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Abstract: In the present paper we investigate the problem of identifying simultaneously the diffusion matrix, source
term and boundary condition as well as the state in the Neumann boundary value problem for an elliptic partial
differential equation (PDE) from a measurement data, which is weaker than required of the exact state. A variational
method based on energy functions with Tikhonov regularization is here proposed to treat the identification problem.
We discretize the PDE with piecewise linear, continuous finite elements and prove the convergence as well as analyse
error bounds of this approach.
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1 Introduction

Let Q be an open bounded connected domain of R?, 1 < d < 3 with polygonal boundary 0. In this paper

we study the problem of identifying simultaneously the diffusion matriz Q, source term f and boundary
condition g as well as the state ® in the Neumann boundary value problem for the elliptic PDE

-V - (QV®P) = fin Q, (1.1)

QV®P-17=gon ) (1.2)

from a measurement zs € L?(2) of the solution ®, where 7 is the unit outward normal on 9.

To formulate precisely our problem, let us first denote by Sy the set of all symmetric d x d-matrices equipped
with the inner product M- N := trace(M N) and the corresponding norm | M||s, = (M-M)'/2. Furthermore,
we denote for 1 < p < oo

L? (Q) = {H e L7 ()™ | H(z) € Sy ae. in Q}

cym
h?j) r2(0) and the corresponding norm

p .
L@ = (Jo [H@)5,)"" with
Lee, (@) = maxi,j:ﬁ”hij”mo(ﬂ)-

sym

In L2 () we use the scalar product (H*, H?), @ = S (bt

2 i, j=1\""g>

1/2
||H|L§ym(9) = (szzl HhinQLz(m) . In a more general sense ||H|
1 < p < oo while the space L () is endowed with the norm || H]|

sym

Let us denote by

Had = Qud X -Fad X gad

with
Qua = {Q € L. () | ¢l¢” < Q)¢ - € < gl¢f* for all € € R},
Faa = L2(Q), (13)
Guaq = L?(09)

and ¢, ¢ being given constants satisfying ¢ > ¢ > 0. Let

v HY Q) — HY?(09)



be the continuous Dirichlet trace operator and H(£2) be the closed subspace of H(2) consisting all functions
with zero-mean on the boundary, i.e.,

HI(Q) = {u c HY(Q) ‘ /(mw - 0}

while Cq stands for the positive constant appearing in the Poincaré-Friedrichs inequality (cf. [35])
CQ/ ©? < / |V|? for all o € HL(Q). (1.4)
Q Q

Then, due to the coervicity condition

1—0—0@/ 14+ Cq
2 oy < —— [ |Vp]2 < / Vo -V 1.5
el 7o) < o Q\ ol < Coq QQ -V (1.5)

holding for all ¢ € HX(9),Q € Q.4 and the Lax-Milgram lemma, we conclude for each (Q, f, g) € Haa, there
exists a unique weak solution ® of (1.1)—(1.2) in the sense that ® € H}(Q) and satisfies the identity

/Q QV® - Vidz = (f,9) + (g,7¢) (1.6)

for all ¢ € H!(Q). Here the expressions (-,-) and (-,-) stand for the scalar product on space L?(£2) and
L2(09), respectively. Furthermore, there holds the priori estimate

1Bl < (||v||£(H1(Q),H1/2(m)) 191220 + |f||L2<a>)
< O (9l 2o + 1122 (1.7)
with L
Cy = ZQQQ max (1, ||7||£(H1(Q),H1/2(m))> :

Then we can define the non-linear coefficient-to-solution operator
U:Hoa — Hi (Q)

which maps each (Q, f,g) € Hqa to the unique weak solution Uy ¢4 := ® of the problem (1.1)-(1.2). The
identification problem is now stated as follows:

Given ®' :=Ug ;, € HL(Q), find an element (Q, f,9) € Had
such that (1.6) is satisfied with ® and Q, f, g.

This problem may have more than one solution. Thus to identify, we shall use the notion of the unique
manimum norm solution which is defined as

(QT,fTng) ‘= arg R(Qvag)v (18)

min
(Q.1,9)EZ(DT)
where Z(®7) := {(Q, f,9) € Haa | Ug.;.g = @} and

R(Q, [, 9) = ||Q||%gy @ + I1F 1220 + 191172 50)-

m

We mention that the set Z(®T) is non-empty, convex and weakly closed in L2 (€) x L?(Q) x L*(99), so
that the minimizer (QT, fT, g") is defined uniquely. Furthermore, the exact data ®' may be not known in
practice, thus we assume instead of ®f to have a measurement z; € L?({2) such that

ot

_Z5||L2(Q) <9 (1.9)

holds for some ¢ > 0. Our identification problem is now to reconstruct (QT, fr, g‘L) from z;s.



We also note that the condition z; € L?(f2) is weaker than required of the exact state ®' € H*(Q). In the
numerical implementation of §6 the data zs is only assumed to be given at nodes of the coarsest triangulation
grid of the domain 2. Then the interpolation of the computed numerical state, which is followed by an
algorithm presented in §5, corresponding to the coarsest grid on the next finer grid is considered as an
observation of the exact state on this finer grid, and so on.

Let (Th)o << denote a family of triangulations of the domain Q with the mesh size h and U" be the
approximation of the operator & on the piecewise linear, continuous finite element space associated with
T". Furthermore, let II" be the Clément’s mollification interpolation operator (cf. §2). The standard
method for solving the above mentioned identification problem is the output least squares one with Tikhonov
regularization, i.e., one considers a minimizer of the problem

. 2

(Q19) Mo 14,9 = 11"25[ () + PR(Q. S 9) (1.10)
as a discrete approximation of the identified coefficient (QT, ft, gT), here p > 0 is the regularization pa-
rameter. However, due to the non-linearity of the coefficient-to-solution operator, we are faced with certain
difficulties in holding the non-conver minimization problem (1.10). Thus, instead of working with the above
least squares functional and following the use of energy functions (cf. [34, 32, 44]), in the present work the
convex cost function (cf. §2)

(@, f,9) € Haa = TQ, fr9) = /ﬂ QV (U 5, —1TMz) -V (UG 5, — T 25)

will be taken into account. We then consider a unique minimizer (Qh, fh gh) of the strictly convex problem

: h
min 7, s fi9) + pR(Q, f, 1.11
o fon s (Q. f,9) + pR(Q, [, 9) (1.11)
as a discrete regularized solution of the identification problem. Note that every solution of the minimization
problem (1.11) automatically belongs to finite dimensional spaces. Thus, a discretization of the admissible
set Hqq can be avoided.

In §3 we will show the convergence of these approximation solutions (Qh, fh,gh) to the identification
(QT, fT,gT) in the Lfym(Q) x L2(2) x L?(09Q)-norm as well as the convergence of corresponding approxi-
mation states (L{g,,,ﬁ f,,,7gh,) to the exact @ in the H*! (©2)-norm. Under the structural source condition — but
without the smallness requirement — of the general convergence theory for non-linear, ill-posed problems
(cf. [15, 16]), we prove in §4 error bounds for these discrete approximations. For the numerical solution of
the minimization problem (1.11) we in §5 employ a gradient projection algorithm with Armijo steplength
rule. Finally, a numerical implementation will be performed to illustrate the theoretical findings.

The coefficient identification problem in PDEs arises from different contexts of applied sciences, e.g., from
aquifer analysis, geophysical prospecting and pollutant detection, and attracted great attention from many
scientists in the last 30 years or so. For surveys on the subject one may consult in [3, 9, 26, 39, 41, 42].
So far there is no paper devoted to such a simultaneous identification problem. The problem of identifying
the scalar diffusion coefficient has been extensively studied for above theoretical research and numerical
implementation, see e.g., [7, 8, 10, 11, 17, 18, 19, 25, 27, 29, 30, 33, 37, 44]. Some contributions for the
problem of simultaneously identifying coefficients can be found in [2, 20, 21, 31] while some works treated
the diffusion matrix case have been obtained in [14, 22, 23, 24, 36].

We conclude this introduction with the following note. By using the H-convergent concept, the convergence
analysis presented in [14, 22] maybe not applied directly to the problem of identifying scalar diffusion
coefficients. The main difficulty is that the set

D :={qly | g € L>(Q) with ¢ < g(z) < g a.e. in Q and Iy is the unit d x d-matrix}

is in general not a closed subset of Q,4 under the topology of the H-convergence (cf. [43]), i.e., if the sequence
(gnla)n C D is H-convergent to QQ € Q,q, then @ is not necessarily proportional to I; in dimension d > 2 or
Q ¢ D. However, it is wroth to note that D is a weakly* closed subset of L7, (€2) (cf. Remark 2.1) and so
that the technique presented in the present paper covers the scalar diffusion identification case.

Throughout the paper we write fQ -+ instead of fQ -+ +dx for the convenience of relevant notations. We use
the standard notion of Sobolev spaces H(€2), H2(2), WFP(Q), etc from, e.g., [1].



2 Finite element discretization

2.1 Preliminaries

In product spaces L2 (Q) x L?(Q2) x L?(99Q) and L (Q) x L3(Q) x L?(99Q) we use the norm

sym sym

1/
i @t ||l||2Lz(Q) + HSH%?(BQ))

sym

|(H, 1, s) L2, (@)x12Q)xL2(09) = (||H|

Sym
and

I(H,1,s)|

Le, @ F lHlze ) + lIsllize o),

sym

Lo, (Q)xL2(Q)x L2(00) = || H |

sym

respectively.
We note that the coefficient-to-solution operator

U:Haqg C L () x L*(Q) x L*(09Q) — HL (D)
with

I':=(Q, f,9) € Haa = U(T) :=Ur
is Fréchet differentiable on H,4. For each T' = (Q, f, g) € Haq the action of its Fréchet derivative in direction
A= (H,l,s) € L, () x L*(Q2) x L*(0) denoted by &, := U{(X) := U'(T')(N) is the unique weak solution

sym

in H}(Q) to the equation
QVE, Vo= — / HVU -V + (L) + (5,79) (2.1)
Q Q

for all p € H().
In S; we introduce the convex subset
K:={MecS;|q<ME-€<qgforall € € RY}
together with the orthogonal projection P : S — K that is characterised by
(A= Pc(A) - (B — Pe(4)) <0

for all A € S and B € K. Furthermore, let £ := (&1, -+, &4) and 1 := (11, - -,n4) be two arbitrary vectors
in R?, we use the notation

. 1 .
(€ ®@N)i<ij<d € Sq with (£ ®n);; = 5(&77]' +&n;) foralli,j =1,--- ,d.

We close this subsection by the following note.

Remark 2.1. Let
D= {q € L>(Q) } q<q(z) <qae. in Q}

Then D is a weakly™ compact subset of L>(1), i.e., for any sequence (g,), C D a subsequence (g, )m and
an element &, € D exist such that (g, )m is weakly™ convergent in L™(Q) to . In other words,

lim [ go, 0 = / -
Q Q

m—0o0

for all 6; € L1 ().

Proof. Indeed, we first note that D is a non-empty, convex, bounded and closed subset of L?(£2). Thus, D
is a weakly compact subset of L?(2) and so that a subsequence (gy,,)m Of (gn)n and an element & € D
exist such that lim,, . fQ Gn,, 02 = fQ &0 for all 03 € L?(Q). Furthermore, since the sequence (g, )m
is bounded in the L*(Q)-norm, a subsequence not relabelled and an element £, € L*>(Q) exist such that
iy, oo fo @nn b1 = [ oot for all 6 € L1(Q). Then, for all § € L>(Q) we get [,(€oc — &2)0 = 0 which
implies that £, = & € D. O



We also remark that any U € L>(£2) can be considered as an element in L>(Q2)" by

0) (i) = V0 (22)

for all ¢ in L>°(Q) and [|¥][ 10 () < [Qf - [ V][ £ ()

2.2 Discretization

Let ('Th)o <he1 DEB family of regular and quasi-uniform triangulations of the domain € with the mesh size h
such that each vertex of the polygonal boundary 9f2 is a node of 7. For the definition of the discretization
space of the state functions let us denote

Vii={o" e C(@)NHUQ) | ¢"r € PAT) foral T e T"} (2.3)

with P, consisting all polynomial functions of degree at most r. Similar to the continuous case, we have the
following result.

Lemma 2.2. Let (Q, f,g) be in Haa. Then the variational equation
/gQV(I)h V" = (f, ") + (g, 70") (2.4)

for all " € V' admits a unique solution ®" € V. Furthermore, the priori estimate

12"y < Cx (1 fllz2(e) + l9llz200)) (2.5)

is satisfied.

The map U" : Hoq € L (Q) x L2(Q) x L2(0Q) — V! from each T' := (Q, f,9) € Haa to the unique

sym

solution Z/I{i := ®" of (2.4) is called the discrete coefficient-to-solution operator. This operator is also Fréchet
differentiable on the set Hqq. For each I' = (Q, f,9) € Haa and X := (H,l,s) € L= (Q) x L?(Q) x L*(09Q)

sym

the Fréchet differential £§ := L{lﬁl()\) is an element of VJ' and satisfies for all " in V! the equation

/ QVeL -Vl = — / HVUE - Yo" + (1, ") + (5,70"). (2.6)
Q Q

Due to the standard theory of the finite element method for elliptic problems (cf. [6, 12]), for any fixed
I'=(Q, f,9) € Hqa it holds

lim [[eh = U 1 ) = 0. (2.7)

Let
" LHQ) — {w €C(Q) | "y € Pi(T) forall T € Th}

be the Clément’s mollification interpolation operator with properties

lim [|¢ — " 6[| 1, ) = 0 for all & € {0,1} (2.8)

and

o — Hh¢||Hk(Q) < Chlik”(?”Hl(Sl) 29

for 0 < k <1 <2, where C is independent of h and ¢ (cf. [13, 4, 5, 40]). Then, using the discrete operator
U" and the interpolation operator II", we can now introduce the discrete cost functional

jéh(Qv fa g) = / QV (ug,f’g - HhZ&) -V (Ug,f,g - H}LZ(S) s (210)
Q

where (Qa f7 g) € Had~



Lemma 2.3. Assume that the sequence (I'y),, = (Qn, fn,9n),, C Haa weakly converges to T' := (Q, f, 9)
in L2 (Q) x L2(Q) x L*(9Q). Then for any fized h > 0 the sequence (U ) C VI converges to Ul in the

sym

HY(Q)-norm.

n

Proof. Due to Remark 2.1, (Q),),, has a subsequence denoted by the same symbol which is weakly* convergent
in L () to Q. Furthermore, by (2.5), the corresponding state sequence (L{I@)n is bounded in the finite

dimensional space VJ'. A subsequence which is not relabelled and an element ©" € V' then exist such that
(Z/{l’f”)n converges to ©" in the H'(Q)-norm. It follows from the equation (2.4) that

/QQ”V(UF,L —Up) -V = /Q (Q— Q) VUL V" + (fr — f.¢") + (g0 — g.7¢") (2.11)

for all " € VI, Taking " = Lllﬁn —UP, by (1.5), we obtain that

S, U oy < [ (@ QT @, -0 0 - ) (2.12)
+ (fo— £ Ul —O"+O" —UP) + (g — g, (U —O" +O" —Ul))
<Ot =€)+ [ (@ Qu) VUV (O )

+ (fo— £,0" =UL) + (g — 9,7 (O = UUP)) .
Since @, — @ weakly* in L (Q2), we get

sym

n—oo

lim /Q(Q — Q) VUL -V (0" —Uf) =

Sending n to oo, we thus obtain from the last inequality that lim,, Hugn — U{iHHl(Q) = 0, which finishes
the proof. O

We now state the following useful result on the convexity of the cost functional.

Lemma 2.4. J}' is convex and continuous on Haq with respect to the L2 () x L2(Q) x L*(0Q)-norm.

sym

Proof. The continuity of 7 follows directly from Lemma 2.3. We show that J is convex.
Let T := (Q, f,9) € Haq and \ := (H,l,s) € L>_(Q) x L?(2) x L?(9Q). We have that

hT hT hT
oup ot oul OT)D) | OTPD), | OTH(T)
oQ of dg oQ of dg
We compute for each term in the right hand side of the last equation. First we get
&75 T
oQ

For the second term we have

u'(\) = and 7' (T)(\) =

H= /Hv Uup —11"zs) - v(u#—nhZ5)+2/ QV @Zg H) V(U —11"25)
Q

h
ajgf 1—2/Qv<8urz) V(U —11"z)

Finally, we have

h
6‘78 _2/Qv<8uF )-v(uﬁ—nhza).

Therefore,

h h h
N\ = 2/ QV <auF H+ 8;{ 1+ aur ) V(U —T1"2) +/ HY (U —T1"25) - V(U — 1T 25)
Q

= 2/ QVUE (\) -V (U — thé) +/ HY (Ul —T"z5) -V (UL — TT"25)
Q Q

= 2/ QVUE' (N -V (Ut — T2 + / HV (U —T1"z5) -V (U —TT"2)
Q Q



where
Iz =z — 10~ <1,’}/Hh25> S V{L with VII"zs = VII" z5. (2.13)

By (2.6), we infer that
TF (TN = -2 /Q HVUL -V (U —T1"z5) +2 (LU —TT"z) + 2 (s, (U} — TT"25))
+ /Q HY (Ul — 25 -V (U4l — 17 25)
=— /Q HVU: - VU + /Q HVI 25 - VI 25 + 2 (LU — T zs) + 2 (s,y (U —T1"25)) . (2.14)
Therefore, by (2.6) again, we arrive at

T T (N = —2 /Q HVUE Ul (\) + 2 (z,u{z’(x)) +2<5,’yL{1}~’/()\)>

Cagq PNE
—2 H) - VU () 2 2 [l (8 >
Qw0 Ut o) 2 2 it o, 2o

by (1.5), which completes the proof. O

Now we are in position to prove the main result of this section.

Theorem 2.5. The strictly convexr minimization problem

min  Y3"(Q, f,9) = T(Q. f,9) + PR(Q. f, (Pe")
o, Y57 f.9):=T5(@ f,9) + PRQ, f9) v
attains a unique minimizer. Furthermore, an element I’ := (Q, f,9) € Haa is the unique minimizer to

(Pg’h) if and only if the system

Q(z) = Px (;p (vu#(z) ® VUL (z) — VIT"25(z) @ vnhzé(x))> ,
fz) = %(ﬁhz(;(x) U (@), (2.15)
o) = (1" 20(0) ~ U ()

holds for a.e. in Q, where II" was generated from 11" according to (2.13).

Proof. Let (Ty)n := (Quns frs Gn)n C Haq be a minimizing sequence of (’Pg"h), ie.,

lim Y?"T,) = inf  Y2MQ, [, 9).

g, T ) = o Ly, o (@ 19)
The sequence (T',),, is thus bounded in the L2, () x L?(2) x L?(9Q)-norm. A subsequence not relabelled
and an clement I' := (Q, f,g) € L2 () x L5(Q) x L*(0N) exist such that I';, — I' weakly in L? (Q) x
L?(2) x L*(09). On the other hand, since Hqq is a convex, closed subset of L2 () x L?(2) x L?*(9%), so
is weakly closed, it follows that I' € H 4.

By Lemma 2.4, J, 5h and R are both weakly lower semi-continuous on H,4 which yields that
JHT) < liminf J(T,,) and R(T') < liminf R(T,,).
n—0o0 n—oo
We therefore have that

J3() + R(D) < liminf J5' (D) + lim inf R(T,) < liminf (73" (Tn) + R(T))
= lim Y9"(T,)= inf TP"
A T3 (Tn) = b Y57(@0F9),



and I is then a minimizer to (’Pg’ ’h). Since Tg”h is strictly convex, this minimizer is unique.

Next, an element I' := (Q, f, g) € Haa is the minimizer to (735’h) if and only if the condition

" (T)T-T) >0

for all T = (H,1,s) € Haq. Then, in view of (2.14), we get that

0< /Q(H — Q)VIT'zs - VII'z5 — /Q(H — Q)VUL - VUL +2p(H - Q,Q)
+2(1— fuf —T"zs) +2p(0 = f, ) +2(s — g, (U} —TT"z5)) +2p (s — g, 9)
= /Q (H - Q) (VII"zs @ VII"z5 — VUL @ VUL + 2pQ)
+2(1— fUf —"zs + pf) +2(s — g,y (U} —TI"z5) + pg)

for all T = (H,l,5) € Hqq. Taking Ty = (H, f,g), T2 = (Q,1,g) and T3 = (Q, f, s) into the above inequality
we obtain the system (2.15). The proof is completed. O

Remark 2.6. We denote by
Vb= {(ph € L*(Q) | gpth = const for all triangulations 7" € Th} )

gy = {cph € C(09) | goh|e € P; for all boundary edges e of Th} .

Since UP € VI and [1"z5 € V], the system (2.15) shows that every solution of (735 ’h) automatically belongs

o . dxd . . L .
to the finite dimensional space V§ s VI x £F. Thus the discretization of the admissible H,4 can be avoid.

3 Convergence
For abbreviation in what follows we denote by C' a generic positive constant independent of the mesh size h,
the noise level 6 and the regularization parameter p. By (2.8) and (2.9), we can introduce for each ® € H*(Q)
ho._ h
Xg = ||~ I q)HHl(Q)

which satisfies
lim % =0and 0 < x% < Ch
h—0
in case ® € H?(). Likewise, by (2.7), for all T' € H,q
Bl o= ke — 14

HHI(Q) —0ash—0and0 Sﬂz’},r < ChasUr € HQ(Q).

Furthermore, by (2.9), we get
™ 220,220 < C and [T 2o (), 11(0) < C- (3.1)
Thus, it follows from the inverse inequality (cf. [6, 12]):
H<ph||H1(Q) < Ch71||80h“L2(Q) for all p" € {(ph eC(Q) | <ph‘T e Py(T) for all T € 'Th}
that

@7 — 11" 25| g1y < T (RF = 25) [l () + 197 — '@ 11 () < CATHII™ (T = 25) (|2 (0) + Xiot
< ChH T £ez2@).2) |97 = 25l 2() + Xt < Ch™10 + X (3.2)

The following result shows the convergence of finite element approximations to the unique minimum norm
solution T't := (QT, fT,g‘L) of the identification problem, which is defined by (1.8).



Theorem 3.1. Let (hy,), be a sequence with lim,, o hy, = 0 and (6,,)
such that

n and (pr),, are any positive sequences

hn h
1) U Xt
n 50 and =2

— U,
h’ﬂ Vv pTL pn vV pn

Assume that (zs,), C L*() is a sequence satisfying ||zs, — <I>THL2(Q) < 6p and Ty, := (Qn, fn,gn) is the

— 0 as n — oo.

pn — 0,

unique minimizer of the problem (sz:,h”) for each n € N. Then the sequence (I'y),, converges to I't in the

L2 () x L?(Q) x L%(0Q)-norm as n — co. Furthermore, the corresponding discrete state sequence (L{{f:)n

syrm
also converges to ®1 in the H'(Q)-norm.

Remark 3.2. In case &' = Uyt € H?(Q) we have 0 < ﬁﬁ;,xg}‘ < Chy,. Therefore, the convergence of
Theorem 3.1 is obtained if §,, ~ h% and the sequence (py,)n is chosen such that

n

— 0 as n — oo.
VvV Pn

pn — 0, and

To prove Theorem 3.1, we need the following auxiliary estimate.

Lemma 3.3. There holds the estimate

THrN <€ (072024 ()" + (8ly,)") (3.3)
Proof. We have with ® = U+ and (3.2) that

Ty (1) = /S QYU —Iz5) - V (U —TT"z5) < 7|t - s
= |t — s + @1 15550 ) < © ([ =t [ o + 191 =125 )
<C(n202 4 ()" + (B)")
which finishes the proof. O
Proof of Theorem 3.1. By the optimality of ', and Lemma 3.3, we have that
T (Tn) + pR (D) < Tgm (TT) + pu R (TT)
< C (h62+ (05)” + (8,)7) + puR (T)

which yields

; hn _
Jim F5 (I'n) =0 (3.4)
and
limsupR (T',) < R (T'T). (3.5)
n—oo

A subsequence of the sequence (T',,),, denoted by the same symbol and an element I'g := (Qo, fo,90) € Had
then exist such that

Qn — Qo weakly” in L (),

fn — fo weakly in L*(Q),

gn — go weakly in L?(09).

We will show that (T',,),, converges to I' in the L (Q2) x L?(2) x L*(9€2)-norm and I'y = I'". We have from
(3.2) that

n—oo n—oo

lim [|T1" 25, = Upt | ) < Tim (Chy "6+ Xt ) = 0. (3.6)



Combining this with lim, . |Up, — Uff{: () = 0 from (2.7), we arrive at

lim g7 (Tp) = lim / QoV (uﬁ; - H””an) v (uﬁg - Hh"z(;n) = / QoY Up, — Upt) -V (Ury — Upt) .

Now for each fixed n we consider an arbitrary subsequence (I',,,, )m of (I'y)n. By the weakly l.s.c. property
of the functional J5' (cf. Lemma 2.4), we obtain that

n m—00 n
Again, uSing (he COnVeXi 5/ Of jshn7 we ge‘ (ha(

T (D) = T8 (T + T8 (T,) (Tn =T ) -

By (1.5), we thus arrive at

n— o0 m— o0

C U, — Urt |3y < / QoV Ury —Upt) - ¥ (Ur, —Upr) = lim JP (Do) < Tim (liminf 77 (T,,))
O n o0

< lim liminf (jé’jf () + T () (T, — rn)).

n—oo m—oo

Using (3.4), we infer from the last inequality that

Cllthr, — Urilli iy < lim liminf 73" (T, ) (T, —T). (3.7)

n—oo m—oo

In view of (2.14) we get that
/
j(snn (an) (an - Fn)

= /Q (Qnm - Qn) Vﬁhnzén : Vﬁhnzén —2 (fnm - fmﬁhnzén) -2 <gnm - gna’vﬁh”zan>

[ Qo=@ VUl VU 42 (f = i, ) +2 (g, — gt )
= Ay — 245 —2A3 — Ay + 2A5 + 2A6. (38)

Since @, — Qo weakly* in L (2) as m — oo, we have for the first term that

sym

lim lim A;
n—0o0 Mm—r0o0

= lim < lim / (Qn,, — Qn) VI 25 ~Vl:[h"25n> = ILm / (Qo — Q) VI 25 - VI 25,
Q nweeJa

m—ro0

n—00

= Jim [ (Qo-Qu) Vi Vi o+ lim [ Qo Qu)V (P25, )V (T2, + )
Q n—oe Jq

=0, since Q,—Q, weakly” in Le, (Q)

sym

lim / (Qo— Qu) Y (I 25, — Ups) - ¥ (1P 25, + Ups)
Q

n—oo

Furthermore, by (3.6), we get that

lim ' / (Qo — Qn)V (" 25, —Upi) -V (I 25, + Up+)

n oo 9]
< Jim OV (025, )| 2 oy = Jim [V (0 25, =) o o
< C lim |12, = Upt|| 1 ) = 0.

Therefore,

lim lim A4; =0. (3.9)

NnN—r00 M—>00

10



On the other hand, we get

lim lim As:= lim lim (fnm ffn,flh"z(;n) = lim (foffn,flh”z(;n)
n—oo

n—00 Mm—oo n—00 m—oo
= lm (fo— fo,Upt)+ lm (fo — fr, " 25, — Ups)
n— o0 n—r00
=0
< C lim ||1:Ih"z —U, by i [T - =
=& dn F*Hm(ﬂ) = CT}LH;O”V(H Zon Z’{FT)||L2(Q) =0. (3.10)

‘We now have that

lim lim As:= lim lim <gnm — gn,’yﬁh" 26,,,> = nILH;O <go - gn7’7ﬁh"267,,>

n—o00 m—0o0 n—00 Mm—0o0

= lim (g — gn, " 25,) — [0Q|7" lim (go — gn, (1,71""2,))

with
lim <go — gn,vl'[h"z[;n> = lim <go — gn,’y(Hh"Zgn — Z/{m)> + lim {(go — gn,Ur+)
n—00 n—00 n— o0
=0
< Cnhjolo llgo — gn||L2(aQ) ||7HL(H1(Q)7H1/2(89)) ||Hh"z(sn — Urt HHI(Q)
< C lim [T 25, — Ups HHl(Q) =0
and

nh—>nolo <90 — 9n, <]-afYth26n>> < nh—>n;o ‘<1,7Hh”25n>‘ |<90 — Gn; 1>| < Cnlggo HthZ(Sn HHI(Q) |<90 — 9n; 1>‘
S Cnh_{I;o ‘<gO — 9n;, 1>| =0

so that

lim lim A3 =0. (3.11)

nN—00 MmM—0o0

Next, we rewrite

n—oo Mm—0o0 n—o0 Mm—0o0

lim lim Ag:= lim lim / (Qn,, — Q) VUL VU
Q m nm

= lim lim [ (Qu, — Q) VUL - VU

n—00 M—r00 Q

+ lim lim (Qnmen)V(U#” fugg).v(u#n +u#;).

n—00 Mm—r00 O m nm

By (2.7), likewise as (3.9), we get that

lim lim [ (Qn,, — Qn) VUL - VUL = 0.

n—000 Mm—0o0 0

Furthermore, we have

hn hn hn hn hn han
' /Q (Qu = Qu) ¥ (Ul —uly) - (ly +ully )] <Oty —utz,, .
By Lemma 2.3, for each fixed n we have that the sequence (Z/{#n ) C Vf’" converges to Uﬁ:" in the
m/m
H'(Q)-norm as m tends to co. Then we deduce that

lim lim ‘/5; (Qn,, —Qn)V (ul}“l:m - uli“l:) Vv (Z/{{f:m + ulil;)‘

n—00 Mm—0o0

<C lim lim )u{:" —ul
n—00 M—00 nm 0

= C lim |udfy — -
H(Q) n—00 0 O lNHY(Q)

11



Thus, we obtain

lim lim Ay = 0. (3.12)

n—0o0 Mm—r00
Finally, we also get that
lim lim As:= lim lim (fnm — fn,Z/{I}f: )

NnN—r00 M—>r00 n—0o0 Mm—r0o0

- lm lim (fnm - fn,u;;) + lim lim (fnm — fa —uﬁy)

N—r00 M—>00 n—0o0 Mm—0o0

. hn ; : hn  _ 7/hn —
< lim (fo— fasthly ) +C lim T |udl Uy ey = (3.13)
and
lim lim Ag:= lim lim <gnm — gm’yZ/l{f: > = lim lim <gnm — Gn, ’y(Ul]f: - Z/I{f;)>
n—oo0 m—o0 n—o0 m—0o0 m n—o0 m—0o0 m
< . . h‘lL _ hn < . . hn o hn _ ) )
< C lim  lim Hv(urnm ur;) L2(09) ~ S L L U HL(Q) 0. (314

Therefore, it follows from the equations (3.8)—(3.14) that

lim lim & (Tn,) (Tn, — ) = 0.

n—oo m—oo

Combining this with (3.7), we obtain that
Ur, = Ur+.
Then, by the definition of I'f, the weakly 1.s.c. property of R and (3.5), we get
R(I'T) < R(Iy) < lim inf R (T',) < limsup R (I'y) < R(L'T).
Thus,
R(IT) = R([y) = lim R ().

By the uniqueness of I'f, we have that Iy = I'f. Furthermore, since (I',), weakly converges in L2 () x

sym

L*(Q) x L*(99) to I'g, we conclude from the last equation that (I'y), converges to I'g in the L2 () x
L2(2) x L?(99Q)-norm.

It remains to show that the sequence (Z/{?:)n converges to ® = U+ in the H'(Q)-norm. We first get from
(2.7) that

Tim U = U | g ) = 0. (3.15)

Furthermore, in view of (2.12) we also have that

Caq
1+ Cq

ey e 3oy < [ (@ = Quvedly - @ity i)
+ (fo = S = Uf) 4+ (g0 = gT oyl —Ufy)). (316)

Since f, — f in the L?(Q)-norm and g,, — ¢! in the L?(0Q)-norm together with the uniform boundedness
(2.5), it follows that

tim ((fo = fFUl = Ule) + (g0 — o' 1 Uy —Ufz) )) = 0. (3.17)

n—o0

‘We now rewrite
/Q QT = Qu)VU -V (Ul —UPr) = /Q Q" — Qu)VlUr: - V(UL —Upr)

= (@ - Qv ) Tty ~ )

1/2
< ([ 10" QuIBITUR) Ol ~ 4

12



Since @, — Q' in the L2 (€2)-norm, up to a subsequence we assume that (Q,), converges to Q' a.e. in Q.
Then, by the Lebesgue dominated convergence theorem, we deduce that

tim [ Q" = Qa3 IVt P = .
Thus, together with (3.15), we have

lim [ (Q — Qn)VU - V(Ui —Ukr) = 0. (3.18)

n—oo O

It follows from (3.16)—(3.18) that lim, HZ/{{}n — L{ff'ﬁ H1Q)

conclude that lim,, ||I/I1]1: — Ur+ || Q) = 0, which finishes the proof. O

= 0. Then, by serving of (3.15) again, we

4 Error bounds

In this section we investigate error bounds of discrete regularized solutions to the identification problem.
For any I" := (Q, f,9) € Haa the mapping

U L2 (Q) x L2(Q) x L2(09Q) — HL(Q)

ym
is linear, continuous with the dual

UL HE Q) — L, ()" x L2(Q) x L*(9Q).

sym

Theorem 4.1. Assume that a function w* € H}(Q)" exists such that

U "w* =TT, (4.1)
Then
2 2 _ 2
||u11‘1h — Uri HHl(Q) +p Hrh - FT||L§ym(Q)><L2(Q)><L2(BQ) =0 (h 6% + (ngf + (ﬁl}}ﬂ)Q + () + /72) )
(4.2)

where I = (Qh, fh gh) 1s the unique solution to (Pé’h) and w € HX(Q) is the unique weak solution of the

Neumann problem
—V-(Q'Vw) = fT +w* in Q and Q'Vw -7t = g" on 9Q. (4.3)
Remark 4.2. Due to Remark 3.2, in case Up+, w € H?(Q2) we have
0< X4 B, X < Ch.
Therefore, with 6 ~ h? and p ~ h we obtain the following error bounds

Hul}“lh — Uri ”Hl(Q) = O(h) and Hrh - FJrHL'z

sy

_ 1/2
(Q)XL2(Q)xL2(8) O(h / ).

Proof of Theorem 4.1. The line of argument follows the proof of [22, Theorem 5.1] with a slight mollification.
Due to the optimality of I'"*, we get that

T (T + 4R (I) < T (T7) + R (')
which implies

Tyt (1) + p|[0" = 7|

2
L2 (Q)xL2(Q)xL2(0Q) = Ty (FT) +2p <Fi’ﬂ - Fh>

sym

<C (h_252 + (ng)2 + (53p1)2) +2p <FT7FT - Fh>L? (Q)xL2(Q)x L2(5Q) ° (4.4)

sym

L2 (Q)x L2(Q)xL2(%)

sym
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by Lemma 3.3. Now, by (2.2) and (4.1), we infer that
I:= <FT7PT - Ph>LS2ym(Q)><L2(Q)><L2(OQ) = <PT’PT - Fh>(Lg;m(Q)*xL2(Q)xL2(aQ),Lg;m(Q)xL2(Q)xL2(aQ))
= <uff*W*’ I — Fh>(L;;m(Q)*xLZ(Q)xL2(aQ),Lg;m(Q)xL2(Q)xL?(aQ))
= (w*, Uy (I~ Fh)>(H1(Q)*,H1(Q)) : (4.5)
Thus, by the definition of the weak solution to (4.3) and (2.1), we obtain
I= /ﬂ QUL (TT —Th) v —(f1,ul (T =T")) — (g, s (TF —T"))

= Jo QT VUL - VU (TT=T"), by (1.6)

= / QUL (TT —T") - V(w — Ur+)
Q

B _/g (@ = Q") Viri - V(w —Upi) + (fT = f* w —Upi) +(g" = ¢", 7 (w = Ur))

=—/QW%wVW—%O+WWH%ﬂ+@ﬁW—%W
Q

=0, by (1.6)
+/QthuFf-v(w—uw)—(fh,w—uw)—<gh,7(w—ur+)>:/QQhV(uw—urh)-v(w—uw)

= Jo Q"VUpn -V(w—b{ﬂ)

which yields
I= /Qth (Upr —TT"25) - V(w — Upt) + /Q Q" (UP — Upn) -V (w — Ury)
+/9th ("2 —Uf) -V (w —Upt) == T1 + I + I5. (4.6)
For I; we have from (3.2) that
I = /Qth (Ups —T"z5) - V(w —Upt) < C ||Upr — th(;HHl(m < Ch7'o+ Xk, (4.7)
Due to (1.6) and (2.4), we get [, Q"V (U}, — Urn) - VII" (w — Up+) = 0 and then infer that
I = /ﬂth Ul — Upn) -V (w0 — Ups) = /Qth (Ul —Upn) -V (w0 — Ups — T (w — Upy))
< 0 (|l = T gy + [ther = T 1) < C (s + i) (43)
Finally, we have that

Bim [ QMY (0 — ) -9 (0~ th)
Q

= (/Q Q"V (U —"zs) - V (U — Hh25)>1/2~ (/Q Q" (w— Upr) - ¥ (w _uﬁ))l/z

1
< 47)/ Qv (U{«Lh — th(;) .V (UF;L _ thzs) +,0/ th(w _ Ur*) . V(w - Z/{FT)
Q 0

Jah'(rh)

1
< L 4 op (19)
4p
It follows from (4.6)—(4.9) that

1
1< C(h715+ xar +xu+0) + T3 (7).
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Thus, together with (4.4)—(4.5), we get

_ 2 2 2
’jé (Fh) ‘H’”Fh rf HL2 ()X L2(Q)x L2(8Q) = C(h 267+ (ng) + (Bflﬂ) + (XZ)) ‘H)Q)v

sym

which finishes the proof. O

5 Gradient projection algorithm with Armijo steplength rule

In this section we present the gradient projection algorithm with Armijo steplength rule (cf. [28, 38]) for
numerical solution of the minimization problem (’Pg’ ’h).

We first note that for each T' := (Q, f, g) € Haa, in view of (2.14), the £2-gradient of the strictly convex cost
function %" of the problem (Pg’h) is given by VY2™(T) := (Yo(T), Y 4(I),Ty(T)) with

To) = VIrz; @ VII"z; — VUE @ VUE + 200,

Ty() =2Ut 11"z +pf),

Ty(I) =2(y(Uk —1"z5) + pg)
and II" generating from II" according to (2.13).

The algorithm is then read as: given a step size control 8 € (0, 1), an initial approximation (cf. Remark 2.6)

Iy == (Qo, fo,90) € Haa N (Vthd VI x Elh), number of iteration N and setting k = 0.

1. Compute Zx[lﬁk from the variational equation

/QQkVUFk V" = (e, ") + (g, ve") for all " € V] (5.1)
as well as
Ths(Tr) = /QQkV (U, —"z5) -V (Up, — T"z5) + p(||Qr1F L2, Il 220 + N95l172(00)) -

(5.2)

2. Compute the gradient VY2"(T'y) := (Tq, (L), Ty, (Tk), Ty, (Tx)) with

To,[Tx) = VIlz e vﬁ% — VUl @ VUL +2pQx,
Tp () =2(Uf, — 25 +pfi),
Tgk (Pk) = 2( (urk Hh25) + pgk)‘
3. S t T (kafkagk) with Q(z) := P (Qr(x) — BYq, (Tk)(2)), Fe(@) = fulz) - BY g, (I'k)(x) and
g(x) := — By, (k) ().

(a) Compute L{lljk according to (5.1), T";’(S (fk) according to (5.2), and

L ="y 5(Tk) =15 s(Ce) +78(1Qx—Quliiz, o)+ 1= frll 720+ Tk —grll72(00)) with 7=107%

(b) L <O
go to the next step (c) below
else
set 3 := g and then go back (a)

(c) Update I'y = T, set k =k + 1.
4. Compute

Tolerance := ||VT —T1— T2 ||VT ||L2 ()X L2(2) x L2(8%) (53)

sym

||L2 (Q)x L2 () x L2 (9%2)

sym

with 71 := 1073h and 7 := 10~ 2h. If Tolerance < 0 or k > N, then stop; otherwise go back Step 1.
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6 Numerical implementation

For illustrating the theoretical result we consider the Neumann problem
-V (Q'vel) = flinQ, (6.1)
Q'VeT -7 =g’ on 9Q (6.2)
with Q = {x = (z1,22) € R* | —1 < 21,22 < 1}

The special constants in the equation (1.3) are chosen as ¢ = 0.05 and g = 10. For discretization we divide
the interval (—1,1) into £ equal segments, and so the domain Q = (—1,1)? is divided into 2¢? triangles,
where the diameter of each triangle is hy = %.

We assume that entries of the symmetric diffusion matrix Q' are discontinuous which are defined as
T —9 =gl = I —3 2
q11 XQ T XO\Qu1s 12 = 921 = XQu2» (o2 X2z T 2X0\ Q00>
where xp is the characteristic functional of the Lebesgue measurable set D and

Q1= {(z1,22) € Q ’ 21| < 3/4 and |z2| < 3/4}, Qg = {(21,22) € Q | |z1| + |22 < 3/4} and
Qoo 1= {(Il,xz) e ’ I% +.T§ < 9/16} .

The source functional fT is assumed to be also discontinuous and defined as

i 93 — 27 45 — 2 3+ 27
= g Xt T g X T T e XUt

where

Q1= {(z1,22) € Q| I(z1 +1/2)* + 16(z2 — 1/2)* < 1} and
Q= {(z1,22) €Q | |21 —1/2| < 1/4 and |z2 +1/2| < 1/4}.

The Neumann boundary condition ¢ is chosen with

gt = —=2X[—1,0)x{—1} T X(0,1]x{=1} — X[=1,0]x{1} T 2X(0,1]x {1}

+3X{—11x(=1,0) — AX{—1}x(0,1) T AX{1}x(—1,0] — 3X{1}x(0,1)

The exact state ® is then computed from the finite element equation KU = F, where K and F are the
stiffness matrix and the load vector associated to the problem (6.1)—(6.2), respectively.

We start the computation with the coarsest level £ = 3. To this end, for constructing observations with noise
of the exact state ® on this coarsest grid we use

25, = @I + N5, and & = |26, — (I)THLQ(Q)’

I/Qh?/Q

where §; = 10p, , pe = 1072hy and N is a M x 1-matrix of random numbers generated from the

uniform distribution on the interval ( — &, 8¢), M"* = (¢4 1)? is the number of nodes of the triangulation
The. Therefore, the exact state ®f is only measured at 16 nodes of 7",

We use the algorithm described in §5 for computing the numerical solution of the problem ("ng 64). The
step size control is chosen with 5 = 0.75. As the initial approximation we choose

2 0
Qo = { 0 2 } s Jo = X[=1,0)x[~1,1] = X[0,1]x [~ 1,1]» 90 = X[=1,1]x {1} ~ X[~ 1,1 x{—1} TX{1}x(~1,1) = X{—1} x(~1,1)-

At each iteration k& we compute Tolerance defined by (5.3). Then the iteration was stopped if Tolerance < 0
or the number of iterations reached the maximum iteration count of 800.

After obtaining the numerical solution I'y = (Qy, f¢, g¢) and the computed numerical state Uy = L{I}ff of the
first iteration process with respect to the coarsest level £ = 3, we use their interpolations on the next finer
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mesh ¢ = 6 as an initial approximation and an observation of the exact state for the algorithm on this finer
mesh, i.e., for the next iteration process with respect to the level £ = 6 we employ

(Qo,fo,go) = I{L6P3 and Z5g — I{“L{g with 56 = ||Z§6 - Q)THLQ(Q)

and Ilh‘Z being the usual node value interpolation operator on 7"¢, and so on £ = 12,24, .... We note that
the computation process only requires the measurement data of the exact data for the coarsest level ¢ = 3.

The numerical results are summarized in Table 1 and Table 2, where we present the refinement level £, mesh
size hy of the triangulation, regularization parameter pg, noise §y, number of iterates and value of Tolerance
as well as the final L?-error in the coefficients, the final L? and H'-error in the states, and their experimental
order of convergence (EOC).

All figures are here presented corresponding to ¢ = 96. Figure 1 from left to right shows the graphs of ®F,
computed numerical state U, of the algorithm at the last iteration, and the difference to ®f. In Figure 2 we
display the computed numerical source term and boundary condition f;, g¢ at the last iteration as well as
the differences f, — f, go — g'. We write the computed numerical diffusion matrix at the last iteration as

Q= { qe,11 qe2 ] )

qea2  qe22
Figure 3 then shows g 11, ge,12 and ge 22 while Figure 4 shows differences gy, 11 —qL, qe12 —q{z and gg 20 — q£2.
For abbreviation we denote by I'f := (QT, ft gT) and errors

A= ||T, — T A= Uy

L2, (2)x L?(Q)x L2(99) ’ %= e - q>THL2(Q) ; - (I)THHl(Q) :

Convergence history

hy pe de Iterate Tolerance

L

3 | 0.9428 9.4281e-4 | 0.1755 800 0.1995

6 | 0.4714 4.7140e-4 | 0.3847 800 0.4252

12 | 0.2357 2.3570e-4 | 0.3334 800 0.3677

24 | 0.1179 1.1790e-4 | 0.1508 800 0.1761
48 | 5.8926e-2 | 5.8926e-5 | 6.5163e-2 | 800 6.7593¢-2
96 | 2.9463e-2 | 2.9463e-5 | 2.9896e-2 | 800 2.0480e-2

Table 1: Refinement level ¢, mesh size hy of the triangulation, regularization parameter p,, noise d,, number
of iterates and value of Tolerance.

Convergence history and EOC

? | a by A EOCA | EOCsy | EOC,
3 1 0.6349 6.2551e-2 | 0.2789 — — —

6 | 0.1974 3.7602e-2 | 0.1847 1.6854 | 0.7342 | 0.5946
12 | 8.3571e-2 | 1.7066e-2 | 0.1382 1.2400 | 1.1397 | 0.4184

24 | 3.1600e-2 | 5.4913e-3 | 6.1769e-2 || 1.4031 | 1.6359 | 1.1618
48 | 1.1524e-2 | 9.4491e-4 | 2.0742e-2 || 1.4553 | 2.5389 | 1.5743
96 | 4.1183e-3 | 2.2575e-4 | 8.9372e-3 || 1.4845 | 2.0655 | 1.2147

Mean of EOC 1.4537 | 1.6228 | 0.9928

Table 2: Errors A, ¥ and A and Experimental order of convergence between finest and coarsest level.
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“h B A D o= omow

Figure 1: Graphs of ®, computed numerical state U, of the algorithm at the 800" iteration, and the
difference to ®T.

oz

Figure 4: Differences ¢¢11 — qu, qe12 — qJ{2 and g 20 — q;Q.
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