
ar
X

iv
:1

80
5.

02
93

3v
1 

 [
m

at
h.

C
O

] 
 8

 M
ay

 2
01

8

AN ANALOGUE OF EDMONDS’ BRANCHING THEOREM FOR

INFINITE DIGRAPHS

J. PASCAL GOLLIN AND KARL HEUER

Abstract. We extend Edmonds’ Branching Theorem to locally finite infinite
digraphs. As examples of Oxley or Aharoni and Thomassen show, this can-
not be done using ordinary arborescences, whose underlying graphs are trees.
Instead we introduce the notion of pseudo-arborescences and prove a corre-
sponding packing result. Finally, we verify some tree-like properties for these
objects, but give also an example that their underlying graphs do in general

not correspond to topological trees in the Freudenthal compactification of the
underlying multigraph of the digraph.

1. Introduction

Studying how to force spanning structures in finite graphs is a basic task. The
most fundamental spanning structure is a spanning tree, whose existence is already
characterised by the connectedness of the graph. Moving on and characterising
the existence of a given number of edge-disjoint spanning trees via an immediately
necessary condition, Nash-Williams [8] and Tutte [11] independently proved the
following famous theorem.

Theorem 1.1. [8, 11], [3, Thm. 2.4.1] A finite multigraph G has k ∈ N edge-

disjoint spanning trees if and only if for every partition P of V (G) there are at

least k(|P| − 1) edges in G whose endvertices lie in different partition classes.

Later, Edmonds [6] generalised Theorem 1.1 to finite digraphs, also involving
a condition which is immediately seen to be necessary for the existence of the
spanning structures. In his theorem, Edmonds considers as spanning structures
out-arborescences rooted in a vertex r, i.e., spanning trees whose edges are directed
away from the root r. His theorem immediately implies a corresponding result for
in-arborescences rooted in r, i.e., spanning trees directed towards r, via reversing
every edge in the digraph. For this reason we shall focus in this paper only on
out-arborescences and denote them just by arborescences.

Theorem 1.2. [6], [2, Thm. 9.5.1] A finite digraph G with a vertex r ∈ V (G) has

k ∈ N edge-disjoint spanning arborescences rooted in r if and only if there are k
edges from X to Y for every bipartition (X,Y ) of V (G) with r ∈ X.

One of the main results of this paper is to extend Theorem 1.2 to a certain
class of infinite digraphs. There has already been work in this area. In order to
mention two important results about this let us call a one-way infinite path all
whose edges are directed away from the unique vertex incident with only one edge
a forward directed ray. Similarly, we call the digraph obtained by reversing all
edges of a forward directed ray a backwards directed ray. Thomassen [10] extended
Theorem 1.2 to infinite digraphs that do not contain a backwards directed ray,
while Joó [7] obtained an extension for infinite digraphs without forward directed
rays using different methods. In contrast to these two results we shall demand a
local property for our digraphs by considering locally finite digraphs, i.e., digraphs
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where every vertex has finite in- and out-degree. Similarly, undirected multigraphs
are called locally finite if every vertex has finite degree.

When trying to extend Theorem 1.2 to infinite digraphs it is important to know
that a complete extension is not possible. The reason for this is that Oxley [9,
Ex. 2] constructed a locally finite graph without two edge-disjoint spanning trees
but fulfilling the necessary condition in Theorem 1.1. Following up, Aharoni and
Thomassen [1, Thm.] gave a construction for further counterexamples to Theo-
rem 1.2, which are all locally finite and can even be made 2k-edge-connected for
arbitrary k ∈ N. Hence, using ordinary spanning trees for an extension of Theo-
rem 1.1 to locally finite graphs does not work. This immediately implies that ex-
tending Theorem 1.2 to locally finite digraphs fails as well if ordinary arborescences
are used. While Thomassen and Joó could overcome this problem by forbidding
certain one-way infinite paths, for us it is necessary to additionally change the no-
tion of arborescence since the counterexamples to direct extensions of Theorem 1.1
and Theorem 1.2 to infinite (di)graphs are locally finite.

For undirected locally finite (connected) multigraphs G the problem of how to
extend Theorem 1.1 has successfully been overcome. The key was to not just
consider G but the Freudenthal compactification |G| [3, 4] of the 1-complex of
G. Instead of ordinary spanning trees, now packings of topological spanning trees
of G are considered. We call a topologically connected subspace of |G| which
is the closure of a set of edges of G, contains all vertices of G but contains no
homeomorphic image of the unit circle S1 ⊆ R2, a topological spanning tree of
G. There is an equivalent but more combinatorial, and especially finitary, way of
defining topological spanning trees of G. They are precisely the closures in |G| of
the minimal edge sets that meet every finite cut of G [3]. As already observed by
Tutte, this finitary condition can be used to obtain the following packing theorem
for disjoint edge sets each meeting every finite cut, via the compactness principle.

Theorem 1.3. [11] A locally finite multigraph G has k ∈ N disjoint edge sets each

meeting every finite cut of G if and only if for every finite partition P of V (G)
there are at least k(|P| − 1) edges in G whose endvertices lie in different partition

classes.

By the equivalence noted above, Theorem 1.3 implies a packing result for topo-
logical spanning trees:

Theorem 1.4. [3, Thm. 8.5.7] A locally finite multigraph G has k ∈ N edge-disjoint

topological spanning trees if and only if for every finite partition P of V (G) there

are at least k(|P|−1) edges in G whose endvertices lie in different partition classes.

In the spirit of Tutte’s approach, we prove the following packing theorem gen-
eralising Theorem 1.2 to locally finite digraphs for what we call spanning pseudo-
arborescences rooted in some vertex r. For a locally finite weakly connected digraph
G and r ∈ V (G) we define a spanning pseudo-arborescences rooted in r as a minimal
edge set F ⊆ E(G) such that F contains an edge directed from X to Y for every
bipartition (X,Y ) of V (G) with r ∈ X and finitely many edges between X and Y
in either direction.

Theorem 1.5. A locally finite weakly connected digraph G with r ∈ V (G) has

k ∈ N edge-disjoint spanning pseudo-arborescences rooted in r if and only if there

are k edges from X to Y for every bipartition (X,Y ) of V (G) with r ∈ X and

finitely many edges between X and Y in either direction.

In fact we shall prove a slightly stronger version of this theorem, Theorem 4.3,
which requires more notation.



3

While minimal edges sets meeting every finite cut in an undirected multigraph
turn out to be topological extensions of finite trees, there is no analogous topolog-
ical interpretation of spanning pseudo-arborescences on terms of the Freudenthal
compactification of the underlying multigraph. In Section 5 we give an example of a
digraph G with underlying multigraph H where the closure in |H | of the underlying
undirected edges of any spanning pseudo-arborescence of G contains a homeomor-
phic image of S1. We shall be able to extend to pseudo-arborescences, in a suitable
topological setting, the property of finite arborescences of being edge-minimal such
that each vertex is still reachable by a directed path from the root. While in finite
arborescences such directed paths are unique, however, their analogues in pseudo-
arborescences are not in general unique. This will be illustrated by an example
given in Section 5.

Finally, we prove the following structural characterisation for spanning pseudo-
arborescences.

Theorem 1.6. Let G be a locally finite weakly connected digraph and r ∈ V (G).
Then the following statements are equivalent for an edge set F ⊆ E(G) containing

an edge from X to Y for every bipartition (X,Y ) of V (G) with r ∈ X and finitely

many edges between X and Y in either direction.

(i) F is a spanning pseudo-arborescences rooted in r.
(ii) For every vertex v 6= r of G there is a unique edge in F whose head is v, and

no edge in F has r as its head.

(iii) For every weak component T of G[F ] the following holds: If r ∈ V (T ), then T
is an arborescence rooted in r. Otherwise, the underlying multigraph of T is a

tree, T contains a backwards directed ray and all other edges of T are directed

away from that ray.

We prove a slightly more general version of Theorem 1.6 in Section 5 (cf. Theo-
rem 5.3).

The structure of this paper is as follows. In Section 2 we give basic definitions
and fix our notation for directed and undirected (multi)graphs. We especially
refer to the topology we consider on locally finite (weakly) connected digraphs
and (undirected) multigraphs, and state some basic lemmas that we shall need for
our main results. In Section 3 we extend some lemmas about directed walks and
paths in finite digraphs to locally finite (weakly) connected digraphs. Section 4 is
dedicated to the proof of Theorem 1.5. We complete the paper in Section 5 with
the proof of Theorem 1.6 and a discussion about how much pseudo-arborescences
resemble finite arborescences or topological trees.

2. Preliminaries

For basic facts about finite and infinite graphs we refer the reader to [3]. As a
source especially for facts about directed graphs we refer to [2].

Throughout the whole paper we shall often write G = (V,E) for a digraph.
Then V (G) will denote its vertex set V and E(G) its set of directed edges E. As
for undirected graphs, we shall call the elements of E(G) just edges. In general,
we allow our digraphs to have parallel edges, but no loops. We view the edges of a
digraph G as ordered pairs (a, b) of vertices a, b ∈ V (G) and shall write ab instead of
(a, b), although this might not uniquely determine an edge. For an edge ab ∈ E(G)
we furthermore denote the vertex a as the tail of ab and b as the head of ab.

For two disjoint vertex sets X,Y of a digraph G we denote by E(X,Y ) the set
of all edges of G having not both, their head and their tail, in just one of the sets

X and Y . By
−→
E (X,Y ) we denote the set of edges of G that have their tail in X

and their head in Y . For a multigraph or digraph G we call the edge set E(X,Y )
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a cut if (X,Y ) is a bipartition of V (G). If we introduce a cut E(X,Y ), then
we implicitly want (X,Y ) to be the corresponding bipartition of V (G) defining

the cut. For a vertex set X ⊆ V (G) we set d+(X) = |
−→
E (X,V (G) \ X)| and

d−(X) = |
−→
E (V (G) \X,X)|. If X = {v} for some vertex v ∈ V (G), we write d+(v)

instead of d+({v}) and call it the out-degree of v. Similarly, we write d−(v) instead
of d−({v}) and call it the in-degree of v.

For a finite non-trivial directed path P we call the vertex of out-degree 1 and
in-degree 0 in P the start vertex of P . Similarly, the vertex of in-degree 1 and
out-degree 0 in P the endvertex of P . If P consists only of a single vertex, we call
that vertex the endvertex of P .

We define a finite directed walk as a tuple (W , <W) with the following properties:

(1) W is a weakly connected graph with at least one vertex on the edge set
E(W) = {e1, e2, . . . , en} for some n ∈ N such that the head of ei−1 is the
tail of ei for every i ∈ N satisfying 1 ≤ i ≤ n.

(2) <W is a linear order on E(W) stating that ei <W ej if and only if i < j for
all i, j ∈ {1, . . . , n}.

We call a directed walk without edges trivial and call its unique vertex its endvertex.
Otherwise, we call the tail of e1 the start vertex of (W , <W) and the tail of en the
endvertex of (W , <W). If the start vertex and the endvertex of finite directed walk
are equal, we call it closed. Lastly, we call (W , <W) a finite directed s–t walk for
two vertices s, t ∈ V (W) if s is the start vertex of (W , <W) and t is the endvertex
of (W , <W). We might call a finite graph W a finite directed walk and implicitly
assume that there exists a linear order <W , which we then also fix, such that
(W , <W) is a finite directed walk. Especially, we will say that a finite directed walk
(W , <W) is contained in a graph G′ if W is a subgraph of G′. Note that directed
paths are directed walks when equipped with the obviously suitable linear order.

We define a ray to be an undirected one-way infinite path. Any subgraph of a
ray R that is itself a ray is called a tail of R.

We call a weakly connected digraph R a backwards directed ray if there is a
unique vertex v ∈ V (R) with d−(v) = 1 and d+(v) = 0 while d−(w) = d+(w) = 1
holds for every other vertex w ∈ V (R) \ {v}. A forward directed ray is analogously
defined by interchanging d− and d+.

For an undirected multigraph G we define an equivalence relation on the set of
all rays in G. We call two rays in G equivalent if they cannot be separated by
finitely many vertices in G. An equivalence class with respect to this relation is
called an end of G. We denote the set of all ends of G by Ω(G). We define the
ends of a digraph D precisely as the ends of its underlying multigraph. The set of
all ends of D is also denoted by Ω(D). We say that a backwards directed ray R of
D is contained in some end ω ∈ Ω(D) if the underlying ray of R is contained in the
end ω of the underlying multigraph of D.

We call a digraph A an out-arborescence rooted in r if r ∈ V (A)∪Ω(A) and the
underlying multigraph of A is a tree such that d−(v) = 1 holds for every vertex
v ∈ V (A) \ {r} and additionally d−(r) = 0 in the case that r ∈ V (A), while we
demand that r contains a backwards directed ray if r ∈ Ω(A).

Note that if r ∈ V (A), then A does not contain a backwards directed ray. In
the case where r ∈ Ω(A), then r is the unique end of A containing a backwards
directed ray, since a second one would yield a vertex with in-degree bigger than 1
by using that the underlying multigraph of A is a tree. Also note that if A is a
finite digraph, the condition d−(r) = 0 for r ∈ V (A) in the definition of an out-
arborescence rooted in r is redundant, because it is implied by the tree structure
of A.
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Similarly, an in-arborescence rooted in r is defined with d− replaced by d+.
Corresponding results about in-arborescences are immediate by reversing the ori-
entations of all edges. For both types of arborescences we call r the root of the
arborescence. In this paper we shall only work with out-arborescences. Hence, we
shall drop the prefix ‘out’ and just write arborescence from now on.

A multigraph is called locally finite if each vertex has finite degree. We further
call a digraph locally finite if its underlying multigraph is locally finite.

For a vertex set X in a locally finite connected multigraph G we define its
combinatorial closure X ⊆ V (G) ∪Ω(G) as the set X together with all ends of G
that contain a ray which we cannot separate from X by finitely many vertices.
Note that for a finite cut E(X,Y ) of G we obtain that (X,Y ) is a bipartition of
V (G)∪Ω(G), because every end in X can be separated from Y by the finitely many
vertices of X that are incident with edges of E(X,Y ), and, furthermore, each ray
contains a subray that is either completely contained in X or in Y since E(X,Y )
is finite. The combinatorial closure of a vertex set in a digraph is just defined as
the combinatorial closure of that set in the underlying undirected multigraph.

Let G be a locally finite digraph and Z ⊆ V (G) \ {r} where r ∈ V (G) ∪ Ω(G).

An edge set F ⊆ E(G) is called r-reachable for Z if |F ∩
−→
E (X,Y )| ≥ 1 holds for

every finite cut E(X,Y ) of G where r ∈ X and Y ∩ Z 6= ∅. Furthermore, if F is
an r-reachable set for Z = V (G) \ {r}, we call F a spanning r-reachable set. We
continue with a very basic remark about spanning r-reachable sets.

Remark 2.1. Let G be a locally finite digraph with a spanning r-reachable set F

where r ∈ V (G)∪Ω(G). Then |F ∩
−→
E (V (G)\M,M)| ≥ 1 holds for every non-empty

finite set M ⊆ V (G) with r /∈ M .

Proof. SinceG is locally finite andM is finite, we know that the cut E(V (G)\M,M)

is finite. The assumption r /∈ M ensures that r ∈ V (G) \M . Using that F is a
spanning r-reachable set and thatM , as a non-empty set, contains a vertex different

from r, we get the desired inequality |F ∩
−→
E (V (G) \M,M)| ≥ 1 by the definition

of spanning r-reachable sets. �

Note that for a locally finite digraph G with a spanning r-reachable set F the
digraph G[F ] is spanning. This follows by applying Remark 2.1 to the set M = {v}
for every vertex v ∈ V (G). Furthermore, note that if G is finite, the subgraph
induced by a spanning r-reachable set contains a spanning arborescence rooted in
r ∈ V (G).

We conclude this section with a last definition. We call an inclusion-wise minimal
r-reachable set F for a set Z ⊆ V (G) \ {r} a pseudo-arborescence for Z rooted in r.
Moreover, if F is spanning, we call it a spanning pseudo-arborescence rooted in r.

2.1. Topological notions for undirected multigraphs.

For this subsection let G = (V,E) denote a locally finite connected multigraph.
We can endow G together with its ends with a topology which yields the topological
space |G|. A precise definition of |G| can be found in [3, Ch. 8.5]. However, this
concept and definition directly extends to locally finite connected multigraphs. For
a better understanding we should point out here that a ray of G converges in |G| to
the end of G that it is contained in. An equivalent way of describing |G| is by first
endowing G with the topology of a 1-complex and then compactifying this space
using the Freudenthal compactification [5].

For an edge e ∈ E let e̊ denote the set points in |G| that correspond to inner

points of the edge e. For an edge set F ⊆ E we define F̊ =
⋃

{̊e ; e ∈ F} ⊆ |G|.
Given a point set X in |G|, we denote the closure of X in |G| by X. To ease
notation we shall also use this notation when X denotes an edge set or a subgraph
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of G, meaning that we apply the closure operator to the set of all points in |G|
that correspond to X . Note that for a vertex set its closure coincides with its
combinatorial closure in locally finite connected multigraphs. Hence, we shall use
the same notation for these two operators. Further we call a subspace Z ⊆ |G|
standard if Z = H for a subgraph H of G.

Let W ⊆ |G| and <W be a linear order on E̊ ∩W . We call the tuple (W,<W ) a
topological walk in |G| if there exists a continuous map σ : [0, 1] −→ |G| such that
the following hold:

(1) W is the image of σ,

(2) each point p ∈ E̊ ∩W has precisely one preimage under σ, and

(3) the linear order <W equals the linear order <σ on E̊∩W defined via p <σ q
if and only if σ−1(p) <R σ−1(q) where <R denotes the natural linear order
of the reals.

We call such a map σ a witness of (W,<W ). When we talk about a topological
walk (W,<W ) we shall often omit stating its linear order<W explicitly and just refer
to the topological walk by writing W . Especially, we might say that a topological
walk (W,<W ) is contained in some subspace X of |G| if W ⊆ X holds. Further,
we call a point x of |G| an endpoint of W if 0 or 1 is mapped to x by a witness
of W . Similar to finite walks in graphs we call an endpoint x of W an endvertex of
W if x corresponds to a vertex of G. Further, we denote W as an x–y topological
walk, if x and y are endpoints of W . If W has just one endpoint, which then has to
be an end or a vertex by definition, we call it closed. Note that an x–y topological
walk is a standard subspace for any x, y ∈ V ∪ Ω(G). We say that a witness σ of
a topological walk W pauses at a vertex v ∈ V if the preimage of v under σ is a
disjoint union of closed nontrivial intervals.

We define an arc in |G| as the image of a homeomorphism mapping into |G| and
with the closed real unit interval [0, 1] ⊆ R as its domain. Note that arcs in |G|
are also topological walks in |G| if we equip them with a suitable linear order, of
which there exist only two. Since the choice of such a linear order does not change
the set of endpoints of the arc if we then consider it as a topological walk, we shall
use the notion of endpoints and endvertices also for arcs. Furthermore, note that
finite paths of G which contain at least one edge correspond to arcs in |G|, but
again there might be infinite subgraphs, for example rays, whose closures form arcs
in |G|. We now call a subspace X of |G| arc-connected if there exists an x–y arc in
X for any two points x, y ∈ X .

Lastly, we define a circle in |G| as the image of a homeomorphism mapping into
|G| and with the unit circle S1 ⊆ R2 as its domain. It is easy to check that any
circle needs to contain a vertex. Hence, we might also consider any circle as a closed
topological walk if we equip it with a suitable linear order, which, however, depends
on the point on the circle that we choose as the endpoint for the closed topological
walk, and on choosing one of the two possible orientations of S1. Similar as for
finite paths, note that finite cycles in G correspond to circles in |G|, but there might
be infinite subgraphs of G whose closures are circles in |G| as well.

Using these definitions we can now formulate a topological extension of the notion
of trees. We define a topological tree in |G| as an arc-connected standard subspace
of |G| that does not contain any circle. Note that in a topological tree there is
a unique arc between any two points of the topological tree, which resembles a
property of finite trees with respect to its vertices and finite paths. Furthermore,
we denote by a topological spanning tree of G a topological tree in |G| that contains
all vertices of G. Since topological spanning trees are closed subspaces of |G|, they
need to contain all ends of G as well.
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2.2. Topological notions for digraphs.

In this subsection we extend some of the notions of the previous subsection to
directed graphs. Throughout this subsection let G denote a locally finite weakly
connected digraph and let H denote its underlying multigraph. We define the
topological space |G| as |H |. Additionally, every edge e = uv ∈ E(G) defines

a certain linear order <e on {e} ⊆ |G| via its direction. For the definition of

<e we first take any homeomorphism ϕe : [0, 1] −→ {e} ⊆ |G| with ϕe(0) = u and

ϕe(1) = v. Now we set p <e q for arbitrary p, q ∈ {e} if ϕ−1
e (p) <R ϕ−1

e (q) where
<R is the natural linear order on the real numbers. Note that the definition of <e

does not depend on the choice of the homeomorphism ϕe.
Let (W,<W ) be a topological walk in |G| with witness σ. We call (W,<W )

directed if <e ↾̊e equals <W ↾̊e for every edge e ∈ E(G) with e̊∩W 6= ∅. If (W,<W )
is directed and σ(0) = s 6= t = σ(1) for s, t ∈ |G|, then there is no linear order
<′

W such that (W,<′
W ) is a directed topological walk with a witness σ′ satisfying

σ′(0) = t and σ′(1) = s, because every topological s–t walk uses inner points
of some edge. Hence, if we consider a directed topological s–t walk (W,<W ) for
s, t ∈ |G|, we implicitly assume that σ(0) = s 6= t = σ(1) holds for every witness σ
of (W,<W ).

As arcs and circles can be seen as special instances of topological walks, directed
arcs and directed circles are analogously defined. Note that if we can equip an
arc with a suitable linear order such that it becomes a directed topological walk,
then this linear order is unique. Hence, when we call an arc directed we implicitly
associate this unique linear order with it.

2.3. Basic lemmas.

The proofs of two lemmas (Lemma 3.1 and Lemma 4.1) rely to some extend
on compactness arguments. At those points it will be sufficient for us to use the
following lemma, which is known as König’s Infinity Lemma.

Lemma 2.2. [3, Lemma 8.1.2] Let (Vi)i∈N be a sequence of disjoint non-empty

finite sets, and let G be a graph on their union. Assume that for every n > 0 each

vertex in Vn has a neighbour in Vn−1. Then G contains a ray v0v1 . . . with vn ∈ Vn

for all n ∈ N.

We shall heavily work with the topological space |G| of a locally finite multigraph
G appearing as the underlying graph of digraphs we consider. Therefore, we shall
make use of some basic statements and properties of the space |G|, especially such
involving connectivity. Although the following lemmas are only stated for locally
finite graphs, their proofs immediately extend to locally finite multigraphs.

Proposition 2.3. [3, Lemma 8.5.1] If G is a locally finite connected multigraph,

then |G| is a compact Hausdorff space.

The next lemma is essential for decoding the topological property of arc-connect-
edness of standard subspaces of |G| into a combinatorial one.

Lemma 2.4. [3, Lemma 8.5.3] Let G be a locally finite connected multigraph and

F ⊆ E(G) be a cut with sides V1 and V2.

(i) If F is finite, then V1∩V2 = ∅, and there is no arc in |G|\F̊ with one endpoint

in V1 and the other in V2.

(ii) If F is infinite, then V1 ∩ V2 6= ∅, and there may be such an arc.

Note that for a finite cut E(X,Y ) of G we obtain that (X,Y ) is a bipartition of
V (G) ∪ Ω(G).

The following lemma captures the equivalence of arc-connectedness and connect-
edness for standard subspaces of |G|.
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Lemma 2.5. [3, Lemma 8.5.4] If G is a locally finite connected multigraph, then

every connected standard subspace of |G| is arc-connected.

We conclude with a convenient lemma which combines the essences of the pre-
vious two.

Lemma 2.6. [3, Lemma 8.5.5] If G is a locally finite connected multigraph, then a

standard subspace of |G| is connected if and only if it contains an edge from every

finite cut of G of which it meets both sides.

3. Fundamental statements about topological directed walks in

locally finite digraphs

In this section we lift several facts about topological walks and arcs to their
directed counterparts. Most of the involved techniques and proof ideas are similar
to the ones used in undirected locally finite connected multigraphs. Nevertheless,
because of overlying directed structure on the multigraph, some adjustments and
additional arguments are needed in the proofs. We start with a statement that com-
binatorially characterises the existence of directed topological walks in a standard
subspace via finite cuts.

Lemma 3.1. Let G be a locally finite weakly connected digraph, s, t ∈ V (G)∪Ω(G)
with s 6= t and F ⊆ E(G). Then the following are equivalent:

(i) F contains a directed topological s–t walk.

(ii) |F ∩
−→
E (X,Y )| ≥ 1 for every finite cut E(X,Y ) of G with s ∈ X and t ∈ Y .

(iii) |F ∩
−→
E (X,Y )| = |F ∩

−→
E (Y,X)| + 1 for every finite cut E(X,Y ) of G with

s ∈ X and t ∈ Y .

Proof. First we prove the implication from (i) to (iii). Let E(X,Y ) be any finite
cut of G with s ∈ X and t ∈ Y . Since F contains a directed topological s–t
walk (W,<W ) for an edge set W ⊆ E(G), we know that F ∩ E(X,Y ) 6= ∅ by

Lemma 2.6. Note furthermore that X ∩ Y = ∅ by Lemma 2.4. As X and Y are
closed and |G| is compact by Proposition 2.3, we get that X and Y are compact
too. Now let ϕ be a witness of W . Since Y is compact and ϕ is continuous, there
exists a smallest number q ∈ [0, 1] such that ϕ(q) ∈ Y . Furthermore, there is a
biggest number p ∈ [0, q] such that ϕ(p) ∈ X. Note that p 6= q since X ∩ Y = ∅.
Now let M = {ϕ(r) ∈ |G| ; p < r < q}. Obviously, M contains only inner
points of edges in E(X,Y ). Since M is connected, we obtain M = e̊ for some edge
e ∈ E(X,Y ). Using that <W ↾̊e equals <e ↾̊e because (W,<W ) is a directed s–t

walk, we see that e ∈ W ∩
−→
E (X,Y ). Next we consider ϕ↾[q, 1] and iterate the

previous argument. Using that E(X,Y ) contains only finitely many edges, we get

inductively that |F ∩
−→
E (X,Y )| = |F ∩

−→
E (Y,X)|+ 1 is true.

The implication from (iii) to (ii) is immediate.
It remains to show that (ii) implies (i). For this we first fix a sequence (Sn)n∈N of

finite vertex sets Sn ⊆ V (G) such that Sn $ Sn+1 for every n ∈ N and
⋃

n∈N
Sn =

V (G). For every n ∈ N let Gn denote the digraph which arises by contracting
E(G−Sn) in G. Since G is locally finite, we know that each Gn is a finite digraph.
We call the vertices of Gn that are not contained in Sn dummy vertices. Note that
each dummy vertex of Gn corresponds to a unique weak component of G− Sn.

If some v ∈ V (G)∪Ω(G) is not contained in Sn, there exists a unique component
Cn of G−Sn such that v ∈ Cn. This is obviously true if v is a vertex of G, but also
holds if v is an end of G. To see the latter statement suppose v ∈ Ω(G) is contained
in Cn for a component Cn of G − Sn. Then the cut E(V (Cn), V (G) \ V (Cn)) is

finite as Sn is finite and G is locally finite. Hence V (Cn) ∩ (V (G) \ V (Cn)) = ∅ by
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Lemma 2.4, which means that v cannot lie in the closure of another component of
G−Sn. We refer to the dummy vertex of Gn corresponding to Cn by a slight abuse
of notation as v.

Since for each n ∈ N every cut ofGn corresponds to a finite cut ofG, we obtain by
Theorem 1.2 that F ∩E(Gn) contains the edge set of a finite directed s–t walk in the
digraph Gn. Furthermore, any finite directed s–t walk (Wn+1, <Wn+1

) in Gn+1 in-
duces a finite directed s–t walk (Wn, <Wn

) in Gn via E(Wn) := E(Wn+1) ∩ E(Gn)
and defining <Wn

as <Wn+1
↾E(Wn). Note that each maximal interval with re-

spect to <Wn+1
of E(Wn+1) \ E(Wn) corresponds to some v–w walk where v and

w are the same dummy vertex of Gn. Hence each time a dummy vertex of Gn

appears as the head of some edge e ∈ E(Wn) there is a corresponding, possibly
trivial, walk We

n+1 using edges of of such a maximal interval with the induced order
<Wn+1

↾E(We
n+1).

For every n ∈ N let Vn denote the set of all finite directed s–t walks in Gn that
use only edges from F . Obviously, each set Vn is finite as Gn is a finite digraph.
By the previously given arguments, none of the sets Vn is empty and each element
of Vn+1 induces one of Vn. Hence, we get a sequence ((Wn, <Wn

))n∈N of finite di-
rected s–t walks where (Wn, <Wn

) ∈ Vn such that E(Wn+1) ∩E(Wn) = E(Wn)
and <Wn+1

↾E(Wn) equals <Wn
for every n ∈ N by Lemma 2.2. We define

Wn := E(Wn) for every n ∈ N. Next we set W :=
⋃

n∈N
Wn and <W :=

⋃

n∈N
<Wn

.

Further, we define a linear order <W on W̊ as follows for p, q ∈ W̊ with p 6= q:

p <W q iff

{

p ∈ e̊ and q ∈ f̊ with e <W f for some e, f ∈ W with e 6= f , or

p, q ∈ e̊ and p <e q for some e ∈ W.

Now we claim that (W,<W ) is a directed topological s–t walk in |G|. In order

to show this we first have to define a witness ϕ for (W,<W ). We shall obtain
ϕ as a limit of countably many certain witnesses ϕn of directed topological walks
(Wn, <Wn

) in |Gn| that we define inductively, where <Wn

is analogously defined as
<W but with respect to Wn.

For n = 0 we start with a witness ϕ0 of the directed topological s–t walk
(W0, <W0

) in |G0| which pauses at every dummy vertex of G0 contained in W0.

Now suppose that the witness ϕn of (Wn, <Wn

) has already been defined such

that it pauses at every dummy vertex of Gn that is contained inWn. Then we define
ϕn+1 as some witness of (Wn+1, <Wn+1

) as follows. For every edge e ∈ Wn whose

head is a dummy vertex of Gn, let W
e
n+1 be the edge set of the walk We

n+1 as above

and let ϕe
n+1 be a witness that We

n+1 is the corresponding directed topological walk

that pauses at every dummy vertex of Gn+1 that is contained in W e
n+1. Starting

with ϕn, each time we enter some dummy vertex d of Gn by an edge e, we replace
the image of the interval that is mapped to d with a rescaled version of ϕe

n+1.
Using the maps ϕn we are able to define ϕ as follows: For every q ∈ [0, 1]

for which there exists an n ∈ N such that ϕn(q) ∈ Sn, we set ϕ(q) := ϕn(q).
Otherwise, ϕn(q) corresponds to a contracted component Cn of G − Sn for every
n ∈ N. Since Sn $ Sn+1 for every n ∈ N and

⋃

n∈N
Sn = V (G), it is easy to check

that
⋂

n∈N
Cn = {ω} for some end ω of G. In this case, we define ϕ(q) := ω. This

completes the definition of ϕ. It is straightforward to verify that ϕ is continuous
and also onto W because each ϕn is onto Wn and W :=

⋃

n∈N
Wn. This ensures

that it is a witness of (W,<W ) being a topological s–t walk. Note that the linear
order <W ↾̊e equals <e ↾̊e for each edge e ∈ W since each linear order <Wn

has

this property. Hence, ϕ witnesses that (W,<W ) is a directed topological s–t walk
in |G| with W ⊆ F . �
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We proceed with a lemma which encodes the existence of directed arcs in stan-
dard subspaces in the same combinatorial way as Lemma 3.1 did this for directed
topological walks.

Lemma 3.2. Let G be a locally finite weakly connected digraph, s, t ∈ V (G)∪Ω(G)
with s 6= t and A ⊆ E(G). Then the following are equivalent:

(i) A is a directed s–t arc.

(ii) A is inclusion-wise minimal such that |A∩
−→
E (X,Y )| ≥ 1 holds for every finite

cut E(X,Y ) of G with s ∈ X and t ∈ Y .

(iii) A is inclusion-wise minimal such that |A ∩
−→
E (X,Y )| = |A ∩

−→
E (Y,X)|+ 1

holds for every finite cut E(X,Y ) of G with s ∈ X and t ∈ Y .

Proof. First we show the implication from (i) to (iii). As A is a directed s–t arc, it
is also a directed topological s–t walk. So by Lemma 3.1, we only need to check the
minimality of A for property (iii). Since A is an s–t arc, we know that s and t are in

different topological components of A \ {e} for any edge e ∈ A. So no proper subset
of A has the property that its closure in |G| contains a directed topological s–t walk.
Again by Lemma 3.1 we know that no proper subset of A satisfies statement (iii)
of Lemma 3.1. This proves the minimality of A and hence statement (iii).

Next let us verify that (iii) implies (ii). Assume for a contradiction that state-
ment (iii) holds, but (ii) does not. Then there must exist a proper subset A′ $ A
that fulfils property (ii), maybe except from being minimal. By Lemma 3.1 we get
that A′ satisfies also statement (iii) of Lemma 3.1. This contradicts the minimality
of A.

It remains to prove the implication from (ii) to (i). By assuming (ii) we know
from Lemma 3.1 that A contains a directed topological s–t walk and by the mini-
mality of A we know that A is in fact a directed topological s–t walk, say witnessed
by ϕ : [0, 1] −→ |G|. Now suppose for a contradiction that A is not a directed
s–t arc. Then there exists a point a ∈ V (G) ∪ Ω(G) that spoils injectivity for ϕ.
Note that A is compact because it is a closed set in |G| that is a compact space
by Proposition 2.3. Since ϕ is continuous and A is compact, there exists a smallest
number x ∈ [0, 1] and a largest number y ∈ [0, 1] such that ϕ(x) = ϕ(y) = a. We
obtain from this that the image of ϕ↾[0, x] is a directed topological s–a walk and the
image of ϕ↾[y, 1] is a directed topological a–t walk. Concatenating these two walks
yields another directed topological s–t walk, which is the closure in |G| of some edge
set A′ ⊆ A. Knowing that x 6= y, we get that A′ $ A since the image of ϕ↾[x, y]
contains points that correspond to inner points of edges. This is a contradiction to
the minimality of A. �

We conclude this section with the following corollary which allows us to extract
a directed s–t arc from a directed topological s–t walk for distinct points s, t of |G|.

Corollary 3.3. Let s, t ∈ V (G) ∪ Ω(G) with s 6= t for some locally finite weakly

connected digraph G. Then every directed topological s–t walk in |G| contains a

directed s–t arc.

Proof. Let W be a directed topological s–t walk where W ⊆ E(G). So W has
property (ii) of Lemma 3.1. Now consider the set W of all subsets of W that also
have property (ii) of Lemma 3.1. This set is ordered by inclusion and not empty
since W ∈ W . Next let us check that every decreasing chain C ⊆ W is bounded
from below by

⋂

C, which is an element of W . Obviously,
⋂

C ⊆ c holds for every
c ∈ C. To see that

⋂

C is an element of W note that for every finite cut E(X,Y )
of G with s ∈ X and t ∈ Y all but finitely many c ∈ C contain the same edges from
E(X,Y ). As every c ∈ C has also at least one edge from E(X,Y ), we know that the
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same is true for
⋂

C, which shows that
⋂

C ∈ W holds. Now Zorn’s Lemma implies
that W has a minimal element, which is a directed s–t arc by Lemma 3.2. �

4. Packing pseudo arborescences

We begin this section with a lemma characterising when a packing of k ∈ N
many edge-disjoint spanning r-reachable sets is possible in a locally finite weakly
connected digraph G with r ∈ V (G)∪Ω(G). This lemma is the main ingredient to
prove our first main result. The proof is mainly based on a compactness argument.

Lemma 4.1. A locally finite weakly connected digraph G with r ∈ V (G) ∪ Ω(G)
has k ∈ N edge-disjoint spanning r-reachable sets if and only if every bipartition

(X,Y ) of V (G) with r ∈ X and |E(X,Y )| < ∞ satisfies d−(Y ) ≥ k.

Proof. The condition that every bipartition (X,Y ) of V (G) with r ∈ X and
|E(X,Y )| < ∞ satisfies d−(Y ) ≥ k is obviously necessary for the existence of
k edge-disjoint spanning r-reachable sets.

Let us now prove the converse. First we fix a sequence (Sn)n∈N of finite vertex
sets Sn ⊆ V (G) such that

⋃

n∈N
Sn = V (G). For every n ∈ N let Gn denote the

digraph which arises by contracting, inside of G, each weak component of G− Sn

to a single vertex. Here we keep multiple edges, but delete loops that arise. Since
G is locally finite, we know that each Gn is a finite digraph.

Note that, as in the proof of Lemma 3.1, if r /∈ Sn, there exists a unique compo-
nent Cn of G−Sn such that r ∈ Cn and we refer to the vertex of Gn corresponding
to Cn as r.

Now we define Vn as the set of all k-tuples consisting of k edge-disjoint spanning
r-reachable sets of Gn. As every cut of Gn is finite and also corresponds to a cut
of G, our labelling with r ensures that each Gn has k edge-disjoint arborescences
rooted in r by Theorem 1.2. So none of the Vn is empty. Furthermore, each Vn is
finite as Gn is a finite digraph.

Next we show that every spanning r-reachable set Fn+1 of Gn+1 induces one for
Gn via Fn := Fn+1 ∩ E(Gn). So let Fn+1 be given and consider a cut E(Xn, Yn)
of Gn with r ∈ Xn. As each component of G − Sn+1 is contained in a component
of G − Sn, we can find a cut E(Xn+1, Yn+1) of Gn+1 with r ∈ Xn+1 such that
−→
E (Xn, Yn) =

−→
E (Xn+1, Yn+1) (and in fact also

−→
E (Yn, Xn) =

−→
E (Yn+1, Xn+1)).

Since Fn+1 is a spanning r-reachable set of Gn+1, we obtain that Fn is one of Gn.
Now we can apply Lemma 2.2 to the graph defined on the vertex set

⋃

n∈N
Vn

where two vertices vn+1 ∈ Vn+1 and vn ∈ Vn are adjacent if the i-th spanning
r-reachable set in vn is induced by the i-th one of vn+1 for every i with 1 ≤ i ≤
k. So we obtain a ray r0r1 . . . with rn ∈ Vn and set F := (F 1, . . . , F k) where
F i :=

⋃

n∈N
rin and rin denotes the i-th entry of the k-tuple rn for every i with

1 ≤ i ≤ k. Let us now check that each F i is a spanning r-reachable set of G. As
⋃

n∈N
Sn = V (G) holds, we can find for every finite cut E(X,Y ) of G with r ∈ X

an n ∈ N such that all endvertices of edges of E(X,Y ) are contained in Sn. Hence,

there exists a cut E(Xn, Yn) of Gn with r ∈ Xn such that
−→
E (Xn, Yn) =

−→
E (X,Y )

and
−→
E (Yn, Xn) =

−→
E (Y,X). Since each F i contains the edges of rin, which is a

spanning r-reachable set of Gn and, therefore, contains an edge of
−→
E (Xn, Yn), we

know that each F i is a spanning r-reachable set of G. Finally, we get that all the
F i are pairwise edge-disjoint because for every n ∈ N the rin are pairwise edge-
disjoint. �

The next lemma ensures the existence of pseudo-arborescences for a set
Z ⊆ V (G) \ {r} in the sense that every r-reachable set for Z contains one. The
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proof of this lemma works by an application of Zorn’s Lemma and is very similar
to the proof of Corollary 3.3. Therefore, we omit stating its proof.

Lemma 4.2. Let G be a locally finite weakly connected digraph, Z ⊆ V (G) \ {r}
with r ∈ V (G) ∪ Ω(G). Then every r-reachable set for Z in G contains a pseudo-

arborescences for Z rooted in r. �

Combining Lemma 4.1 and Lemma 4.2 we now obtain one of our main results.

Theorem 4.3. A locally finite weakly connected digraph G with r ∈ V (G) ∪ Ω(G)
has k ∈ N edge-disjoint spanning pseudo-arborescences rooted in r if and only

if every bipartition (X,Y ) of V (G) with r ∈ X and |E(X,Y )| < ∞ satisfies

d−(Y ) ≥ k. �

5. Structure of pseudo-arborescences

The following lemma characterises r-reachable sets in terms of directed arcs.
Additionally, it justifies the naming of r-reachable sets.

Lemma 5.1. Let G be a locally finite weakly connected digraph with sets F ⊆ E(G)
and Z ⊆ V (G) \ {r} where r ∈ V (G) ∪ Ω(G). Then F is an r-reachable set for Z
in G if and only if there exists a directed r–z arc inside F for every z ∈ Z.

Proof. Let us first assume that F is an r-reachable set for Z in G. We fix some z ∈ Z

and prove next that |F ∩
−→
E (X,Y )| ≥ 1 holds for each finite cut E(X,Y ) where

r ∈ X and z ∈ Y . If z is a vertex, this follows immediately from the definition of an
r-reachable set for Z. In the case that z ∈ Ω(G), we also get that some vertex of Z
lies in Y . This follows, because z is contained in the closed and, therefore, compact
set Z, which implies the existence of a sequence S of vertices of Z converging to z.
Since E(X,Y ) is a finite cut and z ∈ Y , we can find inside G[Y ] a basic open set O
containing z. Now O must contain a vertex of S and hence Y must do so as well.
Therefore, the desired inequality follows again by the definition of an r-reachable
set for Z.

Now we are able to use Lemma 3.1, which yields that F contains a directed
topological r–z walk. We complete the argument by applying Corollary 3.3 telling
us that F contains also a directed r–z arc.

Conversely, consider any finite cut E(X,Y ) where r ∈ X and Y ∩ Z 6= ∅, say
z ∈ Y ∩ Z. The assumption ensures the existence of a directed r–z arc in F . By

Lemma 3.2 we obtain that |F ∩
−→
E (X,Y )| ≥ 1 holds as desired. �

Now let us turn our attention towards spanning pseudo-arborescences rooted
in some vertex or end in a locally finite weakly connected digraph. The question
arises how similar these objects behave compared to spanning arborescences rooted
in some vertex in a finite graph. A basic property of finite arborescences is the
existence of a unique directed path in the arborescence from the root to any other
vertex of the graph. Closely related is the absence of any cycle, directed or undi-
rected, in a finite arborescence since its underlying graph is a tree. Although we
know by Lemma 5.1 that the closure of a spanning pseudo-arborescences contains a
directed arc from the root to any other vertex (or even end) of the graph, we shall
see in the following example that we can neither guarantee the uniqueness of such
arcs nor avoid infinite circles (directed or undirected ones).

Example 5.2. Consider the graph depicted in Figure 1. This graph contains
spanning r-reachable sets, for example the bold black edges together with the bold
grey edges. However, every spanning r-reachable set of this graph must contain all
bold black edges because for any head of such an edge there is no other edge of
which it is a head. As this graph has only one end, namely ω, we see that there
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r

!

Figure 1. An example of a graph with a marked vertex r where
the closure of any spanning r-reachable set contains an infinite
circle and multiple arcs to the end ω and certain vertices.

are directed and undirected infinite circles containing only bold black edges. This
shows already that, in general, it is not possible to find spanning r-reachable sets
that do not contain directed or undirected infinite circles. So there does not exist
a stronger version of Theorem 4.3 in the sense that the edges of the underlying
multigraph of every spanning pseudo-arborescences form a topological spanning
tree in the Freudenthal compactification of the underlying multigraph.

The graph in Figure 1 shows furthermore that, in general, we cannot find span-
ning r-reachable sets F such that there exists a unique directed arc from r to every
vertex and every end of the graph inside F . In the example we have two differ-
ent directed arcs from r to the end ω that contain only bold black edges and are
therefore in every spanning r-reachable set of this graph. Hence, we also get two
different directed arcs from r to every vertex on the infinite directed circle that
consists only of bold black edges.

Although, in general, spanning pseudo-arborescences do not behave tree-like in
the sense that their underlying graphs correspond to topological spanning trees,
they do so in a local sense. We conclude this section with our second main result
characterising those spanning r-reachable that are inclusion-wise minimal via some
local tree-like properties. Especially, we obtain the absence of finite cycles (directed
or undirected ones) in any spanning pseudo-arborescences.

Theorem 5.3. Let G be a locally finite weakly connected digraph and further let

r ∈ V (G) ∪ Ω(G). Then the following are equivalent for a spanning r-reachable set

F of G:

(i) F is a spanning pseudo-arborescences rooted in r.
(ii) For every vertex v 6= r of G there is a unique edge in F whose head is v, and

no edge in F has r as its head.
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(iii) For every weak component T of G[F ] the following holds: If r ∈ V (T ), then
T is an arborescence rooted in r. Otherwise, T is an arborescence rooted in

some end of T .

Proof. We start by proving the implication from (i) to (ii). Let us first suppose for
a contradiction that F contains an edge e whose head is r. Obviously, there is no

finite cut E(X,Y ) of G such that r ∈ X and e ∈
−→
E (X,Y ). Hence, F \ {e} is a

smaller spanning r-reachable set of G contradicting the minimality of F .
Next let us consider an arbitrary vertex v 6= r of G. We know by Remark 2.1

that F contains at least one edge of
−→
E (V (G) \ {v}, {v}). So F contains at least

one edge whose head is v.
Now suppose for a contradiction that there exists some vertex v 6= r of G which

is the head of at least two edges of F , say e and f . We know by Lemma 5.1
that F contains a directed r–v arc A. Since the cut E(V (G) \ {v}, {v}) is finite
and A is a directed r–v arc, we get that A must contain precisely one edge of
−→
E (V (G) \ {v}, {v}). Hence, one of the edges e, f is not contained in A, say e. By
the minimality of F , we obtain that F \ {e} cannot be a spanning r-reachable set
of G. So there must exist a finite cut E(X,Y ) of G with r ∈ X such that e is the

only edge in F ∩
−→
E (X,Y ). Now we have a contradiction since the head of e is v

and lies in Y , which means that the directed arc A contains at least one edge of
−→
E (X,Y ) by Lemma 3.2, but such an edge is different from e. Therefore, e was not

the only edge in F ∩
−→
E (X,Y ).

We continue with the proof that statement (ii) implies statement (iii). For this
let us fix an arbitrary weak component T of G[F ]. We now show that T is a tree.
Suppose for a contradiction that T contains a directed or undirected cycle C.

If C is a directed cycle, each vertex on C would already be a head of some edge
of the cycle. Hence, r cannot be a vertex on C. Applying Remark 2.1 with the
finite set V (C), we obtain that there needs to be an edge uv of F with v ∈ V (C)
and u ∈ V (G) \ V (C). So v is the head of two edges of F , which contradicts
statement (ii).

In the case that C is a cycle, but not a directed one, take a maximal directed path
on C. Its endvertex is the head of two edges of C. So we get again a contradiction
to statement (ii). We can conclude that T is a tree.

If r is be a vertex of T , then it is immediate from statement (ii) that T is an
arborescence rooted in r. Otherwise, there needs to be a backwards directed ray R
in T as each vertex different from r is the head of a unique edge of F . Let ω be the
end of T which contains R. Hence, T is an arborescence rooted in ω, completing
the proof of this implication.

It remains to show the implication from (iii) to (i). For this we assume state-
ment (iii) and suppose for a contradiction that F is not minimal with respect
to inclusion. Hence, F ′ = F \ {e} is a spanning r-reachable set as well for some
e = uv ∈ F . Let T be the weak component of G[F ] which contains v. As T is an
arborescence rooted in r or some end of T , we get that no edge of F ′ has v as its
head. Note that r 6= v because of the edge uv ∈ F . Now we get a contradiction by
applying Remark 2.1 with F ′ and the set {v}, which tells us that F ′ needs contains
an edge whose head is v.

�

The question might arise whether we can be more specific in statement (iii) of
Theorem 5.3 in the case when r is an end of G. Unfortunately, it is not true that
there has to exist a weak component of G[F ] whose unique backwards directed ray
lies in r. The reason for this is that the end r might be an accumulation point
of a sequence of infinitely many different weak components of G[F ] in |G| each of
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which contains a backwards directed ray to a different end of G. It is not difficult
to construct an example for this situation and so we omit such a description here.
On the other hand if the end r ∈ Ω(G) is not an accumulation point of different
ends of G, then there exists at least one weak component of G[F ] whose backwards
directed ray is contained in r. To see this fix an arbitrary directed r–v arc A inside
F for some vertex v. Since F is a spanning r-reachable set of G, we can find such
an arc. If among all of the weak components of G[F ] which are met by A, there
is a first one with respect to the linear order of A, then a backwards directed ray
of this component is an initial segment of A and, therefore, contained in r. Note
for the other case that tails of the backwards directed rays of each component of
G[F ] that is met by A must be contained A. Since A is an arc, all these backwards
directed rays must be contained in different ends of G. These ends, however, would
then have r as an accumulation point in |G| contradicting the assumption on r.
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