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7 Steiner trees and higher geodecity

Daniel Weißauer

Abstract

Let G be a connected graph and ℓ : E(G) → R+ a length-function on
the edges of G. The Steiner distance sdG(A) of A ⊆ V (G) within G is
the minimum length of a connected subgraph of G containing A, where
the length of a subgraph is the sum of the lengths of its edges.

It is clear that every subgraph H ⊆ G, with the induced length-
function ℓ|E(H), satisfies sdH(A) ≥ sdG(A) for every A ⊆ V (H). We
call H ⊆ G k-geodesic in G if equality is attained for every A ⊆ V (H)
with |A| ≤ k. A subgraph is fully geodesic if it is k-geodesic for every
k ∈ N. It is easy to construct examples of graphs H ⊆ G such that H

is k-geodesic, but not (k + 1)-geodesic, so this defines a strict hierarchy
of properties. We are interested in situations in which this hierarchy col-
lapses in the sense that if H ⊆ G is k-geodesic, then H is already fully
geodesic in G.

Our first result of this kind asserts that if T is a tree and T ⊆ G is
2-geodesic with respect to some length-function ℓ, then it is fully geodesic.
This fails for graphs containing a cycle. We then prove that if C is a cycle
and C ⊆ G is 6-geodesic, then C is fully geodesic. We present an example
showing that the number 6 is indeed optimal.

We then develop a structural approach towards a more general theory
and present several open questions concerning the big picture underlying
this phenomenon.

1 Introduction

Let G be a graph and ℓ : E(G) → R+ a function that assigns to every edge
e ∈ E(G) a positive length ℓ(e). This naturally extends to subgraphs H ⊆ G as
ℓ(H) :=

∑

e∈E(H) ℓ(e). The Steiner distance sdG(A) of a set A ⊆ V (G) is de-
fined as the minimum length of a connected subgraph of G containing A, where
sdG(A) := ∞ if no such subgraph exists. Every such minimizer is necessarily a
tree and we say it is a Steiner tree for A in G. In the case where A = {x, y},
the Steiner distance of A is the ordinary distance dG(x, y) between x and y.
Hence this definition yields a natural extension of the notion of “distance” for
sets of more than two vertices. Corresponding notions of radius, diameter and
convexity have been studied in the literature [6, 2, 1, 3, 9, 5]. Here, we initiate
the study of Steiner geodecity, with a focus on structural assumptions that cause
a collapse in the naturally arising hierarchy.
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Let H ⊆ G be a subgraph of G, equipped with the length-function ℓ|E(H).
It is clear that for every A ⊆ V (H) we have sdH(A) ≥ sdG(A). For a natural
number k, we say that H is k-geodesic in G if sdH(A) = sdG(A) for every
A ⊆ V (H) with |A| ≤ k. We call H fully geodesic in G if it is k-geodesic for
every k ∈ N.

By definition, a k-geodesic subgraph is m-geodesic for every m ≤ k. In
general, this hierarchy is strict: In Section 6 we provide, for every k ∈ N,
examples of graphs H ⊆ G and a length-function ℓ : E(G) → R+ such that H
is k-geodesic, but not (k + 1)-geodesic. On the other hand, it is easy to see
that if H ⊆ G is a 2-geodesic path, then it is necessarily fully geodesic, because
the Steiner distance of any A ⊆ V (H) in H is equal to the maximum distance
between two a, b ∈ A. Our first result extends this to all trees.

Theorem 1.1. Let G be a graph with length-function ℓ and T ⊆ G a tree. If T
is 2-geodesic in G, then it is fully geodesic.

Here, it really is necessary for the subgraph to be acyclic (see Corollary 6.5).
Hence the natural follow-up question is what happens in the case where the
subgraph is a cycle.

Theorem 1.2. Let G be a graph with length-function ℓ and C ⊆ G a cycle.
If C is 6-geodesic in G, then it is fully geodesic.

Note that the number 6 cannot be replaced by any smaller integer.
In Section 2 we introduce notation and terminology needed in the rest of the

paper. Section 3 contains observations and lemmas that will be used later. We
then prove Theorem 1.1 in Section 4. In Section 5 we prove Theorem 1.2 and
provide an example showing that the number 6 is optimal. Section 6 contains
an approach towards a general theory, aiming at a deeper understanding of
the phenomenon displayed in Theorem 1.1 and Theorem 1.2. Finally, we take
the opportunity to present the short and easy proof that in any graph G with
length-function ℓ, the cycle space of G is generated by the set of fully geodesic
cycles.

2 Preliminaries

All graphs considered here are finite and undirected. It is convenient for us to
allow parallel edges. In particular, a cycle may consist of just two vertices joined
by two parallel edges. Loops are redundant for our purposes and we exclude
them to avoid trivialities. Most of our notation and terminology follows that
of [7], unless stated otherwise.

A set A of vertices in a graph G is called connected if and only if G[A] is.
Let G,H be two graphs. A model of G in H is a family of disjoint connected

branch-sets Bv ⊆ V (H), v ∈ V (G), together with an injective map β : E(G) →
E(H), where we require that for any e ∈ E(G) with endpoints u, v ∈ V (G), the
edge β(e) ∈ E(H) joins vertices from Bu and Bv. We say that G is a minor
of H if H contains a model of G.
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We use additive notation for adding or deleting vertices and edges. Specif-
ically, let G be a graph, H a subgraph of G, v ∈ V (G) and e = xy ∈ E(G).
Then H+v is the graph with vertex-set V (H)∪{v} and edge-set E(H)∪{vw ∈
E(G) : w ∈ V (H)}. Similarly, H + e is the graph with vertex-set V (H) ∪ {x, y}
and edge-set E(H) ∪ {e}.

Let G be a graph with length-function ℓ. A walk in G is an alternating
sequence W = v1e1v2 . . . ekvk+1 of vertices vi and edges ei such that ei = vivi+1

for every 1 ≤ i ≤ k. The walk W is closed if v1 = vk+1. Stretching our terminol-
ogy slightly, we define the length of the walk as lenG(W) :=

∑

1≤i≤k ℓ(ei). The
multiplicity mW(e) of an edge e ∈ E(G) is the number of times it is traversed
by W , that is, the number of indices 1 ≤ j ≤ k with e = ej . It is clear that

lenG(W) =
∑

e∈E(G)

mW(e)ℓ(e). (1)

Let G be a graph and C a cycle with V (C) ⊆ V (G). We say that a walk W
in G is traced by C in G if it can be obtained from C by choosing a starting

vertex x ∈ V (C) and an orientation
−→
C of C and replacing every

−→
ab ∈ E(

−→
C ) by

a shortest path from a to b in G. A cycle may trace several walks, but they all
have the same length: Every walk W traced by C satisfies

lenG(W) =
∑

ab∈E(C)

dG(a, b). (2)

Even more can be said if the graph G is a tree. Then all the shortest a-b-paths
for ab ∈ E(C) are unique and all walks traced by C differ only in their starting
vertex and/or orientation. In particular, every walk W traced by C in a tree T
satisfies

∀e ∈ E(T ) : mW(e) = |{ab ∈ E(C): e ∈ aTb}|, (3)

where aT b denotes the unique a-b-path in T .
Let T be a tree and X ⊆ V (T ). Let e ∈ E(T ) and let T e

1 , T
e
2 be the two

components of T − e. In this manner, e induces a bipartition X = Xe
1 ∪ Xe

2

of X , given by Xe
i = V (T e

i ) ∩ X for i ∈ {1, 2}. We say that the bipartition
is non-trivial if neither of Xe

1 , X
e
2 is empty. The set of leaves of T is denoted

by L(T ). If L(T ) ⊆ X , then every bipartition of X induced by an edge of T is
non-trivial.

Let G be a graph with length-function ℓ, A ⊆ V (G) and T a Steiner tree
for A in G. Since ℓ(e) > 0 for every e ∈ E(G), every leaf x of T must lie in A,
for otherwise T − x would be a tree of smaller length containing A.

In general, Steiner trees need not be unique. If G is a tree, however, then
every A ⊆ V (G) has a unique Steiner tree given by

⋃

a,b∈A aT b.

3 The toolbox

The first step in all our proofs is a simple lemma that guarantees the existence of
a particularly well-behaved substructure that witnesses the failure of a subgraph
to be k-geodesic.
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Let H be a graph, T a tree and ℓ a length-function on T ∪H . We call T a
shortcut tree for H if the following hold:

(SCT1) V (T ) ∩ V (H) = L(T ),

(SCT2) E(T ) ∩ E(H) = ∅,

(SCT3) ℓ(T ) < sdH(L(T)),

(SCT4) For every B ( L(T ) we have sdH(B) ≤ sdT(B).

Note that, by definition, H is not |L(T )|-geodesic in T ∪H .

Lemma 3.1. Let G be a graph with length-function ℓ, k a natural number and
H ⊆ G. If H is not k-geodesic in G, then G contains a shortcut tree for H with
at most k leaves.

Proof. Among all A ⊆ V (H) with |A| ≤ k and sdG(A) < sdH(A), choose A such
that sdG(A) is minimum. Let T ⊆ G be a Steiner tree for A in G. We claim
that T is a shortcut tree for H .

Claim 1: L(T ) = A = V (T ) ∩ V (H).
The inclusions L(T ) ⊆ A ⊆ V (T ) ∩ V (H) are clear. We show V (T ) ∩

V (H) ⊆ L(T ). Assume for a contradiction that x ∈ V (T ) ∩ V (H) had degree
d ≥ 2 in T . Let T1, . . . , Td be the components of T − x and for j ∈ [d] let
Aj := A∩ V (Tj)∪{x}. Since L(T ) ⊆ A, every tree Ti contains some a ∈ A and
so A 6⊆ Aj . In particular |Aj | ≤ k. Moreover sdG(Aj) ≤ ℓ(Tj +x) < ℓ(T), so by
our choice of A and T it follows that sdG(Aj) = sdH(Aj). Therefore, for every
j ∈ [d] there exists a connected Sj ⊆ H with Aj ⊆ V (Sj) and ℓ(Sj) ≤ ℓ(Tj +x).
But then S :=

⋃

j Sj ⊆ H is connected, contains A and satisfies

ℓ(S) ≤
d

∑

j=1

ℓ(Sj) ≤
d

∑

j=1

ℓ(Tj + x) = ℓ(T ),

which contradicts the fact that sdH(A) > ℓ(T) by choice of A and T .
Claim 2: E(T ) ∩ E(H) = ∅.
Assume for a contradiction that xy ∈ E(T )∩E(H). By Claim 1, x, y ∈ L(T )

and so T consists only of the edge xy. But then T ⊆ H and sdH(A) ≤ ℓ(T),
contrary to our choice of A and T .

Claim 3: ℓ(T ) < sdH(L(T)).
We have ℓ(T ) = sdG(A) < sdH(A). By Claim 1, A = L(T ).
Claim 4: For every B ( L(T ) we have sdH(B) ≤ sdT(B).
Let B ( L(T ) and let T ′ := T − (A\B). By Claim 1, T ′ is the tree obtained

from T by chopping off all leaves not in B and so

sdG(B) ≤ ℓ(T′) < ℓ(T) = sdG(A).

By minimality of A, it follows that sdH(B) = sdG(B) ≤ sdT(B).
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Our proofs of Theorem 1.1 and Theorem 1.2 proceed by contradiction and
follow a similar outline. Let H ⊆ G be a subgraph satisfying a certain set
of assumptions. The aim is to show that H is fully geodesic. Assume for a
contradiction that it was not and apply Lemma 3.1 to find a shortcut tree T
forH . Let C be a cycle with V (C) ⊆ L(T ) and letWH ,WT be walks traced by C
in H and T , respectively. If |L(T )| ≥ 3, then it follows from (2) and (SCT4)
that len(WH) ≤ len(WT).

Ensure that mWT
(e) ≤ 2 for every e ∈ E(T ) and that mWH

(e) ≥ 2 for all
e ∈ E(S), where S ⊆ H is connected with L(T ) ⊆ V (S). Then

2 sdH(L(T)) ≤ 2 ℓ(S) ≤ len(WH) ≤ len(WT) ≤ 2 ℓ(T),

which contradicts (SCT3).
The first task is thus to determine, given a tree T , for which cycles C with

V (C) ⊆ V (T ) we have mW (e) ≤ 2 for all e ∈ E(T ), where W is a walk traced
by C in T . Let S ⊆ T be the Steiner tree for V (C) in T . It is clear that W
does not traverse any edges e ∈ E(T ) \E(S) and L(S) ⊆ V (C) ⊆ V (S). Hence
we can always reduce to this case and may for now assume that S = T and
L(T ) ⊆ V (C).

Lemma 3.2. Let T be a tree, C a cycle with L(T ) ⊆ V (C) ⊆ V (T ) and W a
walk traced by C in T . Then mW (e) is positive and even for every e ∈ E(T ).

Proof. Let e ∈ E(T ) and let V (C) = V (C)1∪V (C)2 be the induced bipartition.
Since L(T ) ⊆ V (C), this bipartition is non-trivial. By (3), mW (e) is the number
of ab ∈ E(C) such that e ∈ aT b. By definition, e ∈ aT b if and only if a and b
lie in different sides of the bipartition. Every cycle has a positive even number
of edges across any non-trivial bipartition of its vertex-set.

Lemma 3.3. Let T be a tree, C a cycle with L(T ) ⊆ V (C) ⊆ V (T ). Then

2ℓ(T ) ≤
∑

ab∈E(C)

dT(a, b).

Moreover, there is a cycle C with V (C) = L(T ) for which equality holds.

Proof. Let W be a walk traced by C in T . By Lemma 3.2, (1) and (2)

2ℓ(T ) ≤
∑

e∈E(T )

mW(e)ℓ(e) = len(W) =
∑

ab∈E(C)

dT(a, b).

To see that equality can be attained, let 2T be the multigraph obtained from T
by doubling all edges. Since all degrees in 2T are even, it has a Eulerian trail W ,
which may be considered as a walk in T with mW(e) = 2 for all e ∈ E(T ). This
walk traverses the leaves of T in some cyclic order, which yields a cycle C with
V (C) = L(T ). It is easily verified that W is traced by C in T and so

2ℓ(T ) =
∑

e∈E(T )

mW(e)ℓ(e) = len(W) =
∑

ab∈E(C)

dT(a, b).
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a

bc

d

Figure 1: A tree with four leaves

C1 C3 C3

Figure 2: The three cycles on T

We have now covered everything needed in the proof of Theorem 1.1, so the
curious reader may skip ahead to Section 4.

In general, not every cycle C with V (C) = L(T ) achieves equality in Lemma 3.3.
Consider the tree T from Figure 3 and the following three cycles on L(T )

C1 = abcda, C2 = acdba, C3 = acbda.

For the first two, equality holds, but not for the third one. But how does C3

differ from the other two? It is easy to see that we can add C1 to the planar
drawing of T depicted in Figure 3: There exists a planar drawing of T ∪ C1

extending this particular drawing. This is not true for C2, but it can be salvaged
by exchanging the positions of a and b in Figure 3. Of course, this is merely
tantamount to saying that T ∪ Ci is planar for i ∈ {1, 2}.

On the other hand, it is easy to see that T ∪ C3 is isomorphic to K3,3 and
therefore non-planar.

Lemma 3.4. Let T be a tree and C a cycle with V (C) = L(T ). Let W be a
walk traced by C in T . The following are equivalent:

(a) T ∪ C is planar.

(a) For every e ∈ E(T ), both V (C)e1, V (C)e2 are connected in C.

(a) W traverses every edge of T precisely twice.

Proof. (a) ⇒ (b): Fix a planar drawing of T ∪ C. The closed curve represent-
ing C divides the plane into two regions and the drawing of T lies in the closure
of one of them. By symmetry, we may assume that it lies within the closed disk
inscribed by C. Let A ⊆ V (C) disconnected and choose a, b ∈ A from distinct
components of C[A]. C is the disjoint union of two edge-disjoint a-b-paths S1, S2

and both of them must meet C \A, say c ∈ V (S1) \A and d ∈ V (S2) \A.

6



The curves representing aT b and cTd lie entirely within the disk and so they
must cross. Since the drawing is planar, aT b and cTd have a common vertex.
In particular, A cannot be the set of leaves within a component of T − e for any
edge e ∈ E(T ).

(b) ⇒ (c): Let e ∈ E(T ). By assumption, there are precisely two edges
f1, f2 ∈ E(C) between V (C)e1 and V (C)e2. These edges are, by definition, the
ones whose endpoints are separated in T by e. By (3), mW (e) = 2.

(c) ⇒ (a): For ab ∈ E(C), let Dab := aT b + ab ⊆ T ∪ C. The set D :=
{Dab : ab ∈ E(C)} of all these cycles is the fundamental cycle basis of T ∪ C
with respect to the spanning tree T . Every edge of C occurs in only one cycle
of D. By assumption and (3), every edge of T lies on precisely two cycles in D.
Covering every edge of the graph at most twice, the set D is a sparse basis of
the cycle space of T ∪ C. By MacLane’s Theorem, T ∪ C is planar.

4 Shortcut trees for trees

Proof of Theorem 1.1. Assume for a contradiction that T ⊆ G was not fully
geodesic and let R ⊆ T be a shortcut tree for T . Let T ′ ⊆ T be the Steiner tree
for L(R) in T . By Lemma 3.3, there is a cycle C with V (C) = L(R) such that

2ℓ(R) =
∑

ab∈E(C)

dR(a, b).

Note that T ′ is 2-geodesic in T and therefore in G, so that dT′ (a, b) ≤ dR(a, b)
for all ab ∈ E(C). Since every leaf of T ′ lies in L(R) = V (C), we can apply
Lemma 3.3 to T ′ and C and conclude

2ℓ(T ′) ≤
∑

ab∈E(C)

dT′(a, b) ≤
∑

ab∈E(C)

dR(a, b) = 2ℓ(R),

which contradicts (SCT3).

5 Shortcut trees for cycles

By Lemma 3.1, it suffices to prove the following.

Theorem 5.1. Let T be a shortcut tree for a cycle C. Then T ∪ C is a sub-
division of one of the five (multi-)graphs in Figure 3. In particular, C is not
6-geodesic in T ∪ C.

Theorem 5.1 is best possible in the sense that for each of the graphs in
Figure 3 there exists a length-function which makes the tree inside a shortcut
tree for the outer cycle, see Figure 5. These length-functions were constructed
in a joint effort with Pascal Gollin and Karl Heuer in an ill-fated attempt to
prove that a statement like Theorem 1.2 could not possibly be true.
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Figure 3: The five possible shortcut trees for a cycle
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Figure 4: Shortcut trees for cycles

This section is devoted entirely to the proof of Theorem 5.1. Let T be a
shortcut tree for a cycle C with length-function ℓ : E(T ∪ C) → R+ and let
L := L(T ).

The case where |L| = 2 is trivial, so we henceforth assume that |L| ≥ 3.
By suppressing any degree-2 vertices, we may assume without loss of generality
that V (C) = L(T ) and that T contains no vertices of degree 2.

Lemma 5.2. Let T1, T2 ⊆ T be edge-disjoint trees. For i ∈ {1, 2}, let Li :=
L∩V (Ti). If L = L1∪L2 is a non-trivial bipartition of L, then both C[L1], C[L2]
are connected.

Proof. By (SCT4) there are connected S1, S2 ⊆ C with ℓ(Si) ≤ sdT(Li) ≤ ℓ(Ti)
for i ∈ {1, 2}. Assume for a contradiction that C[L1] was not connected. Then
V (S1) ∩ L2 is non-empty and S1 ∪ S2 is connected, contains L and satisfies

ℓ(S1 ∪ S2) ≤ ℓ(S1) + ℓ(S2) ≤ ℓ(T1) + ℓ(T2) ≤ ℓ(T ),

which contradicts (SCT3).

Lemma 5.3. T ∪ C is planar and 3-regular.

Proof. Let e ∈ E(T ), let T1, T2 be the two components of T − e and let L =
L1 ∪ L2 be the induced (non-trivial) bipartition of L. By Lemma 5.2, both
C[L1], C[L2] are connected. Therefore T ∪ C is planar by Lemma 3.4.

To see that T ∪ C is 3-regular, it suffices to show that no t ∈ T has degree
greater than 3 in T . We just showed that T ∪ C is planar, so fix some planar
drawing of it. Suppose for a contradiction that t ∈ T had d ≥ 4 neighbors
in T . In the drawing, these are arranged in some cyclic order as t1, t2, . . . , td.
For j ∈ [d], let Rj := Tj + t, where Tj is the component of T − t containing tj .
Let Todd be the union of all Rj for odd j ∈ [d] and Teven the union of all Rj

for even j ∈ [d]. Then Todd, Teven ⊆ T are edge-disjoint and yield a nontrivial

8



Ts Tt

as at

bs bt

Ls Lt

Figure 5: The setup in the proof of Lemma 5.5

bipartition L = Lodd ∪ Leven of the leaves. But neither of C[Lodd], C[Leven] is
connected, contrary to Lemma 5.2.

Lemma 5.4. Let e0 ∈ E(C) arbitrary. Then for any two consecutive edges
e1, e2 of C we have ℓ(e1) + ℓ(e2) > ℓ(e0). In particular ℓ(e0) < ℓ(C)/2.

Proof. Suppose that e1, e2 ∈ E(C) are both incident with x ∈ L. Let S ⊆ C be
a Steiner tree for B := L \ {x} in C. By (SCT4) and (SCT3) we have

ℓ(S) ≤ sdT(B) ≤ ℓ(T) < sdC(L).

Thus x /∈ S and E(S) = E(C) \ {e1, e2}. Thus P := C − e0 is not a Steiner tree
for B and we must have ℓ(P ) > ℓ(S).

Let t ∈ T and N its set of neighbors in T . For every s ∈ N the set Ls of
leaves x with s ∈ tTx is connected in C. Each C[Ls] has two edges f

1
s , f

2
s ∈ E(C)

incident to it.

Lemma 5.5. There is a t ∈ T such that for every s ∈ N and any f ∈ {f1
s , f

2
s }

we have ℓ(C[Ls] + f) < ℓ(C)/2.

Proof. We construct a directed graph D with V (D) = V (T ) as follows. For
every t ∈ T , draw an arc to any s ∈ N for which ℓ(C[Ls] + f i

s) ≥ ℓ(C)/2 for
some i ∈ {1, 2}.

Claim: If
−→
ts ∈ E(D), then

−→
st /∈ E(D).

Assume that there was an edge st ∈ E(T ) for which both
−→
st,

−→
ts ∈ E(D). Let

Ts, Tt be the two components of T −st, where s ∈ Ts, and let L = Ls∪Lt be the
induced bipartition of L. By Lemma 5.2, both C[Ls] and C[Lt] are connected
paths, say with endpoints as, bs and at, bt (possibly as = bs or at = bt) so
that asat ∈ E(C) and bsbt ∈ E(C) (see Figure 5). Without loss of generality

ℓ(asat) ≤ ℓ(bsbt). Since
−→
ts ∈ E(D) we have ℓ(C[Lt] + bsbt) ≥ ℓ(C)/2 and

therefore C[Ls] + asat is a shortest at-bs-path in C. Similarly, it follows from
−→
st ∈ E(D) that dC(as, bt) = ℓ(C[Lt] + asat).

Consider the cycle Q := atbsasbtat and let WT ,WC be walks traced by Q
in T and in C, respectively. Then len(WT) ≤ 2 ℓ(T), whereas

len(WC) = 2 ℓ(C− bsbt) ≥ 2 sdC(L).

9



By (SCT4) we have dC(x, y) ≤ dT(x, y) for all x, y ∈ L and so len(WC) ≤
len(WT). But then sdC(L) ≤ ℓ(T), contrary to (SCT3). This finishes the proof
of the claim.

Since every edge of D is an orientation of an edge of T and no edge of T is
oriented both ways, it follows that D has at most |V (T )| − 1 edges. Since D
has |V (T )| vertices, there is a t ∈ V (T ) with no outgoing edges.

Fix a node t ∈ T as guaranteed by the previous lemma. If t was a leaf with
neighbor s, say, then ℓ(f1

s ) = ℓ(C)−ℓ(C[Ls]+f2
s ) > ℓ(C)/2 and, symmetrically,

ℓ(f2
s ) > ℓ(C)/2, which is impossible. Hence by Lemma 5.3, t has three neighbors

s1, s2, s3 ∈ T and we let Li := C[Lsi ] and ℓi := ℓ(Li). There are three edges
f1, f2, f3 ∈ E(C)\

⋃

E(Li), where f1 joins L1 and L2, f2 joins L2 and L3 and f3
joins L3 and L1. Each Li is a (possibly trivial) path whose endpoints we label
ai, bi so that, in some orientation, the cycle is given by

C = a1L1b1 + f1 + a2L2b2 + f2 + a3L3b3 + f3.

Hence f1 = b1a2, f2 = b2a3 and f3 = b3a1 (see Figure 5).
The fact that ℓ1 + ℓ(f1) ≤ ℓ(C)/2 means that L1 + f1 is a shortest a1-a2-

path in C and so dC(a1, a2) = ℓ1 + ℓ(f1). Similarly, we thus know the distance
between all other pairs of vertices with just one segment Li and one edge fj
between them.

t

L1L2

L3

f1

f2 f3

a1

b1a2

b2

a3 b3

Figure 6: The cycle Q

If |Li| ≤ 2 for every i ∈ [3], then T ∪ C is a subdivision of one the graphs
depicted in Figure 3 and we are done. Hence from now on we assume that at
least one Li contains at least 3 vertices.

Lemma 5.6. Suppose that max{|Ls| : s ∈ N} ≥ 3. Then there is an s ∈ N
with ℓ(f1

s + C[Ls] + f2
s ) ≤ ℓ(C)/2.

Proof. For j ∈ [3], let rj := ℓ(f1
sj

+ Lj + f2
sj
). Assume wlog that |L1| ≥ 3.

Then L1 contains at least two consecutive edges, so by Lemma 5.4 we must
have ℓ1 > ℓ(f2). Therefore

r2 + r3 = ℓ(C) + ℓ(f2)− ℓ1 < ℓ(C),
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so the minimum of r2, r3 is less than ℓ(C)/2.

By the previous lemma, we may wlog assume that

ℓ(f2) + ℓ3 + ℓ(f3) ≤ ℓ(C)/2, (4)

so that f2+L3+f3 is a shortest a1-b2-path in C. Together with the inequalities
from Lemma 5.5, this will lead to the final contradiction.

Consider the cycle Q = a1b2a2a3b3b1a1 (see Figure 5). Let WT be a walk
traced by Q in T . Every edge of T is traversed at most twice, hence

∑

ab∈E(Q)

dT(a, b) = ℓ(WT) ≤ 2ℓ(T). (5)

Let WC be a walk traced by Q in C. Using (4) and the inequalities from
Lemma 5.5, we see that

ℓ(WC) =
∑

ab∈E(Q)

dC(a, b) = 2ℓ1 + 2ℓ2 + 2ℓ3 + 2ℓ(f2) + 2ℓ(f3)

= 2ℓ(C)− 2ℓ(f1).

But by (SCT4) we have dC(a, b) ≤ dT(a, b) for all a, b ∈ L(T ) and therefore
ℓ(WC) ≤ ℓ(WT ). Then by (5)

2ℓ(C)− 2ℓ(f1) = ℓ(WC) ≤ ℓ(WT ) ≤ 2ℓ(T ).

But then S := C−f1 is a connected subgraph of C with L(T ) ⊆ V (S) satisfying
ℓ(S) ≤ ℓ(T ). This contradicts (SCT3) and finishes the proof of Theorem 5.1.

6 Towards a general theory

We have introduced a notion of higher geodecity based on the concept of the
Steiner distance of a set of vertices. This introduces a hierarchy of properties:
Every k-geodesic subgraph is, by definition, alsom-geodesic for anym < k. This
hierarchy is strict in the sense that for every k there are graphs G and H ⊆ G
and a length-function ℓ on G such that H is k-geodesic in G, but not (k + 1)-
geodesic. To see this, let G be a complete graph with V (G) = [k+1]∪ {0} and
let H be the subgraph induced by [k + 1]. Define ℓ(0j) := k − 1 and ℓ(ij) := k
for all i, j ∈ [k + 1]. If H was not k-geodesic, then G would contain a shortcut
tree T for H with |L(T )| ≤ k. Then T must be a star with center 0 and

ℓ(T ) = (k − 1)|L(T )| ≥ k(|L(T )| − 1).

But any spanning tree of H [L(T )] has length k(|L(T )|− 1) and so sdH(L(T)) ≤
ℓ(T), contrary to (SCT3). Hence H is a k-geodesic subgraph of G. However,
the star S with center 0 and L(S) = [k + 1] shows that

sdG(V(H)) ≤ (k + 1)(k− 1) < k2 = sdH(V(H)) = k2.

11



Theorem 1.1 and Theorem 1.2 demonstrate a rather strange phenomenon by
providing situations in which this hierarchy collapses.

For a given natural number k ≥ 2, let us denote by Hk the class of all
graphs H with the property that whenever G is a graph with H ⊆ G and ℓ is a
length-function on G such that H is k-geodesic, then H is also fully geodesic.

By definition, this yields an ascending sequence H2 ⊆ H3 ⊆ . . . of classes
of graphs. By Theorem 1.1 all trees lie in H2. By Theorem 1.2 all cycles are
contained in H6. The example above shows that Kk+1 /∈ Hk.

We now describe some general properties of the class Hk.

Theorem 6.1. For every natural number k ≥ 2, the class Hk is closed under
taking minors.

To prove this, we first provide an easier characterization of the class Hk.

Proposition 6.2. Let k ≥ 2 be a natural number and H a graph. Then H ∈ Hk

if and only if every shortcut tree for H has at most k leaves.

Proof. Suppose first thatH ∈ Hk and let T be a shortcut tree forH . By (SCT 3),
H is not |L(T )|-geodesic in T ∪H . Let m be the minimum integer such that H is
notm-geodesic in T∪H . By Lemma 3.1, T∪H contains a shortcut tree S with at
mostm leaves forH . But then by (SCT1) and (SCT2), S is the Steiner tree in T
of B := L(S) ⊆ L(T ). If B ( L(T ), then ℓ(S) = sdT(B) ≥ sdH(B) by (SCT4),
so we must have B = L(T ) and m ≥ |L(T )|. Thus H is (|L(T )| − 1)-geodesic in
T ∪H , but not |L(T )|-geodesic. As H ∈ Hk, it must be that |L(T )| − 1 < k.

Suppose now that every shortcut tree for H has at most k leaves and let
H ⊆ G k-geodesic with respect to some length-function ℓ : E(G) → R+. If H
was not fully geodesic, thenG contained a shortcut tree T forH . By assumption,
T has at most k leaves. But then sdG(L(T)) ≤ ℓ(T) < sdH(L(T)), so H is not
k-geodesic in G.

Lemma 6.3. Let k ≥ 2 be a natural number and G a graph. Then G ∈ Hk if
and only if every component of G is in Hk.

Proof. Every shortcut tree for a component K of G becomes a shortcut tree
for G by taking ℓ(e) := 1 for all e ∈ E(G) \E(K). Hence if G ∈ Hk, then every
component of G is in Hk as well.

Suppose now that every component ofG is inHk and that T is a shortcut tree
for G. If there is a component K of G with L(T ) ⊆ V (K), then T is a shortcut
tree for K and so |L(T )| ≤ k by assumption. Otherwise, let t1 ∈ L(T )∩ V (K1)
and t2 ∈ L(T ) ∩ V (K2) for distinct components K1,K2 of G. By (SCT 4), it
must be that L(T ) = {t1, t2} and so |L(T )| = 2 ≤ k.

Lemma 6.4. Let G,H be two graphs and let T be a shortcut tree for G. If G is
a minor of H, then there is a shortcut tree T ′ for H which is isomorphic to T .

Proof. Since G is a minor of H , there is a family of disjoint connected sets
Bv ⊆ V (H), v ∈ V (G), and an injective map β : E(G) → E(H) such that for
uv ∈ E(G), the end vertices of β(uv) ∈ E(H) lie in Bu and Bv.
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Let T be a shortcut tree for G with ℓ : E(T ∪ G) → R+. By adding a
small positive real number to every ℓ(e), e ∈ E(T ), we may assume that the
inequalities in (SCT4) are strict, that is

sdG(B) ≤ sdT(B)− ǫ

for every B ⊆ L(T ) with 2 ≤ |B| < |L(T )|, where ǫ > 0 is some constant.
Obtain the tree T ′ from T by replacing every t ∈ L(T ) by an arbitrary

xt ∈ Bt and every t ∈ V (T ) \ L(T ) by a new vertex xt not contained in V (H),
maintaining the adjacencies. It is clear by definition that V (T ′)∩V (H) = L(T ′)
and E(T ′) ∩ E(H) = ∅. We now define a length-function ℓ′ : E(T ′ ∪H) → R+

as follows.
For every edge st ∈ E(T ), the corresponding edge xsxt ∈ E(T ′) receives

the same length ℓ′(xsxt) := ℓ(st). Every e ∈ E(H) that is contained in one of
the branchsets Bv is assigned the length ℓ′(e) := δ, where δ := ǫ/|E(H)|. For
every e ∈ E(G) we let ℓ′(β(e)) := ℓ(e). To all other edges of H we assign the
length ℓ(T ) + 1.

We now show that T ′ is a shortcut tree forH with the given length-function ℓ′.
Suppose that S′ ⊆ H was a connected subgraph with L(T ′) ⊆ V (S′) and
ℓ′(S′) ≤ ℓ′(T ′). By our choice of ℓ′, every edge of S′ must either lie in a
branchset Bv or be the image under β of some edge of G, since otherwise
ℓ′(S′) > ℓ(T ) = ℓ′(T ′). Let S ⊆ V (G) be the subgraph where v ∈ V (S) if
and only if V (S′) ∩Bv is non-empty and e ∈ E(S) if and only if β(e) ∈ E(S′).
Since S′ is connected, so is S: For any non-trivial bipartition V (S) = U ∪ W
the graph S′ contains an edge between

⋃

u∈U Bu and
⋃

w∈W Bw, which in turn
yields an edge of S between U and W . Moreover L(T ) ⊆ V (S), since V (S′)
contains xt and thus meets Bt for every t ∈ L(T ). Finally, ℓ(S) ≤ ℓ(S′), which
contradicts our assumption that T is a shortcut tree for G.

For B′ ⊆ L(T ′) with 2 ≤ |B′| < |L(T ′)|, let B := {t ∈ T : xt ∈ B′}. By
assumption, there is a connected S ⊆ G with B ⊆ V (S) and ℓ(S) ≤ sdT(B)− ǫ.
Let

S′ :=
⋃

v∈V (S)

H [Bv] + {β(e) : e ∈ E(S)}.

For every xt ∈ B′ we have t ∈ B ⊆ V (S) and so xt ∈ Bt ⊆ V (S′). Since S is
connected and every H [Bv] is connected, S

′ is connected as well. Moreover

ℓ′(S′) ≤ δ|E(H)|+ ℓ(S) ≤ sdT(B) = sdT′(B′).

Proof of Theorem 6.1. Let H be a graph in Hk and G a minor of H . Let T
be a shortcut tree for G. By Lemma 6.4, H has a shortcut tree T ′ which is
isomorphic to T . By Proposition 6.2 and assumption on H , T has |L(T ′)| ≤ k
leaves. Since T was arbitrary, it follows from Proposition 6.2 that G ∈ Hk.

Corollary 6.5. H2 is the class of forests.
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Proof. By Theorem 1.1 and Lemma 6.3, every forest is in H2. On the other
hand, if G contains a cycle, then it contains the triangle C3 as a minor. We
saw in Section 5 that C3 has a shortcut tree with 3 leaves. By Lemma 6.4, so
does G and hence G /∈ H2 by Proposition 6.2.

Corollary 6.6. For every natural number k ≥ 2 there exists an integer m =
m(k) such that every graph that is not in Hk has a shortcut tree with more
than k, but not more than m leaves.

Proof. Let k ≥ 2 be a natural number. By Theorem 6.1 and the Graph Minor
Theorem of Robertson and Seymour [11] there is a finite set R of graphs such
that for every graph H we have H ∈ Hk if and only if H does not contain any
graph in R as a minor. Let m(k) := maxG∈R |G|.

Let H be a graph and suppose H /∈ Hk. Then H contains some G ∈ R
as a minor. By Proposition 6.2, this graph G has a shortcut tree T with more
than k, but certainly at most |G| leaves. By Lemma 6.4, H has a shortcut tree
isomorphic to T .

We remark that we do not need the full strength of the Graph Minor The-
orem here: We will see in a moment that the tree-width of graphs in Hk is
bounded for every k ≥ 2, so a simpler version of the Graph Minor Theorem
can be applied, see [10]. Still, it seems that Corollary 6.6 ought to have a more
elementary proof.

Problem. Give a direct proof of Corollary 6.6 that yields an explicit bound
on m(k). What is the smallest possible value for m(k)?

In fact, we are not even aware of any example that shows one cannot simply
take m(k) = k + 1.

Given that H2 is the class of forests, it seems tempting to think of each
class Hk as a class of “tree-like” graphs. In fact, containment in Hk is related
to the tree-width of the graph, but the relation is only one-way.

Proposition 6.7. For any integer k ≥ 1, the graph K2,2k is not in H2k−1.

Proof. Let H be a complete bipartite graph V (H) = A ∪B ∪ {x, y} with |A| =
|B| = k, where uv ∈ E(H) if and only if u ∈ A ∪ B and v ∈ {x, y} (or vice
versa). We construct a shortcut tree for H ∼= K2,2k with 2k leaves.

For x′, y′ /∈ V (H), let T be the tree with V (T ) = A ∪B ∪ {x′, y′}, where x′

is adjacent to every a ∈ A, y′ is adjacent to every b ∈ B and x′y′ ∈ E(T ). It is
clear that V (T )∩ V (H) = L(T ) and T and H are edge-disjoint. We now define
a length-function ℓ : E(T ∪H) → R+ that turns T into a shortcut tree for H .

For all a ∈ A and all b ∈ B, let

ℓ(ax) = ℓ(ax′) = ℓ(by) = ℓ(by′) = k − 1,

ℓ(ay) = ℓ(ay′) = ℓ(bx) = ℓ(bx′) = k,

ℓ(x′y′) = k − 1.
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Let A′ ⊆ A,B′ ⊆ B. We determine sdH(A
′ ∪ B′). By symmetry, it suffices

to consider the case where |A′| ≥ |B′|. We claim that

sdH(A
′ ∪ B′) = (k− 1)|A′ ∪ B′|+ |B′|.

It is easy to see that sdH(A
′∪B′) ≤ (k−1)|A′|+k|B′|, since S∗ := H [A′∪B′∪{x}]

is connected and achieves this length. Let now S ⊆ H be a tree with A′ ∪B′ ⊆
V (S).

If every vertex in A′ ∪ B′ is a leaf of S, then S can only contain one of x
and y, since it does not contain a path from x to y. But then S must contain
one of H [A′ ∪B′ ∪ {x}] and H [A′ ∪B′ ∪ {y}], so ℓ(S) ≥ ℓ(S∗).

Suppose now that some x ∈ A′ ∪ B′ is not a leaf of S. Then x has two
incident edges, one of length k and one of length k − 1. For s ∈ S, let r(s) be
the sum of the lengths of all edges of S incident with s. Then ℓ(s) ≥ k − 1 for
all s ∈ A′ ∪B′ and ℓ(x) ≥ 2k − 1. Since A′ ∪B′ is independent in H (and thus
in S), it follows that

ℓ(S) ≥
∑

s∈A′∪B′

r(s) ≥ |(A′ ∪B′) \ {x}|(k − 1) + (2k − 1)

= |A′ ∪B′|(k − 1) + k ≥ (k − 1)|A′ ∪B′|+ |B′|.

Thus our claim is proven. For A′, B′ as before, it is easy to see that

sdT(A
′ ∪ B′) =

{

(k − 1)|A′ ∪B′|, if B′ = ∅

(k − 1)|A′ ∪B′|+ k − 1, otherwise.

We thus have sdT(A
′ ∪ B′) < sdH(A

′ ∪ B′) if and only if |A′| = |B′| = k.
Hence (SCT 3) and (SCT4) are satisfied and T is a shortcut tree for H with 2k
leaves.

Note that the graph K2,k is planar and has tree-width 2. Hence there is
no integer m such that all graphs of tree-width at most 2 are in Hm. Using
Theorem 6.1, we can turn Proposition 6.7 into a positive result, however.

Corollary 6.8. For any k ≥ 2, no G ∈ Hk contains K2,k+2 as a minor.

In particular, it follows from the Grid-Minor Theorem [10] and planarity
of K2,k that the tree-width of graphs in Hk is bounded. Bodlaender et al [4]
gave a more precise bound for this special case, showing that graphs excluding
K2,k as a minor have tree-width at most 2(k − 1).

It seems plausible that a qualitative converse to Corollary 6.8 might hold.

Problem. Is there a function q : N → N such that every graph that does not
contain K2,k as a minor is contained in Hq(k)?

Since no subdivision of a graph G contains K2,|G|+e(G)+1 as a minor, a
positive answer would prove the following.

Conjecture. For every graph G there exists an integer m such that every
subdivision of G lies in Hm.
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7 Generating the cycle space

Let G be a graph with length-function ℓ. It is a well-known fact (see e.g. [7,
Chapter 1, exercise 37]) that the set of 2-geodesic cycles generates the cycle
space of G. This extends as follows, showing that fully geodesic cycles abound.

Proposition 7.1. Let G be a graph with length-function ℓ. The set of fully
geodesic cycles generates the cycle space of G.

We remark, first of all, that the proof is elementary and does not rely on
Theorem 1.2, but only requires Lemma 3.1 and Lemma 3.2.

Let D be the set of all cycles of G which cannot be written as a 2-sum of
cycles of smaller length. The following is well-known.

Lemma 7.2. The cycle space of G is generated by D.

Proof. It suffices to show that every cycle is a 2-sum of cycles in D. Assume
this was not the case and let C ⊆ G be a cycle of minimum length that is not
a 2-sum of cycles in D. In particular, C /∈ D and so there are cycles C1, . . . , Ck

with C = C1 ⊕ . . .⊕Ck and ℓ(Ci) < ℓ(C) for every i ∈ [k]. By our choice of C,
every Ci can be written as a 2-sum of cycles in D. But then the same is true
for C, which is a contradiction.

Proof of Proposition 7.1. We show that every C ∈ D is fully geodesic. Indeed,
let C ⊆ G be a cycle which is not fully geodesic and let T ⊆ G be a shortcut
tree for C. There is a cycle D with V (D) = L(T ) such that C is a union of
edge-disjoint L(T )-paths Pab joining a and b for ab ∈ E(D).

For ab ∈ E(D) let Cab := aT b + Pab. Every edge of C lies in precisely
one of these cycles. An edge e ∈ E(T ) lies in Cab if and only if e ∈ aT b.
By Lemma 3.2 and (3), every e ∈ E(T ) lies in an even number of cycles Cab.
Therefore C =

⊕

ab∈E(D) Cab.

For every ab ∈ E(D), C contains a path S with E(S) = E(C) \E(Pab) with
L(T ) ⊆ V (S). Since T is a shortcut tree for C, it follows from (SCT3) that

ℓ(Cab) ≤ ℓ(T ) + ℓ(Pab) < ℓ(S) + ℓ(Pab) = ℓ(C).

In particular, C /∈ D.

The fact that 2-geodesic cycles generate the cycle space has been extended
to the topological cycle space of locally finite graphs graphs by Georgakopoulos
and Sprüssel [8]. Does Proposition 7.1 have a similar extension?
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