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Zusammenfassung Based on the coupled problem of time-dependent fluid-
structure interaction, equations for an appropriate adjoint problem are derived
by the consequent use of the formal Lagrange calculus. Solutions of both primal
and adjoint equations are computed in a partitioned fashion and enable the
formulation of a surface sensitivity. This sensitivity is used in the context of
a steepest descent algorithm for the computation of the required gradient of
an appropriate cost functional. The efficiency of the developed optimization
approach is demonstrated by minimization of the pressure drop in a simple
two-dimensional channel flow and in a ducted blood-flow of a vascular artery.

Schlüsselwörter Fluid-Structure Interaction · Adjoint Shape Optimization ·
Adjoint FSI Optimization · Optimal Control of Fluid-Structure Interaction

1 Introduction

The growing amount of available computational capacities and the associated
possibilities to consider mutual dependencies between fluid loads and structure
deformations lead to an increase in the impact of applications considering
fluid-structure interaction (FSI) in engineering, physics and health sciences.
With rising fluid loads and deformations of the structure respectively, scientists
and engineers face an increasing demand for considering interactions between
fluids and structures. Common examples of fluid dynamic design tasks are
fluttering of aircraft wings [1] and turbine blades [2], deformations of rudder
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constructions or sloshing loads on the hull of a ship. In this paper, we focus
on the computation of vascular blood flows, where periodic pressure loads in
conjunction with the hyperelastic walls of an artery result in large deformations
of the flow channel, which cause significant mutual coupling between both the
flow field and the deformation of the artery.

Furthermore, the growing available computer performance arises increasin-
gly questions of how to go beyond pure prediction of system behaviour and
how to challenge the modification of specific design parameters to improve the
system performance. In this context, adjoint shape optimization has become
quite a popular approach in the last decade, mainly due to its low numerical
costs in terms of numerical effort and computational time. In the past, a lot of
works focussed on the optimization of purely fluid dynamic design tasks (see,
e.g. [3][4][5][6][7][8][9]) neglecting the dependencies of flow fields and involved
structures which is sufficient in many engineering applications. In [10], the
coupling of flow field and energy transport due to heat transfer is considered
in the adjoint optimization approach by referring to an appropriate system
consisting of energy and Reynolds-averaged Navier-Stokes (RANS) equations.

An approach considering the dependencies between fluid and structure in
the context of an adjoint optimization framework can be found in [11], whe-
re the formulated optimization strategy is applied to the dynamic steering of
system behaviour controlled by a force acting on the structure. The derivati-
ve of the cost functional is computed from both primal and adjoint solutions
and is used in the context of a steepest descent algorithm. Both primal and
adjoint (dual) FSI-problems are solved simultaneously by usage of proper Fi-
nite Element (FE) formulations during the solution of the governing partial
differential equations (PDE) for fluid and structure respectively.

Similar to [11], in this paper we propose a partitioned optimization strategy
for time-dependent FSI-applications based on adjoint methods to compute the
gradient of a cost functional to be minimized in the framework of a steepest
descent algorithm. In contrast to [11], the control parameter in this work is
the shape of the involved structure. In particular, we are interested in affecting
the flow behaviour of an artificial blood vessel by variation of its shape to find
optimal conditions for future patients and their surgeons.

The optimization approach chosen in this work is illustrated in Figure
1 and is based on an iterative application of a steepest descent algorithm as
described in [6] for common adjoint design tasks. Starting with an initial shape
configuration uk, the first step in computing the required gradient consists
according to Figure 1 in solving the time-dependent FSI-problem. As shown
in Figure 1, the solution of the appropriate adjoint system is then calculated by
referring to required information from the primal solution process in a second
step.

According to Figure 1, knowledge of both primal and adjoint state of the
system allows in a third step for an efficient computation of the derivative of
the corresponding cost functional which can in the context of shape design be
identified with a surface sensitivity. The required gradient (in [6] also called
Sobolev gradient) is then obtained by taking advantage of the Riesz represen-
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Optimized Shape uk+1 known 

Optimize Shape uk 

System State y(uk) known 

Adjoint State q(y(uk
),uk) known 

Sensitivity K(y(uk),q(uk),uk) known 

Gradient  (uk)  known 

 

Solve Adjoint FSI-Problem 
(requires information about y(u

k
) and u

k
) 

 

Solve FSI-Problem   e(y(uk
),uk) = 0 

(requires information about shape u
k
) 

 

Solve Laplace-Beltrami-PDE 
(requires K(y(u

k
),u

k
) and u

k
 ) 

 

Steepest Descent Algorithm 

(requires (uk), uk  and step size αk) 

 

Compute Surface Sensitivity 
(requires y(uk), q(uk), uk)   

 

Set k = k+1 

Repeat until Convergence 

Abb. 1 Adjoint-based optimization framework in the context of a steepest descent algo-
rithm (see, e.g. [6]).

tation theorem leading to an additional PDE to be solved. In this situation,
the resulting Laplace-Beltrami PDE is solved in a fourth step by usage of the
sensitivity information calculated before. The initial shape geometry uk is then
modified according to the computed gradient distribution in the framework of
a steepest descent algorithm and the whole optimization process is repeated
iteratively.

In the context of this paper, we focus on the minimization of the pressure
drop in the considered model artery, the derivation of the required adjoint
time-dependent FSI-problem and the computation of a smooth gradient using
a surface sensitivity influenced by both primal and adjoint solutions. The paper
is outlined as follows. First, we briefly discuss in section 2 the derivation of
adjoint equations relating to the well known time dependent FSI-problem as
well as their numerical properties in the context of a partitioned solution
approach. In section 3, we present an approach to compute derivative and
gradient of an arbitrary cost functional based on the knowledge of primal and
adjoint solutions. Finally, we show the capability of the developed optimization
strategy by two examples in section 4 and draw some closing conclusions in
section 5.



4 J.P. Heners et al.

2 Primal and adjoint FSI-problem

This section presents the derivation of the adjoint FSI-Problem and its charac-
teristic properties in terms of a partitioned solution framework. Derivations of
both adjoint equations and boundary conditions are presented after a brief re-
capitulation of the underlying FSI-problem in Arbitrary Lagrangian-Eulerian
(ALE) formulation. The whole work assumes the fluids to be of incompressible
Newtonian nature and allows for large deformations of the involved structures
which are modelled as thin-walled anisotropic three-dimensional hyperelastic
continua based on the St. Venant-Kirchhoff material model.

2.1 Primal FSI-problem in ALE-formulation

The time-dependent FSI-problem considered in this work is given in a residual
form by equations (1 - 4). The time-dependent physical domain Ωτ := (Ω×T )
herein is separated in a fluid domain Ωτf := (Ωf × T ) and a structural domain
Ωτs := (Ωs×T ) connected by an interface boundary Γ τIF as illustrated in Figure
2.

Ri =
∂vi
∂t

+
(
v − vm

)
j

∂vi
∂xj

+
∂

∂xj

[
p δij − 2 ν Sij

]
= 0 in Ωτf (1)

Q =
∂vi
∂xi

= 0 in Ωτf (2)

Bi = ρs
∂2di
∂t2
− ∂PiJ
∂XJ

− ρsbi = 0 in Ωτs,o (3)

Ci = vi − ḋi = 0 on Γ τIF (4)

Since we are only considering incompressible Newtonian fluids without volume
loads, the governing equations for fluid velocity vi and specific fluid pressure
p = p

ρf
are given by the incompressible Navier-Stokes equations, which are

momentum equations Ri (1) and continuity equation Q (2), both formulated
in an ALE-framework. Here, vm is the velocity of the fluid domain Ωτf , and
ρf and ν denote the density and kinematic viscosity of the fluid. Furthermore,

Sij defines the rate of strain tensor Sij = 1/2
(
∂vi
∂xj

+
∂vj
∂xi

)
of the fluid velocity

vi.
The governing structural mechanics equations (3) for the structural dis-

placement di are given by the balance of momentum described in terms of
the reference configuration Ωs,o of the structure. In eq. (3), ρs defines the
density of the structure, PiJ the first Piola-Kirchhoff stress tensor and bi the
vector of specific body forces. The associated constitutive equations are ba-
sed on a hyperelastic behaviour defining the stresses as PiJ = FiISIJ with
SIJ = λδIJEIJ + 2µEIJ being the second Piola-Kirchhoff stress tensor and
FiI = ∂xi

∂XI
= δiI + ∂di

∂XI
being the deformation gradient. In the definition of
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Ωs Ωf ΓIF 

Γs = ΓD  ΓN ΓIF   Γf = ΓIn  ΓOut ΓWall ΓIF

ΓIF   

 Γs = ΓD  ΓN ΓIF   

Ω  =  Ωs   Ω f   

  

Abb. 2 Spatial domain in the considered FSI-framework including the structural subdo-
main Ωs (white) and the fluid subdomain Ωf (grey).

the second Piola-Kirchhoff stress tensor SIJ , EIJ denotes the Green-Lagrange
strain tensor defined by EIJ = 1

2 (FiIFiJ − δIJ) with Lamé constants λ and µ.
To ensure proper coupling properties at the FSI-interface Γ τIF := (ΓIF×T ),

we postulate fluid velocity vi and stuctural velocity ḋi to be equal on the
interaction boundary Γ τIF, which yields the latter constraint (4). Furthermore,
we require fluid and structural tractions to be in equilibrium at the fluid-
structure interface Γ τIF which can be achieved by an equality of the associated
test functions δvi = δdi of fluid and structure, respectively at the interface
(see e.g. [12][13]).

2.2 Optimal control problem and PDE constraints

In this subsection we provide a formulation of the considered optimal control
problem and of a proper Lagrange functional L by introducing suitable La-
grange multipliers. Based on this Lagrange functional, an adjoint FSI-problem
is derived in the next subsection which allows us to compute a surface sen-
sitivity as a function of the chosen cost functional as well as of solutions of
the associated primal and adjoint systems. A common form of an optimization
problem concerned by a PDE-constraint e(y, u) = 0 can be stated as

min
u∈Uad

J(y, u) s.t. e(y, u) = 0 . (5)

This can be interpreted as follows. Find the control parameter u in the set
of admissible control states Uad, that minimizes the cost functional J (which
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is a function of the state variable y and the control parameter u), subject to
the PDE-constraint e(y, u) = 0 (which is again a function of state variable y
and control parameter u). In our case, the control parameter u is the shape
of the structure, since in terms of shape optimization we want to affect the
performance of an artificial artery just by variation of its shape. The set of
admissable controls Uad can be affected by both technical and theoretical cons-
traints. From the theoretical point of view, we require at least a continuous
and steady formulation of u relying on a feasible parametrization of the shape.
Furthermore, the set of admissable controls can be restricted additionally by
technical aspects (e.g. fixed positions of inlet and outlet or constraints in the
dimensions of the assembly).

Since the considered FSI-problem defined by eq. (1 - 4) is completely de-
termined by knowledge of fluid velocity vi, fluid pressure p and structural
displacements di, the state of the considered system can be described by

y(u) =

{vi(u)p (u)

di(u)

} ∈
(
Yad
)

, (6)

where Yad = (Vad Pad Sad)T is the set of admissible states of fluid velocities vi,
specific fluid pressures p and structural displacements di. Since changes in the
shape u cause changes in both flow and displacement field, the state variable
y in eq. (6) can be interpreted as a function of u. Here, we assume that there
is a unique solution to the physical problem given by eq. (1)-(4) for all shapes
u ∈ Uad of the fluid-structure interface ΓIF. Therefore, we can formulate an
equivalent reduced cost functional

Ĵ := Ĵ(u) : H1(Γ,R) −−−→ R (7)

being just a function of the control parameter u. Here, H1(Γ,R3) denotes
the associated Sobolev space W 1,2(Γ,R3). Focussing on FSI-applications, the
PDE-constraint e(y, u) = 0 is then given by the residual formulation of the
primal FSI-problem in eq. (1 - 4), i.e.

e(y, u) =


Ri = ∂vi

∂t + (v − vm)j
∂vi
∂xj

+ ∂
∂xj

[
p · δij − 2 ν Sij

]
in Ωτf

Q = ∂vi
∂xi

in Ωτf
Bi = ρs

∂2di
∂t2 −

∂PiJ
∂XJ

− ρsbi in Ωτs,o
Ci = vi − ḋi on Γ τIF


= 0 .

(8)

The definition of the constrained optimization problem in eq. (5) allows now
the use of the formal Lagrange principle to eliminate the constraints by in-
troducing proper Lagrange multipliers as proposed by [8]. In this context, we
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formulate in eq. (9) a Langrange functional L using a continuous formulati-

on of Lagrange multipliers v̂i, p̂, d̂i and κ̂i for the momentum equations Ri

(1), continuity equation Q (2), structural mechanics equations Bi (3) and the
coupling constraint Ci (4), respectively.

L := J +

∫
(Ωf×T )

v̂i Ri − p̂Q dΩτ +

∫
(Ωs,o×T )

d̂i Bi dΩ
τ
o +

∫
(ΓIF×T )

κ̂i Ci dΓ
τ (9)

Since the pursued partitioned solution approach demands a description of the
structure in terms of its initial shape, we consider in the following part of this
work the constraint Bi in its reference configuration Ωs,o. According to the
formal Lagrange principle, the optimal control problem (5) is now equivalent
to the minimization problem

min L(vi, p, di, u, v̂i, p̂, d̂i, κ̂i) , y unconstrained, u ∈ Uad , (10)

without any restrictions to the state variable y [14]. From a physical point
of view, it is obvious that we require u being in the interiour of the space of
admissable controls Uad and keeping in mind that for a minimum of the La-
grange functional (9) the total derivative δL vanishes, we obtain the following
optimality conditions:

δpL · δp = 0 ∀ δp ∈ Pad (11)

δvL · δvi = 0 ∀ δvi ∈ Vad (12)

δdL · δdi = 0 ∀ δdi ∈ Sad (13)

δuL · δu = 0 ∀ δu ∈ Uad . (14)

2.3 Adjoint FSI-problem in ALE-formulation

The adjoint FSI-system can now be obtained by exploiting the optimality
conditions listed above. Every optimality condition leads to a PDE for the
introduced Lagrange multipliers in eq. (9) and contributes to the requested
adjoint FSI-problem. Assuming that the considered cost functional J can be
separated into contributions over the boundary Γ τ and the interior of the
physical domain Ωτ as proposed in [7]

J =

∫
(Γ×T )

jΓ dΓ
τ +

∫
(Ω×T )

jΩ dΩ
τ , (15)

we obtain from the first optimality condition (11) after computation of the
Fréchet derivative δpL and application of integration by parts
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δpL · δp =

∫
(Ω×T )

(
δp
) {∂jΩ

∂p
− ∂v̂i
∂xi

}
dΩτ +

∫
(Γ×T )

(
δp
) {

v̂n +
∂jΓ
∂p

}
dΓ τ

!
= 0 ∀ δp ∈ Pad . (16)

Since eq. (16) holds for all test functions δp and both components are defined
over different domains, being the interior of the physical domain Ωτ and its
boundary Γ τ , eq. (16) can only be satisfied if each integrand vanishes. So
we conclude from the first optimality condition via pressure variation of the
Lagrange functional (9) the following constraints for the Lagrange multiplier
v̂i

∂v̂i
∂xi

=
∂jΩ
∂p

in (Ωf×T ) (17)

v̂n = −∂jΓ
∂p

on (ΓIn×T ) . (18)

Equation (17) is also called ”adjoint continuity equation” due to its analogy
to the primal continuity equation (2). In the context of the adjoint solution
framework, eq. (18) is used as a boundary condition for the Lagrange multiplier
v̂i over the inlet ΓIn of the fluid domain Ωf .

In the next step, we derive analogously adjoint momentum equations from
the second optimality condition δvL · δvi = 0 by variation of velocity in the
Lagrange functional (9). Again we use a continuous formulation of the cost
fuctional as shown in eq. (15) and conclude by computation of the Fréchet
derivative δvL and application of integration by parts

δvL · δvi = δvJ · δvi

+

∫
(Ω×T )

(
δvi
){
− ∂v̂i

∂t
−
(
v − vm

)
j

∂v̂i
∂xj
− vj

∂v̂j
∂xi

+
∂p̂

∂xi
− ∂

∂xj

(
2ν Ŝij

)}
dΩτ

+

∮
(∂Ω×T )

(
δvi
){
vj nj v̂i + vj ni v̂j − vm,j nj v̂i + ν

∂v̂i
∂xj

nj − p̂ ni
}
dΓ τ

+

∫
Ωf

v̂i
(
δvi
)
dΩ

t=tend
t=0

−
∮

(∂Ω×T )

ν v̂j
∂
(
δvj
)

∂xi
nidΓ

τ +

∫
(ΓIF×T )

κ̂i
(
δvi
)
dΓ τ

!
= 0 ∀ δvi ∈ Vad . (19)

During the derivation of eq. (19), we make use of the principle of a ”frozen fluid
domain velocity” (see, e.g. [11]), which expects in a first approach the velocity
of the time-dependent fluid domain Ωτf = (Ωf (t) × T ) to be approximately

constant, that is δv(vm) = 0. In eq. (19), Ŝij defines the adjoint rate of strain
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tensor Ŝij = 1/2
(
∂v̂i
∂xj

+
∂v̂j
∂xi

)
of the Lagrange multiplier v̂i. As before, the

integrands in eq. (19) have to vanish due to the varying integral domains
which leads us to the following set of equations for the Lagrange multipliers
v̂i and p̂.

−∂v̂i
∂t
−
(
v − vm

)
j

∂v̂i
∂xj
− vj

∂v̂j
∂xi

+
∂

∂xj

{
p̂ δij − 2ν Ŝij

}
+
∂jΩf
∂vi

= 0 in (Ωf×T ) (20)

v̂i,(t=tend) = 0 in (Ωf ) (21)

v̂t = 0 on (ΓIn × T ) (22)

∂p̂

∂xi
ni = 0 on (ΓIn × T ) (23)

vj v̂j + vn v̂n + ν
∂v̂n
∂n

+
∂jΓ
∂vn

= p̂ on (ΓOut × T ) (24)

vn v̂t + ν
∂v̂t
∂n

+
∂jΓ
∂vt

= 0 on (ΓOut × T ) (25)

Here, the boundary component ΓOut stands for the outlet part of the fluid
domain Ωf . The PDE (20) describing the behaviour of the Lagrange mul-
tipliers v̂i and p̂ is very similar to the primal momentum equation (1) and
is therefore called ”adjoint momentum equation”. As the primal momentum
equation (1) before, the adjoint momentum equation (20) is formulated in an
ALE-framework by referring to the primal mesh velocity vm in the adjoint
convection term {−

(
v − vm

)
j
∂v̂i
∂xj
}.

The set of PDEs defined by eq. (17) and (20) is denoted as ”adjoint Navier-
Stokes equations” and determines the Lagrange multipliers v̂i and p̂ comple-
tely. Since in the Lagrangian sense adjoint state variables and introduced La-
grange multipliers are equivalent and since the structures of primal and adjoint
equations are very similar, we call the Lagrange multipliers v̂i and p̂ ”adjoint
velocity” and ”adjoint pressure” respectively. In eq. (20) - (25), the terms de-
fined over the FSI-interface ΓIF have not been included so far, since they will
be either used to derive an adjoint interface condition at the end of this sub-
section or contribute to the desired surface sensitivity as discussed in section
3.

From the third optimality condition (13) we now derive the missing infor-

mation about the remaining Lagrange multiplier d̂i. We proceed as before by
computing the required Fréchet derivative δdL and by the subsequent use of
integration by parts in terms of the reference configuration Ωo.
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δdL · δdi =

∫
(Ω0,s×T )

ρs
(
δdi
) ∂2d̂i
∂t2

+
∂d̂i
∂XJ

DiJkL

∂
(
δdi
)

∂XI
+
∂jΩs
∂di

(
δdi
)
dΩτ0

+

∫
(Ω0,s)

ρs

(
d̂i
∂
(
δdi
)

∂t
−
(
δdi
) ∂d̂i
∂t

)
dΩ0

t=tend
t=0

+

∮
(∂Ω0,s×T )

∂jΓ
∂di

(
δdi
)
− d̂i

(
DiJkL

∂
(
δdi
)

∂XI

)
dΓ τJ

−
∫
ΓIF

(
δdi
)
κ̂i dΓ

t=tend

t=0

+

∫
(ΓIF×T )

(
δdi
) ∂κ̂i
∂t

dΓ τ

!
= 0 ∀ δdi ∈ Sad (26)

Again, we require the integrands in eq. (26) to vanish and obtain in the next
step by ignoring the contributions on the FSI-interface ΓIF from the variation
of structural displacements

∫
(Ωs,o×T )

ρs
(
δdi
) ∂2d̂i
∂t2

+
∂d̂i
∂XJ

DiJkL

∂
(
δdi
)

∂XI
+
∂jΩs
∂di

(
δdi
)
dΩτ0 = 0 ∀ δdi ∈ Sad

in (Ωs,o × T ) (27)

d̂i,(t=tend) = 0 in (Ωs,o) (28)

∂d̂i
∂t (t=tend)

= 0 in (Ωs,o) (29)

d̂i = 0 on (ΓD\ΓIF ) (30)

∂d̂i
∂XJ

= 0 on (ΓN\ΓIF ) . (31)

The tangent stiffness tensor DiJkL = FiICIJKLFkK + δikSJL is a function of
the structural deformation di with deformation gradient FkK , elasticity tensor
CIJKL and second Piola-Kirchhoff stress tensor SJL. Since the Lagrange multi-
plier d̂i, described by eq. (27) in a weak sense, shows an analogous behaviour
to the primal structural displacement di described by eq. (3), it is also called
”adjoint structural displacement” and from here onwards, eq. (27) is refer-
red to as ”adjoint structure equation” in its weak form. The latter equations
(28) - (31) define necessary boundary conditions to solve the adjoint structure
problem (27). The boundary sections ΓD and ΓN denote the Dirichlet and
Neumann boundary respectively of the structural domain Ωs,o in its reference
configuration.
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At this stage, we have not discussed so far how to treat the contributions
over the FSI-interface in eq. (19) and (26). The requirement of a vanishing
total derivative δL = 0 can at this stage be achieved by requiring

∫
(ΓIF×T )

(
δvi
)
κ̂i +

(
δdi
) ∂κ̂i
∂t

dΓ τ −
∫
ΓIF

(
δdi
)
κ̂i dΓ

t=tend
t=0

!
= 0 ∀ δy ∈ Yad .

(32)

From the FSI-framework, we recall the equality of test functions δvi = δdi on
the FSI-interface ΓIF and by introducing superindices (·)f and (·)s for contri-
butions of fluid and structure respectively, we obtain

∫
(ΓIF×T )

(
δdi
) {

κ̂i
f +

∂κ̂i
s

∂t

}
dΓ τ −

∫
ΓIF

(
δdi
)
κ̂i
s dΓ

t=tend
t=0

!
= 0 ∀ δy ∈ Yad .

(33)

From a fluids point of view, we can interpret the Lagrange multiplier κ̂i
f on

the FSI-interface ΓIF as a test function of the associated coupling variable,
which allows us to identify κ̂i

f on the FSI-interface with the adjoint velocity
v̂i. Keeping in mind the different direction of integration over the coupling
boundary ΓIF from a structural point of view, we obtain analogously κ̂i

s = −d̂i
on the FSI-interface. Therefore, the first component in eq. (33) vanishes for

v̂i =
˙̂
di on (ΓIF) (34)

which yields as in eq. (4) an ”adjoint FSI-coupling condition” for the FSI-
interface ΓIF. From the second term in eq. (33) we conclude then by application

of eq. (34) v̂i(t = tEnd) =
˙̂
di(t = tEnd) = 0.

Recapitulating the adjoint equations obtained from the optimality condi-
tions from subsection 2.2, we can now formulate the complete adjoint FSI-
problem by

−∂v̂i
∂t
−
(
v − vm

)
j

∂v̂i
∂xj
− vj

∂v̂j
∂xi

+
∂

∂xj

[
p̂ δij − 2ν Ŝij

]
= −

∂jΩf
∂vi

in Ωτf

∂v̂i
∂xi

=
∂jΩf
∂p

in Ωτf∫
(Ωso×T )

ρs
(
δdi
) ∂2d̂i
∂t2

+
∂d̂i
∂XJ

DiJkL

∂
(
δdi
)

∂XI
+
∂jΩs
∂di

(
δdi
)
dΩτ0 = 0 in Ωτs,o

v̂i =
˙̂
di on Γ τIF.

(35)
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To provide suitable FSI-coupling for the adjoint FSI-problem above, we require
in addition to the adjoint coupling condition (34) an equilibrium of the adjoint
tractions at the fluid-structure interface Γ τIF as proposed by [11]. As in the
case of the primal FSI-problem (8), we are faced in the adjoint case with
a continuous formulation of both structural and fluid domain connected by
a shared interface requiring an equality of the adjoint test functions at the
coupling interface Γ τIF.

2.4 Numerical properties of the adjoint problem

As the primal FSI-problem (8), the derived adjoint FSI-problem (35) has to
be solved at a numerical level and since its structure is very similar to the
primal FSI-problem (8), we recommend to access solution structures from the
primal solution process as far as possible. Nonetheless, there are some major
differences in the behaviour of primal and adjoint equations which shall be
briefly discussed in this subsection.

Recapitulating the adjoint momentum equation (20), we face a different
behaviour in time in the adjoint system. A change of the direction in time is
characteristic of adjoint systems of time-dependent problems and since we have
to compute the adjoint solution backwards in time, we obtain in eq. (21), (28)
and (29) boundary conditions at the end of the simulation time tend. Hence,
the first step consists in calculating the solution of the primal FSI-problem
(8) from starting time t0 to end time tend, since information about the primal
state is required in terms of the adjoint solution process. The adjoint system is
then advanced backwards in time from tend to t0 in a second step by referring
to required primal information. In this context, the use of proper temporal
differencing schemes must be provided during the adjoint solution process.

The same effect can be observed in the behaviour of the adjoint convection
term in eq. (20). As a consequence of integration by parts, there is a shift
in the sign of the adjoint convection term (v − vm)j

∂v̂i
∂xj

. Since convection is

an effect directed in space, upwind discretization schemes are usually applied
during the primal solution process to ensure proper capturing of convection
effects. The shift in the sign of the adjoint convection demands in this case
the application of downwind differencing schemes during the adjoint solution
process.

Both primal and adjoint FSI-problem are solved in a partitioned frame-
work taking advantage of the finite volume method solving the flow field and
of a finite element approach solving the structural problem respectively [15].
The solution in the fluid domain Ωτf is realized by usage of the finite volume

solver library OpenFOAM R© [16] which allows the implementation of appro-
priate variations of the PISO-algorithm [17]. Since the arteries are modelled
as thin-walled hyperelastic marterials, we apply a high-order finite element
formulation during the structural solution process being less prone to locking
effects and mesh distortion [18][19].
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The partitioned coupling between fluid and structural mechanics problem
during primal and adjoint solution process is realized by the use of a coupling
interface [20][21] based on a quasi-Newton acceleration procedure. The solution
of the FSI-problems (8) and (35) is then performed in an iterative manner by
an exchange of information between displacement and flow field provided by
the employed coupling interface.

3 Gradient computations

After the derivation of the adjoint FSI-problem in eq. (35), subsection 3.1
discusses how to compute a feasible surface sensitivity by exploitation of the
remaining optimality condition. As illustrated in Figure 1, knowledge of this
surface sensitivity allows then to compute the gradient of the considered cost
functional by solving an additional PDE as shown in subsection 3.2.

3.1 Computation of a proper surface sensitivity

At this stage, we assume the solution of the adjoint FSI-problem (35) to be
already known and the derivatives δpL, δvL and δdL of the Lagrange functional
L vanish by construction of the adjoint system. Considering an optimal state,
the total derivative of both cost and Lagrange functional will vanish. But since
the shape to be optimized is more or less far away from this desired optimal
state, the derivative δuL will not vanish and defines therefore a deviation from
the optimal state. The deviation from the latter optimality condition (14)
δuL · δu = 0 can now be used to derive a concrete description of a surface
sensitivity K(u) of the form

∫
Γ
K(u) · δu dΓ .

Taking into account the primal FSI-problem (8) in its residual form, a first
important remark can be made by considering the variation of the primal state
equations. For the momentum equation Ri (1) holds for example

δRi = δpRi + δvRi + δdRi + δuRi = 0

⇒ δuRi = −
(
δpRi + δvRi + δdRi

)
. (36)

Equation (36) allows to express the derivative δuRi in terms of the already
calculated derivatives δpRi, δvRi and δdRi, which is analogously also possible
for the derivatives of the continuity equation (2) and the structural mechanics
equation (3) (see also [7][8]). Using eq. (36) as well as the results of subsection
2.3, and taking advantage of the approach proposed by [8]
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δvi ≈
∂vi
∂u

δu (37)

δp ≈ ∂p

∂u
δu (38)

δdi ≈
∂di
∂u

δu , (39)

we obtain for the derivative of the Lagrange functional δuL with respect to
the control parameter u under consideration of the remaining terms defined
over the fluid-structure interface Γ τIF

δuL · δu = δuJ · δu −
∫

(ΓIF×T )

{(
vj v̂j − p̂

) ∂vi
∂u

ni + ν
∂vi
∂u

∂v̂i
∂xj

nj − ν v̂j
∂(∂vi∂u )

∂xi
ni

}
δu dΓ τ

−
∫

(ΓIF×T )

∂di
∂u

∂
{

DiJkL d̂i
}

∂XI
δu dΓ τJ . (40)

By construction of the Lagrange functional L, the derivative of the Lagrange
functional δuL listed above is equivalent to the substantial derivative of the
cost functional J . Therefore, eq. (40) represents a continuous formulation of a
surface sensitivity required in the pursued optimization process described in
Fig. 1.

3.2 Gradient calculus based on the Laplace-Beltrami operator

In our case, the control parameter u is the shape of the structure and corre-
lates therefore with the domain boundary Γ . In this context, we require that
the shape Γ can be parametrized by H1(Γ,R3)-mappings, so that Γ admits
the formulation of a feasible surface area. As in eq. (7), H1(Γ,R3) denotes the
corresponding Sobolev space W 1,2(Γ,R3). Furthermore, we require the defor-
mations of the shape δu to be elements of H1(Γ,R3) allowing for a subsequent
parametrization of the varied shape Γ ′ = (Γ + ε · δu) by H1-mappings. Sin-
ce the state variable y := y(u) is a function of the control parameter u, the
introduced cost functional J(y(u), u) can be reformulated as an equivalent

cost functional Ĵ := Ĵ(u) being just a functional of the control parameter u.

Therefore, we now consider the derative Ĵ ′(u) = δuL(y(u), u) in eq. (40) as a
functional just of the control parameter u

Ĵ ′(u) : H1(Γ,R3) −−−→ R . (41)

Since the derivative Ĵ ′(u) is a linear and also bounded functional if y(u) is
sufficiently smooth, it is an element of H1(Γ,R3)∗ denoting the dual space of
H1(Γ,R3). Hence, we conclude from the Riesz representation theorem
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δĴ(u, δu) =
〈
Ĵ ′(u), δu

〉
H1(Γ,R3)∗,H1(Γ,R3)

=
(
RĴ ′(u), δu

)
H1(Γ,R3)

=
(
Ĝ(u), δu

)
H1(Γ,R3)

∀ δu ∈ H1(Γ,R3)

(42)

where we identify the required gradient Ĝ(u) of the cost functional Ĵ(u)

with the Riesz representative RĴ ′(u) of the derivative Ĵ ′(u). In eq. (42),(
Ĝ(u), δu

)
H1(Γ,R3)

denotes the scalar product of Ĝ(u) and δu in H1(Γ,R3).

The left hand side of eq. (42) can be computed by knowledge of primal and
adjoint solutions via

δĴ(u, δu) =
〈
Ĵ ′(u), δu

〉
H1(Γ,R3)∗,H1(Γ,R3)

= Ĵ ′(u) · δu =

∫
Γ

K(u) · δu dΓ

(43)

as shown in the previous subsection. Application of integration by parts to the
scalar product at the right hand side of eq. (42) leads to the weak form of a

partial differential equation for the gradient Ĝ(u) defined over the manifold
Γ .

(
Ĝ(u), δu

)
H1(Γ,R3)

=

∫
Γ

Ĝ(u) · δu+∇Γ Ĝ(u) · ∇Γ (δu) dΓ

=

∫
Γ

[
Ĝ(u)−4Γ Ĝ(u)

]
δu dΓ ∀ δu ∈ H1(Γ,R3) (44)

Hence, we obtain the required gradient by solving the additional PDE (45)
defined over the boundary Γ making use of the Laplace-Beltrami operator
4Γ and of the surface sensitivity K(u)

−4Γ Ĝ(u) + Ĝ(u) = K(u) . (45)

At this stage, the question arises of how to compute values of the surface sensi-
tivity K(u), since the surface sensitivity obtained in eq. (40) is still formulated
in terms of the variation of the control parameter δu. Keeping in mind, that
δu is an element of H1(Γ,R3), we have now to discuss the meaning of δu in
the context of a discrete formulation. Since we are not able to maintain the
continuous formulation of eq. (40) on a numerical level, we have to find a
formulation of the shape deformation δu being useful in terms of a numerical
implementation.

Keeping in mind, that the deformations δu represent small variations of
the shape, we assume the deformations to be directed almost normal to the
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surface of the shape. Motivated by this, we make the following assumption also
used by [7] and [8] to find a discrete approximation of the surface sensitivity
K(u) definded in eq. (40)

∂vi
∂u

δu ≈ ∂vi
∂xn

δn,
∂p

∂u
δu ≈ ∂p

∂xn
δn,

∂di
∂u

δu ≈ ∂di
∂xn

δn . (46)

The shape variation δu and its associated derivates are approximated in eq.
(46) by the product of derivatives ∂/∂xn in the direction of the local normal
vector ni of the related boundary Γ with its corresponding variation δn.

In fact, the approach introduced in eq. (46) is not feasible from a continuous
point of view since it is based on deformations defined in terms of R3 resulting
in varied shapes not being part of H1(Γ,R3) anymore. But since the approach
(46) is used on a numerical level only, deformations according to eq. (46) relate
only to deformations of the discrete nodes of the surface. These variations lead
to a deformation of the whole surface constituting aH1(Γ,R3)-surface from the
the varied surface nodes whose deformations are close to the normal direction
being therefore approximated discretely via eq. (46).

Knowledge of the normal vector and derivatives in the normal direction on
a numerical level allows therefore the computation of the surface sensitivity
by reformulating eq. (40) using the discrete approach introduced in eq. (46).

δuL · δu = δuJ · δu −
∫

(ΓIF×T )

{(
vj v̂j − p̂

) ∂vn
∂xn

+ ν
∂vi
∂xn

∂v̂i
∂xn

− ν v̂j
∂2vj
∂x2n

}
δn dΓ τ

−
∫

(ΓIF×T )

∂di
∂XN

∂
{

DiJkL d̂i
}

∂XN
δn dΓ τ0 (47)

In this work, we focus on cost functionals being just defined over inlet and out-
let parts of the flow domain and since inlet and outlet parts are not affected by
the optimization process, the local variation of the cost functional represented
by the term δuJ · δu vanishes. By construction of the Lagrange functional,
δuL is equivalent to the substantial derivative of the cost functional J and
the integral components of eq. (47) match with the convective variation of the
cost functional J with respect to the control parameter u. In the context of
the pursued optimization process described in Figure 1, the surface sensitivity
K(u) defined by eq. (47) as

K(u) =
(
p̂− vj v̂j

) ∂vn
∂xn

− ν ∂vi
∂xn

∂v̂i
∂xn

+ ν v̂j
∂2vj
∂x2n

− ∂di
∂XN

∂
{

DiJkL d̂i
}

∂XN

(48)

can then be used as a template to compute the gradient Ĝ(u) required in the
framework of a steepest descent algorithm by solving the Laplace-Beltrami-
PDE (45) as explained above.
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4 Application to multidimensional ducted flows

According to Figure 1, the gradient calculated by solving the PDE (45) can
now be used in the context of a steepest descent algorithm to improve shapes of
overflowed structures. In the following section, we show the performance of the
adjoint-based optimization strategy by an application to ducted flows. The first
example in subsection 4.1 shows the deformation of an overflowed 2D-cylinder
and allows, due to its rather academical character, a brief evaluation of the
optimization behaviour. In subsection 4.2, the control strategy is applied to an
artificial artery to demonstrate the functionality of the realized optimization
process in complex engineering applications.

In both examples, the dissipation of energy due to the resulting pressu-
re drop in the fluid is supposed to be minimized by small variations of the
structural shape. Since in a ducted flow the pressure drop is calculated by
the differences of static and dynamic pressure between inlet and outlet, there
is no contribution of the cost functional inside the physical domain and we
hold jΩ = 0 for the considered cost functional. Hence, the cost functional J
associated with the dissipation of energy caused by the fluid’s pressure drop
can be formulated as

J := JΓ = −
tend∫
t0

∫
Γf

(
p+ ρf

vj vj
2

)
vi ni dΓ dt . (49)

Therefore, all derivatives concerning contributions of the cost functional inside
the physical domain vanish and for the respective components in the adjoint
FSI-problem (35) holds

∂jΩf
∂vi

=
∂jΩf
∂p

=
∂jΩs
∂di

= 0 . (50)

Furthermore, the above formulated cost functional allows to determine the
contributions of the cost functional to the boundary conditions (18), (24) and
(25) by computing the required derivatives on the boundary.

∂jΓf
∂p

= −vi ni
∂jΓf
∂vi

= −
(
p+ ρf

vjvj
2

)
ni −

(
vk nk)vi (51)

Minimization of pressure drop and its associated drag force by modification
of the shape is a common fluid dynamic design task and is therefore chosen
in this work to demonstrate potential and practical value of the developed
optimization strategy in demanding engineering applications.
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4.1 Deformation of a two-dimensional cylinder section

The first example shows the laminar flow over a two-dimensional cylinder
section which is located in the center of the flow channel and whose structure
deforms due to fluid loads. The case setup is shown in Figure 3 including both
geometry and physical boundary conditions in the channel. The inlet velocity
of the fluid is oscillating with a frequency of 10 [Hz] around an averaged value
of vIn = 0.2 m/s which causes periodic loads on the cylindric structure. The
characteristic height of the flow channel is H = 0.002 [m] and the kinematic
viscosity of the fluid is assumed as ν = 10−6 [m2/s] from which the Reynolds
number Re can be computed as

Re2D =
v ·H
ν

=
0.2 [m/s] · 0.002 [m]

10−6 [m2/s]
= 400 . (52)

For the structure of the modelled FSI-cylinder section in the middle of the
channel a constant Young’s modulus of E = 5 ·104 [N/m

2
] is chosen to achieve

large deformations during the simulation. The overall simulation period is
tEnd = 1 [s] and is once computed forward to solve the primal FSI-problem
(8) and then advanced backwards during the adjoint solution process. In both
cases, a constant time step size of 4t = 0.001 [s] is chosen.

The discretization of both flow channel and structure is shown in Figure 4
and allows a quick overview over the applied mesh setup. Taking into account
the more complex flow situation in the cylinder region, the flow domain Ωf is
discretized by 80× 25× 1 = 2000 cells taking advantage of a mesh refinement
towards the middle of the channel. The second view of Figure 4 allows a
more detailed view of the structural mesh and of the associated FSI-interface
between fluid and structural mesh. The structural domain Ωs is discretized by
50×3×1 = 150 cells leading to similar mesh resolutions for fluid and structure
in the interface region.
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Abb. 3 Geometry and physical boundary conditions in the considered 2D flow channel.
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Figure 5 shows the primal velocity field at the end of the simulation at
tEnd = 1 [s] and the adjoint flow field at t0 = 0 [s] respectively. The snapshot
of the primal fluid velocity field (top of Figure 5) shows the deformation of
the cylindric structure at the end of the simulation and an acceleration of the
flow at the end of the channel due to the separation behind the cylinder. The
adjoint velocity field beneath at t = t0 illustrates the shift in the convective
behaviour of the adjoint Navier-Stokes equations.

Since a reduction of the pressure drop in the fluid is realized just by varia-
tion of the shape of the FSI-interface, we compute according to Figure 1 in a
subsequent step the distributions of surface sensitivity K(u) and gradient Ĝ
of the cost functional J over the cylindric structure in the channel. In Figure
6, both sensitivity and gradient field are displayed by proper scaling of the
associated normal vector n.

Figure 6 illustrates the difference between surface sensitivity and gradient
in the context of a steepest descent algorithm. In this example, it is from a
technical point of view obvious, that a reduction of the fluid’s pressure drop
demands a homogeneous decrease of the cylinder inside the flow region of the
channel since from a fluids point of view the optimal geometry would be a
flat, viscous wall. Although the calculated sensitivity field (left of Figure 6)
suggests a deformation reducing the bulge inside of the flow field, an exceeding
preference of the structure in the fore of the cylinder can be observed. Following
a deformation according to the sensitivity in Figure 6, rear regions of the
cylinder would not be deformed at all.

In contrast to this, the computed gradient leads to the expected optimiza-
tion instruction as shown in Figure 6 on the right. Furthermore, the computed
gradient field shows, due to the structure of eq. (45), a significant smoother
behaviour meaning a substantial advantage during the subsequent mesh mor-

Abb. 4 Discretization of flow channel (blue) and structure (black). View of the complete
mesh model (top) and the FSI-interface in detail (bottom).
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Abb. 5 Primal velocity field at tEnd = 1 [s] (top) and adjoint velocity field at t0 = 0 [s]
(bottom) in consideration of interactions between fluid and structure.

phing performed in the framework of the optimization strategy proposed in
Figure 1. In conjunction with its normal vector field, the gradient field on the
right of Figure 6 defines the desired instruction of how to change the shape of
the cylindric structure to reduce the pressure drop in the flow field. A graphic
analysis of the distribution of the suggested shape modifications, as presen-
ted in Figure 7, shows in addition to Figure 6 range and dimension of the
computed morphing instruction for the structure of the cylinder.

In the next step, the shape of the cylinder is modified according to the
gradient distribution of Figure 6 and the whole optimization process consisting
of solving primal FSI-system (8), adjoint FSI-system (35), surface sensitivity
(47) and gradient equation (45) with subsequent mesh morphing is repeated in
an iterative manner. In this context, Figure 8 shows the shape of the involved
structure before and after the first optimization loop. As demanded from the
gradient distribution in Figure 6, a continuous decrease of the shape curvature
inside the flow channel is achieved during the mesh morphing process.

In this example, the optimization loop is performed for five times with an
overrelaxated gradient stepsize α by a factor of five in favour of an acceleration

Surface sensitivity field Surface Gradient field

Abb. 6 Sensitivity vs. gradient of the cost functional J on the FSI-interface illustrated by
scaling of the associated normal vector n.
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Abb. 7 Shape modification of the structure gained in the course of the first optimization
loop.

of the improvement during one optimization step. This can be motivated by
a comparison of the results using different gradient stepsizes α as shown in
Figure 9. The blue line in Figure 9 shows the reduction of dissipated work in
the fluid after one optimization loop using a non-relaxated gradient step as in
the usual steepest descent algorithm meaning a stepsize of α = 1. Analogously,
the green line represents the reduction of the dissipated work in the fluid
after one optimization loop employing an overrelaxated gradient stepsize of
α = 20 in the performed mesh morphing. The red line in Figure 9 shows the
reduction of the dissipated work after every single optimization loop using an
overrelaxated gradient stepsize of α = 5. Therefore, the first data point of the
red line marks the reduction of dissipated work after the first optimization
loop using a stepsize of α = 5.

For the overflowed cylinder, Figure 9 shows on the one hand, that the best
result after one optimization loop is obtained by using a highly overrelaxated
gradient stepsize (e.g. α = 20). On the other hand, Figure 9 shows, that
the quality of the results increases by using smaller gradient steps and more
optimization loops which is not surprising in the context of a steepest descent
algorithm. Since the initial slope of the red line is almost equivalent to the slope
of the non-overrelaxated gradient step (blue), a stepsize of α = 5 seems to be a

Abb. 8 Initial shape (left) vs. optimized shape (right) of the cylinder structure after the
first optimization loop and an gradient stepsize of α = 5.
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very good compromise between saving numerical effort and the superior quality
of small gradient steps. A detailed study about optimal gradient stepsizes in
the context of adjoint-based optimization techniques can be found in [25],
where the application of proper formulations of the Armijo algorithm in the
context of a steepest descent algorithm is discussed. After having passed five
optimization loops with a stepsize of α = 5, the obtained cylinder geometry
achieves a reduction in the dissipated work caused by the fluids pressure drop
of 8.53 %.

Summarizing the results of this example, we observe, on the one hand, a
feasible behaviour of the computed gradient Ĝ in terms of a steepest descent
framework. On the other hand, application of the proposed optimization stra-
tegy leads to a serious improvement of the considered cost functional in this
rather academical case. In the next subsection, we extend the presented opti-
mization method to the design of artificial arteries to show the functionality
of the realized algorithm in complex shape design problems.

4.2 Dissipated energy in an artificial blood vessel

In this section, the developed optimization algorithm is expanded to three-
dimensional flows to evaluate the optimization behaviour in more demanding
flow situations. In this case, we consider an S-shaped model artery whose walls
deform due to the periodic fluid loads in the human cardiovascular system.
Figure 10 illustrates the geometric dimensions and the boundary conditions
inside the flow channel. Again, we consider a laminar flow with a Reynolds
number of
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Re3D =
v ·D
ν

=
0.2 [m/s] · 0.01 [m]

10−5 [m2/s]
= 200 (53)

with velocities oscillating with a frequency of 10 [Hz] around a reference velo-
city of v = 0.2 [m/s]. In addition to the oscillating velocity profile at the inlet,
the pressure at the outlet of the artery is oscillating with the same frequency
around a reference pressure of pref = 12500 [Pa] to simulate the pulsating flow
conditions of the human cardiovascular system.

Motivated by [22] and [23], blood is treated in this work for the sake of
simplificity as a Newtonian fluid with a kinematic viscosity of ν = 10−6[m2/s].
As shown in Figure 10, the characteristic diameter D of the considered artery
is modeled with D = 10 [mm] representing characteristic dimensions of an
artery in the human body. Due to the high fluctuations in the considered
flow conditions, we expect large deformations in the structure of the model
artery and assume the whole interior part of the structure as an interface
affected by interactions between fluid and structure. In order to decrease the
negative influence of mesh distortion and locking effects, shape functions up
to a polynomial degree of pFEM = 4 are applied during the computations to
improve the quality of both primal and adjoint structural mechanics problems.
Again, a period of tEnd = 1 [s] is considered and computed forward in time
using the Newmark time-integration method in terms of the primal solution
process. The adjoint FSI-problem (35) is then calculated backwards in time
from tEnd = 1 [s] to t0 = 0 [s] by application of a proper Newmark time-
integration method taking account of the shift in the direction of time.

The discretization of both vascular wall and flow channel inside of the
model artery are shown in Figure 11. The fluid mesh (blue) is discretized by
500 × 200 = 100, 000 cells using 500 cells in longitudinal direction and 200
cells in each longitudinal plane. In contrast to this, the structural mesh of
the blood vessel is realized by much larger elements leading to a far coarser
mesh consisting of 100× 20× 2 = 4, 000 hexahedral elements where 100 cells
were used in longitudinal direction. The structure of the vascular wall in one
longitudinal section is discretized by two cells in radial direction and 20 cells
in angular direction respectively.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Outlet 
Hyperelastic Structure 

Inlet 

 

FSI-Interface 

20 

 

50 

 

100 

10 

20 

20 

 
20 

 

45° 

45° 10
 

 

14 

 

Abb. 10 Geometry and physical boundary conditions in the considered model artery.
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Abb. 11 Discretization of the vascular wall (grey) and the flow domain inside of the artery
(blue).

The calculated flow fields are shown in Figure 12, where the primal velocity
field at the end of the simulation tEnd = 1 [s] is presented above the adjoint flow
field at t0 = 0 [s]. In both cases the flow field is illustrated by a representative
slice through the median longitudinal plane of the artery allowing an overview
over the flow situation along the length of the vessel.

Considering the primal flow field in Figure 12, it can be observed in the
entrance and exit regions of the S-bend that the fluid flow is again not able to
follow the shape of the considered artery completely leading to a separation in
the flow field behind the first bending section. Due to this separation, the fluid
is accelerated in regions near the wall opposite to the inlet of the model artery.
After having passed the second bend in the shape of the artery, the flow field
is restructuring to the expected velocity profile at the outlet of the vessel. As
seen in the two-dimensional example before, the adjoint velocity field in Figure
12 is dominated by the shift in the direction of the convective flow behaviour.
The acceleration of the adjoint flow at the outlet of the artery is caused by the
choice of the respective boundary conditions previously discussed in section
2.3.

As in the previous example, the next step consists in calculating the surface
sensitivity according to eq. (47) and its associated gradient field. Figure 13
shows the distribution of the surface sensitivity over the inner wall of the
artery. The first view above illustrates the differences in the magnitude of
sensitivity values along the artery which is characteristic behaviour of surface
sensitivities in ducted flows. In regions near both inlet and outlet, sensitivity
values are overshooted by a factor of around 100 compared to the rest of the
vascular wall. In order to show the behaviour of the computed sensitivity field
over the main part of the vessel wall, Figure 13 shows a second view of the
sensitivity purged of the peak values at inlet and outlet regions. This purged
view of the computed sensitivity field points up a rough and inhomogeneous
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behaviour of the surface sensitivity in terms of shifts in sign and magnitude
being characteristic of sensitivity distributions as well.

In the context of the optimization strategy proposed in Figure 1, both
aspects cause a decrease in quality and stability of the pursued optimizati-
on framework. So from both a technical and a theoretical point of view, it is
obvious that a shape optimization according to surface sensitivities, as mis-
leadingly performed in lots of engineering applications, leads to suboptimal
variations in the shape.

Compared to this, the associated gradient field Ĝ, illustrated in Figure 14
by proper scaling of the normal vector field n, shows significant favourable
properties in terms of both smoothness and fluctuations in magnitude. As
suggested in Figure 14, the calculated gradient field proposes a consequent
expansion of the diameter over the main part of the considered model arte-
ry. From a technical point of view, the morphing prediction obtained by the
gradient in Figure 14 represents a reasonable result since in a ducted flow
an expansion of the encountered diameter usually results in a decrease of the
fluids pressure drop.

In a subsequent step, the geometry of the considered model artery is de-
formed according to the gradient distribution presented in Figure 14 in terms
of a steepest descent algorithm. The resulting modification of the initial shape

Abb. 12 Primal (top) and adjoint velocity field (bottom) in an artificial blood vessel in
consideration of interactions between fluid and structure at tEnd = 1 [s] (top) and t0 = 0 [s]
(bottom) respectively.
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of the blood vessel is illustrated in Figure 15 and shows the small dimensions
of the changes in the shape of the concerned model artery.

Since we are faced in this example with a tremendous computational effort
concerning time and memory, the stepsize of the performed steepest descent
algorithm is again overrelaxated by a factor of five legitimated by the good
experiences gained in section 4.1. The primal FSI-problem (8) is solved for the
modified geometry and the whole optimization process is repeated iteratively
twice. As seen before in Figure 9, Figure 16 shows the gain in performance due
to the reduction of the fluids pressure drop in course of the single optimization
steps. The green line shows the optimization by application of an overrelaxated
gradient stepsize by a factor of α = 10, whereas the red line represents the
iterative optimization loops described above using a gradient stepsize of α = 5.
Again it can be observed, that the smaller stepsize leads to better results at
the expense of computational time. After having passed the optimization loop
three times, we observe a decrease of 15.13 % in the pressure drop of the blood
flow.

Recapitulating the results discussed above as well as the results from sec-
tion 4.1, we note a positive behaviour of the developed optimization method
concerning efficiency, robustness and physical plausibility. Application of the

Abb. 13 Surface sensitivity field of the cost functional J over the inner wall of the artery
illustrated by scaling of the associated normal vector n.
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Abb. 14 Gradient field of the cost functional J over the inner wall of the artery illustrated
by scaling of the associated normal vector n.

optimization algorithm proposed by Figure 1 leads in both examples to a si-
gnificant decrease in the pressure drop of the involved fluid flows. In both ex-
amples, the developed method is able to provide morphing instructions being
appropriate in the context of an adjoint-based design process. The calculated
gradient fields are distinguished by smooth distributions proposing meaning-
ful deformations of the considered geometries which is required for a capable
optimization framework in terms of computational efficiency and robustness.

5 Conclusions

According to the primal time-dependent FSI-problem, adjoint equations and
coupling conditions are derived and solved in the framework of a fully cou-
pled, partitioned solution approach. In this context, an adjoint fluid-solver
adapted to the ALE-formulation in fluid mechanics is developed as well as an

Abb. 15 Shape modification for the vascular wall according to the gradient distribution
presented in Figure 14.
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Abb. 16 Reduction of dissipated work in the blood flow due to application of different
gradient stepsizes.

adjoint p-FEM solver allowing the implementation of a partitioned solution en-
vironment. Solutions of primal and adjoint FSI-problems are used to compute
surface sensitivities and gradient distributions in terms of an optimization re-
garding a minimization in the pressure drop of the encountered fluid flow. The
calculated gradient fields are then used in the context of a steepest descent
algorithm leading to modifications in the shape of the considered structure ap-
proaching the optimal state of the system to be optimized. Performance and
efficiency of the proposed control optimization strategy are demonstrated by
the application to two examples being characteristic of ducted flow systems.
The developed control algorithm provides modified geometries distinguished
by significant decreases in pressure drop and smooth changes in the optimized
shapes.
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