Algebraically grid-like graphs have large tree-width

Daniel Weißauer
Department of Mathematics
University of Hamburg

Abstract

By the Grid Minor Theorem of Robertson and Seymour, every graph of sufficiently large tree-width contains a large grid as a minor. Tree-width may therefore be regarded as a measure of 'grid-likeness' of a graph.

The grid contains a long cycle on the perimeter, which is the \mathbb{F}_{2}-sum of the rectangles inside. Moreover, the grid distorts the metric of the cycle only by a factor of two. We prove that every graph that resembles the grid in this algebraic sense has large tree-width:

Let k, p be integers, γ a real number and G a graph. Suppose that G contains a cycle of length at least $2 \gamma p k$ which is the \mathbb{F}_{2}-sum of cycles of length at most p and whose metric is distorted by a factor of at most γ. Then G has tree-width at least k.

1 Introduction

For a positive integer n, the $(n \times n)$-grid is the graph G_{n} whose vertices are all pairs (i, j) with $1 \leq i, j \leq n$, where two points are adjacent when they are at Euclidean distance 1. The cycle C_{n}, which bounds the outer face in the natural drawing of G_{n} in the plane, has length $4(n-1)$ and is the \mathbb{F}_{2}-sum of the rectangles bounding the inner faces. This is by itself not a distinctive feature of graphs with large tree-width: The situation is similar for the n-wheel W_{n}, the graph consisting of a cycle D_{n} of length n and a vertex $x \notin D_{n}$ which is adjacent to every vertex of D_{n}. There, D_{n} is the \mathbb{F}_{2}-sum of all triangles $x y z$ for $y z \in E\left(D_{n}\right)$. Still, W_{n} only has tree-width 3 .

The key difference is the fact that in the wheel, the metric of the cycle is heavily distorted: any two vertices of D_{n} are at distance at most two within W_{n}, even if they are far apart within D_{n}. In the grid, however, the distance between two vertices of C_{n} within G_{n} is at least half of their distance within C_{n}.

In order to incorporate this factor of two and to allow for more flexibility, we equip the edges of our graphs with lengths. For a graph G, a length-function on G is simply a map $\ell: E(G) \rightarrow \mathbb{R}_{>0}$. We then define the ℓ-length $\ell(H)$ of a subgraph $H \subseteq G$ as the sum of the lengths of all edges of H. This naturally
induces a notion of distance between two vertices of G, where we define d_{G}^{ℓ} as the minimum ℓ-length of a path containing both. A subgraph $H \subseteq G$ is ℓ-geodesic if it contains a path of length $d_{G}^{\ell}(a, b)$ between any two vertices $a, b \in V(H)$.

When no length-function is specified, the notions of length, distance and geodecity are to be read with respect to $\ell \equiv 1$ constant.

On the grid-graph G_{n}, consider the length-function ℓ which is equal to 1 on $E\left(C_{n}\right)$ and assumes the value 2 elsewhere. Then C_{n} is ℓ-geodesic of length $\ell\left(C_{n}\right)=4(n-1)$ and the sum of cycles of ℓ-length at most 8 . We show that any graph which shares this algebraic feature has large tree-width.

Theorem 1. Let k be a positive integer and $r>0$. Let G be a graph with rational-valued length-function ℓ. Suppose G contains an ℓ-geodesic cycle C with $\ell(C) \geq 2 r k$, which is the \mathbb{F}_{2}-sum of cycles of ℓ-length at most r. Then the tree-width of G is at least k.

The starting point of Theorem 1 was a similar result of Matthias Hamann and the author [2]. There, it is assumed that not only the fixed cycle C, but the whole cycle space of G is generated by short cycles.

Theorem 2 ([2, Corollary 3]). Let k, p be positive integers. Let G be a graph whose cycle space is generated by cycles of length at most p. If G contains a geodesic cycle of length at least $k p$, then the tree-width of G is at least k.

It should be noted that Theorem 2 is not implied by Theorem 1, as the constant factors are different. In fact, the proofs are also quite different, although Lemma 5 below was inspired by a similar parity-argument in [2].

It is tempting to think that, conversely, Theorem 1 could be deduced from Theorem 2 by adequate manipulation of the graph G, but we have not been successful with such attempts.

2 Proof of Theorem 1

The relation to tree-width is established via a well-known separation property of graphs of bounded tree-width, due to Robertson and Seymour [3].

Lemma 3 (3). Let k be a positive integer, G a graph and $A \subseteq V(G)$. If the tree-width of G is less than k, then there exists $X \subseteq V(G)$ with $|X| \leq k$ such that every component of $G-X$ contains at most $|A \backslash X| / 2$ vertices of A.

It is not hard to see that Theorem 1 can be reduced to the case where $\ell \equiv 1$. This case is treated in the next theorem.

Theorem 4. Let k, p be positive integers. Let G be a graph containing a geodesic cycle C of length at least $4\lfloor p / 2\rfloor k$, which is the \mathbb{F}_{2}-sum of cycles of length at most p. Then for every $X \subseteq V(G)$ of order at most k, some component of $G-X$ contains at least half the vertices of C.

Proof of Theorem [1, assuming Theorem 4. Let \mathcal{D} be a set of cycles of length at most r with $C=\bigoplus \mathcal{D}$.

Since ℓ is rational-valued, we may assume that $r \in \mathbb{Q}$, as the premise also holds for r^{\prime} the maximum ℓ-length of a cycle in \mathcal{D}. Take an integer M so that $r M$ and $\ell^{\prime}(e):=M \ell(e)$ are natural numbers for every $e \in E(G)$.

Obtain the subdivision G^{\prime} of G by replacing every $e \in E(G)$ by a path of length $\ell^{\prime}(e)$. Denote by C^{\prime}, D^{\prime} the subdivisions of C and $D \in \mathcal{D}$, respectively. Then $C^{\prime}=\bigoplus_{D \in \mathcal{D}} D^{\prime}$ and $\left|C^{\prime}\right|=M \ell(C) \geq 2(M r) k$, while $\left|D^{\prime}\right|=M \ell(D) \leq M r$ for every $D \in \mathcal{D}$. By Theorem 4 for every $X \subseteq V\left(G^{\prime}\right)$ with $|X| \leq k$ there exists a component of $G^{\prime}-X$ that contains at least half the vertices of C^{\prime}. By Lemma 3, G^{\prime} has tree-width at least k. Since tree-width is invariant under subdivision, the tree-width of G is also at least k.

Our goal is now to prove Theorem [4. The proof consists of two separate lemmas. The first lemma involves separators and \mathbb{F}_{2}-sums of cycles.

Lemma 5. Let G be a graph, $C \subseteq G$ a cycle and \mathcal{D} a set of cycles in G such that $C=\bigoplus \mathcal{D}$. Let \mathcal{R} be a set of disjoint vertex-sets of G such that for every $R \in \mathcal{R}, R \cap V(C)$ is either empty or induces a connected subgraph of C. Then either some $D \in \mathcal{D}$ meets two distinct $R, R^{\prime} \in \mathcal{R}$ or there is a component Q of $G-\bigcup \mathcal{R}$ with $V(C) \subseteq V(Q) \cup \bigcup \mathcal{R}$.

Proof. Suppose that no $D \in \mathcal{D}$ meets two distinct $R, R^{\prime} \in \mathcal{R}$. Then C has no edges between the sets in \mathcal{R} : Any such edge would have to lie in at least one $D \in \mathcal{D}$. Let $Y:=\bigcup \mathcal{R}$ and let \mathcal{Q} be the set of components of $G-Y$.

Let $Q \in \mathcal{Q}, R \in \mathcal{R}$ and $D \in \mathcal{D}$ arbitrary. If D has an edge between Q and R, then D cannot meet $Y \backslash R$. Therefore, all edges of D between Q and $V(G) \backslash Q$ must join Q to R. As D is a cycle, it has an even number of edges between Q and $V(G) \backslash Q$ and thus between Q and R. As $C=\bigoplus \mathcal{D}$, we find

$$
e_{C}(Q, R) \equiv \sum_{D \in \mathcal{C}} e_{D}(Q, R) \equiv 0 \quad \bmod 2
$$

For every $R \in \mathcal{R}$ which intersects C, there are precisely two edges of C between R and $V(C) \backslash R$, because $R \cap C$ is connected. As mentioned above, C contains no edges between R and $Y \backslash R$, so both edges join R to $V(G) \backslash Y$. But C has an even number of edges between R and each component of $V(G) \backslash Y$, so it follows that both edges join R to the same $Q(R) \in \mathcal{Q}$.

Since every component of $C-(C \cap Y)$ is contained in a component of $G-Y$, it follows that there is a $Q \in \mathcal{Q}$ containing all vertices of C not contained in Y.

To deduce Theorem (4) we want to apply Lemma 5 to a suitable family \mathcal{R} with $\bigcup \mathcal{R} \supseteq X$ to deduce that some component of $G-X$ contains many vertices of C. Here, \mathcal{D} consists of cycles of length at most ℓ, so if the sets in \mathcal{R} are at pairwise distance $>\lfloor\ell / 2\rfloor$, then no $D \in \mathcal{D}$ can pass through two of them. The next lemma ensures that we can find such a family \mathcal{R} with a bound on $|\bigcup \mathcal{R}|$, when the cycle C is geodesic.

Lemma 6. Let d be a positive integer, G a graph, $X \subseteq V(G)$ and $C \subseteq G$ a geodesic cycle. Then there exists a family \mathcal{R} of disjoint sets of vertices of G with $X \subseteq \bigcup \mathcal{R} \subseteq X \cup V(C)$ and $|\bigcup \mathcal{R} \cap V(C)| \leq 2 d|X|$ such that for each $R \in \mathcal{R}$, the set $R \cap V(C)$ induces a (possibly empty) connected subgraph of C and the distance between any two sets in \mathcal{R} is greater than d.

Proof. Let $Y \subseteq V(G)$ and $y \in Y$. For $j \geq 0$, let $B_{Y}^{j}(y)$ be the set of all $z \in Y$ at distance at most $j d$ from y. Since $\left|B_{Y}^{0}(y)\right|=1$, there is a maximum number j for which $\left|B_{Y}^{j}(y)\right| \geq 1+j$, and we call this $j=j_{Y}(y)$ the range of y in Y. Observe that every $z \in Y \backslash B^{j_{Y}(y)}$ has distance greater than $\left(j_{Y}(y)+1\right) d$ from y.

Starting with $X_{1}:=X$, repeat the following procedure for $k \geq 1$. If $X_{k} \cap$ $V(C)$ is empty, terminate the process. Otherwise, pick an $x_{k} \in X_{k} \cap V(C)$ of maximum range in X_{k}. Let $j_{k}:=j_{X_{k}}\left(x_{k}\right)$ and $B_{k}:=B_{X_{k}}^{j_{k}}\left(x_{k}\right)$. Let $X_{k+1}:=$ $X_{k} \backslash B_{k}$ and repeat.

Since the size of X_{k} decreases in each step, there is a smallest integer m for which $X_{m+1} \cap V(C)$ is empty, at which point the process terminates. By construction, the distance between B_{k} and X_{k+1} is greater than d for each $k \leq m$. For each $1 \leq k \leq m$, there are two edge-disjoint paths $P_{k}^{1}, P_{k}^{2} \subseteq C$, starting at x_{k}, each of length at most $j_{k} d$, so that $B_{k} \cap V(C) \subseteq S_{k}:=P_{k}^{1} \cup P_{k}^{2}$. Choose these paths minimal, so that the endvertices of S_{k} lie in B_{k}. Note that every vertex of S_{k} has distance at most $j_{k} d$ from x_{k}. Therefore, the distance between $R_{k}:=B_{k} \cup S_{k}$ and X_{k+1} is greater than d.

We claim that the distance between R_{k} and $R_{k^{\prime}}$ is greater than d for any $k<k^{\prime}$. Since $B_{k^{\prime}} \subseteq X_{k+1}$, it is clear that every vertex of $B_{k^{\prime}}$ has distance greater than d from R_{k}. Take a vertex $q \in S_{k^{\prime}} \backslash R_{k^{\prime}}$ and assume for a contradiction that its distance to R_{k} was at most d. Then the distance between x_{k} and q is at most $\left(j_{k}+1\right) d$. Let $a, b \in B_{k^{\prime}}$ be the endvertices of $S_{k^{\prime}}$. If $x_{k} \notin S_{k^{\prime}}$, then one of a and b lies on the shortest path from x_{k} to q within C and therefore has distance at most $\left(j_{k}+1\right) d$ from x_{k}. But then, since j_{k} is the range of x_{k} in X_{k}, that vertex would already lie in B_{k}, a contradiction. Suppose now that $x_{k} \in S_{k^{\prime}}$. Then x_{k} lies on the path in $S_{k^{\prime}}$ from x_{k} to one of a or b, so the distance between x_{k} and $x_{k^{\prime}}$ is at most $j_{k^{\prime}} d$. Since $x_{k^{\prime}} \in X_{k} \cap V(C)$, it follows from our choice of x_{k} that

$$
j_{k}=j_{X_{k}}\left(x_{k}\right) \geq j_{X_{k}}\left(x_{k^{\prime}}\right) \geq j_{X_{k^{\prime}}}\left(x_{k^{\prime}}\right)=j_{k^{\prime}}
$$

where the second inequality follows from the fact that $X_{k^{\prime}} \subseteq X_{k}$ and $j_{Y}(y) \geq$ $j_{Y^{\prime}}(y)$ whenever $Y \supseteq Y^{\prime}$. But then $x_{k^{\prime}} \in B_{k}$, a contradiction. This finishes the proof of the claim.

Finally, let $\mathcal{R}:=\left\{R_{k}: 1 \leq k \leq m\right\} \cup\left\{X_{m+1}\right\}$. The distance between any two sets in \mathcal{R} is greater than d. For $k \leq m, R_{k} \cap V(C)=S_{k}$ is a connected
subgraph of C, while $X_{m+1} \cap V(C)$ is empty. Moreover,

$$
\begin{aligned}
|\bigcup \mathcal{R} \cap V(C)| & =\sum_{k=1}^{m}\left|S_{k}\right| \leq \sum_{k=1}^{m}\left(1+2 j_{k} d\right) \\
& \leq \sum_{k=1}^{m}\left(1+2\left(\left|B_{k}\right|-1\right) d\right) \\
& \leq \sum_{k=1}^{m} 2\left|B_{k}\right| d \leq 2 d|X|
\end{aligned}
$$

Proof of Theorem 4. Let $X \subseteq V(G)$ of order at most k and let $d:=\lfloor p / 2\rfloor$. By Lemma 6, there exists a family \mathcal{R} of disjoint sets of vertices of G with $X \subseteq \bigcup \mathcal{R} \subseteq X \cup V(C)$ and $|\bigcup \mathcal{R} \cap V(C)| \leq 2 d k$ so that for each $R \in \mathcal{R}$, the set $R \cap V(C)$ induces a (possibly empty) connected subgraph of C and the distance between any two sets in \mathcal{R} is greater than d.

Let \mathcal{D} be a set of cycles of length at most p with $C=\bigoplus \mathcal{D}$. Then no $D \in \mathcal{D}$ can meet two distinct $R, R^{\prime} \in \mathcal{R}$, since the diameter of D is at most d. By Lemma 5. there is a component Q of $G-\bigcup \mathcal{R}$ which contains every vertex of $C \backslash \bigcup \mathcal{R}$. This component is connected in $G-X$ and therefore contained in some component Q^{\prime} of $G-X$, which then satisfies

$$
\left|Q^{\prime} \cap V(C)\right| \geq|C|-|\bigcup \mathcal{R} \cap V(C)| \geq|C|-2 d k
$$

Since $|C| \geq 4 d k$, the claim follows.

3 Remarks

We have described the content of Theorem 1 as an algebraic criterion for a graph to have large tree-width. The reader might object that the cycle C being ℓ-geodesic is a metric property and not an algebraic one. Karl Heuer has pointed out to us, however, that geodecity of a cycle can be expressed as an algebraic property after all. This is a consequence of a more general lemma of Gollin and Heuer [1], which allowed them to introduce a meaningful notion of geodecity for cuts.

Proposition 7 ([1]). Let G be a graph with length-function ℓ and $C \subseteq G$ a cycle. Then C is ℓ-geodesic if and only if there do not exist cycles D_{1}, D_{2} with $\ell\left(D_{1}\right), \ell\left(D_{2}\right)<\ell(C)$ such that $C=D_{1} \oplus D_{2}$.

Finally, we'd like to point out that Theorem 1 does not only offer a 'one-way criterion' for large tree-width, but that it has a qualitative converse. First, we recall the Grid Minor Theorem of Robertson and Seymour 4], phrased in terms of walls . For a positive integer t, an elementary t-wall is the graph obtained from the $2 t \times t$-grid as follows. Delete all edges with endpoints $(i, j),(i, j+1)$
when i and j have the same parity. Delete the two resulting vertices of degree one. A t-wall is any subdivision of an elementary t-wall. Note that the $(2 t \times 2 t)$ grid has a subgraph isomorphic to a t-wall.

Theorem 8 (Grid Minor Theorem [4]). For every t there exists a k such that every graph of tree-width at least k contains a t-wall.

Here, then, is our qualitative converse to Theorem 1, showing that the algebraic condition in the premise of Theorem 1 in fact captures tree-width.

Corollary 9. For every L there exists a k such that for every graph G the following holds. If G has tree-width at least k, then there exists a rational length-function on G so that G contains a ℓ-geodesic cycle C with $\ell(C) \geq L$ which is the \mathbb{F}_{2}-sum of cycles of ℓ-length at most 1 .

Proof. Let $s:=3 L$. By the Grid Minor Theorem, there exists an integer k so that every graph of tree-width at least k contains an s-wall. Suppose G is a graph of tree-width at least k. Let W be an elementary s-wall so that G contains some subdivision W^{\prime} of W, where $e \in E(W)$ has been replaced by some path $P^{e} \subseteq G$ of length $m(e)$.

The outer cycle C of W satisfies $d_{C}(u, v) \leq 3 d_{W}(u, v)$ for all $u, v \in V(C)$. Moreover, C is the \mathbb{F}_{2}-sum of cycles of length at most six.

Define a length-function ℓ on G as follows. Let $e \in E(G)$. If $e \in P^{f}$ for $f \in E(C)$, let $\ell(e):=1 / m(f)$. Then $\ell\left(P^{f}\right)=1$ for every $f \in E(C)$. If $e \in P^{f}$ for $f \in E(W) \backslash E(C)$, let $\ell(e):=3 / m(f)$. Then $\ell\left(P^{f}\right)=3$ for every $f \in E(W) \backslash E(C)$. If $e \notin E\left(W^{\prime}\right)$, let $\ell(e):=10 s^{3}$, so that $\ell(e)>\ell\left(W^{\prime}\right)$.

It is easy to see that the subdivision $C^{\prime} \subseteq G$ of C is ℓ-geodesic in G. It has length $\ell\left(C^{\prime}\right)=|C| \geq 6 s$ and is the \mathbb{F}_{2}-sum of the subdivisions of 6 -cycles of W. Each of these satisfies $\ell(D) \leq 18$. Rescaling all lengths by a factor of $1 / 18$ yields the desired result.

References

[1] P. Gollin and K. Heuer. Geodesic cuts. In preparation.
[2] Matthias Hamann and Daniel Weißauer. Bounding connected tree-width. SIAM J. Discrete Math., 30(3):1391-1400, 2016.
[3] N. Robertson and P.D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms, 7:309-322, 1986.
[4] N. Robertson and P.D. Seymour. Graph minors. V. Excluding a planar graph. J. Combin. Theory (Series B), 41:92-114, 1986.

