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Abstract: In the present paper we investigate the problem of identifying simultaneously the diffusion matrix, source

term and boundary condition as well as the state in the Neumann boundary value problem for an elliptic partial

differential equation (PDE) from a measurement data, which is weaker than required of the exact state. A variational

method based on energy functions with Tikhonov regularization is here proposed to treat the identification problem.
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1 Introduction

Let Ω be an open bounded connected domain of Rd, 1 ≤ d ≤ 3 with polygonal boundary ∂Ω. In this paper
we study the problem of identifying simultaneously the diffusion matrix Q, source term f and boundary
condition g as well as the state Φ in the Neumann boundary value problem for the elliptic PDE

−∇ · (Q∇Φ) = f in Ω, (1.1)

Q∇Φ · �n = g on ∂Ω (1.2)

from a measurement zδ ∈ L2(Ω) of the solution Φ, where �n is the unit outward normal on ∂Ω.

To formulate precisely our problem, let us first denote by Sd the set of all symmetric d×d-matrices equipped
with the inner product M ·N := trace(MN) and the corresponding norm ‖M‖Sd

= (M ·M)1/2. Furthermore,
we denote for 1 ≤ p ≤ ∞

Lp
sym(Ω) :=

{
H ∈ Lp(Ω)

d×d | H(x) ∈ Sd a.e. in Ω
}
.

In L2
sym(Ω) we use the scalar product

(
H1, H2

)
L2

sym(Ω)
=

∑d
i,j=1(h

1
ij , h

2
ij)L2(Ω) and the corresponding norm

‖H‖L2
sym(Ω) :=

(∑d
i,j=1 ‖hij‖2L2(Ω)

)1/2

. In a more general sense ‖H‖Lp
sym(Ω) :=

(∫
Ω
‖H(x)‖pSd

)1/p
with

1 ≤ p < ∞ while the space L∞
sym(Ω) is endowed with the norm ‖H‖L∞

sym(Ω) := maxi,j=1,d ‖hij‖L∞(Ω).

Let us denote by

Had := Qad ×Fad × Gad

with
Qad :=

{
Q ∈ L∞

sym(Ω) | q|ξ|2 ≤ Q(x)ξ · ξ ≤ q|ξ|2 for all ξ ∈ Rd
}
,

Fad := L2(Ω),

Gad := L2(∂Ω)

(1.3)

and q, q being given constants satisfying q ≥ q > 0. Let

γ : H1(Ω) → H1/2(∂Ω)
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be the continuous Dirichlet trace operator andH1
� (Ω) be the closed subspace ofH1(Ω) consisting all functions

with zero-mean on the boundary, i.e.,

H1
� (Ω) :=

{
u ∈ H1(Ω)

∣∣∣ ∫
∂Ω

γu = 0

}

while CΩ stands for the positive constant appearing in the Poincaré-Friedrichs inequality (cf. [35])

CΩ

∫
Ω

ϕ2 ≤
∫
Ω

|∇ϕ|2 for all ϕ ∈ H1
� (Ω). (1.4)

Then, due to the coervicity condition

‖ϕ‖2H1(Ω) ≤
1 + CΩ

CΩ

∫
Ω

|∇ϕ|2 ≤ 1 + CΩ

CΩq

∫
Ω

Q∇ϕ · ∇ϕ (1.5)

holding for all ϕ ∈ H1
� (Ω), Q ∈ Qad and the Lax-Milgram lemma, we conclude for each (Q, f, g) ∈ Had, there

exists a unique weak solution Φ of (1.1)–(1.2) in the sense that Φ ∈ H1
� (Ω) and satisfies the identity∫

Ω

Q∇Φ · ∇ϕdx = (f, ϕ) + 〈g, γϕ〉 (1.6)

for all ϕ ∈ H1
� (Ω). Here the expressions (·, ·) and 〈·, ·〉 stand for the scalar product on space L2(Ω) and

L2(∂Ω), respectively. Furthermore, there holds the priori estimate

‖Φ‖H1(Ω) ≤
1 + CΩ

CΩq

(
‖γ‖L

(
H1(Ω),H1/2(∂Ω)

) ‖g‖L2(∂Ω) + ‖f‖L2(Ω)

)

≤ CN
(
‖g‖L2(∂Ω) + ‖f‖L2(Ω)

)
(1.7)

with

CN :=
1 + CΩ

CΩq
max

(
1, ‖γ‖L

(
H1(Ω),H1/2(∂Ω)

)) .

Then we can define the non-linear coefficient-to-solution operator

U : Had → H1
� (Ω)

which maps each (Q, f, g) ∈ Had to the unique weak solution UQ,f,g := Φ of the problem (1.1)–(1.2). The
identification problem is now stated as follows:

Given Φ† := UQ,f,g ∈ H1
� (Ω), find an element (Q, f, g) ∈ Had

such that (1.6) is satisfied with Φ† and Q, f, g.

This problem may have more than one solution. Thus to identify, we shall use the notion of the unique
minimum norm solution which is defined as(

Q†, f†, g†
)
:= arg min

(Q,f,g)∈I(Φ†)
R(Q, f, g), (1.8)

where I(Φ†) :=
{
(Q, f, g) ∈ Had | UQ,f,g = Φ†} and

R(Q, f, g) := ‖Q‖2L2
sym(Ω) + ‖f‖2L2(Ω) + ‖g‖2L2(∂Ω).

We mention that the set I(Φ†) is non-empty, convex and weakly closed in L2
sym(Ω) × L2(Ω) × L2(∂Ω), so

that the minimizer (Q†, f†, g†) is defined uniquely. Furthermore, the exact data Φ† may be not known in
practice, thus we assume instead of Φ† to have a measurement zδ ∈ L2(Ω) such that∥∥Φ† − zδ

∥∥
L2(Ω)

≤ δ (1.9)

holds for some δ > 0. Our identification problem is now to reconstruct
(
Q†, f†, g†

)
from zδ.
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We also note that the condition zδ ∈ L2(Ω) is weaker than required of the exact state Φ† ∈ H1(Ω). In the
numerical implementation of §6 the data zδ is only assumed to be given at nodes of the coarsest triangulation
grid of the domain Ω. Then the interpolation of the computed numerical state, which is followed by an
algorithm presented in §5, corresponding to the coarsest grid on the next finer grid is considered as an
observation of the exact state on this finer grid, and so on.

Let
(
T h

)
0<h<1

denote a family of triangulations of the domain Ω with the mesh size h and Uh be the
approximation of the operator U on the piecewise linear, continuous finite element space associated with
T h. Furthermore, let Πh be the Clément’s mollification interpolation operator (cf. §2). The standard
method for solving the above mentioned identification problem is the output least squares one with Tikhonov
regularization, i.e., one considers a minimizer of the problem

min
(Q,f,g)∈Had

∥∥Uh
Q,f,g −Πhzδ

∥∥2
L2(Ω)

+ ρR(Q, f, g) (1.10)

as a discrete approximation of the identified coefficient
(
Q†, f†, g†

)
, here ρ > 0 is the regularization pa-

rameter. However, due to the non-linearity of the coefficient-to-solution operator, we are faced with certain
difficulties in holding the non-convex minimization problem (1.10). Thus, instead of working with the above
least squares functional and following the use of energy functions (cf. [34, 32, 44]), in the present work the
convex cost function (cf. §2)

(Q, f, g) ∈ Had �→ J h
δ (Q, f, g) :=

∫
Ω

Q∇
(
Uh
Q,f,g −Πhzδ

)
· ∇

(
Uh
Q,f,g −Πhzδ

)
will be taken into account. We then consider a unique minimizer

(
Qh, fh, gh

)
of the strictly convex problem

min
(Q,f,g)∈Had

J h
δ (Q, f, g) + ρR(Q, f, g) (1.11)

as a discrete regularized solution of the identification problem. Note that every solution of the minimization
problem (1.11) automatically belongs to finite dimensional spaces. Thus, a discretization of the admissible
set Had can be avoided.

In §3 we will show the convergence of these approximation solutions
(
Qh, fh, gh

)
to the identification(

Q†, f†, g†
)
in the L2

sym(Ω) × L2(Ω) × L2(∂Ω)-norm as well as the convergence of corresponding approxi-

mation states
(
Uh
Qh,fh,gh

)
to the exact Φ† in the H1(Ω)-norm. Under the structural source condition — but

without the smallness requirement — of the general convergence theory for non-linear, ill-posed problems
(cf. [15, 16]), we prove in §4 error bounds for these discrete approximations. For the numerical solution of
the minimization problem (1.11) we in §5 employ a gradient projection algorithm with Armijo steplength
rule. Finally, a numerical implementation will be performed to illustrate the theoretical findings.

The coefficient identification problem in PDEs arises from different contexts of applied sciences, e.g., from
aquifer analysis, geophysical prospecting and pollutant detection, and attracted great attention from many
scientists in the last 30 years or so. For surveys on the subject one may consult in [3, 9, 26, 39, 41, 42].
So far there is no paper devoted to such a simultaneous identification problem. The problem of identifying
the scalar diffusion coefficient has been extensively studied for above theoretical research and numerical
implementation, see e.g., [7, 8, 10, 11, 17, 18, 19, 25, 27, 29, 30, 33, 37, 44]. Some contributions for the
problem of simultaneously identifying coefficients can be found in [2, 20, 21, 31] while some works treated
the diffusion matrix case have been obtained in [14, 22, 23, 24, 36].

We conclude this introduction with the following note. By using the H-convergent concept, the convergence
analysis presented in [14, 22] maybe not applied directly to the problem of identifying scalar diffusion
coefficients. The main difficulty is that the set

D :=
{
qId

∣∣ q ∈ L∞(Ω) with q ≤ q(x) ≤ q a.e. in Ω and Id is the unit d× d-matrix
}

is in general not a closed subset of Qad under the topology of the H-convergence (cf. [43]), i.e., if the sequence
(qnId)n ⊂ D is H-convergent to Q ∈ Qad, then Q is not necessarily proportional to Id in dimension d ≥ 2 or
Q /∈ D. However, it is wroth to note that D is a weakly∗ closed subset of L∞

sym(Ω) (cf. Remark 2.1) and so
that the technique presented in the present paper covers the scalar diffusion identification case.

Throughout the paper we write
∫
Ω
· · · instead of

∫
Ω
· · · dx for the convenience of relevant notations. We use

the standard notion of Sobolev spaces H1(Ω), H2(Ω), W k,p(Ω), etc from, e.g., [1].
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2 Finite element discretization

2.1 Preliminaries

In product spaces L2
sym(Ω)× L2(Ω)× L2(∂Ω) and L∞

sym(Ω)× L2(Ω)× L2(∂Ω) we use the norm

‖(H, l, s)‖L2
sym(Ω)×L2(Ω)×L2(∂Ω) =

(
‖H‖2L2

sym(Ω) + ‖l‖2L2(Ω) + ‖s‖2L2(∂Ω)

)1/2

and

‖(H, l, s)‖L∞
sym(Ω)×L2(Ω)×L2(∂Ω) = ‖H‖L∞

sym(Ω) + ‖l‖L2(Ω) + ‖s‖L2(∂Ω),

respectively.

We note that the coefficient-to-solution operator

U : Had ⊂ L∞
sym(Ω)× L2(Ω)× L2(∂Ω) → H1

� (Ω)

with

Γ := (Q, f, g) ∈ Had → U(Γ) := UΓ

is Fréchet differentiable on Had. For each Γ = (Q, f, g) ∈ Had the action of its Fréchet derivative in direction
λ := (H, l, s) ∈ L∞

sym(Ω)× L2(Ω)× L2(∂Ω) denoted by ξλ := U ′
Γ(λ) := U ′(Γ)(λ) is the unique weak solution

in H1
� (Ω) to the equation ∫

Ω

Q∇ξλ · ∇ϕ = −
∫
Ω

H∇UΓ · ∇ϕ+ (l, ϕ) + 〈s, γϕ〉 (2.1)

for all ϕ ∈ H1
� (Ω).

In Sd we introduce the convex subset

K := {M ∈ Sd | q ≤ Mξ · ξ ≤ q for all ξ ∈ Rd}

together with the orthogonal projection PK : Sd → K that is characterised by

(A− PK(A)) · (B − PK(A)) ≤ 0

for all A ∈ Sd and B ∈ K. Furthermore, let ξ := (ξ1, · · ·, ξd) and η := (η1, · · ·, ηd) be two arbitrary vectors
in Rd, we use the notation

(ξ ⊗ η)1≤i,j≤d ∈ Sd with (ξ ⊗ η)ij :=
1

2
(ξiηj + ξjηi) for all i, j = 1, · · · , d.

We close this subsection by the following note.

Remark 2.1. Let
D :=

{
q ∈ L∞(Ω)

∣∣ q ≤ q(x) ≤ q a.e. in Ω
}
.

Then D is a weakly∗ compact subset of L∞(Ω), i.e., for any sequence (qn)n ⊂ D a subsequence (qnm
)m and

an element ξ∞ ∈ D exist such that (qnm)m is weakly∗ convergent in L∞(Ω) to ξ∞. In other words,

lim
m→∞

∫
Ω

qnmθ1 =

∫
Ω

ξ∞θ1

for all θ1 ∈ L1(Ω).

Proof. Indeed, we first note that D is a non-empty, convex, bounded and closed subset of L2(Ω). Thus, D
is a weakly compact subset of L2(Ω) and so that a subsequence (qnm

)m of (qn)n and an element ξ2 ∈ D
exist such that limm→∞

∫
Ω
qnm

θ2 =
∫
Ω
ξ2θ2 for all θ2 ∈ L2(Ω). Furthermore, since the sequence (qnm

)m
is bounded in the L∞(Ω)-norm, a subsequence not relabelled and an element ξ∞ ∈ L∞(Ω) exist such that
limm→∞

∫
Ω
qnmθ1 =

∫
Ω
ξ∞θ1 for all θ1 ∈ L1(Ω). Then, for all θ ∈ L∞(Ω) we get

∫
Ω
(ξ∞ − ξ2)θ = 0 which

implies that ξ∞ = ξ2 ∈ D.
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We also remark that any Ψ ∈ L∞(Ω) can be considered as an element in L∞(Ω)
∗
by

〈Ψ, ψ〉(
L∞(Ω)∗,L∞(Ω)

) :=

∫
Ω

Ψψ (2.2)

for all ψ in L∞(Ω) and ‖Ψ‖L∞(Ω)∗ ≤ |Ω| · ‖Ψ‖L∞(Ω).

2.2 Discretization

Let
(
T h

)
0<h<1

be a family of regular and quasi-uniform triangulations of the domain Ω with the mesh size h
such that each vertex of the polygonal boundary ∂Ω is a node of Th. For the definition of the discretization
space of the state functions let us denote

Vh
1 :=

{
ϕh ∈ C

(
Ω
)
∩H1

� (Ω) | ϕh
|T ∈ P1(T ) for all T ∈ T h

}
(2.3)

with Pr consisting all polynomial functions of degree at most r. Similar to the continuous case, we have the
following result.

Lemma 2.2. Let (Q, f, g) be in Had. Then the variational equation∫
Ω

Q∇Φh · ∇ϕh = (f, ϕh) + 〈g, γϕh〉 (2.4)

for all ϕh ∈ Vh
1 admits a unique solution Φh ∈ Vh

1 . Furthermore, the priori estimate

‖Φh‖H1(Ω) ≤ CN
(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
(2.5)

is satisfied.

The map Uh : Had ⊂ L∞
sym(Ω) × L2(Ω) × L2(∂Ω) → Vh

1 from each Γ := (Q, f, g) ∈ Had to the unique
solution Uh

Γ := Φh of (2.4) is called the discrete coefficient-to-solution operator. This operator is also Fréchet
differentiable on the set Had. For each Γ = (Q, f, g) ∈ Had and λ := (H, l, s) ∈ L∞

sym(Ω) × L2(Ω) × L2(∂Ω)

the Fréchet differential ξhλ := Uh
Γ

′
(λ) is an element of Vh

1 and satisfies for all ϕh in Vh
1 the equation∫

Ω

Q∇ξhλ · ∇ϕh = −
∫
Ω

H∇Uh
Γ · ∇ϕh + (l, ϕh) + 〈s, γϕh〉. (2.6)

Due to the standard theory of the finite element method for elliptic problems (cf. [6, 12]), for any fixed
Γ = (Q, f, g) ∈ Had it holds

lim
h→0

∥∥UΓ − Uh
Γ

∥∥
H1(Ω)

= 0. (2.7)

Let
Πh : L1(Ω) →

{
ϕh ∈ C

(
Ω
)
| ϕh

|T ∈ P1(T ) for all T ∈ T h
}

be the Clément’s mollification interpolation operator with properties

lim
h→0

∥∥φ−Πhφ
∥∥
Hk(Ω)

= 0 for all k ∈ {0, 1} (2.8)

and ∥∥φ−Πhφ
∥∥
Hk(Ω)

≤ Chl−k‖φ‖Hl(Ω) (2.9)

for 0 ≤ k ≤ l ≤ 2, where C is independent of h and φ (cf. [13, 4, 5, 40]). Then, using the discrete operator
Uh and the interpolation operator Πh, we can now introduce the discrete cost functional

J h
δ (Q, f, g) :=

∫
Ω

Q∇
(
Uh
Q,f,g −Πhzδ

)
· ∇

(
Uh
Q,f,g −Πhzδ

)
, (2.10)

where (Q, f, g) ∈ Had.

5



Lemma 2.3. Assume that the sequence (Γn)n := (Qn, fn, gn)n ⊂ Had weakly converges to Γ := (Q, f, g)
in L2

sym(Ω) × L2(Ω) × L2(∂Ω). Then for any fixed h > 0 the sequence
(
Uh
Γn

)
n
⊂ Vh

1 converges to Uh
Γ in the

H1(Ω)-norm.

Proof. Due to Remark 2.1, (Qn)n has a subsequence denoted by the same symbol which is weakly∗ convergent
in L∞

sym(Ω) to Q. Furthermore, by (2.5), the corresponding state sequence
(
Uh
Γn

)
n
is bounded in the finite

dimensional space Vh
1 . A subsequence which is not relabelled and an element Θh ∈ Vh

1 then exist such that(
Uh
Γn

)
n
converges to Θh in the H1(Ω)-norm. It follows from the equation (2.4) that∫

Ω

Qn∇
(
Uh
Γn

− Uh
Γ

)
· ∇ϕh =

∫
Ω

(Q−Qn)∇Uh
Γ · ∇ϕh +

(
fn − f, ϕh

)
+
〈
gn − g, γϕh

〉
(2.11)

for all ϕh ∈ Vh
1 . Taking ϕh = Uh

Γn
− Uh

Γ , by (1.5), we obtain that

CΩq

1 + CΩ

∥∥Uh
Γn

− Uh
Γ

∥∥2
H1(Ω)

≤
∫
Ω

(Q−Qn)∇Uh
Γ · ∇

(
Uh
Γn

−Θh +Θh − Uh
Γ

)
(2.12)

+
(
fn − f,Uh

Γn
−Θh +Θh − Uh

Γ

)
+
〈
gn − g, γ

(
Uh
Γn

−Θh +Θh − Uh
Γ

)〉
≤ C

∥∥Uh
Γn

−Θh
∥∥
H1(Ω)

+

∫
Ω

(Q−Qn)∇Uh
Γ · ∇

(
Θh − Uh

Γ

)
+
(
fn − f,Θh − Uh

Γ

)
+
〈
gn − g, γ

(
Θh − Uh

Γ

)〉
.

Since Qn ⇀ Q weakly∗ in L∞
sym(Ω), we get

lim
n→∞

∫
Ω

(Q−Qn)∇Uh
Γ · ∇

(
Θh − Uh

Γ

)
= 0.

Sending n to ∞, we thus obtain from the last inequality that limn→∞
∥∥Uh

Γn
− Uh

Γ

∥∥
H1(Ω)

= 0, which finishes

the proof.

We now state the following useful result on the convexity of the cost functional.

Lemma 2.4. J h
δ is convex and continuous on Had with respect to the L2

sym(Ω)× L2(Ω)× L2(∂Ω)-norm.

Proof. The continuity of J h
δ follows directly from Lemma 2.3. We show that J h

δ is convex.

Let Γ := (Q, f, g) ∈ Had and λ := (H, l, s) ∈ L∞
sym(Ω)× L2(Ω)× L2(∂Ω). We have that

Uh
Γ

′
(λ) =

∂Uh
Γ

∂Q
H +

∂Uh
Γ

∂f
l +

∂Uh
Γ

∂g
s and J h

δ

′
(Γ)(λ) =

∂J h
δ (Γ)

∂Q
H +

∂J h
δ (Γ)

∂f
l +

∂J h
δ (Γ)

∂g
s.

We compute for each term in the right hand side of the last equation. First we get

∂J h
δ (Γ)

∂Q
H =

∫
Ω

H∇
(
Uh
Γ −Πhzδ

)
· ∇

(
Uh
Γ −Πhzδ

)
+ 2

∫
Ω

Q∇
(
∂Uh

Γ

∂Q
H

)
· ∇

(
Uh
Γ −Πhzδ

)
.

For the second term we have

∂J h
δ (Γ)

∂f
l = 2

∫
Ω

Q∇
(
∂Uh

Γ

∂f
l

)
· ∇

(
Uh
Γ −Πhzδ

)
.

Finally, we have

∂J h
δ (Γ)

∂g
s = 2

∫
Ω

Q∇
(
∂Uh

Γ

∂g
s

)
· ∇

(
Uh
Γ −Πhzδ

)
.

Therefore,

J h
δ

′
(Γ)(λ) = 2

∫
Ω

Q∇
(
∂Uh

Γ

∂Q
H +

∂Uh
Γ

∂f
l +

∂Uh
Γ

∂g
s

)
· ∇

(
Uh
Γ −Πhzδ

)
+

∫
Ω

H∇(Uh
Γ −Πhzδ) · ∇(Uh

Γ −Πhzδ)

= 2

∫
Ω

Q∇Uh
Γ

′
(λ) · ∇

(
Uh
Γ −Πhzδ

)
+

∫
Ω

H∇
(
Uh
Γ −Πhzδ

)
· ∇

(
Uh
Γ −Πhzδ

)
= 2

∫
Ω

Q∇Uh
Γ

′
(λ) · ∇

(
Uh
Γ − Π̄hzδ

)
+

∫
Ω

H∇
(
Uh
Γ − Π̄hzδ

)
· ∇

(
Uh
Γ − Π̄hzδ

)
,
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where

Π̄hzδ := Πhzδ − |Ω|−1
〈
1, γΠhzδ

〉
∈ Vh

1 with ∇Π̄hzδ = ∇Πhzδ. (2.13)

By (2.6), we infer that

J h
δ

′
(Γ)(λ) = −2

∫
Ω

H∇Uh
Γ · ∇

(
Uh
Γ − Π̄hzδ

)
+ 2

(
l,Uh

Γ − Π̄hzδ
)
+ 2

〈
s, γ

(
Uh
Γ − Π̄hzδ

)〉
+

∫
Ω

H∇
(
Uh
Γ − Π̄hzδ

)
· ∇

(
Uh
Γ − Π̄hzδ

)
= −

∫
Ω

H∇Uh
Γ · ∇Uh

Γ +

∫
Ω

H∇Π̄hzδ · ∇Π̄hzδ + 2
(
l,Uh

Γ − Π̄hzδ
)
+ 2

〈
s, γ

(
Uh
Γ − Π̄hzδ

)〉
. (2.14)

Therefore, by (2.6) again, we arrive at

J h
δ

′′
(Γ) (λ, λ) = −2

∫
Ω

H∇Uh
Γ · ∇Uh

Γ

′
(λ) + 2

(
l,Uh

Γ

′
(λ)

)
+ 2

〈
s, γUh

Γ

′
(λ)

〉

= 2

∫
Ω

Q∇Uh
Γ

′
(λ) · ∇Uh

Γ

′
(λ) ≥ 2

CΩq

1 + CΩ

∥∥∥Uh
Γ

′
(λ)

∥∥∥2
H1(Ω)

≥ 0,

by (1.5), which completes the proof.

Now we are in position to prove the main result of this section.

Theorem 2.5. The strictly convex minimization problem

min
(Q,f,g)∈Had

Υρ,h
δ (Q, f, g) := J h

δ (Q, f, g) + ρR(Q, f, g)
(
Pρ,h
δ

)
attains a unique minimizer. Furthermore, an element Γ := (Q, f, g) ∈ Had is the unique minimizer to(
Pρ,h
δ

)
if and only if the system

Q(x) = PK

(
1

2ρ

(
∇Uh

Γ (x)⊗∇Uh
Γ (x)−∇Π̄hzδ(x)⊗∇Π̄hzδ(x)

))
,

f(x) =
1

ρ

(
Π̄hzδ(x)− Uh

Γ (x)
)
,

g(x) =
1

ρ
γ
(
Π̄hzδ(x)− Uh

Γ (x)
)

(2.15)

holds for a.e. in Ω, where Π̄h was generated from Πh according to (2.13).

Proof. Let (Γn)n := (Qn, fn, gn)n ⊂ Had be a minimizing sequence of
(
Pρ,h
δ

)
, i.e.,

lim
n→∞Υρ,h

δ (Γn) = inf
(Q,f,g)∈Had

Υρ,h
δ (Q, f, g).

The sequence (Γn)n is thus bounded in the L2
sym(Ω)× L2(Ω)× L2(∂Ω)-norm. A subsequence not relabelled

and an element Γ := (Q, f, g) ∈ L2
sym(Ω) × L2(Ω) × L2(∂Ω) exist such that Γn ⇀ Γ weakly in L2

sym(Ω) ×
L2(Ω)× L2(∂Ω). On the other hand, since Had is a convex, closed subset of L2

sym(Ω)× L2(Ω)× L2(∂Ω), so
is weakly closed, it follows that Γ ∈ Had.

By Lemma 2.4, J h
δ and R are both weakly lower semi-continuous on Had which yields that

J h
δ (Γ) ≤ lim inf

n→∞ J h
δ (Γn) and R(Γ) ≤ lim inf

n→∞ R(Γn).

We therefore have that

J h
δ (Γ) +R(Γ) ≤ lim inf

n→∞ J h
δ (Γn) + lim inf

n→∞ R(Γn) ≤ lim inf
n→∞

(
J h
δ (Γn) +R(Γn)

)
= lim

n→∞Υρ,h
δ (Γn) = inf

(Q,f,g)∈Had

Υρ,h
δ (Q, f, g),
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and Γ is then a minimizer to
(
Pρ,h
δ

)
. Since Υρ,h

δ is strictly convex, this minimizer is unique.

Next, an element Γ := (Q, f, g) ∈ Had is the minimizer to
(
Pρ,h
δ

)
if and only if the condition

Υρ,h
δ

′
(Γ)(Γ− Γ) ≥ 0

for all Γ = (H, l, s) ∈ Had. Then, in view of (2.14), we get that

0 ≤
∫
Ω

(H −Q)∇Π̄hzδ · ∇Π̄hzδ −
∫
Ω

(H −Q)∇Uh
Γ · ∇Uh

Γ + 2ρ(H −Q,Q)

+ 2
(
l − f,Uh

Γ − Π̄hzδ
)
+ 2ρ(l − f, f) + 2

〈
s− g, γ

(
Uh
Γ − Π̄hzδ

)〉
+ 2ρ 〈s− g, g〉

=

∫
Ω

(H −Q) ·
(
∇Π̄hzδ ⊗∇Π̄hzδ −∇Uh

Γ ⊗∇Uh
Γ + 2ρQ

)
+ 2

(
l − f,Uh

Γ − Π̄hzδ + ρf
)
+ 2

〈
s− g, γ

(
Uh
Γ − Π̄hzδ

)
+ ρg

〉
for all Γ = (H, l, s) ∈ Had. Taking Γ1 = (H, f, g), Γ2 = (Q, l, g) and Γ3 = (Q, f, s) into the above inequality
we obtain the system (2.15). The proof is completed.

Remark 2.6. We denote by

Vh
0 :=

{
ϕh ∈ L2(Ω) | ϕh

|T = const for all triangulations T ∈ T h
}
,

Eh
1 :=

{
ϕh ∈ C(∂Ω) | ϕh

|e ∈ P1 for all boundary edges e of T h
}
.

Since Uh
Γ ∈ Vh

1 and Π̄hzδ ∈ Vh
1 , the system (2.15) shows that every solution of

(
Pρ,h
δ

)
automatically belongs

to the finite dimensional space Vh
0
d×d×Vh

1 ×Eh
1 . Thus the discretization of the admissible Had can be avoid.

3 Convergence

For abbreviation in what follows we denote by C a generic positive constant independent of the mesh size h,
the noise level δ and the regularization parameter ρ. By (2.8) and (2.9), we can introduce for each Φ ∈ H1(Ω)

χh
Φ :=

∥∥Φ−ΠhΦ
∥∥
H1(Ω)

which satisfies
lim
h→0

χh
Φ = 0 and 0 ≤ χh

Φ ≤ Ch

in case Φ ∈ H2(Ω). Likewise, by (2.7), for all Γ ∈ Had

βh
UΓ

:=
∥∥UΓ − Uh

Γ

∥∥
H1(Ω)

→ 0 as h → 0 and 0 ≤ βh
UΓ

≤ Ch as UΓ ∈ H2(Ω).

Furthermore, by (2.9), we get

‖Πh‖L(L2(Ω),L2(Ω)) ≤ C and ‖Πh‖L(H1(Ω),H1(Ω)) ≤ C. (3.1)

Thus, it follows from the inverse inequality (cf. [6, 12]):

‖ϕh‖H1(Ω) ≤ Ch−1‖ϕh‖L2(Ω) for all ϕ
h ∈

{
ϕh ∈ C

(
Ω
)
| ϕh

|T ∈ P1(T ) for all T ∈ T h
}

that

‖Φ† −Πhzδ‖H1(Ω) ≤ ‖Πh
(
Φ† − zδ

)
‖H1(Ω) + ‖Φ† −ΠhΦ†‖H1(Ω) ≤ Ch−1‖Πh

(
Φ† − zδ

)
‖L2(Ω) + χh

Φ†

≤ Ch−1‖Πh‖L(L2(Ω),L2(Ω))‖Φ† − zδ‖L2(Ω) + χh
Φ† ≤ Ch−1δ + χh

Φ† . (3.2)

The following result shows the convergence of finite element approximations to the unique minimum norm
solution Γ† :=

(
Q†, f†, g†

)
of the identification problem, which is defined by (1.8).
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Theorem 3.1. Let (hn)n be a sequence with limn→∞ hn = 0 and (δn)n and (ρn)n are any positive sequences
such that

ρn → 0,
δn

hn
√
ρn

→ 0,
βhn

U
Γ†√
ρn

→ 0 and
χhn

Φ†√
ρn

→ 0 as n → ∞.

Assume that (zδn)n ⊂ L2(Ω) is a sequence satisfying
∥∥zδn − Φ†∥∥

L2(Ω)
≤ δn and Γn := (Qn, fn, gn) is the

unique minimizer of the problem
(
Pρn,hn

δn

)
for each n ∈ N . Then the sequence (Γn)n converges to Γ† in the

L2
sym(Ω)×L2(Ω)×L2(∂Ω)-norm as n → ∞. Furthermore, the corresponding discrete state sequence

(
Uhn

Γn

)
n

also converges to Φ† in the H1(Ω)-norm.

Remark 3.2. In case Φ† = UΓ† ∈ H2(Ω) we have 0 ≤ βhn

U
Γ† , χ

hn

Φ† ≤ Chn. Therefore, the convergence of

Theorem 3.1 is obtained if δn ∼ h2
n and the sequence (ρn)n is chosen such that

ρn → 0, and
hn√
ρn

→ 0 as n → ∞.

To prove Theorem 3.1, we need the following auxiliary estimate.

Lemma 3.3. There holds the estimate

J h
δ (Γ

†) ≤ C
(
h−2δ2 +

(
χh
Φ†
)2

+
(
βh
U

Γ†

)2)
. (3.3)

Proof. We have with Φ† = UΓ† and (3.2) that

J h
δ (Γ

†) =
∫
Ω

Q†∇
(
Uh
Γ† −Πhzδ

)
· ∇

(
Uh
Γ† −Πhzδ

)
≤ q

∥∥Uh
Γ† −Πhzδ

∥∥2
H1(Ω)

= q
∥∥Uh

Γ† − UΓ† +Φ† −Πhzδ
∥∥2
H1(Ω)

≤ C
(∥∥Uh

Γ† − UΓ†
∥∥2
H1(Ω)

+
∥∥Φ† −Πhzδ

∥∥2
H1(Ω)

)
≤ C

(
h−2δ2 +

(
χh
Φ†
)2

+
(
βh
U

Γ†

)2)
,

which finishes the proof.

Proof of Theorem 3.1. By the optimality of Γn and Lemma 3.3, we have that

J hn

δn
(Γn) + ρnR (Γn) ≤ J hn

δn

(
Γ†)+ ρnR

(
Γ†)

≤ C
(
h−2
n δ2n +

(
χhn

Φ†
)2

+
(
βhn

U
Γ†

)2)
+ ρnR

(
Γ†)

which yields
lim
n→∞J hn

δn
(Γn) = 0 (3.4)

and

lim sup
n→∞

R (Γn) ≤ R
(
Γ†) . (3.5)

A subsequence of the sequence (Γn)n denoted by the same symbol and an element Γ0 := (Q0, f0, g0) ∈ Had

then exist such that
Qn ⇀ Q0 weakly∗ in L∞

sym(Ω),

fn ⇀ f0 weakly in L2(Ω),

gn ⇀ g0 weakly in L2(∂Ω).

We will show that (Γn)n converges to Γ0 in the L2
sym(Ω)×L2(Ω)×L2(∂Ω)-norm and Γ0 = Γ†. We have from

(3.2) that

lim
n→∞

∥∥Πhnzδn − UΓ†
∥∥
H1(Ω)

≤ lim
n→∞

(
Ch−1

n δn + χhn

Φ†

)
= 0. (3.6)
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Combining this with limn→∞ ‖UΓ0 − Uhn

Γ0
‖H1(Ω) = 0 from (2.7), we arrive at

lim
n→∞J hn

δn
(Γ0) = lim

n→∞

∫
Ω

Q0∇
(
Uhn

Γ0
−Πhnzδn

)
· ∇

(
Uhn

Γ0
−Πhnzδn

)
=

∫
Ω

Q0∇ (UΓ0
− UΓ†) · ∇ (UΓ0

− UΓ†) .

Now for each fixed n we consider an arbitrary subsequence (Γnm
)m of (Γn)n. By the weakly l.s.c. property

of the functional J hn

δn
(cf. Lemma 2.4), we obtain that

J hn

δn
(Γ0) ≤ lim inf

m→∞ J hn

δn
(Γnm

).

Again, using the convexity of J hn

δn
, we get that

J hn

δn
(Γn) ≥ J hn

δn
(Γnm

) + J hn

δn

′
(Γnm

) (Γn − Γnm
) .

By (1.5), we thus arrive at

C ‖UΓ0
− UΓ†‖2H1(Ω) ≤

∫
Ω

Q0∇ (UΓ0
− UΓ†) · ∇ (UΓ0

− UΓ†) = lim
n→∞J hn

δn
(Γ0) ≤ lim

n→∞

(
lim inf
m→∞ J hn

δn
(Γnm

)
)

≤ lim
n→∞ lim inf

m→∞

(
J hn

δn
(Γn) + J hn

δn

′
(Γnm

) (Γnm
− Γn)

)
.

Using (3.4), we infer from the last inequality that

C ‖UΓ0 − UΓ†‖2H1(Ω) ≤ lim
n→∞ lim inf

m→∞ J hn

δn

′
(Γnm) (Γnm − Γn) . (3.7)

In view of (2.14) we get that

J hn

δn

′
(Γnm) (Γnm − Γn)

=

∫
Ω

(Qnm −Qn)∇Π̄hnzδn · ∇Π̄hnzδn − 2
(
fnm − fn, Π̄

hnzδn
)
− 2

〈
gnm − gn, γΠ̄

hnzδn
〉

−
∫
Ω

(Qnm
−Qn)∇Uhn

Γnm
· ∇Uhn

Γnm
+ 2

(
fnm

− fn,Uhn

Γnm

)
+ 2

〈
gnm

− gn, γUhn

Γnm

〉
:= A1 − 2A2 − 2A3 −A4 + 2A5 + 2A6. (3.8)

Since Qnm
⇀ Q0 weakly∗ in L∞

sym(Ω) as m → ∞, we have for the first term that

lim
n→∞ lim

m→∞A1

:= lim
n→∞

(
lim

m→∞

∫
Ω

(Qnm −Qn)∇Π̄hnzδn · ∇Π̄hnzδn

)
= lim

n→∞

∫
Ω

(Q0 −Qn)∇Π̄hnzδn · ∇Π̄hnzδn

= lim
n→∞

∫
Ω

(Q0 −Qn)∇UΓ† · ∇UΓ†︸ ︷︷ ︸
=0, since Qn⇀Q0 weakly∗ in L∞

sym(Ω)

+ lim
n→∞

∫
Ω

(Q0 −Qn)∇
(
Π̄hnzδn − UΓ†

)
· ∇

(
Π̄hnzδn + UΓ†

)

= lim
n→∞

∫
Ω

(Q0 −Qn)∇
(
Π̄hnzδn − UΓ†

)
· ∇

(
Π̄hnzδn + UΓ†

)
.

Furthermore, by (3.6), we get that

lim
n→∞

∣∣∣∣
∫
Ω

(Q0 −Qn)∇
(
Π̄hnzδn − UΓ†

)
· ∇

(
Π̄hnzδn + UΓ†

)∣∣∣∣
≤ lim

n→∞C
∥∥∇(

Π̄hnzδn − UΓ†
)∥∥

L2(Ω)
= lim

n→∞C
∥∥∇(

Πhnzδn − UΓ†
)∥∥

L2(Ω)

≤ C lim
n→∞

∥∥Πhnzδn − UΓ†
∥∥
H1(Ω)

= 0.

Therefore,

lim
n→∞ lim

m→∞A1 = 0. (3.9)
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On the other hand, we get

lim
n→∞ lim

m→∞A2 := lim
n→∞ lim

m→∞
(
fnm

− fn, Π̄
hnzδn

)
= lim

n→∞
(
f0 − fn, Π̄

hnzδn
)

= lim
n→∞ (f0 − fn,UΓ†)︸ ︷︷ ︸

=0

+ lim
n→∞

(
f0 − fn, Π̄

hnzδn − UΓ†
)

≤ C lim
n→∞

∥∥Π̄hnzδn − UΓ†
∥∥
L2(Ω)

by (1.4)

≤ C lim
n→∞

∥∥∇(
Π̄hnzδn − UΓ†

)∥∥
L2(Ω)

= 0. (3.10)

We now have that

lim
n→∞ lim

m→∞A3 := lim
n→∞ lim

m→∞
〈
gnm

− gn, γΠ̄
hnzδn

〉
= lim

n→∞
〈
g0 − gn, γΠ̄

hnzδn
〉

= lim
n→∞

〈
g0 − gn, γΠ

hnzδn
〉
− |∂Ω|−1 lim

n→∞
〈
g0 − gn,

〈
1, γΠhnzδn

〉〉
with

lim
n→∞

〈
g0 − gn, γΠ

hnzδn
〉
= lim

n→∞
〈
g0 − gn, γ

(
Πhnzδn − UΓ†

)〉
+ lim

n→∞ 〈g0 − gn, γUΓ†〉︸ ︷︷ ︸
=0

≤ C lim
n→∞ ‖g0 − gn‖L2(∂Ω) ‖γ‖L

(
H1(Ω),H1/2(∂Ω)

) ∥∥Πhnzδn − UΓ†
∥∥
H1(Ω)

≤ C lim
n→∞

∥∥Πhnzδn − UΓ†
∥∥
H1(Ω)

= 0

and

lim
n→∞

〈
g0 − gn,

〈
1, γΠhnzδn

〉〉
≤ lim

n→∞
∣∣〈1, γΠhnzδn

〉∣∣ |〈g0 − gn, 1〉| ≤ C lim
n→∞

∥∥Πhnzδn
∥∥
H1(Ω)

|〈g0 − gn, 1〉|

≤ C lim
n→∞ |〈g0 − gn, 1〉| = 0

so that

lim
n→∞ lim

m→∞A3 = 0. (3.11)

Next, we rewrite

lim
n→∞ lim

m→∞A4 := lim
n→∞ lim

m→∞

∫
Ω

(Qnm
−Qn)∇Uhn

Γnm
· ∇Uhn

Γnm

= lim
n→∞ lim

m→∞

∫
Ω

(Qnm −Qn)∇Uhn

Γ0
· ∇Uhn

Γ0

+ lim
n→∞ lim

m→∞

∫
Ω

(Qnm
−Qn)∇

(
Uhn

Γnm
− Uhn

Γ0

)
· ∇

(
Uhn

Γnm
+ Uhn

Γ0

)
.

By (2.7), likewise as (3.9), we get that

lim
n→∞ lim

m→∞

∫
Ω

(Qnm
−Qn)∇Uhn

Γ0
· ∇Uhn

Γ0
= 0.

Furthermore, we have∣∣∣∣
∫
Ω

(Qnm −Qn)∇
(
Uhn

Γnm
− Uhn

Γ0

)
· ∇

(
Uhn

Γnm
+ Uhn

Γ0

)∣∣∣∣ ≤ C
∥∥∥Uhn

Γnm
− Uhn

Γ0

∥∥∥
H1(Ω)

.

By Lemma 2.3, for each fixed n we have that the sequence
(
Uhn

Γnm

)
m

⊂ Vhn
1 converges to Uhn

Γ0
in the

H1(Ω)-norm as m tends to ∞. Then we deduce that

lim
n→∞ lim

m→∞

∣∣∣∣
∫
Ω

(Qnm
−Qn)∇

(
Uhn

Γnm
− Uhn

Γ0

)
· ∇

(
Uhn

Γnm
+ Uhn

Γ0

)∣∣∣∣
≤ C lim

n→∞ lim
m→∞

∥∥∥Uhn

Γnm
− Uhn

Γ0

∥∥∥
H1(Ω)

= C lim
n→∞

∥∥∥Uhn

Γ0
− Uhn

Γ0

∥∥∥
H1(Ω)

= 0.
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Thus, we obtain

lim
n→∞ lim

m→∞A4 = 0. (3.12)

Finally, we also get that

lim
n→∞ lim

m→∞A5 := lim
n→∞ lim

m→∞

(
fnm − fn,Uhn

Γnm

)
= lim

n→∞ lim
m→∞

(
fnm − fn,Uhn

Γ0

)
+ lim

n→∞ lim
m→∞

(
fnm − fn,Uhn

Γnm
− Uhn

Γ0

)
≤ lim

n→∞

(
f0 − fn,Uhn

Γ0

)
+ C lim

n→∞ lim
m→∞

∥∥∥Uhn

Γnm
− Uhn

Γ0

∥∥∥
H1(Ω)

= 0 (3.13)

and

lim
n→∞ lim

m→∞A6 := lim
n→∞ lim

m→∞

〈
gnm

− gn, γUhn

Γnm

〉
= lim

n→∞ lim
m→∞

〈
gnm

− gn, γ
(
Uhn

Γnm
− Uhn

Γ0

)〉
≤ C lim

n→∞ lim
m→∞

∥∥∥γ(Uhn

Γnm
− Uhn

Γ0

)∥∥∥
L2(∂Ω)

≤ C lim
n→∞ lim

m→∞

∥∥∥Uhn

Γnm
− Uhn

Γ0

∥∥∥
H1(Ω)

= 0. (3.14)

Therefore, it follows from the equations (3.8)–(3.14) that

lim
n→∞ lim

m→∞J hn

δn

′
(Γnm) (Γnm − Γn) = 0.

Combining this with (3.7), we obtain that

UΓ0
= UΓ† .

Then, by the definition of Γ†, the weakly l.s.c. property of R and (3.5), we get

R(Γ†) ≤ R(Γ0) ≤ lim inf
n

R (Γn) ≤ lim sup
n

R (Γn) ≤ R(Γ†).

Thus,
R(Γ†) = R(Γ0) = lim

n→∞R (Γn) .

By the uniqueness of Γ†, we have that Γ0 = Γ†. Furthermore, since (Γn)n weakly converges in L2
sym(Ω) ×

L2(Ω) × L2(∂Ω) to Γ0, we conclude from the last equation that (Γn)n converges to Γ0 in the L2
sym(Ω) ×

L2(Ω)× L2(∂Ω)-norm.

It remains to show that the sequence
(
Uhn

Γn

)
n
converges to Φ† = UΓ† in the H1(Ω)-norm. We first get from

(2.7) that

lim
n→∞

∥∥UΓ† − Uhn

Γ†
∥∥
H1(Ω)

= 0. (3.15)

Furthermore, in view of (2.12) we also have that

CΩq

1 + CΩ

∥∥Uhn

Γn
− Uhn

Γ†
∥∥2
H1(Ω)

≤
∫
Ω

(Q† −Qn)∇Uhn

Γ† · ∇
(
Uhn

Γn
− Uhn

Γ†
)

+
(
fn − f†,Uhn

Γn
− Uhn

Γ†
)
+
〈
gn − g†, γ

(
Uhn

Γn
− Uhn

Γ†
)〉

. (3.16)

Since fn → f† in the L2(Ω)-norm and gn → g† in the L2(∂Ω)-norm together with the uniform boundedness
(2.5), it follows that

lim
n→∞

((
fn − f†,Uhn

Γn
− Uhn

Γ†
)
+
〈
gn − g†, γ

(
Uhn

Γn
− Uhn

Γ†
)〉)

= 0. (3.17)

We now rewrite∫
Ω

(Q† −Qn)∇Uhn

Γ† · ∇
(
Uhn

Γn
− Uhn

Γ†
)
=

∫
Ω

(Q† −Qn)∇UΓ† · ∇
(
Uhn

Γn
− Uhn

Γ†
)

+

∫
Ω

(Q† −Qn)∇
(
Uhn

Γ† − UΓ†
)
· ∇

(
Uhn

Γn
− Uhn

Γ†
)

≤ C

(∫
Ω

‖Q† −Qn‖2Sd
|∇UΓ† |2

)1/2

+ C
∥∥UΓ† − Uhn

Γ†
∥∥
H1(Ω)

.

12



Since Qn → Q† in the L2
sym(Ω)-norm, up to a subsequence we assume that (Qn)n converges to Q† a.e. in Ω.

Then, by the Lebesgue dominated convergence theorem, we deduce that

lim
n→∞

∫
Ω

‖Q† −Qn‖2Sd
|∇UΓ† |2 = 0.

Thus, together with (3.15), we have

lim
n→∞

∫
Ω

(Q† −Qn)∇Uhn

Γ† · ∇
(
Uhn

Γn
− Uhn

Γ†
)
= 0. (3.18)

It follows from (3.16)–(3.18) that limn→∞
∥∥Uhn

Γn
− Uhn

Γ†
∥∥
H1(Ω)

= 0. Then, by serving of (3.15) again, we

conclude that limn→∞
∥∥Uhn

Γn
− UΓ†

∥∥
H1(Ω)

= 0, which finishes the proof.

4 Error bounds

In this section we investigate error bounds of discrete regularized solutions to the identification problem.
For any Γ := (Q, f, g) ∈ Had the mapping

U ′
Γ : L∞

sym(Ω)× L2(Ω)× L2(∂Ω) → H1
� (Ω)

is linear, continuous with the dual

U ′
Γ
∗
: H1

� (Ω)
∗ → L∞

sym(Ω)
∗ × L2(Ω)× L2(∂Ω).

Theorem 4.1. Assume that a function w∗ ∈ H1
� (Ω)

∗
exists such that

U ′
Γ†

∗
w∗ = Γ†. (4.1)

Then∥∥Uh
Γh − UΓ†

∥∥2
H1(Ω)

+ ρ
∥∥Γh − Γ†∥∥2

L2
sym(Ω)×L2(Ω)×L2(∂Ω)

= O
(
h−2δ2 +

(
χh
Φ†
)2

+
(
βh
U

Γ†

)2
+
(
χh
w

)2
+ ρ2

)
,

(4.2)

where Γh :=
(
Qh, fh, gh

)
is the unique solution to

(
Pρ,h
δ

)
and w ∈ H1

� (Ω) is the unique weak solution of the

Neumann problem

−∇ · (Q†∇w) = f† + w∗ in Ω and Q†∇w · �n = g† on ∂Ω. (4.3)

Remark 4.2. Due to Remark 3.2, in case UΓ† , w ∈ H2(Ω) we have

0 ≤ χh
Φ† , βh

U
Γ† , χh

w ≤ Ch.

Therefore, with δ ∼ h2 and ρ ∼ h we obtain the following error bounds∥∥Uh
Γh − UΓ†

∥∥
H1(Ω)

= O(h) and
∥∥Γh − Γ†∥∥

L2
sym(Ω)×L2(Ω)×L2(∂Ω)

= O
(
h1/2

)
.

Proof of Theorem 4.1. The line of argument follows the proof of [22, Theorem 5.1] with a slight mollification.
Due to the optimality of Γh, we get that

J h
δ

(
Γh

)
+ ρR

(
Γh

)
≤ J h

δ

(
Γ†)+ ρR

(
Γ†)

which implies

J h
δ

(
Γh

)
+ ρ

∥∥Γh − Γ†∥∥2
L2

sym(Ω)×L2(Ω)×L2(∂Ω)
≤ J h

δ

(
Γ†)+ 2ρ

〈
Γ†,Γ† − Γh

〉
L2

sym(Ω)×L2(Ω)×L2(∂Ω)

≤ C
(
h−2δ2 +

(
χh
Φ†
)2

+
(
βh
U

Γ†

)2)
+ 2ρ

〈
Γ†,Γ† − Γh

〉
L2

sym(Ω)×L2(Ω)×L2(∂Ω)
, (4.4)
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by Lemma 3.3. Now, by (2.2) and (4.1), we infer that

I :=
〈
Γ†,Γ† − Γh

〉
L2

sym(Ω)×L2(Ω)×L2(∂Ω)
=

〈
Γ†,Γ† − Γh

〉
(L∞

sym(Ω)∗×L2(Ω)×L2(∂Ω),L∞
sym(Ω)×L2(Ω)×L2(∂Ω))

=
〈
U ′
Γ†

∗
w∗,Γ† − Γh

〉
(L∞

sym(Ω)∗×L2(Ω)×L2(∂Ω),L∞
sym(Ω)×L2(Ω)×L2(∂Ω))

=
〈
w∗,U ′

Γ†
(
Γ† − Γh

)〉
(H1(Ω)∗,H1(Ω))

. (4.5)

Thus, by the definition of the weak solution to (4.3) and (2.1), we obtain

I =

∫
Ω

Q†∇U ′
Γ†

(
Γ† − Γh

)
· ∇w−

(
f†,U ′

Γ†
(
Γ† − Γh

) )
−
〈
g†, γU ′

Γ†
(
Γ† − Γh

) 〉
︸ ︷︷ ︸

− ∫
Ω
Q†∇U

Γ† ·∇U ′
Γ† (Γ

†−Γh), by (1.6)

=

∫
Ω

Q†∇U ′
Γ†

(
Γ† − Γh

)
· ∇

(
w − UΓ†

)
= −

∫
Ω

(
Q† −Qh

)
∇UΓ† · ∇

(
w − UΓ†

)
+
(
f† − fh, w − UΓ†

)
+
〈
g† − gh, γ

(
w − UΓ†

)〉
= −

∫
Ω

Q†∇UΓ† · ∇
(
w − UΓ†

)
+
(
f†, w − UΓ†

)
+
〈
g†, γ

(
w − UΓ†

)〉
︸ ︷︷ ︸

=0, by (1.6)

+

∫
Ω

Qh∇UΓ† · ∇
(
w − UΓ†

)
−
(
fh, w − UΓ†

)
−
〈
gh, γ

(
w − UΓ†

)〉
︸ ︷︷ ︸

− ∫
Ω
Qh∇U

Γh ·∇
(
w−U

Γ†
) =

∫
Ω

Qh∇ (UΓ† − UΓh) · ∇
(
w − UΓ†

)

which yields

I =

∫
Ω

Qh∇
(
UΓ† −Πhzδ

)
· ∇

(
w − UΓ†

)
+

∫
Ω

Qh∇
(
Uh
Γh − UΓh

)
· ∇

(
w − UΓ†

)
+

∫
Ω

Qh∇
(
Πhzδ − Uh

Γh

)
· ∇

(
w − UΓ†

)
:= I1 + I2 + I3. (4.6)

For I1 we have from (3.2) that

I1 :=

∫
Ω

Qh∇
(
UΓ† −Πhzδ

)
· ∇

(
w − UΓ†

)
≤ C

∥∥UΓ† −Πhzδ
∥∥
H1(Ω)

≤ Ch−1δ + χh
Φ† . (4.7)

Due to (1.6) and (2.4), we get
∫
Ω
Qh∇

(
Uh
Γh − UΓh

)
· ∇Πh

(
w − UΓ†

)
= 0 and then infer that

I2 :=

∫
Ω

Qh∇
(
Uh
Γh − UΓh

)
· ∇

(
w − UΓ†

)
=

∫
Ω

Qh∇
(
Uh
Γh − UΓh

)
· ∇

(
w − UΓ† −Πh

(
w − UΓ†

))
≤ C

(∥∥w −Πhw
∥∥
H1(Ω)

+
∥∥UΓ† −ΠhUΓ†

∥∥
H1(Ω)

)
≤ C

(
χh
w + χh

Φ†
)
. (4.8)

Finally, we have that

I3 :=

∫
Ω

Qh∇
(
Πhzδ − Uh

Γh

)
· ∇

(
w − UΓ†

)
≤

(∫
Ω

Qh∇
(
Uh
Γh −Πhzδ

)
· ∇

(
Uh
Γh −Πhzδ

))1/2

·
(∫

Ω

Qh∇
(
w − UΓ†

)
· ∇

(
w − UΓ†

))1/2

≤ 1

4ρ

∫
Ω

Qh∇
(
Uh
Γh −Πhzδ

)
· ∇

(
Uh
Γh −Πhzδ

)
︸ ︷︷ ︸

J h
δ (Γh)

+ρ

∫
Ω

Qh∇
(
w − UΓ†

)
· ∇

(
w − UΓ†

)

≤ 1

4ρ
J h
δ

(
Γh

)
+ Cρ. (4.9)

It follows from (4.6)–(4.9) that

I ≤ C
(
h−1δ + χh

Φ† + χh
w + ρ

)
+

1

4ρ
J h
δ

(
Γh

)
.
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Thus, together with (4.4)–(4.5), we get

1

2
J h
δ

(
Γh

)
+ ρ

∥∥Γh − Γ†∥∥2
L2

sym(Ω)×L2(Ω)×L2(∂Ω)
≤ C

(
h−2δ2 +

(
χh
Φ†
)2

+
(
βh
U

Γ†

)2
+
(
χh
w

)2
+ ρ2

)
,

which finishes the proof.

5 Gradient projection algorithm with Armijo steplength rule

In this section we present the gradient projection algorithm with Armijo steplength rule (cf. [28, 38]) for

numerical solution of the minimization problem
(
Pρ,h
δ

)
.

We first note that for each Γ := (Q, f, g) ∈ Had, in view of (2.14), the L2-gradient of the strictly convex cost

function Υρ,h
δ of the problem

(
Pρ,h
δ

)
is given by ∇Υρ,h

δ (Γ) :=
(
ΥQ(Γ),Υf (Γ),Υg(Γ)

)
with⎧⎪⎨

⎪⎩
ΥQ(Γ) = ∇Π̄hzδ ⊗∇Π̄hzδ −∇Uh

Γ ⊗∇Uh
Γ + 2ρQ,

Υf (Γ) = 2
(
Uh
Γ − Π̄hzδ + ρf

)
,

Υg(Γ) = 2
(
γ
(
Uh
Γ − Π̄hzδ

)
+ ρg

)
and Π̄h generating from Πh according to (2.13).

The algorithm is then read as: given a step size control β ∈ (0, 1), an initial approximation (cf. Remark 2.6)

Γ0 := (Q0, f0, g0) ∈ Had ∩
(
Vh
0
d×d × Vh

1 × Eh
1

)
, number of iteration N and setting k = 0.

1. Compute Uh
Γk

from the variational equation∫
Ω

Qk∇Uh
Γk

· ∇ϕh =
(
fk, ϕ

h
)
+
〈
gk, γϕ

h
〉
for all ϕh ∈ Vh

1 (5.1)

as well as

Υh
ρ,δ(Γk) =

∫
Ω

Qk∇
(
Uh
Γk

− Π̄hzδ
)
· ∇

(
Uh
Γk

− Π̄hzδ
)
+ ρ

(
‖Qk‖2L2

sym(Ω) + ‖fk‖2L2(Ω) + ‖gk‖2L2(∂Ω)

)
.

(5.2)

2. Compute the gradient ∇Υρ,h
δ (Γk) :=

(
ΥQk

(Γk),Υfk(Γk),Υgk(Γk)
)
with⎧⎪⎨

⎪⎩
ΥQk

(Γk) = ∇Π̄hzδ ⊗∇Π̄hzδ −∇Uh
Γk

⊗∇Uh
Γk

+ 2ρQk,

Υfk(Γk) = 2
(
Uh
Γk

− Π̄hzδ + ρfk
)
,

Υgk(Γk) = 2
(
γ
(
Uh
Γk

− Π̄hzδ
)
+ ρgk

)
.

3. Set Γ̃k :=
(
Q̃k, f̃k, g̃k

)
with Q̃k(x) := PK

(
Qk(x) − βΥQk

(Γk)(x)
)
, f̃k(x) := fk(x) − βΥfk(Γk)(x) and

g̃k(x) := gk(x)− βΥgk(Γk)(x).

(a) Compute Uh
Γ̃k

according to (5.1), Υh
ρ,δ

(
Γ̃k

)
according to (5.2), and

L := Υh
ρ,δ

(
Γ̃k

)
−Υh

ρ,δ(Γk)+τβ
(
‖Q̃k−Qk‖2L2

sym(Ω)+‖f̃k−fk‖2L2(Ω)+‖g̃k−gk‖2L2(∂Ω)

)
with τ = 10−4.

(b) If L ≤ 0

go to the next step (c) below

else

set β := β
2 and then go back (a)

(c) Update Γk = Γ̃k, set k = k + 1.

4. Compute

Tolerance :=
∥∥∇Υh

ρ,δ(Γk)
∥∥
L2

sym(Ω)×L2(Ω)×L2(∂Ω)
− τ1 − τ2

∥∥∇Υh
ρ,δ(Γ0)

∥∥
L2

sym(Ω)×L2(Ω)×L2(∂Ω)
(5.3)

with τ1 := 10−3h and τ2 := 10−2h. If Tolerance ≤ 0 or k > N , then stop; otherwise go back Step 1.
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6 Numerical implementation

For illustrating the theoretical result we consider the Neumann problem

−∇ ·
(
Q†∇Φ†) = f† in Ω, (6.1)

Q†∇Φ† · �n = g† on ∂Ω (6.2)

with Ω = {x = (x1, x2) ∈ R2 | − 1 < x1, x2 < 1}.

The special constants in the equation (1.3) are chosen as q = 0.05 and q = 10. For discretization we divide

the interval (−1, 1) into � equal segments, and so the domain Ω = (−1, 1)2 is divided into 2�2 triangles,

where the diameter of each triangle is h� =
√
8
� .

We assume that entries of the symmetric diffusion matrix Q† are discontinuous which are defined as

q†11 = 2χΩ11 + χΩ\Ω11
, q†12 = q†21 = χΩ12 , q†22 = 3χΩ22 + 2χΩ\Ω22

,

where χD is the characteristic functional of the Lebesgue measurable set D and

Ω11 :=
{
(x1, x2) ∈ Ω

∣∣ |x1| ≤ 3/4 and |x2| ≤ 3/4
}
, Ω12 :=

{
(x1, x2) ∈ Ω

∣∣ |x1|+ |x2| ≤ 3/4
}

and

Ω22 :=
{
(x1, x2) ∈ Ω

∣∣ x2
1 + x2

2 ≤ 9/16
}
.

The source functional f† is assumed to be also discontinuous and defined as

f† =
93− 2π

48
χΩ1

+
45− 2π

48
χΩ2

− 3 + 2π

48
χΩ\(Ω1∪Ω2),

where

Ω1 :=
{
(x1, x2) ∈ Ω

∣∣ 9(x1 + 1/2)2 + 16(x2 − 1/2)2 ≤ 1
}

and

Ω2 :=
{
(x1, x2) ∈ Ω

∣∣ |x1 − 1/2| ≤ 1/4 and |x2 + 1/2| ≤ 1/4
}
.

The Neumann boundary condition g† is chosen with

g† = −2χ[−1,0]×{−1} + χ(0,1]×{−1} − χ[−1,0]×{1} + 2χ(0,1]×{1}
+ 3χ{−1}×(−1,0] − 4χ{−1}×(0,1) + 4χ{1}×(−1,0] − 3χ{1}×(0,1).

The exact state Φ† is then computed from the finite element equation KU = F , where K and F are the
stiffness matrix and the load vector associated to the problem (6.1)–(6.2), respectively.

We start the computation with the coarsest level � = 3. To this end, for constructing observations with noise
of the exact state Φ† on this coarsest grid we use

zδ� := Φ† +Nδ�
and δ� :=

∥∥zδ� − Φ†∥∥
L2(Ω)

,

where δ� = 10ρ
1/2
� h

3/2
� , ρ� = 10−3h� and Nδ�

is a Mh� × 1-matrix of random numbers generated from the

uniform distribution on the interval
(
− δ�, δ�

)
, Mh� = (� + 1)2 is the number of nodes of the triangulation

T h� . Therefore, the exact state Φ† is only measured at 16 nodes of T h� .

We use the algorithm described in §5 for computing the numerical solution of the problem
(
Ph�

ρ�,δ�

)
. The

step size control is chosen with β = 0.75. As the initial approximation we choose

Q0 =

[
2 0
0 2

]
, f0 = χ[−1,0)×[−1,1]−χ[0,1]×[−1,1], g0 = χ[−1,1]×{1}−χ[−1,1]×{−1}+χ{1}×(−1,1)−χ{−1}×(−1,1).

At each iteration k we compute Tolerance defined by (5.3). Then the iteration was stopped if Tolerance ≤ 0
or the number of iterations reached the maximum iteration count of 800.

After obtaining the numerical solution Γ� = (Q�, f�, g�) and the computed numerical state U� = Uh�

Γ�
of the

first iteration process with respect to the coarsest level � = 3, we use their interpolations on the next finer
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mesh � = 6 as an initial approximation and an observation of the exact state for the algorithm on this finer
mesh, i.e., for the next iteration process with respect to the level � = 6 we employ

(Q0, f0, g0) = Ih6
1 Γ3 and zδ6 = Ih6

1 U3 with δ6 :=
∥∥zδ6 − Φ†∥∥

L2(Ω)

and Ih�
1 being the usual node value interpolation operator on T h� , and so on � = 12, 24, . . .. We note that

the computation process only requires the measurement data of the exact data for the coarsest level � = 3.

The numerical results are summarized in Table 1 and Table 2, where we present the refinement level �, mesh
size h� of the triangulation, regularization parameter ρ�, noise δ�, number of iterates and value of Tolerance
as well as the final L2-error in the coefficients, the final L2 and H1-error in the states, and their experimental
order of convergence (EOC).

All figures are here presented corresponding to � = 96. Figure 1 from left to right shows the graphs of Φ†,
computed numerical state U� of the algorithm at the last iteration, and the difference to Φ†. In Figure 2 we
display the computed numerical source term and boundary condition f�, g� at the last iteration as well as
the differences f� − f†, g� − g†. We write the computed numerical diffusion matrix at the last iteration as

Q� =

[
q�,11 q�,12
q�,12 q�,22

]
.

Figure 3 then shows q�,11, q�,12 and q�,22 while Figure 4 shows differences q�,11−q†11, q�,12−q†12 and q�,22−q†22.

For abbreviation we denote by Γ† :=
(
Q†, f†, g†

)
and errors

Δ :=
∥∥Γ� − Γ†∥∥

L2
sym(Ω)×L2(Ω)×L2(∂Ω)

, Σ :=
∥∥U� − Φ†∥∥

L2(Ω)
, Λ :=

∥∥U� − Φ†∥∥
H1(Ω)

.

Convergence history
� h� ρ� δ� Iterate Tolerance

3 0.9428 9.4281e-4 0.1755 800 0.1995
6 0.4714 4.7140e-4 0.3847 800 0.4252
12 0.2357 2.3570e-4 0.3334 800 0.3677
24 0.1179 1.1790e-4 0.1508 800 0.1761
48 5.8926e-2 5.8926e-5 6.5163e-2 800 6.7593e-2
96 2.9463e-2 2.9463e-5 2.9896e-2 800 2.0480e-2

Table 1: Refinement level �, mesh size h� of the triangulation, regularization parameter ρ�, noise δ�, number
of iterates and value of Tolerance.

Convergence history and EOC
� Δ Σ Λ EOCΔ EOCΣ EOCΛ

3 0.6349 6.2551e-2 0.2789 — — —
6 0.1974 3.7602e-2 0.1847 1.6854 0.7342 0.5946
12 8.3571e-2 1.7066e-2 0.1382 1.2400 1.1397 0.4184
24 3.1600e-2 5.4913e-3 6.1769e-2 1.4031 1.6359 1.1618
48 1.1524e-2 9.4491e-4 2.0742e-2 1.4553 2.5389 1.5743
96 4.1183e-3 2.2575e-4 8.9372e-3 1.4845 2.0655 1.2147

Mean of EOC 1.4537 1.6228 0.9928

Table 2: Errors Δ, Σ and Λ and Experimental order of convergence between finest and coarsest level.

17



Figure 1: Graphs of Φ†, computed numerical state U� of the algorithm at the 800th iteration, and the
difference to Φ†.

Figure 2: Graphs of f�, g� at the 800th iteration and the differences f� − f†, g� − g†.

Figure 3: Graphs of q�,11, q�,12 and q�,22 at the 800th iteration.

Figure 4: Differences q�,11 − q†11, q�,12 − q†12 and q�,22 − q†22.
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