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Abstract

We analyse the convergence of filtered back projection methods to approximate bivari-

ate functions from fractional Sobolev spaces. To this end, we prove estimates for the

inherent approximation error that is incurred by the usage of a low-pass filter. This

yields error estimates for a scale of rougher Sobolev spaces, which also covers the

L2-case. In this way, we extend previous of our results concerning L2-error estimates

to Sobolev error estimates, but now under weaker conditions on the window function

of the utilized low-pass filter. In fact, we only require bounded windows, unlike in our

previous work, where we relied on continuous windows. Therefore, the analysis of this

paper now applies to a larger class of commonly used low-pass filters, including the

Ram-Lak and the Shepp-Logan filter. Finally, we prove asymptotic convergence rates

for the FBP approximation error, as the window’s bandwidth tends to infinity, where

we show that the resulting decay rate is given by the difference between the smoothness

of the target function and the order of the rougher Sobolev space.

Keywords: Filtered back projection, fractional Sobolev spaces, error bounds,

asymptotic convergence rates.
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1. Introduction

The method of filtered back projection (FBP) is a well-known reconstruction tech-

nique in computerized tomography (CT) [9], which is commonly used in relevant ap-

plications, e.g. in medical imaging [4] or in non-destructive evaluation of materials.
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The main purpose of FBP in CT is to recover the interior structure of an unknown ob-

ject from X-ray scans, where the measured X-ray data is interpreted as a set of line

integrals for a bivariate function, termed attenuation function. We can formulate the

mathematical problem in the recovery step of FBP as follows.

Problem 1.1. On given domain Ω ⊂ R2, reconstruct a bivariate function f ∈ L1(Ω)

from its line integrals ∫
`

f (x,y)dxdy

which are assumed to be given for all straight lines `⊂ R2 passing through Ω. �

To parametrise straight lines in the plane, let `t,θ ⊂ R2 denote the unique straight

line which passes through (t cos(θ), t sin(θ)) ∈ R2, for (t,θ) ∈ R× [0,π), and which

is perpendicular to the unit vector~nθ = (cos(θ),sin(θ)). In this way, any straight line

` ≡ `t,θ ⊂ R2 can be represented by unique parameters (t,θ) ∈ R× [0,π). This leads

us to the Radon transform R, defined as

(R f )(t,θ) =
∫
`t,θ

f (x,y)dxdy for (t,θ) ∈ R× [0,π).

Note that the Radon transform R is a linear integral operator that maps a bivari-

ate function f ≡ f (x,y) ∈ L1(R2) in Cartesian coordinates onto a bivariate function

R f ≡ (R f )(t,θ) in polar coordinates. For a comprehensive mathematical treatment

of the Radon transform, we refer to [5, 9].

Therefore, the basic reconstruction problem, Problem 1.1, seeks for the inversion

of the Radon transform R f from input Radon data
{
R f (t,θ) | t ∈ R, θ ∈ [0,π)

}
. We

remark that this problem has a very long history, dating back to Johann Radon, whose

seminal work [10] provided an analytical inversion of R already in 1917. This has later

led to the filtered back projection (FBP) formula (see [4, 9]),

f (x,y) =
1
2

B
(
F−1[|S|F (R f )(S,θ)]

)
(x,y) for all (x,y) ∈ R2, (1)

where the back projection B is the adjoint operator of R, and where F is the univariate

Fourier transform acting on variable S. In the following of this paper, we explain on (1)

and its ingredients in more detail. For the moment, we only wish to remark that the

FBP formula (1) is highly sensitive with respect to noise, due to the filter |S|.
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In standard stabilization methods for the FBP formula, |S| in (1) is replaced by a

compactly supported low-pass filter AL : R−→ R, with bandwidth L > 0, of the form

AL(S) = |S|W (S/L), (2)

where W ∈ L∞(R) is an even window function of compact support supp(W )⊆ [−1,1],

so that supp(AL)⊆ [−L,L]. This modification leads us to an approximate FBP formula

fL(x,y) =
1
2

B
(
F−1[AL(S)F (R f )(S,θ)]

)
(x,y). (3)

Examples for windows W of commonly used low-pass filters AL(S) = |S|W (S/L)

are shown in Table 1.

Table 1: Window functions of commonly used low-pass filters.

Name W (S) for |S| ≤ 1 Parameter

Ram-Lak 1 -

Shepp-Logan sinc(πS/2) -

Cosine cos(πS/2) -

Hamming β +(1−β )cos(πS) β ∈ [1/2,1]

Gaussian exp
(
−(πS/β)2

)
β > 1

In this paper, we analyse the inherent reconstruction error

eL = f − fL (4)

of the FBP approximation fL that is incurred by the chosen low-pass filter AL, for L> 0.

We remark that pointwise and L∞-error estimates on eL in (4) were proven by Mun-

shi et al. in [7]. Their results are further supported by numerical experiments in [8].

Error bounds on the Lp-norm of eL, in terms of an Lp-modulus of continuity of the tar-

get function f , were proven by Madych in [6]. But our approach is essentially different

from previous approaches, in particular different from that in [6].

We prove error estimates on eL in (4) for target functions f from Sobolev spaces

Hα(R2) of fractional order α > 0. Recall that the Sobolev space Hα(R2) of order α is
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defined as

Hα(R2) =
{

f ∈S ′(R2) | ‖ f‖α < ∞
}
,

where S ′(R2) consists of the tempered distributions with respect to the Schwartz space

S (R2), and where the Sobolev norm ‖ · ‖α ≡ ‖ ·‖Hα (R2) on Hα(R2) is given as

‖ f‖2
α =

1
4π2

∫
R

∫
R

(
1+ x2 + y2)α |F f (x,y)|2 dxdy for f ∈ Hα(R2).

In previous work [1, 2] we analysed the approximation properties of fL in (3). More

precisely, in [2, Theorem 4.1] we proved L2-error estimates of the form

‖ f − fL‖L2(R2) ≤
(

Φ
1/2
α,W (L)+L−α

)
‖ f‖α (5)

for target functions f ∈ L1(R2)∩Hα(R2), where α > 0, and where Φα,W : R−→ R is

a specific function that we discuss later. Moreover, in [2, Theorem 4.2] we showed the

convergence of the FBP approximation, where we proved Φα,W (L)−→ 0 for L−→ 0.

To establish the L2-error estimate in (5), along with the convergence of the FBP

approximation, we were implicitly relying on the continuity of the window function W ,

i.e., we required W ∈ C (R). This assumption, is, however, too restrictive, so that

commonly used low-pass filters, including the Ram-Lak and the Shepp-Logan filter,

are not covered by our analysis in [1, 2].

In this paper, we show how to maintain our previous L2-error estimates and conver-

gence results from [1, 2], in particular that in (5), but now under weaker conditions on

the window function W , where we only require W ∈ L∞(R) with supp(W ) ⊆ [−1,1].

In this way, the analysis of this paper also covers the Ram-Lak and the Shepp-Logan

filter.

Moreover, we extend our error analysis from L2(R2) to fractional Sobolev spaces

in order to obtain asymptotic error estimates of the form

‖ f − fL‖σ ≤
(
c‖1−W‖∞,[−1,1]+1

)
Lσ−α ‖ f‖α = O(Lσ−α)

for L−→ ∞, in the rougher Sobolev spaces Hσ (R2), for 0≤ σ ≤ α .

In our subsequent analysis, we rely, as in [1, 2], on the representation

fL =
1
2

B
(
F−1AL ∗R f

)
= f ∗KL, (6)
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with the convolution kernel

KL =
1
2
B(F−1AL), (7)

whose properties are entirely determined by the window W and the bandwidth L >

0. In [1, 2], we essentially require the assumption KL ∈ L1(R2). In this paper, we

show how to avoid this restriction on KL, while maintaining the representations (6)

and (7) in the L2-sense, where, again, we only rely on the assumption W ∈ L∞(R) with

supp(W )⊆ [−1,1].

The outline of this paper is as follows. In Section 2, we briefly review relevant

facts concerning the Radon transform. This is followed by an analysis on the proper-

ties of the FBP approximation fL (in Section 3) and of the convolution kernel KL (in

Section 4), where we establish the identities (6) and (7) in the L2-sense. In Section 5

we finally perform an analysis on the FBP reconstruction error eL in (4). This includes

both L2 and Sobolev error estimates and resulting convergence rates, under rather mild

assumptions on the low-pass filter’s window W ∈ L∞(R).

2. Preliminaries concerning the Radon Transform

The analytical properties of the Radon transform are well-understood (see [5, 9]).

In particular, the inversion of the Radon transform R is given by the filtered back

projection (FBP) formula (1). Nevertheless, for the reader’s convenience, we briefly

collect only a few relevant facts concerning the Radon transform, on which we rely

later in this paper. On this occasion, we introduce some basic notations. Since the

following results are well-known, we omit the proofs and refer to the literature instead.

We start with the (continuous) univariate Fourier transform on R, here taken as

Fg(S,θ) =
∫
R

g(t,θ)e−itS dt for (S,θ) ∈ R× [0,π)

for g≡ g(t,θ) satisfying g(·,θ) ∈ L1(R) for all θ ∈ [0,π), and the back projection

Bh(x,y) =
1
π

∫
π

0
h(xcos(θ)+ ysin(θ),θ)dθ for (x,y) ∈ R2

for h ∈ L1(R× [0,π)). Note that the back projection B maps a bivariate function

h ≡ h(t,θ) in polar coordinates, satisfying h(t, ·) ∈ L1([0,π)) for any t ∈ R, onto a

bivariate function Bh≡Bh(x,y) in Cartesian coordinates.
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Later in this paper, we work with the bivariate Fourier transform, given as

F f (X ,Y ) =
∫
R2

f (x,y)e−i(xX+yY ) dxdy for (X ,Y ) ∈ R2,

for f ≡ f (x,y) in Cartesian coordinates, where we assume f ∈ L1(R2).

Now we collect basic properties about R that we need in our subsequent analysis.

We first recall that for f ∈ L1(R2) its Radon transform R f is in L1(R× [0,π)).

Lemma 2.1. Let f ∈ L1(R2). Then, R f ∈ L1(R× [0,π)) with

‖R f‖L1(R×[0,π)) ≤ π ‖ f‖L1(R2).

Moreover, if f has compact support, i.e., there exists an R > 0 satisfying

f (x,y) = 0 for all (x,y) ∈ R2 with ‖(x,y)‖R2 > R,

then R f has compact support by

R f (t,θ) = 0 for all (t,θ) ∈ R× [0,π) with |t|> R. �

Next we recall that the L2-norm of R f is bounded, provided that the function f

belongs to L2
0(R2), i.e., f is square integrable and has compact support.

Lemma 2.2. Let f ∈ L2
0(R2) be supported in a compact set K ⊂ R2 with diameter

diam(K) = sup{‖(x−X ,y−Y )‖R2 | (x,y),(X ,Y ) ∈ K}< ∞.

Then, R f ∈ L2(R× [0,π)) with

‖R f‖2
L2(R×[0,π)) ≤ π diam(K)‖ f‖2

L2(R2). �

Lemma 2.2 indicates that the Radon transform R can be viewed as a densely de-

fined unbounded linear operator from L2(R2) to L2(R× [0,π)) with domain L2
0(R2).

Finally, we turn to the adjoint operator R# of the Radon transform R.

Lemma 2.3 (see [11, Theorem 12.3]). The adjoint operator of the Radon transform

R : L2
0(R2)−→ L2(R× [0,π)) is given by

R#g(x,y) =
∫

π

0
g(xcos(θ)+ ysin(θ),θ)dθ for (x,y) ∈ R2.

For every g ∈ L2(R× [0,π)), R#g is defined almost everywhere on R2 and satisfies

R#g ∈ L2
loc(R2). �
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Lemma 2.3 says that the back projection B is, up to constant 1
π

, the adjoint operator

of the Radon transform R, i.e., B = 1
π

R#. In particular, for g ∈ L2(R× [0,π)) the

function Bg is defined almost everywhere on R2 and satisfies Bg ∈ L2
loc(R2).

3. Representation of the Filtered Back Projection Approximation

Now we return to the approximate filtered back projection (FBP) formula (3),

whose properties are entirely determined by the low-pass filter AL in (2), particularly

by the choice of the window function W ∈ L∞(R). In this section we prove useful

properties concerning the main ingredients of fL in (3). This will later allow us to con-

struct asymptotic Sobolev error estimates and convergence rates, where the so obtained

bounds on the error eL = f − fL will cover our previous ones in [1, 2], but under weaker

conditions on the window function W .

Our first result concerns the representation

fL =
1
2

B
(
F−1AL ∗R f

)
(8)

in (6), where ∗ denotes the univariate convolution product with respect to the radial

variable, i.e., for g≡ g(·,θ) ∈ L1(R) and h≡ h(·,θ) ∈ L1(R) we let

(g∗h)(S,θ) =
∫
R

g(t,θ)h(S− t,θ)dt for (S,θ) ∈ R× [0,π).

We now show that fL in (3) is well-defined, for f ∈ L1(R2) and W ∈ L∞(R), and satis-

fies (8). For convenience, we introduce the band-limited function qL : R× [0,π)−→R

via

qL(S,θ) = F−1AL(S) for (S,θ) ∈ R× [0,π). (9)

Note that qL is well-defined on R× [0,π), where qL ∈L2(R× [0,π)), since the low-pass

filter AL in (2) is compactly supported, so that AL ∈ L1(R)∩L2(R) for all L > 0.

Proposition 3.1. Let f ∈ L1(R2). Moreover, let W ∈ L∞(R) be even and compactly

supported with supp(W ) ⊆ [−1,1]. Then, fL in (3) is for any L > 0 defined almost

everywhere (a.e.) on R2 and satisfies fL ∈ L2
loc(R2). Further, fL can be rewritten as

fL =
1
2

B(qL ∗R f ) a.e. on R2

with the band-limited function qL ∈ L2(R× [0,π)) defined in (9).
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Our proof of Proposition 3.1 relies on the Fourier convolution theorem.

Lemma 3.2 (see [12, Theorem I.2.6]). For d ∈ N, let f ∈ L1(Rd) and g ∈ L2(Rd).

Then, f ∗g belongs to L2(Rd) and the representation

F ( f ∗g) = F f ·Fg

holds in the L2-sense, in particular almost everywhere on Rd . �

Proof of Proposition 3.1: For f ∈ L1(R2), we obtain R f ∈ L1(R× [0,π)) by

Lemma 2.1. Consequently, F (R f )(·,θ) ∈ C0(R) for all θ ∈ [0,π) by the Riemann-

Lebesgue lemma (see e.g. [12, Theorem I.1.2]). Since W ∈ L∞(R) has compact sup-

port, this implies that the function (S,θ) 7−→ AL(S)F (R f )(S,θ) is in L2(R× [0,π)).

Thus, by the Rayleigh-Plancherel theorem (see e.g. [12, Theorem I.2.3])

(S,θ) 7−→F−1[AL(S)F (R f )(S,θ)]

is also in L2(R× [0,π)) and so

(x,y) 7−→ 1
2

B
(
F−1[AL(S)F (R f )(S,θ)]

)
(x,y) = fL(x,y)

is defined almost everywhere on R2 by Lemma 2.3, where we have fL ∈ L2
loc(R2).

Recall that the band-limited function qL = F−1AL in (9) is well-defined, where

qL ∈ L2(R× [0,π)). Therefore, for any fixed θ ∈ [0,π), the Fourier inversion formula

AL(S) = F (F−1AL)(S) = FqL(S,θ)

holds in the L2-sense, in particular for almost every S ∈ R.

Since R f (·,θ) ∈ L1(R) and qL(·,θ) ∈ L2(R), we obtain the representation

AL(S)F (R f )(S,θ) = F (qL ∗R f )(S,θ) for almost every S ∈ R

from the Fourier convolution theorem, Lemma 3.2. Moreover, by Young’s inequality

(see e.g. [3, Theorem 3.9.4]) we have (qL ∗R f )(·,θ) ∈ L2(R), for any θ ∈ [0,π), and

so the Fourier inversion formula holds again in the L2-sense. Hence, for any θ ∈ [0,π)

we obtain the representation

(qL ∗R f )(S,θ) = F−1[F (qL ∗R f )(S,θ)] = F−1[AL(S)F (R f )(S,θ)]

8



for almost every S ∈ R. But this implies

fL =
1
2

B(qL ∗R f ) a.e. on R2,

where fL ∈ L2
loc(R2) due to Lemma 2.3, since (qL ∗R f ) ∈ L2(R× [0,π)). �

4. Properties of the Convolution Kernel

Before we turn to error estimates on eL, we first analyse the properties of the FBP

approximation fL, where we will show f ∈ L2(R2). Moreover, it is convenient to

express the FBP reconstruction (8) in terms of the target function f as

fL = f ∗KL (10)

with the convolution kernel KL : R2 −→ R as in (7) given by

KL(x,y) =
1
2

BqL(x,y) for (x,y) ∈ R2. (11)

Since qL ∈ L2(R× [0,π)), the convolution kernel KL is defined almost everywhere

on R2 and satisfies KL ∈ L2
loc(R2) by Lemma 2.3. In the following proposition, we

prove KL ∈ L2(R2). Moreover, we determine the Fourier transform of KL, as needed in

the upcoming analysis on the reconstruction error. To this end, we extend the window

function WL =W (·/L) to R2 by its radialization WL : R2 −→ R, i.e.,

WL(x,y) =W
(

r(x,y)
L

)
for (x,y) ∈ R2, (12)

where we let r(x,y) =
√

x2 + y2 for (x,y) ∈ R2.

Proposition 4.1. Let W ∈ L∞(R) be even with compact support supp(W ) ⊆ [−1,1].

Then, for any L > 0 the convolution kernel KL in (11) satisfies KL ∈ C0(R2)∩L2(R2)

and its Fourier transform is given by

FKL(x,y) =WL(x,y) for almost every (x,y) ∈ R2 (13)

with the compactly supported bivariate window function WL ∈ L∞(R2) defined in (12).
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Proof: Since W ∈ L∞(R) has compact support, the bivariate window function WL

in (12) is compactly supported and satisfies WL ∈ Lp(R2) for all 1≤ p≤ ∞.

In particular, we have WL ∈ L1(R2)∩L2(R2). Hence, F−1WL ∈ C0(R2)∩L2(R2)

due to the Riemann-Lebesgue lemma and the Rayleigh-Plancherel theorem. Moreover,

F−1WL(x,y) =
1

4π2

∫
R

∫
R

WL(X ,Y )ei(xX+yY ) dX dY

=
1

4π2

∫
π

0

∫
R

W (S/L) |S|eiS(xcos(θ)+ysin(θ)) dSdθ

=
1

4π2

∫
π

0

∫
R

AL(S)eiS(xcos(θ)+ysin(θ)) dSdθ

for all (x,y) ∈ R2, by transforming from Cartesian to polar coordinates.

Recall AL ∈ L1(R)∩L2(R) and qL ∈ L2(R× [0,π)). By Fubini’s theorem, we get

F−1WL(x,y) =
1

2π

∫
π

0
qL(xcos(θ)+ ysin(θ),θ)dθ =

1
2

BqL(x,y) = KL(x,y)

for all (x,y) ∈ R2. Hence, we have KL ∈ C0(R2)∩L2(R2). By Fourier inversion, we

finally get the identity (13) in the L2-sense, in particular almost everywhere on R2. �

Before we proceed, we wish to add one more remark concerning the convolution

kernel KL. To this end, note that the bivariate window function WL in (12) has compact

support. Therefore, KL is analytic, due to the Paley-Wiener theorem, i.e., KL ∈C ∞(R2).

We are now in a position where we can prove the desired representation in (10),

i.e.,

fL =
1
2

B(qL ∗R f ) = f ∗KL (14)

in the L2-sense. In particular, we can show that fL ∈ L2(R2).

Proposition 4.2. Let f ∈ L1(R2). Moreover, let W ∈ L∞(R) be even and compactly

supported with supp(W )⊆ [−1,1]. Then, fL ∈ L2(R2), for any L > 0, where we have

fL = f ∗KL

in the L2-sense, in particular almost everywhere on R2.

Proof: Since f ∈ L1(R2) by assumption and KL ∈ L2(R2) due to Proposition 4.1,

Young’s inequality yields f ∗KL ∈ L2(R2). Therefore, the Fourier inversion formula

( f ∗KL)(x,y) =
1

4π2

∫
R

∫
R

F ( f ∗KL)(X ,Y )ei(xX+yY ) dX dY
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holds in the L2-sense, in particular for almost every (x,y) ∈ R2.

From the Fourier convolution theorem, Lemma 3.2, and Proposition 4.1, we get

F ( f ∗KL) = F f ·FKL =WL ·F f a.e. on R2,

which in turn implies

( f ∗KL)(x,y) =
1

4π2

∫
R

∫
R

F f (X ,Y )WL(X ,Y )ei(xX+yY ) dX dY.

Since W ∈ L∞(R) has compact support and f ∈ L1(R2), we can apply Fubini’s theorem

to obtain

( f ∗KL)(x,y) =
1

4π2

∫
π

0

∫
R

F f (Scos(θ),S sin(θ))W (S/L) |S|eiS(xcos(θ)+ysin(θ)) dSdθ

by transformation (X ,Y ) = (Scos(θ),S sin(θ)) from Cartesian to polar coordinates.

Now, for f ∈ L1(R2), the Fourier slice theorem (see e.g. [9, Theorem II.1.1]) yields

F f (Scos(θ),S sin(θ)) = F (R f )(S,θ) for all (S,θ) ∈ R× [0,π),

which in turn implies

( f ∗KL)(x,y) =
1

4π2

∫
π

0

∫
R

F (R f )(S,θ)W (S/L) |S|eiS(xcos(θ)+ysin(θ)) dSdθ

=
1

4π2

∫
π

0

∫
R

F (R f )(S,θ)AL(S)eiS(xcos(θ)+ysin(θ)) dSdθ .

Since AL is in L1(R)∩L2(R), we have F−1AL ∈ L2(R) and so

AL(S) = F (F−1AL)(S)

holds in the L2-sense, in particular for almost every S ∈ R. Therefore, by Young’s

inequality we have

(qL ∗R f )(·,θ) ∈ L2(R) for all θ ∈ [0,π)

for the band-limited function qL ∈ L2(R× [0,π)) in (9). Moreover, by the Fourier

convolution theorem, Lemma 3.2, the identity

F (qL ∗R f )(S,θ) = FqL(S,θ)F (R f )(S,θ) = AL(S)F (R f )(S,θ)
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holds in the L2-sense, for any θ ∈ [0,π), since R f (·,θ)∈ L1(R) and qL(·,θ)∈ L2(R).

Therefore, we obtain

( f ∗KL)(x,y) =
1

4π2

∫
π

0

∫
R

F (qL ∗R f )(S,θ)eiS(xcos(θ)+ysin(θ)) dSdθ

=
1

2π

∫
π

0
F−1[F (qL ∗R f )](xcos(θ)+ ysin(θ),θ)dθ .

Since (qL ∗R f )(·,θ) ∈ L2(R), for any θ ∈ [0,π), the Fourier inversion formula yields

(qL ∗R f )(S,θ) = F−1[F (qL ∗R f )](S,θ) for almost every S ∈ R.

This finally implies fL ∈ L2(R2), along with the stated representation, since

( f ∗KL)(x,y) =
1

2π

∫
π

0
(qL ∗R f )(xcos(θ)+ ysin(θ),θ)dθ

=
1
2

B(qL ∗R f )(x,y) = fL(x,y)

holds in the L2-sense, in particular for almost every (x,y) ∈ R2. �

5. Analysis of the FBP Reconstruction Error

Now we analyse the reconstruction error eL = f − fL of the FBP approximation

fL for target functions f ∈ L1(R2)∩Hα(R2), where α > 0. To this end, we prove

Sobolev error estimates and convergence rates for eL with respect to the Hσ (R2)-norm,

for 0≤ σ ≤ α . This in particular gives L2-error estimates, when σ = 0.

Throughout this section we assume that the low-pass filter’s window W ∈ L∞(R) is

even and compactly supported with supp(W )⊆ [−1,1]. This is in contrast to our previ-

ous work [1, 2], where we implicitly required the more restrictive condition W ∈ C (R).

5.1. L2-Error Estimates

Let us now turn to the analysis of the reconstruction error eL = f − fL in L2(R2).

To start with, we assume f ∈ L1(R2)∩L2(R2). By Proposition 4.2, the stated assump-

tions on f and W , we have fL ∈ L2(R2) for the FBP approximation, along with the

representation (14), i.e., fL = f ∗KL. But this immediately implies

‖ f − fL‖2
L2(R2) = ‖ f − f ∗KL‖2

L2(R2) =
1

4π2 ‖F f −F f ·FKL‖2
L2(R2)

12



by the Fourier convolution formula, Lemma 3.2, and the Rayleigh-Plancherel theorem.

Moreover, by Proposition 4.1, the Fourier transform FKL of the convolution kernel KL

in (11) is given by the bivariate window function WL in (12), i.e., FKL =WL, so that

‖ f − fL‖2
L2(R2) =

1
4π2 ‖F f −WL ·F f‖2

L2(R2)

=
1

4π2

∫
R

∫
R
|(F f −WL ·F f )(x,y)|2 dxdy.

Now we split this representation for ‖ f − fL‖2
L2(R2)

into a sum of two integrals,

‖ f − fL‖2
L2(R2) = I1 + I2,

where we let

I1 =
1

4π2

∫
‖(x

y)‖2
≤L
|(F f −WL ·F f )(x,y)|2 dxdy,

I2 =
1

4π2

∫
‖(x

y)‖2
>L
|F f (x,y)|2 dxdy.

We analyse the two error terms separately. Integral I1 can be bounded above by

I1 =
1

4π2

∫
r(x,y)≤L

(
1−WL(r(x,y))

)2 |F f (x,y)|2 dxdy

≤ ‖1−WL‖2
∞,[−L,L]

1
4π2

∫
R

∫
R
|F f (x,y)|2 dxdy = ‖1−W‖2

∞,[−1,1] ‖ f‖2
L2(R2),

whereas for f ∈ Hα(R2), α > 0, integral I2 can be bounded above by

I2 =
1

4π2

∫
r(x,y)>L

(
1+ x2 + y2)α (1+ x2 + y2)−α |F f (x,y)|2 dxdy

≤ 1
4π2

∫
r(x,y)>L

(
1+ x2 + y2)α L−2α |F f (x,y)|2 dxdy

≤ L−2α ‖ f‖2
α .

We can summarize our discussion as follows.

Theorem 5.1 (L2-error estimate). For α > 0 let f ∈ L1(R2)∩Hα(R2). Moreover,

let W ∈ L∞(R) be even and compactly supported with supp(W ) ⊆ [−1,1]. Then, the

L2-norm of the FBP reconstruction error eL = f − fL is for any L > 0 bounded above

by

‖ f − fL‖L2(R2) ≤ ‖1−W‖∞,[−1,1] ‖ f‖L2(R2)+L−α ‖ f‖α . (15)

�
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Before we proceed, we wish to make a few remarks about the result of Theorem 5.1.

First note that the first term on the right hand side of (15) depends on W and f , but

not on L. To obtain convergence ‖ f − fL‖L(R2) −→ 0 for L−→∞ from (15), we require

‖1−W‖∞,[−1,1] = 0, which is satisfied by the window W = χ[−1,1] of the Ram-Lak filter.

Moreover, for W = χ[−1,1], the smoothness α of f determines the decay rate in (15) by

L−α ‖ f‖α = O(L−α) for L−→ ∞.

We remark that the L2-error estimate (15) in Theorem 5.1 was first presented in [1],

but under stronger assumptions. In fact, in [1, Theorem 1] we assume KL ∈ L1(R2) for

the convolution kernel, in which case the window function WL = FKL in (12) is con-

tinuous, i.e., WL ∈ C (R2), due to the Riemann-Lebesgue lemma. But this assumption

on WL, i.e. on W , is rather restrictive and, in particular, not satisfied by commonly used

window functions W , e.g. those of the filters Ram-Lak or Shepp-Logan (cf. Table 1).

5.2. Sobolev Error Estimates

In this subsection, we prove Hσ -Sobolev error estimates, for 0 ≤ σ ≤ α , for the

FBP reconstruction error eL for target functions f ∈ L1(R2)∩Hα(R2) for some α > 0.

We first show that the FBP approximation fL belongs to the Sobolev space Hσ (R2)

for 0 ≤ σ ≤ α . To this end, recall that we analysed the convolution kernel KL by

Proposition 3.1, where we found KL ∈ C0(R2)∩L2(R2) and, moreover, FKL = WL.

This in combination with the representation fL = f ∗KL in Proposition 4.2 yields

‖ fL‖2
σ = ‖ f ∗KL‖2

σ

=
1

4π2

∫
R2

(
1+ r(x,y)2)σ |(WL ·F f )(x,y)|2 d(x,y)

≤
(

sup
r(x,y)≤L

|WL(x,y)|2
)
‖ f‖2

α = ‖W‖2
∞,[−1,1] ‖ f‖2

α .

Therefore, we have fL ∈ Hσ (R2) for any 0≤ σ ≤ α .

Let us now analyse the FBP reconstruction error eL with respect to the Hσ -norm.

For γ ≥ 0, we define

rγ(x,y) =
(
1+ r(x,y)2)γ

=
(
1+ x2 + y2)γ for (x,y) ∈ R2

14



so that the Hσ -norm of eL = f − fL can be expressed as

‖ f − fL‖2
σ =

1
4π2

∫
R2

rσ (x,y) |F ( f − fL)(x,y)|2 d(x,y)

=
1

4π2

∫
R2

rσ (x,y) |(F f −WL ·F f )(x,y)|2 d(x,y)

= I1 + I2,

where for BL =
{
(x,y) ∈ R2 | r(x,y)≤ L

}
we let

I1 =
1

4π2

∫
BL

rσ (x,y) |1−WL(x,y)|2 |F f (x,y)|2 d(x,y) (16)

I2 =
1

4π2

∫
R2\BL

rσ (x,y) |F f (x,y)|2 d(x,y). (17)

Now for γ ≥ 0, we define the function

Φγ,W (L) = sup
S∈[−1,1]

(1−W (S))2

(1+L2S2)γ for L > 0,

as already mentioned in (5), so that we can bound the integral I1 in (16) from above by

I1 ≤
(

sup
(x,y)∈BL

(1−WL(x,y))2

rα−σ (x,y)

)
‖ f‖2

α = Φα−σ ,W (L)‖ f‖2
α ,

where we used the identity

sup
(x,y)∈BL

(1−WL(x,y))2

rα−σ (x,y)
= sup

S∈[−L,L]

(1−W (S/L))2

(1+S2)α−σ
.

For 0≤ σ ≤ α , we can bound the integral I2 in (17) by

I2 ≤ L2(σ−α) 1
4π2

∫
R2\BL

rσ (x,y) |F f (x,y)|2 d(x,y)

≤ L2(σ−α) ‖ f‖2
α .

Combining the estimates for I1 and I2, we finally obtain

‖ f − fL‖2
σ ≤

(
Φα−σ ,W (L)+L2(σ−α)

)
‖ f‖2

α ,

so that we can summarize the discussion of this subsection as follows.

Theorem 5.2 (Hσ -error estimate). For α > 0, let f ∈ L1(R2)∩Hα(R2). Moreover,

let W ∈ L∞(R) be even and compactly supported with supp(W ) ⊆ [−1,1]. Then, for

0≤ σ ≤α , the Hσ -norm of the FBP reconstruction error eL = f − fL is bounded above

by

‖ f − fL‖σ ≤
(

Φ
1/2
α−σ ,W (L)+Lσ−α

)
‖ f‖α . (18)

15



For σ = 0 we obtain an L2-error estimate which is more refined than that in (15).

Corollary 5.3 (Refined L2-error estimate). Suppose f ∈L1(R2)∩Hα(R2) for α > 0.

Moreover, let W ∈ L∞(R) be even and compactly supported with supp(W ) ⊆ [−1,1].

Then, the L2-norm of the FBP reconstruction error eL = f − fL is bounded above by

‖ f − fL‖L2(R2) ≤
(

Φ
1/2
α,W (L)+L−α

)
‖ f‖α . (19)

�

We remark that the more refined L2-error estimate in (19) agrees with that of our

previous result in [2, Theorem 4.1], where, in contrast to Corollary 5.3, we required

the more restrictive condition KL ∈ L1(R2), and so W ∈ C (R).

Like in the L2-error estimate of [2, Theorem 4.1], the Hσ -error estimate in (18) and

the L2-error estimate in (19) involves the error term Φγ,W (L), for γ = α −σ in (18)

and for γ = α in (19). Therefore, we can rely on the analysis in [2] concerning the

properties of Φγ,W (L).

5.3. Convergence Rates in Sobolev Spaces

In this section, we analyse the convergence of the reconstruction error eL = f − fL

in (4). To this end, let S∗
γ,W,L ∈ [0,1], for γ ≥ 0, be the smallest maximizer in [0,1] of

the even function

Φγ,W,L(S) =
(1−W (S))2

(1+L2S2)γ for S ∈ [−1,1].

To determine the rate of convergence for ‖ f − fL‖σ , we assume that S∗
α−σ ,W,L is

uniformly bounded away from 0, i.e., there exists a constant cα−σ ,W > 0 satisfying

S∗α−σ ,W,L ≥ cα−σ ,W for all L > 0. (20)

Then, the error term Φα−σ ,W (L) is bounded above by

Φα−σ ,W (L) =

(
1−W (S∗

α−σ ,W,L)
)2(

1+L2(S∗
α−σ ,W,L)

2
)α−σ

≤ c2(σ−α)
α−σ ,W ‖1−W‖2

∞,[−1,1] L
2(σ−α).

In this case, we obtain

‖ f − fL‖2
σ ≤

(
c2(σ−α)

α−σ ,W ‖1−W‖2
∞,[−1,1]+1

)
L2(σ−α) ‖ f‖2

α = O(L2(σ−α))

for L−→ ∞.
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In summary, this yields the following result.

Theorem 5.4 (Rate of convergence in Hσ ). Let the assumptions of Theorem 5.2 and

in (20) be satisfied. Then, for 0≤ σ ≤ α , the Hσ -norm of the FBP reconstruction error

eL = f − fL is bounded above by

‖ f − fL‖σ ≤
(

cσ−α

α−σ ,W ‖1−W‖∞,[−1,1]+1
)

Lσ−α ‖ f‖α = O(Lσ−α) (21)

for L−→ ∞. �

Note that the decay rate σ −α in (21) is determined by the difference between the

order σ of the Sobolev norm in which the reconstruction error eL is measured and the

smoothness α of the target function f . Moreover, note that for the special case σ = 0

we obtain the following L2-error estimate.

Corollary 5.5 (Rate of convergence in L2). Let the assumptions of Theorem 5.2 and

in (20) be satisfied. Then, the L2-norm of the FBP reconstruction error eL = f − fL is

bounded above by

‖ f − fL‖L2(R2) ≤
(

c−α

α,W ‖1−W‖∞,[−1,1]+1
)

L−α ‖ f‖α = O(L−α)

for L−→ ∞. �

We remark that assumption (20) is satisfied for a large class of window functions.

For example, let W satisfy W (S) = 1, for all S ∈ (−ε,ε), with ε ∈ (0,1). Then, as-

sumption (20) is fulfilled with the constant cα−σ ,W = ε for all 0≤ σ ≤ α .

6. Conclusion

We have proven L2 and Sobolev error estimates, along with convergence rates,

for filtered back projection to approximate target functions f from fractional Sobolev

spaces Hα(R2). We only require W ∈ L∞(R), with supp(W ) ⊆ [−1,1], for the low-

pass filter’s window W . This is in contrast to our previous work [1, 2], where we relied

on the more restrictive condition W ∈ C (R) to obtain error estimates and convergence

rates in L2(R2). Therefore, the analysis of this paper covers a larger class of low-pass

filters, including the Ram-Lak und the Shepp-Logan filter, and, moreover, generalises

our previous error estimates from L2(R2) to Sobolev spaces Hσ (R2), for 0≤ σ ≤ α .
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