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Abstract

We consider tracking control for nonlinear multi-input, multi-output systems which have arbitrary strict relative degree and stable
internal dynamics. For a given sufficiently smooth reference signal, our aim is to design a controller which achieves that the tracking
error evolves within a prespecified performance funnel. To this end, we introduce a new controller which involves the first r− 1
derivatives of the tracking error, where r is the strict relative degree of the system. We further present some simulations where our
funnel controller is applied to a mechanical system with higher relative degree and compare it with other approaches.
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1. Introduction

In the present article we consider output regulation for non-
linear systems by funnel control. We assume knowledge of the
strict relative degree of the system and that the internal dynam-
ics are stable. The concept of funnel control has been developed
in [8] for systems with relative degree one, see also the sur-
vey [6] and the references therein. The funnel controller is an
output-error feedback of high-gain type; it is an adaptive con-
troller since the gain is adapted to the actual needed value by a
time-varying adaptation scheme. Controllers of high-gain type
have various advantages when it comes to “real world” applica-
tions; we like to quote from [3]:

“Since only structural assumptions on the system are re-
quired, high-gain adaptive control is inherently robust
and makes it attractive for industrial application.”

In particular, the funnel controller proved to be the appropri-
ate tool for tracking problems in various applications, such as
chemical reactor models [12], industrial servo-systems [4, 11]
and rigid, revolute joint robotic manipulators [5].

An obstacle for high-gain adaptive controllers are systems
of relative degree larger than one. In [1], a “Prescribed Perfor-
mance Controller” for systems with higher strict relative degree
has been introduced by Bechlioulis and Rovithakis. Though
this controller is applicable to a large class of systems, its draw-
back is that it uses not only the system output but it requires the
full information of the state. Ilchmann et al. [9, 10] developed
a funnel controller for systems with higher strict relative de-
gree by introducing a “backstepping” procedure in conjunction
with a precompensator. This controller achieves tracking with
prescribed transient behavior for a large class of systems gov-
erned by nonlinear (functional) differential equations. Unfor-
tunately, this backstepping procedure is quite impractical, es-
pecially since it involves high powers of a gain function which
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typically takes very large values. Backstepping is also used for
an adaptive λ -tracker in an earlier work by Ye [15].

For systems with relative degree two, a proportional-
derivative (PD) funnel controller has been introduced in [4] (see
also the modification in [3]), where the backstepping procedure
is avoided. However, a generalization of the PD funnel con-
troller to the case of higher relative degree is not available.

In the present paper we introduce a simple funnel controller
for systems with arbitrary known relative degree r and stable
internal dynamics. The controller is based on a simple recursion
law and involves the first r−1 derivatives of the tracking error.

1.1. Nomenclature
R≥0 = [0,∞)
∥x∥ the Euclidean norm of x ∈ Rn

L ∞
loc(I→Rn) the set of locally essentially bounded

functions f : I→Rn, I ⊆ R an interval
L ∞(I→Rn) the set of essentially bounded functions

f : I→Rn with norm
∥ f∥∞ = ess supt∈I∥ f (t)∥
W k,∞(I→Rn) the set of k-times weakly differen-

tiable functions f : I → Rn such that
f , . . . , f (k) ∈ L ∞(I→Rn)

C k(V →Rn) the set of k-times continuously differen-
tiable functions f : V → Rn, V ⊆ Rm;
C (V →Rn) = C 0(V →Rn)

f |W restriction of the function f : V →Rn to
W ⊆V

1.2. System class

In the present paper we consider a class of non-linear sys-
tems described by functional differential equations of the form

y(r)(t) = f (d(t),T (y, ẏ, . . . ,y(r−1))(t))
+Γ(d(t),T (y, ẏ, . . . ,y(r−1))(t))u(t)

y|[−h,0] = y0 ∈ W r−1,∞([−h,0]→ Rm),

(1)
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where h > 0 is the “memory” of the system, r ∈ N is the strict
relative degree, and

(P1): the “disturbance” satisfies d ∈ L ∞(R≥0 → Rp), p ∈ N;

(P2): f ∈ C (Rp ×Rq → Rm),q ∈ N,

(P3): the “high-frequency gain matrix function” Γ ∈ C 1(Rp ×
Rq → Rm×m takes values in the set of positive (negative)
definite matrices;

(P4): T : C ([−h,∞)→Rm)r →L ∞
loc(R≥0 →Rq) is an operator

with the following properties:

a) T maps bounded trajectories to bounded trajectories,
i.e, for all c1 > 0, there exists c2 > 0 such that for all
ζ ∈ C ([−h,∞)→ Rm)r,

sup
t∈[−h,∞)

∥ζ (t)∥ ≤ c1 ⇒ sup
t∈[0,∞)

∥T (ζ )(t)∥ ≤ c2,

b) T is causal, i.e, for all t ≥ 0 and all ζ ,ξ ∈
C ([−h,∞)→ Rm)r,

ζ |[−h,t) = ξ |[−h,t) ⇒ T (ζ )|[0,t)
a.a.
= T (ξ )|[0,t),

where “a.a.” stands for “almost all”.

c) T is locally Lipschitz continuous in the following
sense: for all t ≥ 0 there exist τ,δ ,c > 0 such that
for all ζ ,∆ζ ∈ C ([−h,∞)→ Rm)r with ∆ζ |[−h,t) = 0
and ∥∆ζ |[t,t+τ]∥∞ < δ we have∥∥(T (ζ +∆ζ )−T (ζ )) |[t,t+τ]

∥∥
∞ ≤ c∥∆ζ |[t,t+τ]∥∞.

The functions u : R≥0 → Rm and y : [−h,∞) → Rm are called
input and output of the system (1), resp. Systems similar to (1)
have been studied e.g. in [4, 7, 8, 10]. In the aforementioned
references it is shows that the class of systems (1) encompasses
linear and nonlinear systems with strict relative degree and (ex-
ponentially) stable internal dynamics (zero dynamics in the lin-
ear case) and the operator T allows for infinite-dimensional lin-
ear systems, systems with hysteretic effects or nonlinear de-
lay elements, input-to-state stable systems, and combinations
thereof. One important subclass of systems (1) are minimum-
phase linear time-invariant systems

ẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t),

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, which have strict rela-
tive degree r ∈N and positive (negative) definite high-frequency
gain matrix, i.e, CB = CAB = . . . = CAr−2B = 0 and Γ :=
CAr−1B ∈ Rm×m is positive (negative) definite. The minimum-
phase assumption (equivalently, asymptotic stability of the zero
dynamics, see [13]) is characterized by the condition

∀λ ∈ C with Reλ ≥ 0 : det
[

λ In −A B
C 0

]
̸= 0.

It is known that systems of this type can be transformed in to
Byrnes-Isidori normal form, see [10],

y(r)(t) =
r
∑

i=1
Riy(i−1)(t)+Sη(t)+Γu(t),

η̇(t) = Py(t)+Qη(t)

where Ri ∈ Rm×m for i = 1,2, . . . ,r, S⊤,P ∈ R(n−rm)×m, and
Q ∈ R(n−rm)×(n−rm) is a Hurwitz matrix, i.e., all eigenvalues
of Q have negative real part. This is a system of type (1) with
Γ ≡CAr−1B and

f (d(t),T (y, ẏ, . . . ,y(r−1))(t)) = T (y, ẏ, . . . ,y(r−1))(t)

=
r
∑

i=1
Riy(i−1)(t)+SeQtη(0)+

t∫
0

SeQ(t−τ)Py(τ)dτ.

T is clearly causal, locally Lipschitz, and the Hurwitz prop-
erty of Q implies that T has the bounded-input-bounded-output
property a). Note that T is parameterized by η(0) ∈ Rn−rm.

1.3. Control objective

The objective is to design an output error feedback u(t) =
F(t,e(t), ė(t), . . . ,e(r−1)(t)), where e(t) = y(t) − yref(t) for
some reference trajectory yref ∈ W r,∞(R≥0 → Rm), such that
in the closed-loop system the tracking error e(t) evolves within
a prescribed performance funnel

Fφ := { (t,e) ∈ R≥0 ×R | φ(t)∥e∥< 1 } , (2)

which is determined by a function φ belonging to

Φr :=

φ ∈ C r(R≥0 → R)

∣∣∣∣∣∣
φ, φ̇, . . . ,φ(r) are bounded,
φ(τ)> 0 for all τ > 0,
and liminfτ→∞ φ(τ)> 0

 .

(3)
Furthermore, all signals involved should remain bounded.

The funnel boundary is given by the reciprocal of φ , see
Fig. 1. It is explicitly allowed that φ(0) = 0, meaning that no
restriction on the initial value is imposed since φ(0)∥e(0)∥< 1;
the funnel boundary 1/φ has a pole at t = 0 in this case.

λ

b
(0,e(0))

φ(t)−1

t

Figure 1: Error evolution in a funnel Fφ with boundary φ(t)−1 for t > 0.

An important property of the class Φr is that each perfor-
mance funnel Fφ with φ ∈ Φr is bounded away from zero,
i.e., because of boundedness of φ there exists λ > 0 such that
1/φ(t) ≥ λ for all t > 0. The funnel boundary is not neces-
sarily monotonically decreasing, while in most situations it is
convenient to choose a monotone funnel. However, there are
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situations where widening the funnel over some later time in-
terval might be beneficial, e.g., when the reference trajectory
changes strongly or the system is perturbed by some calibration
so that a large tracking error would enforce a large input action.

1.4. Organization of the present paper
The paper is structured as follows. In section 2, we intro-

duce the funnel controller for the system class presented in Sec-
tion 1.2. Feasibility of the control is proved in the main result in
Section 3; in particular we show that our proposed funnel con-
troller achieves the control objective described in Section 1.3.
The performance of the funnel controller is illustrated by means
of several examples in Section 4. This part also contains com-
parisons with the approaches in [4, 9, 10].

2. Controller structure

We introduce the below funnel controller for systems of
type (1):

e0(t) = e(t) = y(t)− yref(t),
e1(t) = ė0(t) + k0(t) · e0(t),
e2(t) = ė1(t) + k1(t) · e1(t),

...
er−1(t) = ėr−2(t) + kr−2(t) · er−2(t),

u(t) =

{
−kr−1(t) · er−1(t), if Γ is pointwise pos. def.,

kr−1(t) · er−1(t), if Γ is pointwise neg. def.,

ki(t) = 1
1−φ2

i (t)∥ei(t)∥2 , i = 0, . . . ,r−1

(4)
where, for Φi as in (3), the reference signal and funnel functions
have the following properties:

yref ∈ W r,∞(R≥0 → Rm),

φ0 ∈ Φr, φ1 ∈ Φr−1, . . . , φr−1 ∈ Φ1.
(5)

In the sequel we investigate existence of solutions of the
initial value problem resulting from the application of the fun-
nel controller (4) to a system (1). By a solution of (1), (4)
on [−h,ω) we mean a function y ∈ C r−1([−h,ω) → Rm),
ω ∈ (0,∞], with y|[−h,0] = y0 such that y(r−1)|[0,ω) is absolutely
continuous and satisfies the differential equations in (1), (4) for
almost all t ∈ [0,ω); y is called maximal, if it has no right exten-
sion that is also a solution. Existence of solutions of functional
differential equations has been investigated in [8] for instance.

Remark 2.1 (Funnel control for systems with r ∈ {1,2,3}). In
the following we determine the funnel controllers explicitly for
the cases r = 1,2,3. We assume for convenience that the high-
frequency gain matrix function Γ is pointwise positive definite.

r = 1: The control law (4) reduces to the “classical” funnel
controller u(t) = −k(t)e(t) with k(t) = 1

1−φ2(t)∥e(t)∥2 .
Moreover, our assumptions on the reference signal and
the funnel function φ reduce to those made in [8].

r = 2: We obtain the controller

u(t) =−k1(t)(ė(t)+ k0(t)e(t)),
k0(t) = 1

1−φ2
0 (t)∥e(t)∥2 ,

k1(t) = 1
1−φ2

1 (t)∥ė(t)+k0(t)e(t)∥2 .

r = 3: Here the controller (4) takes the form

u(t) = − k2(t) ·
[
ë(t)+2k0(t)2(φ2

0 (t)e
⊤(t)ė(t)

+φ0(t)φ̇0(t)∥e(t)∥2)e(t)

+ k0(t)ė(t)+ k1(t)(ė(t)+ k0(t)e(t))
]
,

k0(t) = 1
1−φ2

0 (t)∥e(t)∥2 ,

k1(t) = 1
1−φ2

1 (t)∥ė(t)+k0(t)e(t)∥2 ,

k2(t) = 1
1−φ2

2 (t)∥ë(t)+2k0(t)2(φ2
0 (t)e

⊤(t)ė(t)+φ0(t)φ̇0(t)∥e(t)∥2)e(t)

+k0(t)ė(t)+k1(t)(ė(t)+k0(t)e(t))∥2 .

Remark 2.2 (The intuition behind the funnel controller (4)).
The classical funnel controller for systems with relative de-
gree one and stable internal dynamics uses the “high gain prop-
erty” [2], which states that such systems can can be stabilized
by a proportional feedback law u(t)=−ky(t) with a sufficiently
large constant k > 0. This gives rise to the intuition of the fun-
nel controller for relative degree one: If the error approaches
the funnel boundary at t0, then k(t0) takes a large value which
stabilizes the error system.
To illustrate the functioning of the controller (4), we employ
the following thought experiment for the single-input, single-
output case m = 1, see Fig. 2: Assume that the error e = e0 ap-
proaches the upper funnel boundary 1/φ0 at time t0 > 0. Then
k0(t0), and consequently k0(t0) · e(t0) will be very large. Since
e1 = ė+ k0 · e evolves in the performance funnel Fφ1 , we may
infer that ė(t0) = e1(t0)−k0(t0) ·e(t0) will take a large negative
value. In other words, e will be decreasing enormously. That
is, whenever the error e approaches the funnel boundary 1/φ0,
the controller ensures a repelling effect.
This argumentation can be repeated for the functions
e1, . . . ,er−2. Finally, since er−1 includes the first r− 1 deriva-
tives of e, the system with artificial output er−1 has relative de-
gree one, and the classical high gain property applies to er−1.

t

φ(t)−1

t0

e(t0)φ(t0)≈ 1 =⇒ k0(t0)≫ 1

(t0,e1(t0))∈Fφ1=⇒ ė(t0) = e1(t0)− k0(t0)e(t0)≪ 0

e(t)

Figure 2: Error in the performance funnel Fφ1
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Remark 2.3 (Funnel control by backstepping). The works [9,
10] introduce a funnel controller based on a filter and backstep-
ping construction for systems with higher relative degree. First
consider a filter with

ξ̇i(t) = −ξi(t)+ξi+1(t), i = 1, . . . ,r−2,

ξ̇r−1(t) = −ξr−1(t)+u(t).

Introduce the projections

πi : R(r−1)m → Rim, ξ = (ξ1, . . . ,ξr−1) 7→ (ξ1, . . . ,ξi)

for i = 1, . . . ,r−1 and functions

γ1(k,e) = −k · e
γi(k,e,πi−1ξ ) := γi−1(k,e,πi−2ξ )

+∥Dγi−1(k,e,πi−2ξ )∥2k4 · (1+∥πi−1ξ∥2)

· (ξi−1 + γi−1(k,e,πi−2ξ ))

The controller in [10] takes the form

u(t) = −γr(k(t),e(t),ξ (t)),
k(t) = 1

1−φ(t)2∥e(t)∥2 .

We stress that in [10] a much smaller class of systems than in-
troduced in Section 1.2 is considered; in [10] T may only de-
pend on y and Γ is assumed to be constant. The above presented
controller works provided that Γ ∈ Rm×m is positive definite.
However, this approach can be modified such that it also works
for systems in which it is not known whether Γ is positive or
negative definite. In this case, the function γ1 has to be mod-
ified by γ1(k,e) = ν(k) · e, where ν : R≥0 → R is smooth and
satisfies the “Nussbaum property” [10]. In the following we
discuss the cases of relative degree two and three.

r = 2 : Here the controller takes the form

u = − ke+(∥e∥2 + k2) · k4(1+∥ξ∥2)(ξ + ke),

where we omit the argument t. This feedback law is
dynamic and the gain occurs with k(t)7. The pres-
ence of such a large power of the funnel gain k(t) is
problematic in practice; the controller produces inputs
which might be impractical. We compare the backstep-
ping approach to our controller (4) in Section 4.

r = 3 : Here the controller reads

u =ke− k4(e2+ k2)(1+ξ 2
1 )(ξ1 − ke)−

{[
− e+(1+ξ 2

1 )

·
[
2k5(ξ1 − ke)+4k3(e2+ k2)(ξ1 − ke)− k4(e2+ k2)e

]]2
+
[
− k+ k4(1+ξ 2

1 )
[
2e(ξ1 − ke)− k(e2+ k2)

]]2
+
[
k4(e2+ k2)

[
2ξ1(ξ1 − ke)+(1+ξ 2

1 )
]]2}k4(1+ξ 2

1 +ξ 2
2 )

·
[
ξ2 − ke+ k4(e2+ k2)(1+ξ 2

1 )(ξ1 − ke)
]
. (6)

An expansion of the above product gives that this con-
troller contains the 25th power (!) of the funnel gain
k(t), and the problems depicted for r = 2 are present
here a fortiori.

Remark 2.4 (Proportional-derivative funnel control for relative
degree two). Consider a system (1) with the properties (P1)–
(P4) as in Section 1.2. Further assume that m = 1 and the high-
frequency gain function Γ is pointwise positive definite. The
work [4] introduces a funnel controller which feeds back the
error e and its derivative. More precise, this controller reads

u(t) =−k2
0(t)e(t)− k1(t)ė(t),

k0(t) =
φ0

1−φ0(t)|e(t)|
, k1(t) =

φ1
1−φ1(t)|ė(t)|

.
(7)

The funnel functions φ0 for the error and φ1 for the derivative
of the error have to satisfy φ0 ∈ Φ2, φ1 ∈ Φ1, and they have to
fulfill the compatibility condition

∀ t > 0 ∃δ > 0 : 1/φ1(t)≥ δ − d
dt (1/φ0(t)) ∀ t > 0. (8)

This controller is simple and its practicability has been verified
experimentally. However, there is no straightforward extension
to systems with relative degree larger than two. We further em-
phasize that the funnel functions φ0, . . . ,φr−1 in the funnel con-
troller (4) do not have to satisfy any compatibility condition.

3. Main result

We show feasibility of the funnel controller (4).

Theorem 3.1. Consider a system (1) with strict relative degree
r ∈ N and properties (P1)-(P4). For Φi as defined in (3), let

φi ∈ Φr−i for i = 0, . . . ,r−1.

Let yref ∈ W r,∞(R≥0 → Rm) be a reference signal, and
y|[−h,0] = y0 ∈W r−1,∞([−h,0]→Rm) an initial value such that
e0, . . . ,er−1 as defined in (4) fulfill

φi(0)∥ei(0)∥< 1 for i = 0, . . . ,r−1. (9)

Then the application of the funnel controller (4) to (1) yields
an initial-value problem, which has a solution, and every max-
imal solution y : [−h,ω) → Rm, ω ∈ (0,∞], has the following
properties:

(i) The solution is global (i.e, ω = ∞).

(ii) The input u : R≥0 → Rm, the gain functions k0, . . . ,kr−1 :
R≥0 → R and y, . . . ,y(r−1) : R≥0 → Rm are bounded.

(iii) The functions e0, . . . ,er−1 : R≥0 → Rm evolve in their re-
spective performance funnels, i.e.,

(t,ei) ∈ Fφi for all i = 0, . . . ,r−1 and t ≥ 0.

Furthermore, the signals ei(·) are uniformly bounded
away from the funnel boundaries in the following sense:

∀ i = 0, . . . ,r−1 ∃εi > 0 ∀ t > 0 :

∥ei(t)∥ ≤ φi(t)−1 − εi. (10)

In particular, the error e(t) = y(t)−yref(t) evolves in the
funnel Fφ0 and stays uniformly away from its boundary.
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Proof. We may, without loss of generality, assume that the
high-frequency gain matrix function Γ of system (1) is point-
wisely positive definite. We proceed in several steps.

Step 1: We show that a maximal solution y : [−h,ω)→ Rm

exists with ω ∈ (0,∞]. Consider the sets

Di =

{
(t,e0, . . . ,ei) ∈ R≥0 ×Rm ×·· ·×Rm

∣∣∣∣ (t,e j) ∈ Fφ j ,

j = 0, . . . , i

}
for i = 0, . . . ,r − 1. Using the relations in the funnel
controller (4), we obtain that, for some interval I ⊆ R≥0,
(e0, . . . ,er−1) : I →Rrm with (t,e0, . . . ,er−1)∈Dr−1 for all t ∈ I
satisfies (4) if, and only if, e = e0 satisfies

e(i) = ei −
i−1

∑
j=0

di−1− j

dt i−1− j (k je j) for all i = 0, . . . ,r−1. (11)

Define the functions Ki : Di → Rm by

K0(t,e0) := e0
1−φ2

0 (t)∥e0∥2 ,

Ki(t,e0, . . . ,ei)

:= ei
1−φ2

i (t)∥ei∥2 +
∂Ki−1

∂ t (t,e0, . . . ,ei−1)

+
i−1

∑
j=0

∂Ki−1
∂e j

(t,e0, . . . ,ei−1)

(
e j+1 −

e j

1−φ2
j (t)∥e j∥2

)
,

for i = 1, . . . ,r−1. We show by induction that

∀ t > 0 :
i

∑
j=0

di− j

dt i− j

(
k j(t)e j(t)

)
= Ki

(
t,e0(t), . . . ,ei(t)

)
(12)

for i = 0, . . . ,r−1. Eq. (12) is obviously true for i = 0. Assume
that i ∈ {1, . . . ,r−1} and the statement holds for i−1. Then

i

∑
j=0

di− j

dt i− j

(
k j(t)e j(t)

)
= ki(t)ei(t)+ d

dt

(
i−1

∑
j=0

di−1− j

dt i−1− j

(
k j(t)e j(t)

))
= ki(t)ei(t)+ d

dt Ki−1
(
t,e0(t), . . . ,ei−1(t)

)
= Ki

(
t,e0(t), . . . ,ei(t)

)
.

In particular, (11) yields that, for all t ∈ I and all i = 0, . . . ,r−1,

e(i)(t)=ei(t)−Ki−1
(
t,e0(t), . . . ,ei−1(t)

)
and

e(r)(t)= ėr−1(t)−Kr−1
(
t,e0(t), . . . ,er−1(t)

)
+ kr−1(t)er−1(t).

Now, define

K :={(e0,e1, . . . ,er−1) ∈ C ([−h,∞)→ Rm)r |
∀ t ≥ 0 :

(
t,e0(t), . . . ,er−2(t)

)
∈ Dr−2},

and the operator T̂ : K → L ∞
loc([0,∞)→ Rq) by

T̂
(
e0,e1, . . . ,er−1

)
= T

(
e0 + yref,e1 + ẏref −K0(·,e0),

. . . ,er−1 + y(r−1)
ref −Kr−2(·,e0, . . . ,er−2)

)
,

where yref is extended to [−h,0) such that yref ∈
W r,∞([−h,∞)→ Rm). Define x = (e0,e2, . . . ,er−1) and

F : Dr−1 ×Rq → Rr,
(t,e0,e1, . . . ,er−1,η) 7→(

e1 − e0
1−φ2

i0(t)∥e0∥2 , . . . ,er−1 − er−2
1−φ2

r−2(t)∥er−2∥2 ,

f
(
d(t),η

)
− Γ(d(t),η)er−1

1−φ2
r−1(t)∥er−1∥2 − y(r)ref(t)

−Kr−1
(
t,e0, . . . ,er−1

)
+

er−1
1−φ2

r−1(t)∥er−1∥2

)
.

Then the initial value problem (1), (4) is equivalent to

ẋ(t) = F
(
t,x(t), T̂ (x)(t)

)
, x|[−h,0] = (e0,e2 . . . ,er−1)|[−h,0].

(13)
In particular, (0,x(0)) ∈ Dr−1 and F is measurable in t and lo-
cally Lipschitz continuous in (e0,e1, . . . ,er−1,η). Hence an ap-
plication of Theorem A.1 yields existence of solutions to (13).
Let x = (e0,e2, . . . ,er−1) : [−h,ω)→Rrm, ω ∈ (0,∞] be a max-
imal solution of (13), then the closure of the graph of this solu-
tion is not a compact subset of Dr−1.

Step 2: We show that k0, . . . ,kr−1 as in (4) are bounded
on [0,ω). For all i ∈ {0, . . . ,r − 1}, set ψi(t) = φ−1

i (t) for
t ∈ (0,ω), let Ti ∈ (0,ω) be arbitrary but fixed and set λi =
inft∈(0,ω) ψi(t)> 0. Since φ̇i is bounded and liminft→∞ φi(t)>
0 we find that d

dt ψi|[Ti,∞) is bounded and hence there exists a
Lipschitz bound Li > 0 of ψi|[Ti,∞).

Step 2a: We show that ki is bounded for i ∈ {0, . . . ,r− 2}.
Choose εi > 0 small enough so that

εi ≤ min
{

λi
2 , inf

t∈(0,Ti]
(ψi(t)−∥ei(t)∥)

}
and Li ≤

λ 2
i

4εi
− sup

t∈[Ti,∞)

|ψi+1(t)|. (14)

We show that

∀ t ∈ (0,ω) : ψi(t)−∥ei(t)∥ ≥ εi.

By definition of εi this holds on (0,Ti]. Seeking a contradiction
suppose that

∃ ti1 ∈ [Ti,ω) : ψi(ti1)−∥ei(ti1)∥< εi.

Set ti0 =max{ t ∈ [Ti, ti1) | ψi(t)−∥ei(t)∥= εi }. Then, for all
t ∈ [ti0, ti1], we have that

ψi(t)−∥ei(t)∥ ≤ εi,

∥ei(t)∥ ≥ ψi(t)− εi ≥ λi
2 ,

ki(t) = 1
1−φ2

i (t)∥ei(t)∥2 = ψi(t)
2εi

≥ λi
2εi

.

Therefore, we find that by (4)

1
2

d
dt ∥ei(t)∥2 = e⊤i (t)(ei+1(t)− ki(t)ei(t))

=−ki(t)∥ei(t)∥2 + e⊤i (t)ei+1(t)
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≤

(
− λ 2

i
4εi

+ sup
t∈[Ti,∞)

|ψi+1(t)|

)
∥ei(t)∥

(14)
≤ −Li∥ei(t)∥

for all t ∈ [ti0, ti1]. Then

∥ei(ti1)∥−∥ei(ti0)∥=
ti1∫

ti0

1
2∥ei(t)∥−1 d

dt ∥ei(t)∥2 dt

≤−Li(ti1 − ti0)

≤−|ψi(ti1)−ψi(ti0)|
≤ ψi(ti1)−ψi(ti0),

and thus we obtain εi =ψi(ti0)−∥ei(ti0)∥≤ψi(ti1)−∥ei(ti1)∥<
εi, a contradiction.

Step 2b: We show that kr−1 is bounded. By (11) and Step 1
we have, invoking x = (e0, . . . ,er−1),

ėr−1(t) = f
(
d(t), T̂ (x)(t)

)
− kr−1(t)Γ

(
d(t), T̂ (x)(t)

)
er−1(t)

− y(r)ref(t)+
r−2

∑
i=0

( d
dt

)r−1−i
[ki(t)ei(t)] .

In the following we will prove by induction that there exist con-
stants Mi, j,Ni, j,Ki, j > 0 such that, for all t ∈ [0,ω),∥∥∥( d

dt

) j
[ki(t)ei(t)]

∥∥∥≤ Mi, j,
∥∥∥( d

dt

) j
ei(t)

∥∥∥≤ Ni, j,∣∣∣( d
dt

) j
ki(t)

∣∣∣≤ Ki, j,

for i = 0, . . . ,r−2, j = 0, . . . ,r−1− i.

(15)

First, we may infer from Step 2a that k0, . . . ,kr−2 are bounded.
Furthermore, e0, . . . ,er−1 are bounded since they evolve in the
respective performance funnels, cf. (4). Therefore, (15) is true
whenever j = 0. We prove (15) for i = r−2 and j = 1: We find
that

ėr−2(t) = er−1(t)− kr−2(t)er−2(t),

k̇r−2(t) = 2k2
r−2(t)

(
φ2

r−2(t)e
⊤
r−2(t)ėr−2(t)

+φr−2(t)φ̇r−2(t)∥er−2(t)∥2),
d
dt [kr−2(t)er−2(t)] = k̇r−2(t)er−2(t)+ kr−2(t)ėr−2(t),

and all of these signals are bounded since
kr−2,φr−2, φ̇r−2,er−2,er−1 are bounded. Now let
p ∈ {0, . . . ,r − 3} and q ∈ {0, . . . ,r − 1 − q} and as-
sume that (15) is true for all i = p + 1, . . . ,r − 2 and all
j = 0, . . . ,r−1− i as well as for i = p and all j = 0, . . . ,q−1.
We show that it is true for i = p and j = q:( d

dt

)q
ep(t) =

( d
dt

)q−1
[ep+1(t)− kp(t)ep(t)]

=
( d

dt

)q−1
ep+1(t)−

( d
dt

)q−1
[kp(t)ep(t)] ,

( d
dt

)q
kp(t) =

( d
dt

)q−1
(

2k2
p(t)
(
φ2

p(t)e
⊤
p (t)ėp(t)

+φp(t)φ̇p(t)∥ep(t)∥2)),( d
dt

)q
[kp(t)ep(t)] =

( d
dt

)q−1 (
k̇p(t)ep(t)+ kp(t)ėp(t)

)
.

Then, successive application of the product rule and using the
induction hypothesis as wells as the fact that φp, φ̇p, . . . ,φ

(r−p)
p

are bounded, yields that the above terms are bounded. There-
fore, the proof of (15) is complete.
By (15) and (11) it follows that e(i) is bounded on [0,ω) for all
i = 0, . . . ,r−1. Therefore, also Ki(·,e0(·), . . . ,ei(·)) is bounded
on [0,ω) for all i = 0, . . . ,r−1. Further invoking boundedness
of yref, . . . ,y

(r)
ref and the bounded-input, bounded-output prop-

erty a) of the operator T it follows that T̂ (x) is bounded, where
x = (e0, . . . ,er−1). Since f is continuous and d is bounded, we
may further infer that f (d(·), T̂ (x)(·)) is bounded on [0,ω), i.e.,
there exists MF > 0 such that

for almost all t ∈ [0,ω) : ∥ f
(
d(t), T̂ (x)(t)

)
∥ ≤ MF .

Define the compact set

M :=

(δ ,η ,e) ∈ Rp ×Rq ×Rm

∣∣∣∣∣∣
∥δ∥ ≤ ∥d|[0,ω)∥∞
∥η∥ ≤ ∥T̂ (x)|[0,ω)∥∞
∥e∥= 1.

 ,

then, since Γ is pointwise positive definite and the map

M ∋ (δ ,η ,e) 7→ e⊤Γ(δ ,η)e ∈ R>0

is continuous, it follows that there exists γ > 0 such that

∀(δ ,η ,e) ∈ M : e⊤Γ(δ ,η)e ≥ γ.

Therefore, we have

er−1(t)⊤Γ
(
d(t), T̂ (x)(t)

)
er−1(t)

=
(

er−1(t)⊤

∥er−1(t)∥
Γ
(
d(t), T̂ (x)(t)

) er−1(t)
∥er−1(t)∥

)
∥er−1(t)∥2

≥ γ∥er−1(t)∥2

for all t ∈ [0,ω). Now, choose εr−1 > 0 small enough so that

εr−1 ≤ min
{

λr−1
2 , inf

t∈(0,Tr−1]
(ψr−1(t)−∥er−1(t)∥)

}
and

Lr−1 ≤
λ 2

r−1
4εr−1

γ −MF − sup
t∈[0,ω)

∥y(r)ref(t)∥−
r−2

∑
i=0

Mi,r−1−i. (16)

We show that

∀ t ∈ (0,ω) : ψr−1(t)−∥er−1(t)∥ ≥ εr−1.

By definition of εr−1 this holds on (0,Tr−1]. Seeking a contra-
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diction suppose that

∃ tr−1,1 ∈ [Tr−1,ω) : ψr−1(tr−1,1)−∥er−1(tr−1,1)∥< εr−1.

Define

tr−1,0 =max{ t ∈ [Tr−1, tr−1,1) | ψr−1(t)−∥er−1(t)∥= εr−1 } ,

then, for all t ∈ [tr−1,0, tr−1,1], we have that

ψr−1(t)−∥er−1(t)∥ ≤ εr−1,

∥er−1(t)∥ ≥ ψr−1(t)− εr−1 ≥ λr−1
2 ,

kr−1(t) = 1
1−φ2

r−1(t)∥er−1(t)∥2 =
ψr−1(t)
2εr−1

≥ λr−1
2εr−1

.

We obtain, for all t ∈ [tr−1,0, tr−1,1], that

1
2

d
dt ∥er−1(t)∥2 = e⊤r−1(t)ėr−1(t)

= e⊤r−1(t)
(

f
(
d(t), T̂ (x)(t)

)
− kr−1(t)Γ

(
d(t), T̂ (x)(t)

)
er−1(t)

− y(r)ref(t)+
r−2

∑
i=0

( d
dt

)r−1−i
[ki(t)ei(t)]

)
≤

(
MF − λ 2

r−1
4εr−1

γ + sup
t∈(0,ω)

∥y(r)ref(t)∥+
r−2

∑
i=0

Mi,r−1−i

)
∥er−1(t)∥

≤ −Lr−1∥er−1(t)∥,

and therefore,

∥er−1(tr−1,1)∥−∥er−1(tr−1,0)∥=
tr−1,1∫

tr−1,0

1
2∥er−1(t)∥−1 d

dt ∥er−1(t)∥2 dt

≤−Lr−1(tr−1,1 − tr−1,0)

≤−|ψr−1(tr−1,1)−ψr−1(tr−1,0)|
≤ ψr−1(tr−1,1)−ψr−1(tr−1,0),

and thus we obtain εr−1 = ψr−1(tr−1,0) − ∥er−1(tr−1,0)∥ ≤
ψr−1(tr−1,1)−∥er−1(tr−1,1)∥< εr−1, a contradiction.

Step 3: We show that ω = ∞. Assume that ω < ∞. Then,
since ei,ki, i= 0, . . . ,r−1 are bounded by Step 2, it follows that
the closure of the graph of x = (e0,e2, . . . ,er−1) is a compact
subset of Dr−1, a contradiction. Hence ω = ∞ which shows (i).
Statements (ii) and (iii) are then immediate consequences of
Step 2.

4. Simulations

To demonstrate the application of our controller, we con-
sider an example of a mass-spring system mounted on a car
from [14], see Fig. 3. The mass m2 moves on a ramp which is
inclined by the angle α and mounted on a car with mass m1, for
which it is possible to control the force u = F acting on it. The
equations of motion for the system are given by[

m1 +m2 m2 cosα
m2 cosα m2

](
ẍ(t)
s̈(t)

)
+

(
0

ks(t)+dṡ(t)

)
=

(
u(t)

0

)
,

(17)

where x is the horizontal car position and s the relative position
of the mass on the ramp. The constants k,d > 0 are the coeffi-
cients of the spring and damper, resp. The output of the system
is given by the horizontal position of the mass on the ramp,

y(t) = x(t)+ s(t)cosα.

(F)

y

a=const

v
(F)

y

v
(F)

y

v

Figure 3: Mass on car system.

For the simulation, we choose the parameters m1 = 4,m2 =
1,k = 2,d = 1 and the initial values x(0) = 0, ẋ(0) = 0,s(0) =
0, ṡ(0) = 0. The reference trajectory is yref(t) = cos t. Sys-
tem (17) can be reformulated such that it belongs to the
class (1), see [14], with a relative degree r depending on the
angle α and the damping d. We consider two cases.

Case 1: If 0 < α < π
2 , see Fig. 3, then system (17) has

relative degree r = 2 and the high-frequency gain matrix reads
Γ = − 1

m1+m2 sin2 α sin2 α < 0. For the controller (4) we choose
the funnel functions

φ0(t) = (5e−2t +0.1)−1, φ1(t) = (10e−2t +0.5)−1,

and obviously the initial errors lie within the respective fun-
nel boundaries, i.e., (9) is satisfied, thus Theorem 3.1 yields
that funnel control is feasible. We compare the controller (4)
with the proportional-derivative funnel controller (7) proposed
in [4], which has been explained in Remark 2.4, and choose the
same funnel functions φ0,φ1 for it. These functions satisfy the
compatibility condition (8) and hence the controller (7) may be
applied to (17) by [4].

The simulation of the controllers (4) and (7) applied to (17)
over the time interval [0,10] has been performed in MATLAB
(solver: ode45, rel. tol.: 10−14, abs. tol.: 10−10) and is de-
picted in Fig. 4. Fig. 4a shows the tracking errors correspond-
ing to the two different controllers applied to the system, while
Fig. 4b shows the respective input functions generated by them.
It can be seen that our proposed funnel controller (4) requires
less input action than the controller (7), both in magnitude and
over time. For instance, in the time interval [3,5.5] there is
no input action generated by (4), but several (large) oscillations
generated by (7). It seems that our controller (4) is better able to
use the inherent system properties and thus requires less input
action than the controller proposed in [4].

Case 2: If α = 0 and d ̸= 0, see Fig. 5, then system (17) has
relative degree r = 3 and high gain matrix Γ =− 1

m1m2
d < 0.
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Fig. 4a: Funnel and tracking errors
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Figure 4: Simulation of the controllers (4) and (7) for the mass on car sys-
tem (17).

For the controller (4) we choose the funnel functions

φ0(t) = (5e−2t +2)−1, φ1(t) = φ2(t) = (10e−2t +5)−1,

and obviously the initial errors lie within the respective funnel
boundaries, i.e., conditions (9) are satisfied, thus Theorem 3.1
yields that funnel control is feasible. We compare the con-
troller (4) with the backstepping funnel controller (6) proposed
in [10], which has been explained in Remark 2.3, and choose
the funnel function φ = φ0 as well as ζ1(0) = ζ2(0) = 0 for
the initial values of the filter. Hence the controller (6) may be
applied to (17) by [10]. Note that the chosen funnels for the
tracking error are “wider” compared to Case 1; the reason are
numerical issues with the controller (6), see the explanation be-
low.

The simulation of the controllers (4) and (6) applied to (17)
over the time interval [0,10] has been performed in MATLAB
(solver: ode45, rel. tol.: 10−14, abs. tol.: 10−10) and is de-
picted in Fig. 6. Fig. 6a shows the tracking errors corre-
sponding to the two different controllers applied to the system,
while Fig. 6b shows the respective input functions generated
by them and Fig. 6c shows a zoom. It can be seen that our

(F)

y

a=const

v
(F)

y

v
(F)

y

v

Figure 5: Mass on car system with α = 0.

proposed funnel controller (4) generates a maximal control ac-
tion of approximately 5, while for the controller (6) the value is
around 1.5 ·106. Obviously, our controller (4) achieves a better
performance than the controller proposed in [10].

We stress that the controller (6) took a very long running
time and only small changes in the system or controller pa-
rameters may induce severe problems in the numerical solution.
The reason are the high powers of the gain function appearing
in the control law, as explained in Remark 2.3. In the present
simulation, although theoretically proved, the controller (6) is
barely feasible and takes huge computational effort. Further-
more, the enormous values generated for the input function
(which is a force) are not practically feasible in general. It
seems that for systems with even higher relative degree, the
controller from [10] is not practically realizable.

5. Conclusion

In the present paper, we proposed a new funnel controller
for nonlinear systems with arbitrary known relative degree and
stable internal dynamics. We proved that this controller, which
involves derivatives of the tracking error, achieves tracking of
a sufficiently smooth reference trajectory with prescribed tran-
sient performance. We have illustrated the performance of our
controller in comparison with other approaches by a simula-
tion of a practical relevant mechanical system. We stress that,
although the backstepping funnel controller presented in [10]
is proved to work for systems with arbitrary relative degree,
it does not seem to be practically realizable for system with
relative degree larger than three. Therefore, our controller (4)
seems to be the only choice for tracking with prescribed tran-
sient behavior in these cases.

Appendix A

Let D ⊆R≥0 ×Rn be non-empty, connected and open. De-
fine

K := { ζ ∈ C ([−h,∞)→ Rn) | ∀ t ≥ 0 : (t,ζ (t)) ∈ D } ,

and assume that K is non-empty. Consider an operator T : K →
L ∞

loc(R≥0 → Rq) which satisfies the properties
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Figure 6: Simulation of the controllers (4) and (6) for the mass on car sys-
tem (17).

a’) T maps bounded trajectories to bounded trajectories, i.e.,
for all c1 > 0 there exists c2 > 0 such that for all ζ ∈ K:

∥ζ∥∞ ≤ c1 =⇒ ∥T (ζ )∥∞ ≤ c2.

b’) T is causal, i.e., for all t ≥ 0 and all ζ ,ξ ∈ K:

ζ |[−h,t) = ξ |[−h,t) =⇒ T (ζ )|[0,t]
a.a.
= T (ξ )|[0,t] ;

c’) T is “locally Lipschitz” continuous in the following
sense: for all t ≥ 0 there exist τ,δ ,c > 0 such that for
all ζ ∈ K, ∆ζ ∈ C ([−h,∞) → Rn) with ζ + ∆ζ ∈ K,
∆ζ |[−h,t] = 0 and ∥ ∆ζ |[t,t+τ] ∥∞ < δ we have∥∥∥(T (ζ +∆ζ )−T (ζ )

)∣∣
[t,t+τ]

∥∥∥
∞
≤ c∥ ∆ζ |[t,t+τ] ∥∞.

Let F : D ×Rq →Rn be a Carathéodory function1 and con-
sider the initial value problem

ẋ(t) = F
(
t,x(t),T (x)(t)

)
,

x|[−h,0] = x0 ∈ C ([−h,0]→ Rn), (0,x0(0)) ∈ D .
(18)

A function x ∈ C ([−h,∞) → Rn) is called solution of (18) on
[−h,ω), ω ∈ (0,∞], if x|[−h,0] = x0 and x|[0,ω) is absolutely con-
tinuous, with (t,x(t)) ∈ D for all t ∈ [0,ω), and satisfies the
differential equation in (18) for almost all t ∈ [0,ω). A solu-
tion x is called maximal, if it has no right extension that is also
a solution.

Theorem A.1. For all initial trajectories x0 ∈C ([−h,0]→Rn)
with (0,x0(0)) ∈ D

(i) the initial value problem (18) has a solution,

(ii) every solution can be extended to a maximal solution,

(iii) if F is locally essentially bounded and x ∈ C ([−h,ω)→
Rn) is a maximal solution, then the closure of
graph x|[0,ω) is not a compact subset of D .

Proof. The proof is a straightforward modification of those
of [7, Thm. B.1] and [8, Thm. 5].

References

[1] Bechlioulis, C., Rovithakis, G., 2014. A low-complexity global
approximation-free control scheme with prescribed performance for un-
known pure feedback systems. Automatica 50, 1217–1226.

[2] Byrnes, C.I., Willems, J.C., 1984. Adaptive stabilization of multivariable
linear systems, in: Proc. 23rd IEEE Conf. Decis. Control, pp. 1574–1577.

[3] Hackl, C.M., 2011. High-gain adaptive position control. Int. J. Control
84, 1695–1716.

[4] Hackl, C.M., Hopfe, N., Ilchmann, A., Mueller, M., Trenn, S., 2013.
Funnel control for systems with relative degree two. SIAM J. Control
Optim. 51, 965–995.

1That is, for all [a,b]×Bδ (z0)⊆ D and every compact K ⊆ Rq we have:

(i) F(t, ·, ·) : Bδ (z0)×K → Rn is continuous for all t ∈ [a,b];

(ii) F(·,x,ζ ) : [a,b]→ Rn is measurable for all (x,ζ ) ∈ Bδ (z0)×K;

(iii) there exists an integrable function γ : [a,b] → R≥0 such that
∥F(t,x,ζ )∥ ≤ γ(t) for almost all t ∈ [a,b] and all (x,ζ ) ∈ Bδ (z0)×K.

9



[5] Hackl, C.M., Kennel, R.M., 2012. Position funnel control for rigid
revolute joint robotic manipulators with known inertia matrix, in: 20th
Mediterranean Conference on Control & Automation (MED), IEEE,
Barcelona, Spain. pp. 615–620.

[6] Ilchmann, A., Ryan, E.P., 2008. High-gain control without identification:
a survey. GAMM Mitt. 31, 115–125.

[7] Ilchmann, A., Ryan, E.P., 2009. Performance funnels and tracking con-
trol. Int. J. Control 82, 1828–1840.

[8] Ilchmann, A., Ryan, E.P., Sangwin, C.J., 2002. Tracking with prescribed
transient behaviour. ESAIM: Control, Optimisation and Calculus of Vari-
ations 7, 471–493.

[9] Ilchmann, A., Ryan, E.P., Townsend, P., 2006. Tracking control with
prescribed transient behaviour for systems of known relative degree. Syst.
Control Lett. 55, 396–406.

[10] Ilchmann, A., Ryan, E.P., Townsend, P., 2007. Tracking with prescribed
transient behavior for nonlinear systems of known relative degree. SIAM
J. Control Optim. 46, 210–230.

[11] Ilchmann, A., Schuster, H., 2009. PI-funnel control for two mass systems.
IEEE Trans. Autom. Control 54, 918–923.

[12] Ilchmann, A., Trenn, S., 2004. Input constrained funnel control with
applications to chemical reactor models. Syst. Control Lett. 53, 361–375.

[13] Ilchmann, A., Wirth, F., 2013. On minimum phase. Automatisierung-
stechnik 12, 805–817.

[14] Seifried, R., Blajer, W., 2013. Analysis of servo-constraint problems for
underactuated multibody systems. Mechanical Sciences 4, 113–129.

[15] Ye, X., 1999. Universal λ -tracking for nonlinearly-perturbed systems
without restrictions on the relative degree. Automatica 35, 109–119.

10


	hbam_deckblatt
	BergHoanReis-161212(1)

