spe-
cific optimal control problem.

3.3 Trust region method

In this paper we compare Algorithm 1 with the trust-
region (TR) method for the solution of (P̂); cf. Conn et
al. (2000). The key idea of TR methods is as follows: At a
current iterate the objective Ĵ is replaced by a “simpler”
(often quadratic) model function which is then approxi-
mately minimized in a TR to find the next iterate. As-
sume we are in iteration k with current iterate uk. Then,
we build a model function mk to approximate the objec-
tive Ĵ at uk. In Algorithm 2, we restrict ourselves to the
quadratic model

mk(d) = Ĵ(uk) + gkd+ 1
2H

k(d, d), (10)

where d is a mapping from [0, T ] to Rm, gk = Ĵ ′(uk) holds
and Hk denotes the Hessian Ĵ ′′(uk) or a self-adjoint ap-
proximation to it. In line 2 a trial step dk is computed by
approximately solving the TR subproblem. In lines 4 to
13 it is then decided whether or not to accept the trial
point uk + dk as next iterate and the TR radius ∆k gets
adjusted. This decision is based upon the quotient ρk in
line 3 which compares the reduction predk of the model
function to the reduction aredk of the cost functional and
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Algorithm 2: (Trust region method)
Require: Initial TR radius ∆0 > 0, initial point u0,

constants η1, η2, γ1, γ2, γ3 satisfying
0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1 ≤ γ3; set k = 0;

1: Build up the model function mk;
2: Determine an approximate solution dk to

min
d
mk(d) s.t. uk + d ∈ Uad and ‖d‖ ≤ ∆k;

3: Compute the quotient
ρk = aredk

predk
= Ĵ(uk)−Ĵ(uk+dk)

mk(0)−mk(dk) ;
4: if ρk ≥ η2 then
5: Set uk+1 = uk + dk and ∆k+1 ∈ [∆k, γ3∆k];
6: Set k = k + 1 and go to line 1;
7: else if η1 ≤ ρk < η2 then
8: Set uk+1 = uk + dk and ∆k+1 ∈ [γ2∆(k),∆k];
9: Set k = k + 1 and go to line 1;

10: else if ρk < η1 then
11: Set uk+1 = uk and ∆k+1 ∈ [γ1∆k, γ2∆k];
12: Set k = k + 1 and go to line 2;
13: end if

which provides a measure for the approximation quality
of the model function. In case ρk ≥ η1 (e.g. η1 = 0.2), the
trial point is accepted. If even ρk ≥ η2 (e.g. η2 = 0.8), the
approximation quality of the model function is as good
that the TR radius can be increased for the next itera-
tion. Otherwise the radius should be kept or decreased.
In case ρk < η1, the quadratic model is a poor approxi-
mation to the cost functional on the TR, the trial point
is rejected and the TR subproblem gets again solved for
a decreased TR radius. Disregarding standard assump-
tions, Algorithm 2 is globally convergent in the sense
limk→∞ ‖gk‖ = 0 if the trial steps dk lead to a model
decrease predk at least as good as that of the so-called
Cauchy step. If the model function possesses inexact gra-
dient information gk 6= Ĵ ′(uk), global convergence still
holds if the Carter condition

‖Ĵ ′(uk)− gk
∥∥ ≤ ζ ‖gk‖, ζ ∈ (0, 1− η2) (11)

is satisfied in every iteration; see Carter (1991). We com-
pute truncated Newton steps using the Steihaug-CG algo-
rithm, see Nocedal, Wright (2006), together with active
set projection according to Kelley (1999). Hence, we ful-
fill this condition. Note that the computation of Ĵ ′′(uk)d
requires the solutions to a linearized state and linearized
adjoint equation; cf. Hinze et al. (2009).

4 POD reduced-order modelling
In this section we recall the basics of the POD method
for optimal control problems. For more details we refer,
e.g., to Benner et al. (2014); Sachs, Volkwein (2010).

4.1 POD method

Suppose that we are given trajectories zν(t) = zν(t, ·) ∈
H, t ∈ [0, T ], 1 ≤ ν ≤ ℘ and ℘ ∈ N. We introduce the
snapshot subspace as

V = span
{
zν(t)

∣∣ t ∈ [0, T ] and ν = 1, . . . , ℘
}

with d = dimV ≤ ∞. The inner product in H is given as

〈ϕ, φ〉H =
∫
Ω

ϕ(x)φ(x) dx for all ϕ, φ ∈ H.

For every ` with 1 ≤ ` ≤ d, a POD basis of rank ` is
defined as a solution to the minimization problem

min
℘∑
ν=1

T∫
0

∥∥∥zν(t)−
∑̀
i=1
〈zν(t), ψi〉H ψi

∥∥∥2

H
dt

s.t {ψi}`i=1 ⊂ H, 〈ψi, ψj〉H = δij , 1 ≤ i, j ≤ `.

(12)

A solution to (12) is given by the eigenvalue problem

Rψi = λiψi for λ1 ≥ λ2 ≥ . . . ≥ λ` ≥ λd > 0 (13)

with the linear, bounded integral operator

R : H → V ⊂ H, Rψ =
℘∑
ν=1

T∫
0

〈zν(t), ψ〉H zν(t) dt.

In our numerical experiments we consider ℘ = 2. We
include by z1 and z2 information of the (linearized) state
and the dual equation, respectively.

4.2 Reduced-order modelling for the
control problem

Suppose that a POD basis {ψi}`i=1 is computed. We in-
troduce the subspace V ` = span {ψ1, . . . , ψ`} and define
the orthogonal projection P`ϕ =

∑`
i=1 〈ϕ,ψi〉H ψi for

ϕ ∈ H. The POD scheme for (4) is as follows: y`(t) ∈ V `

satisfies y`(0) = P`y◦ in H and∫
Ω

cy`t (t)ψ +∇y`(t) · ∇ψ + y(t)3ψ dx

+
∫
Γ

qy`(t)ψ dx =
m∑
i=1

ui(t)
∫
Γi

ψ dx

(14)
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for all ψ ∈ V ` and t ∈ (0, T ]. Then, we replace (P) by the
following POD approximation

min J(y`, u) s.t. (y`, u) satisfies (14) and u ∈ Uad. (P`)

We assume that (14) has a unique solution y`(u) for any
u ∈ Uad. Then, setting Ĵ`(u) = J(y`(u), u) for any u ∈
Uad we obtain the POD approximation of (P̂)

min Ĵ`(u) s.t. u ∈ Uad. (P̂`)

Suppose that ū` is a locally solution to (P̂`). We interpret
ū` as a suboptimal solution to (P̂). First-order necessary
optimality conditions for (P̂`) are given by (compare (6))

T∫
0

m∑
i=1

(
σuū

`
i(t)−

∫
Γi

p̄`(t) dx

)
(ui(t)− ū`i(t)) dt ≥ 0

for all u ∈ Uad, where p̄`(t) = p̄(t, ·) ∈ V ` is the weak
solution to a POD Galerkin scheme for (7) utilizing the
optimal POD state ȳ` = y`(ū). More details are presented
in Gräßle (2014); Metzdorf (2015); Rogg (2014).

4.3 POD basis update strategies

The choice of a reference control uref ∈ Uad turned out to
be essential for the computation of a POD basis of rank `.
When using an arbitrary control, the obtained accuracy
was not at all satisfying even when using a huge number of
basis functions. On the other hand, an optimal POD basis
(computed from the FE optimally controlled state) led to
far better results; Hinze, Volkwein (2008). To overcome
this problem different techniques for improving the POD
basis have been proposed.

4.3.1 Optimality system POD

Let us just roughly recall optimality system POD (OS-
POD) introduced in Kunisch, Volkwein (2008). The idea
of OS-POD is to include the equations determining the
POD basis in the optimization process

min Ĵ`(u)
s.t. u ∈ Uad and y(u) is the solution to (4),
{ψi}`i=1 solves (13) for ℘ = 1, z1 = y(u),
y`(u) satisfies (14).

(P`
os)

A thereby obtained basis is optimal for the considered
problem. Note that (P`

os) is more complex than the origi-
nal problem (P). Therefore, we do not solve (P`

os). Start-
ing with an initial control u0 ∈ Uad, we compute a few

projected gradient steps for (P`
os) in order to find a POD

basis, which is appropriate for the underlying optimal
control problem. Then, this POD basis is kept fix and
the POD approximation (P`) of (P) is derived. We dis-
cuss two possibilities to use OS-POD:
1) First, starting with a reference control uref ∈ Uad we

apply a few projected gradient steps to solve (P`
os)

numerically. Then, the obtained POD basis is kept
fix and the POD approximation (P`) is solved nu-
merically by the SQP method. This approach is used
in Grimm et al. (2014); Metzdorf (2015) for linear
parabolic equations.

2) In the second approach we utilize OS-POD within
the SQP framework. In each SQP iteration a linear-
quadratic optimal control problem has to be solved
up to a certain accuracy. For each linear-quadratic
SQP subproblem we formulate the OS-POD opti-
mization problem as in (P`

os). Again, we apply a few
(projected) gradient steps, but now to the linear-
quadratic problem in order to find a POD basis
which is appropriate for the current SQP subprob-
lem. Then, we apply the PDASS algorithm to solve
the linear-quadratic SQP subproblem using the POD
basis found by the OS-POD gradient steps.

4.3.2 Trust region POD

Within the trust-region POD (TR-POD) algorithm we
guarantee that the reduced-order models are sufficiently
accurate by ensuring gradient accuracy according to the
Carter condition (11); see Schu (2010). This is realized
by successively adapting the reduced-order models in the
course of optimization just by increasing the number ` of
POD basis functions or, if this does not lead to a suffi-
cient accuracy, by computing a new POD basis from the
current control iterate (and then adapting the number `).
Recall the approximative model gradient gk and the ap-
proximative Hessian Hk from (10). In the TR-POD ap-
proach gk andHk are computed from the respective POD
approximations of Ĵ :

mk
` (d) = Ĵ(uk) + gk` d+ 1

2 H
k
` (d, d).

The TR-POD method is summarized in Algorithm 3. The
lower part is completely identical to Algorithm 2. But
here, at the beginning of each iteration, the approxima-
tion quality of the current POD basis is tested and if
necessary recomputed.
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Algorithm 3: TR-POD method
Require: Initial TR radius ∆0 > 0, initial point u0, a

maximal number `max of POD basis functions and
constants η1, η2, γ1, γ2, γ3 satisfying
0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1 ≤ γ3; set k = 0;

1: Compute a reduced-order model for some ` ≤ `max;
2: Guarantee (11) by computing new POD basis

and/or expanding ` ≤ `max;
3: Build up the model function mk

` (d);
4: Determine an approximate solution dk to

min
d
mk
` (d) s.t. uk + d ∈ Uad and ‖d‖ ≤ ∆k;

5: Compute the quotient
ρk = aredk

predk
= Ĵ(uk)−Ĵ(uk+dk)

mk
`
(0)−mk

`
(dk) ;

6: Lines 4 to 13 of Algorithm 2.

4.3.3 POD based inexact SQP method

For large-scale systems it is costly to solve each SQP sub-
problem (9) exactly. Thus, an inexact version of the SQP
method is used, where the inexactness is caused by re-
placing (9) by its POD surrogate model; cf. Kahlbacher,
Volkwein (2011). An a-posteriori error bound for linear-
quadratic optimal control problems (see Tröltzsch, Volk-
wein (2009)) is used to control the accuracy of the POD
model and hence guarantee convergence. For more details
we refer to Grimm et al. (2014); Sachs, Volkwein (2010).

5 Numerical Results
Problem setting. We choose Ω = (0, 1) × (0, 1) ⊂ R2

and T = 0. The parameters are c = 10 and q = 0.01. We
divide the boundary Γ into m = 4 parts so that the char-
acteristic functions {χΓi}4i=1 represent each of the four
boundary parts. The cost parameter is σu = 5 · 10−3. For
the spatial discretization we use piecewise linear finite el-
ements (FE) with diameter hmax = 0.06 leading to 498
degrees of freedom. As time integration scheme we uti-
lize the implicit Euler method with Nt = 250 equidistant
time steps. The reference control for snapshot generation
in the context of Section 4.1 is uref = 0. The snapshot
set for POD basis computation differs depending on the
chosen optimization strategy. In case of TR-POD, state
and adjoint state snapshots are taken, whereas for SQP
linearized state and linearized adjoint state snapshots are
utilized. Moreover, we define the absolute and relative

method εuabs εurel
SQP-POD, no basis update 2.21 · 100 2.78 · 10−1

OS-POD approach 1 3.15 · 10−1 3.96 · 10−2

OS-POD approach 2 2.43 · 10−1 3.06 · 10−2

SQP-POD, optimal basis 1.07 · 10−1 1.35 · 10−2

TR-POD 1.89 · 10−1 2.45 · 10−2

Table 1. Run 1: errors between POD and FE optimal controls.
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Fig. 1. Run 1, left: SQP-POD controls {ui(t)}4i=1 for a fixed
POD basis with ` = 10 (black line) and SQP-FE solution (black
dotted). Right: Decay of the eigenvalues for SQP-POD and TR-
POD.

errors εuabs = ‖ūh − u‖ and εurel = εuabs/‖ūh‖ with

‖u‖2 :=
m∑
i=1

∆t
( (u(0)

i )2

2 +
Nt∑
j=1

(u(j)
i )2 +

(u(Nt+1)
i )2

2

)
to measure the difference between any computed control
u and the optimal FE control ūh.
Run 1 (unconstrained case). At first we consider (P)
without control constraints. We choose the desired state
yd(x) = sin(2π(x1− 0.25)) + 4x1x2 and the initial condi-
tion y◦(x) = sin(2π(x1 − 0.25)) for x = (x1, x2) ∈ Ω. In
the left plot of Fig. 1 we present the SQP-FE optimal con-
trols (dotted lines) compared to the SQP-POD optimal
controls obtained with a fixed POD basis of rank ` = 10.
As can be seen, the accuracy is not satisfying; see also
Table 1, row 1. This confirms the necessity of a POD ba-
sis update strategy. The POD eigenvalues computed for
SQP-POD and TR-POD are shown in the right plot of
Figure 1. As first POD basis update strategy, we use the
OS-POD approach 1) of Section 4.3.1. One gradient step
is applied to (P`

os). Then, the POD basis of rank ` = 10 is
fixed and (P`) is solved by the SQP method. This update
strategy leads to an improvement of the error in the con-
trol variable of one order (see Table 1, row 2). The next
POD basis update strategy consists in a combination of
the POD based inexact SQP method with OS-POD ap-
proach 2) of Section 4.3.1. Two SQP iterations are needed
for convergence. The first SQP iteration is cheap, since
` = 5 POD bases suffice. In the second SQP iteration,
it is detected that a higher accuracy of the POD surro-
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Fig. 2. Run 1: POD controls {ui(t)}4i=1 (black line) and FE so-
lution (black dotted), OS-POD basis update (left) and TR-POD
(right).

gate model for the linear-quadratic SQP subproblem (8)
is needed. Thus, we apply one gradient step to solve the
OS-POD optimization problem for the linear-quadratic
SQP subproblem and the number of utilized POD basis
functions is increased to ` = 10. The POD solution ū`

for the time dependent control intensities coincides con-
vincingly with the FE solution (see Fig. 2, left and Table
1, row 3). Since the POD basis is adapted to the desired
accuracy within the solution process, this strategy leads
to better results than the first POD basis update strat-
egy. For comparison, the error between the FE solution
ūh and the SQP-POD solution ū` with optimal POD ba-
sis of length ` = 10 is listed in Table 1, row 4. Now, we
compare these results to those obtained by TR-POD. Re-
call that the TR-POD algorithm guarantees convergence
to a stationary point. This is why the deviation of the
TR-POD optimal control from the FE optimal control
is within discretization accuracy; see the last row in Ta-
ble 1 and Fig. 2, right plot. The iterations of the TR-POD
method are very similar to those of the POD based inex-
act SQP method with OS-POD approach 2. In the first
iteration ` = 4 POD basis functions suffice to fulfill the
Carter condition (11). In the second iteration a new POD
basis gets computed and ` = 10 POD modes are required.
We visualize the adaptation of the POD basis during op-
timization by means of the shape of the first three ba-
sis functions. In Fig. 3 the adaptation corresponding the
POD based inexact SQP method with OS-POD approach
2 is shown. For comparison, in Fig. 4 we present the POD
basis adaptation obtained from the TR-POD algorithm.
Run 2 (constrained case). Now we impose the box con-
straints ua = 0 and ub = 7. We choose yd(x) = 2+2|2x1−
x2| and y◦(x) = 3−4(x2−0.5)2 for x = (x1, x2) ∈ Ω. The
approximation results for the POD solution ū`(t) with
snapshots computed from the reference controls uref = 0
and uref = ūh(t) are listed in Table 2, row 1 and 4, respec-
tively. The application of the POD basis update strategy
by OS-POD approach 1) leads to a reduction of the error
in the control by a factor of two in comparison to the case

Fig. 3. Run 1, OS-POD approach 2): POD bases ψ1, ψ2, ψ3 com-
puted in the first (top) and second iteration (middle) of SQP-
POD method; optimal basis functions computed by reference
control uref = ūh (bottom).

Fig. 4. Run 1, TR-POD: POD bases ψ1, ψ2, ψ3 computed in the
first (top) and second iteration (middle); optimal basis functions
computed by the reference control uref = ūh (bottom).

method εuabs εurel
SQP-POD, no basis update 7.92 · 10−1 8.81 · 10−2

OS-POD approach 1 3.73 · 10−1 4.15 · 10−2

OS-POD approach 2 1.12 · 10−1 1.25 · 10−2

SQP-POD, optimal basis 1.30 · 10−1 1.45 · 10−2

TR-POD 8.60 · 10−2 9.60 · 10−3

Table 2. Run 2: errors between POD and FE optimal controls.
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Fig. 5. Run 2: controls {ui(t)}4i=1, black dotted: FE solution,
black line: POD solution. Right: TR-POD.

with no POD basis update. Finally, we utilize OS-POD
approach 2) in combination with the inexact SQP-POD
method. In this case, four SQP iterations are needed for
convergence. In the first two iterations, ` = 3 POD modes
suffice. In the third iteration, one gradient step is per-
formed to compute approximatively a solution for the
OS-POD optimization problem for the linear-quadratic
SQP subproblem. Moreover, the number of utilized POD
basis functions is increased to ` = 7. In the last iteration,
the number of POD modes is increased to the maximum
number ` = 10. The resulting POD controls are compared
to the FE controls in the left plot of Fig. 5 as well as in
row 3 of Table 2. From the computational point of view,
OS-POD approach 1) is the fastest. The computational
time for snapshot generation and OS-POD basis compu-
tation is 2.6 sec. The SQP-POD run then takes 7.3 sec.
In comparison, the SQP-FE run takes 85.8 sec. The TR-
POD Algorithm needs five iterations for optimization. In
the first three iterations the initial POD basis suffices to
guarantee the Carter condition with only 3, 3 and 5 POD
basis functions. In the fourth iteration a new POD basis
is computed and ` = 7 POD modes are needed. This basis
of rank seven can then be kept for the last step.

Acknowledgment: C. Gräßle and S. Metzdorf have been
supported partially by the project A-posteriori error es-
timation for TR-POD methods in Design and Control fi-
nanced by the University of Konstanz.

References
Arian, E., Fahl M., Sachs, E.W. “Trust-region proper orthogonal

decomposition for flow control.” Technical Report 2000-25,
ICASE, 2000.

Bergounioux, M., Ito, K., Kunisch, K. “Primal-dual strategy for
constrained optimal control problems.” SIAM J. Control Op-
tim., 35 1524-1543 (1997)

Benner, P., Sachs, E.W., Volkwein, S. “Model order reduction for
PDE constrained optimization.” Internat. Ser. Numer. Math.,
165 303-326, (2014)

Carter, R.G. “On the global convergence of trust region algo-
rithms using inexact gradient information.” SIAM J. Numer.
Anal., 28 251-265 (1991)

Conn, A.R., Gould, N.I.M., Toint, P.L. “Trust-region methods.”
SIAM (2000)

Gräßle, C. “POD based inexact SQP methods for optimal
control problems governed by a semilinear heat equa-
tion.” Diploma Thesis, University of Konstanz (2014),
https://kops.uni-konstanz.de/handle/123456789/29390

Grimm, E., Gubisch, M., Volkwein, S. “A-Posteriori Error Anal-
ysis and Optimality-System POD for Constrained Optimal
Control.” Comp. Sci. Eng., 105, 297-317 (2014)

Holmes, P., Lumley, J.L., Berkooz, G., Romley, C.W. “Turbu-
lence, Coherent Structures, Dynamical Systems and Sym-
metry.” Cambridge Monographs on Mechanics, Cambridge
University Press (2012)

Hintermüller, M. “On a globalized augmented Lagrangian-SQP
algorithm for nonlinear optimal control problems with box
constraints.” Internat. Ser. Numer. Math., 138 139-153
(2001)

Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, R. “Optimization
with ODE constraints.” Math. Mod., 23, Springer Series
(2009)

Hinze, M., Volkwein, S. “Error estimates for abstract linear-
quadratic optimal control problems using proper orthogonal
decomposition.” Comput. Optim. Appl., 39 319-345 (2008)

Kahlbacher, M., Volkwein, S. “POD a-posteriori error based in-
exact SQP method for bilinear elliptic optimal control prob-
lems.” ESAIM: M2AN, 46 491-511 (2011)

Kelley, C.T. “Iterative Methods for Optimization.” Frontiers in
Applied Mathematics, SIAM, Philadelphia, PA (1999)

Kunisch, K., Volkwein, S. “Proper orthogonal decomposition for
optimality systems.” ESAIM: M2AN 42, 1-23 (2008)

Metzdorf, S. “Optimality system POD for time-
variant, linear-quadratic control problems.”
Diploma Thesis, University of Konstanz (2015),
http://nbn-resolving.de/urn:nbn:de:bsz:352-0-329322

Nocedal, J., Wright, S.J. “Numerical Optimization.” 2nd ed.,
Springer, New York (2006)

Qian, E., Grepl, M., Veroy, K., Willcox, K. “A certified trust re-
gion reduced basis approach to PDE-constrained optimiza-
tion.” ACDL Technical Report TR16-3, 2016

Rogg, S. “Trust region POD for optimal bound-
ary control of a semilinear heat equation.”
Diploma Thesis, University of Konstanz (2014),
https://kops.uni-konstanz.de/handle/123456789/29194

Sachs, E.W., Volkwein, S. “POD Galerkin approximations in
PDE-constrained optimization.” GAMM-Mitt. 33, 194-208
(2010)

Schu, M. “Adaptive trust-region POD methods and their applica-
tions in finance.” Ph.D thesis, University of Trier (2012)

Tröltzsch, F. “Optimal Control of Partial Differential Equations:
Theory, Methods and Applications.” AMS American Mathe-
matical Society, 2nd ed. (2010)

Tröltzsch, F., Volkwein, S. “POD a-posteriori error estimates for
linear-quadratic optimal control problems.” Comput. Optim.
Appl., 44 83-115 (2009)

Yue, Y., Meerbergen, K. “Accelerating PDE-constrained opti-
mization by model order reduction with error control.” SIAM
J. Optim. 23, 1344-1370 (2013)


	GraeGubMetzRoggVolk2016.pdf
	POD basis updates for nonlinear PDE control
	1 Introduction
	2 Optimal control problem
	3 Optimization methods
	3.1 Sequential quadratic programming
	3.2 Primal-dual active set strategy
	3.3 Trust region method

	4 POD reduced-order modelling
	4.1 POD method
	4.2 Reduced-order modelling for the control problem
	4.3 POD basis update strategies
	4.3.1 Optimality system POD
	4.3.2 Trust region POD
	4.3.3 POD based inexact SQP method


	5 Numerical Results



