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In absence of long chordless cycles, large

tree-width becomes a local phenomenon

Daniel Weißauer

Abstract

We prove that, for all ℓ and s, every graph of sufficiently large tree-

width contains either a complete bipartite graph Ks,s or a chordless cycle

of length greater than ℓ.

1 Introduction

In an effort to make the statement in the title precise, let us call a graph pa-
rameter P global if there is a constant c such that for all k and r there exists
a graph G for which every subgraph H of order at most r satisfies P (H) < c,
while P (G) > k. The intention here is that P being small, even bounded by a
constant, on subgraphs of bounded order does not provide a bound on P (G).

Tree-width is a global parameter (we may take c = 2), as is the chromatic
number (with c = 3). Indeed, it is a classic result of Erdős [6] that for all k
and r there exists a graph of chromatic number > k for which every subgraph
on at most r vertices is a forest.

It is well-known (see [4]) that the situation changes when we restrict ourselves
to chordal graphs, graphs without chordless cycles of length ≥ 4:

∀k : Every Kk+1-free chordal graph has tree-width <k. (1)

Hence the only obstruction for a chordal graph to have small tree-width is the
presence of a large clique. Since the chromatic number of a graph is at most
its tree-width plus one ([4]), the same is true for the chromatic number. In
particular, tree-width and chromatic number are local parameters for the class
of chordal graphs.

In 1985, Gyárfás [8] made a famous conjecture which implies that chromatic
number is a local parameter1 for the larger class of ℓ-chordal graphs, those which
have no chordless cycle of length > ℓ:

∀ℓ, r ∃k : Every Kr-free ℓ-chordal graph is k-colourable. (2)

1Indeed, in terms of our earlier definition, (2) implies that given any integer c, there exists
a k such that every ℓ-chordal graph of chromatic number > k has a subgraph of order ≤ c

and chromatic number ≥ c.

1

http://arxiv.org/abs/1803.02703v1


This conjecture remained unresolved for 30 years and was proved only re-
cently by Chudnovsky, Scott and Seymour [3]. In view of (1), it is tempting
to think that an analogue of (2) might hold with tree-width in place of chro-
matic number. Complete bipartite graphs, however, are examples of triangle-
free 4-chordal graphs of large tree-width. Therefore a verbatim analogue of (2)
is not possible and any graph whose presence we can hope to force by assuming
ℓ-chordality and large tree-width will be bipartite.

On the positive side, Bodlaender and Thilikos [2] showed that every star
can be forced as a subgraph in ℓ-chordal graphs by assuming large tree-width
(see Section 3). However, since stars have tree-width 1, this does not establish
locality of tree-width in the sense of our earlier definition. Our main result is
that in fact any bipartite graph can be forced as a subgraph:

Theorem 1. Let ℓ ≥ 4 be an integer and F a graph. Then F is bipartite if and
only if there exists an integer k such that every ℓ-chordal graph of tree-width ≥ k
contains F as a subgraph.

This shows that tree-width is local for ℓ-chordal graphs: Given any integer c,
there exists an integer k such that every ℓ-chordal graph of tree-width ≥ k has
a subgraph isomorphic to Kc,c, which has order 2c and tree-width c.

Theorem 1 also has an immediate application to an Erdős-Pósa type prob-
lem. Kim and Kwon [9] showed that chordless cycles of length > 3 have the
Erdős-Pósa property:

Theorem 2 ([9]). For every integer k there exists an integer m such that every
graph G either contains k vertex-disjoint chordless cycles of length > 3 or a
set X of at most m vertices such that G−X is chordal.

They also constructed, for every integer ℓ ≥ 4, a family of graphs showing
that the analogue of Theorem 2 for chordless cycles of length > ℓ fails. We com-
plement their negative result by proving that the Erdős-Pósa property does hold
when restricting the host graphs to graphs not containing Ks,s as a subgraph.

Corollary 3. For all ℓ, s and k there exists an integer m such that every
Ks,s-free graph G either contains k vertex-disjoint chordless cycles of length > ℓ
or a set X of at most m vertices such that G−X is ℓ-chordal.

The paper is organised as follows. Section 2 contains some basic definitions.
Theorem 1, our main result, is proved in Section 3. In Section 4 we formally
introduce the Erdős-Pósa property, restate Corollary 3 in that language and
give a proof thereof. Section 5 closes with some open problems.

2 Notation and definitions

All graphs considered here are finite and undirected and contain neither loops
nor parallel edges. Our notation and terminology mostly follow that of [4].

For two graphs G and H , we say that G is H-free if G does not contain a
subgraph isomorphic to H . Given a tree T and s, t ∈ T , we write sT t for the

2



unique s-t-path in T . Given a graph G and a set X of vertices of G, a path
P ⊆ G is an X-path if it contains at least one edge and meets X precisely in
its endvertices. A separation of G is a tuple (A,B) with V = A ∪ B such that
there are no edges between A \B and B \A. The order of (A,B) is the number
of vertices in A ∩B. We call the separation (A,B) tight if for all x, y ∈ A ∩B,
both G[A] and G[B] contain an x-y-path with no internal vertices in A ∩B.

Given an integer k, a set X of at least k vertices of G is a k-block if
it is inclusion-maximal with the property that for every separation (A,B) of
order <k, either X ⊆ A or X ⊆ B. By Menger’s Theorem, G then contains k
internally disjoint paths between any two non-adjacent vertices in X .

A tree-decomposition of G is a pair (T,V), where T is a tree and V = (Vt)t∈T

a family of sets of vertices of G such that for every v ∈ V (G), the set of t ∈ T
with v ∈ Vt induces a non-empty subtree of T and for every edge vw ∈ E(G)
there is a t ∈ T with v, w ∈ Vt. If (T,V) is a tree-decomposition of G, then every
st ∈ E(T ) induces a separation (Gt

s, G
s
t ) of G, where Gy

x is the union of Vu for
all u ∈ T for which y /∈ uTx. Note that Gt

s ∩Gs
t = Vs ∩ Vt. We call (T,V) tight

if every separation induced by an edge of T is tight.
Given t ∈ T , the torso at t is the graph obtained from G[Vt] by adding, for

every neighbor s of t, an edge between any two non-adjacent vertices in Vs ∩Vt.
Given graphs G and H , a subdivision of H in G consists of an injective map

η : V (H) → V (G) and a map P which assigns to every edge xy ∈ E(H) an
η(x)-η(y)-path P xy ⊆ G so that the paths (P xy : xy ∈ E(H)) are internally
disjoint and no P xy has an internal vertex in X := η(V (H)). The vertices in X
are called branchvertices. For an integer r, the subdivision is a (≤ r)-subdivision
if every path P xy has length at most r. When H is a complete graph, the map η
is irrelevant and we only keep track of the set X of branchvertices and the family
(P xy : x, y ∈ X).

3 Proof of Theorem 1

As observed in the introduction, the complete bipartite graphs Ks,s show that
no bound on the tree-width of F -free ℓ-chordal graphs exists if F is not bipartite.
We now prove that F being bipartite is sufficient. Since every bipartite graph is
a subgraph of some Ks,s, it suffices to prove Theorem 1 for the case F = Ks,s.

Our proof is a cascade with three steps. First, we show that sufficiently large
tree-width forces the presence of a k-block.

Lemma 4. Let ℓ, k and t ≥ 2(ℓ − 2)(k − 1)2 be positive integers. Then every
ℓ-chordal graph of tree-width ≥ t contains a k-block.

We then prove that the existence of a k-block yields a bounded-length sub-
division of a complete graph.

Lemma 5. Let ℓ,m and k ≥ 5m2ℓ/4 be positive integers. Then every ℓ-chordal
graph that contains a k-block contains a (≤ 2ℓ− 3)-subdivision of Km.
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In the last step, we show that such a bounded-length subdivision gives rise
to a copy of Ks,s.

Lemma 6. For all integers ℓ and s there exists a q > 0 such that the following
holds. Let m, r be positive integers with m ≥ qr. Then every ℓ-chordal graph
that contains a (≤ r)-subdivision of Km contains Ks,s as a subgraph.

It is immediate that Theorem 1 follows once we have established these three
lemmas.

3.1 Proof of Lemma 4

A trivial obstacle to our search for a copy of Ks,s is the absence of vertices
of high degree. Bodlaender and Thilikos [2] showed, however, that ℓ-chordal
graphs of bounded degree have bounded tree-width. Their exponential bound
was later improved by Kosowski, Li, Nisse and Suchan [10] and by Seymour [17].

Theorem 7 ([17]). Let ℓ and ∆ be positive integers and G a graph. If G is
ℓ-chordal and has no vertices of degree greater than ∆, then the tree-width of G
is at most (ℓ− 2)(∆− 1) + 1.

By demanding large tree-width, we can therefore guarantee a large number
of vertices of high degree. We now show that these are not all just scattered
about the graph. It was shown by the author in [19] that either there is a k-
block or there is a tree-decomposition which separates the set of vertices of high
degree into small pieces. This also follows, without explicit bounds, from a far
more general result of Dvořák [5].

Theorem 8 ([19]). Let k ≥ 3 be a positive integer and G a graph. If G has
no k-block, then there is a tight tree-decomposition (T,V) of G such that every
torso has fewer than k vertices of degree at least 2(k − 1)(k − 2).

In fact, tightness of the tree-decomposition is not explicit in [19, Theorem 1],
but is established in the proof as Lemma 6.

Now let ℓ, k and t ≥ 2(ℓ − 2)(k − 1)2 be positive integers. Let G be an
ℓ-chordal graph with no k-block. For k = 2, this means that G is acyclic and
therefore has tree-width 1. Suppose from now on that k ≥ 3. We show that the
tree-width of G is less than t.

By Theorem 8, there is a tight tree-decomposition (T,V) of G such that
every torso has fewer than k vertices of degree at least d := 2(k− 1)(k− 2). Let
t ∈ T arbitrary, let N be the set of neighbors of t in T and let H be the torso
at t. We claim that H is ℓ-chordal.

Let C ⊆ H be a chordless cycle. For every edge xy ∈ E(C) \E(G), there is
some s ∈ N with x, y ∈ Vs∩Vt. Since (T,V) is tight, there exists an x-y-path P xy

in Gt
s which meets Vt only in its endpoints. Observe that for every s ∈ N , C

contains at most two vertices of Vs and these are adjacent in C. Hence we can
replace every edge xy ∈ E(C) \ E(G) by P xy and obtain a chordless cycle C′

of G with |C′| ≥ |C|. Since G is ℓ-chordal, it follows that |C| ≤ ℓ. This proves
our claim.
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Now, let A ⊆ V (H) be the set of all vertices of degree ≥ d in H . Then
H − A is ℓ-chordal and has no vertices of degree > d − 1. By Theorem 7, the
tree-width of H −A is at most (ℓ − 2)(d− 2) + 1. Therefore

tw(H) ≤ |A|+ tw(H−A) ≤ k + (ℓ− 2)(d− 2) < t.

We have shown that every torso has tree-width < t. We can then take a
tree-decomposition of width < t of each torso and combine all these to a tree-
decomposition of width <t of G.

3.2 Proof of Lemma 5

In general, the presence of a k-block does not guarantee the existence of any
subdivision of Km for m ≥ 5. For example, take a rectangular k2 × k-grid, add
2(k + 1) new vertices to the outer face and make each of these adjacent to k
consecutive vertices on the perimeter of the grid (see Figure 3.2). These new
vertices are then a k-block in the resulting planar graph.

Figure 1: A planar graph with a 9-block

Our aim in this section is to show that for ℓ-chordal graphs, sufficiently large
blocks do indeed yield bounded-length subdivisions of complete graphs.

Let ℓ,m and k ≥ 5m2ℓ/4 be positive integers. Let G be an ℓ-chordal graph
and X ⊆ V (G) a k-block of G. Let L := 2ℓ − 3. Assume for a contradiction
that G contained no (≤ L)-subdivision of Km. Let x, y ∈ X non-adjacent.
Then G contains a set Pxy of k internally disjoint x-y-paths. Taking sub-
paths, if necessary, we may assume that each path in Pxy is induced. Let
p0 := m+m2(ℓ− 2).

Claim: Fewer than p0 paths in Pxy have length > ℓ/2.

Proof of Claim. Let P0 be the set of all paths in Pxy of length > ℓ/2 and
p := |P0|. Assume for a contradiction that p ≥ p0. Let P,Q ∈ P0. Then
P ∪ Q is a cycle of length > ℓ. Since G is ℓ-chordal, P ∪ Q has a chord. This
chord must join an internal vertex of P to an internal vertex of Q. Choose such
vertices vQP ∈ P and vPQ ∈ Q so that the cycle D := xPvQP vPQQx has minimum
length. Note that D is an induced cycle and therefore has length at most ℓ.
In particular, the segment of P joining x to vQP has length at most ℓ − 2 and
similarly for Q and vPQ.
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For P ∈ P0, let P
′ be a minimal subpath of P containing every vertex vQP ,

Q ∈ P0 \ {P}. Then P := {P ′ : P ∈ P0} is a family of p disjoint paths, each of
length at most ℓ− 3, and G contains an edge between any two of them. Fix an
arbitrary Q ⊆ P with |Q| = m. Since p ≥ p0, every Q ∈ Q contains a vertex uQ

which has neighbors on at least m2 different paths in P \ Q.
Let U := {uQ : Q ∈ Q}. We iteratively construct a (≤ L)-subdivision of Km

with branchvertices in U . Let t :=
(

m
2

)

and enumerate the pairs of vertices of U
arbitrarily as e1, . . . , et. In the j-th step, we assume that we have constructed
a family Rj = (Ri)i<j of internally disjoint U -paths of length at most L, so
that Ri joins the vertices of ei and meets at most two paths in P \Q. We now
find a suitable path Rj .

LetQ1, Q2 ∈ Q with ej = uQ1uQ2 . At most 2(j−1) < m2 paths in P\Qmeet
any of the paths in Rj . Since uQ1 is adjacent to vertices on at least m2 different
paths in P \Q, there is a P 1 ∈ P \Q which is disjoint from every Ri, i < j, and
contains a neighbor of uQ1 . We similarly find a path P 2 ∈ P \Q for uQ2 . Since
either P 1 = P 2 or G has an edge between P 1 and P 2, P 1 ∪ P 2 ∪ {uQ1 , uQ2}
induces a connected subgraph of G and therefore contains a uQ1-uQ2-path Rj

of length at most L, which meets only two paths in P \ Q.
Proceeding like this, we find the desired subdivision of Km after t steps.

This contradiction finishes the proof of the claim.

Let Y ⊆ X with |Y | = m. For any two non-adjacent x, y ∈ Y , let Qxy ⊆ Pxy

be the set of all P ∈ Pxy of length at most ℓ/2 which have no internal vertices
in Y . By the claim above, we have

|Qxy| > k − p0 − (m− 2) ≥

(

m

2

)

ℓ

2
.

Pick one path P ∈ Qxy for each pair of non-adjacent vertices x, y ∈ Y in turn,
disjoint from all previously chosen paths. Since |Qxy| ≥

(

m
2

)

ℓ
2 and each path

only has at most ℓ/2− 1 internal vertices which future paths need to avoid, we
can always find a suitable such path P . Together with all edges between adjacent
vertices of Y , this yields a (≤ ℓ/2)-subdivision of Km in G with branchvertices
in Y .

We would like to point out that a modification of the above argument can
be used to produce a (≤ ℓ/2)-subdivision of Km if k is significantly larger.

Indeed, suppose we find a family P of p disjoint paths, each of length at
most ℓ − 3, such that G contains an edge between any two of them. Then the
subgraphH induced by

⋃

P∈P V (P ) has at most (ℓ−2)p vertices and at least
(

p
2

)

edges. One can then use a classic result of Kövari, Sós and Turán [11] to show
that H contains a copy of Km,m2 if p is sufficiently large. Since Km,m2 contains
a (≤ 2)-subdivision of Km, this establishes an upper bound on the number of
paths of length > ℓ/2 in any Pxy. The rest of the proof remains the same.

6



3.3 Proof of Lemma 6

The combination of Lemma 4 and Lemma 5 already establishes that tree-width
is a local parameter for ℓ-chordal graphs. The purpose of Lemma 6 is merely to
narrow the set of bounded-order obstructions down as far as possible. We will
use the following theorem of Kühn and Osthus [13].

Theorem 9 ([13]). For every integer s and every graph H there exists a d so
that every graph with average degree at least d either contains Ks,s as a subgraph
or contains an induced subdivision of H.

In fact, we only need the special case H = Cℓ+1. This special case has a
simpler proof which can be found in Kühn’s PhD-thesis [12]. Fix an integer d
so that every ℓ-chordal graph of average degree at least d contains Ks,s as a

subgraph. We prove the assertion of Lemma 6 with q := d2 ℓℓ

4(ℓ−3)! .

Let m, r be positive integers with m ≥ qr and let G be an ℓ-chordal graph
containing a (≤ r)-subdivision of Km. Let X be the set of branchvertices and
(P xy : x, y ∈ X) the family of paths of the subdivision. Taking subpaths, if
necessary, we may assume that every path is induced.

Assume for a contradiction that G contained no copy ofKs,s. By Theorem 9,
every subgraph of G contains a vertex of degree <d. In particular, there is an
independent set Y ⊆ X with |Y | ≥ m/d. Let H be the subgraph of G induced

by
⋃

x,y∈Y V (P xy). Note that |H | ≤ r
(

|Y |
2

)

.
Call an edge of H red if it joins a vertex x ∈ Y to an internal vertex of a

path P yz with x /∈ {y, z}. Call an edge of H blue if it joins an internal vertex
of a path Pwx to an internal vertex of a path P yz with {w, x} 6= {y, z}. We will
show that H must contain many edges which are either red or blue, so that the
average degree of H is at least d.

Fix an arbitrary cycle R with V (R) = Y . For any Z ⊆ Y with |Z| = ℓ,
obtain the cycle RZ with V (RZ) = Z by contracting every Z-path of R to a
single edge. We then get a cycle CZ ⊆ H by replacing every edge xy ∈ RZ with
the path P xy. Since each path P xy has length at least 2 and H is ℓ-chordal,
the cycle CZ must have a chord. Since Y is independent and every path P xy is
induced, the chord must be a red or blue edge of H .

Consider a red edge xv ∈ E(H) with x ∈ Y , v ∈ P yz and x /∈ {y, z}. If this
edge is a chord for a cycle CZ , then {x, y, z} ⊆ Z. Hence it can only occur as a
chord for at most

(

|Y | − 3

ℓ− 3

)

≤
|Y |ℓ−3

(ℓ− 3)!

choices of Z. Similarly, every blue edge uv ∈ E(H) with u ∈ Pwx, v ∈ P yz and
{w, x} 6= {y, z} can only be a chord of CZ if {w, x, y, z} ⊆ Z. This also happens
for at most

(

|Y | − 3

ℓ− 3

)

≤
|Y |ℓ−3

(ℓ− 3)!

choices of Z. Let f be the number of edges of H which are either red or blue.
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Since every Z ⊆ Y with |Z| = ℓ gives rise to a chord, it follows that

|Y |ℓ

ℓℓ
≤

(

|Y |

ℓ

)

≤ f
|Y |ℓ−3

(ℓ− 3)!
.

This shows that the average degree of H is

d(H) ≥
2f

|H |
≥

4(ℓ− 3)!

rℓℓ
|Y | ≥ d.

By Theorem 9, H contains a copy of Ks,s.

4 Erdős-Pósa for long chordless cycles

A classic theorem of Erdős and Pósa [7] asserts that for every integer k there is
an integer r such that every graph either contains k disjoint cycles or a set of
at most r vertices meeting every cycle. This result has been the starting point
for an extensive line of research, see the survey by Raymond and Thilikos [15].

Let F ,G be classes of graphs and ≤ a containment relation between graphs.
We say that F has the Erdős-Pósa property for G with respect to ≤ if there
exists a function f such that for every G ∈ G and every integer k, either there
are disjoint Z1, . . . , Zk ⊆ V (G) such that for every 1 ≤ i ≤ k there is an Fi ∈ F
with Fi ≤ G[Zi], or there is a X ⊆ V (G) with |X | ≤ f(k) such that F 6≤ G−X
for every F ∈ F . When G is the class of all graphs, we simply say that F has
the Erdős-Pósa property with respect to ≤. We write F ⊆ G if F is isomorphic
to a subgraph of G and F ⊆i G if F is isomorphic to an induced subgraph of G.

The theorem of Erdős and Pósa then asserts that the class of cycles has
the Erdős-Pósa property with respect to ⊆. This implies that cycles also have
the Erdős-Pósa property with respect to ⊆i. It is known that for every ℓ, the
class of cycles of length > ℓ has the Erdős-Pósa property with respect to ⊆,
see [18, 1, 14]. Recently, Kim and Kwon [9] proved that cycles of length > 3
possess the Erdős-Pósa property with respect to ⊆i:

Theorem 10 ([9]). There exists a constant c such that for every integer k,
every graph G either contains k vertex-disjoint chordless cycles of length > 3 or
a set X of at most ck2 log k vertices such that G−X is chordal.

In contrast, Kim and Kwon [9] showed that, for any given ℓ ≥ 4, cycles of
length > ℓ do not have the Erdős-Pósa property with respect to ⊆i. For any
given n, they constructed a graph Gn with no two disjoint chordless cycles of
length > ℓ, for which no set of fewer than n vertices meets every chordless cycle
of length > ℓ in Gn. This graph Gn contains a copy of Kn,n. We show that this
is essentially necessary:

Corollary 11. For all integers ℓ and s, the class of cycles of length > ℓ has the
Erdős-Pósa property for the class of Ks,s-free graphs with respect to ⊆i.
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This follows from Theorem 1 by a standard argument. Since the proof is
quite short, we provide it for the sake of completeness. First, recall the following
consequence of the Grid Minor Theorem of Robertson and Seymour [16].

Theorem 12 ([16]). For all positive integers p and q there exists an r such that
for every graph G with tree-width ≥ r, there are disjoint Z1, . . . , Zp ⊆ V (G)
such that G[Zi] has tree-width ≥ q for every 1 ≤ i ≤ p.

Proof of Corollary 11. Let k be an integer. By Theorem 1 there exists an in-
teger t such that every ℓ-chordal graph with tree-width ≥ t contains Ks,s. By
Theorem 12, there exists an r such that every graph with tree-width > r has k
vertex-disjoint subgraphs of tree-width ≥ t.

Let G be a Ks,s-free graph. We show that either G contains k disjoint
chordless cycles of length > ℓ or there is a set of at most r(k− 1) vertices whose
deletion leaves an ℓ-chordal graph.

Suppose first that the tree-width of G was greater than r. Let Z1, . . . , Zk

be disjoint sets of vertices such that G[Zi] has tree-width ≥ t for every i. Then,
by Theorem 1, every G[Zi] must contain a chordless cycle of length > ℓ, since
Ks,s 6⊆ G[Zi]. Therefore G contains k disjoint chordless cycles of length > ℓ.

Suppose now that G had a tree-decomposition (T,V) of width <r. For every
chordless cycle C ⊆ G of length > ℓ, let TC ⊆ T be the subtree of all t ∈ T
with Vt ∩ V (C) 6= ∅. If there are k disjoint such subtrees TC1 , . . . , TCk , then
C1, . . . , Ck are also disjoint and we are done. Otherwise, there exists S ⊆ V (T )
with |S| < k which meets every subtree TC . Then Z :=

⋃

s∈S Vs meets every
chordless cycle of length > ℓ in G and |Z| ≤ r(k − 1).

5 Open problems

A large amount of research is dedicated to the study of χ-boundedness of graph
classes, introduced by Gyárfás [8]. Here, a class G of graphs is called χ-bounded if
there exists a function f so that for every integer k and G ∈ G, either G contains
a clique on k+1 vertices or G is f(k)-colourable. This is a strengthening of the
statement that chromatic number is a local parameter for G, with cliques being
the only bounded-order subgraphs to look for.

As we have seen, cliques are not the only reasonable local obstruction to
having small tree-width. Nontheless, we may still ask

1. For which classes of graphs is tree-width a local parameter?

2. What kind of bounded-order subgraphs can we force on these classes?

3. For which classes can we force large cliques by assuming large tree-width?

We have seen in Section 4 that long chordless cycles have the Erdős-Pósa
property for the class of Ks,s-free graphs. For which other classes is this true?
Kim and Kwon [9] raised this question for the class of graphs without chordless
cycles of length four.
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[1] Etienne Birmelé, J. Adrian Bondy, and Bruce A. Reed. The Erdős-Pósa
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[8] A. Gyárfás. Problems from the world surrounding perfect graphs. In Pro-
ceedings of the International Conference on Combinatorial Analysis and its
Applications (Pokrzywna, 1985), volume 19, pages 413–441 (1988), 1987.

[9] Eun Jung Kim and O-joung Kwon. Erdős-Pósa property of chordless cycles
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