
TURÁN’S THEOREM FOR THE FANO PLANE

LOUIS BELLMANN AND CHRISTIAN REIHER

Abstract. Confirming a conjecture of Vera T. Sós in a very strong sense, we give a
complete solution to Turán’s hypergraph problem for the Fano plane. That is we prove
for n ě 8 that among all 3-uniform hypergraphs on n vertices not containing the Fano
plane there is indeed exactly one whose number of edges is maximal, namely the balanced,
complete, bipartite hypergraph. Moreover, for n “ 7 there is exactly one other extremal
configuration with the same number of edges: the hypergraph arising from a clique of
order 7 by removing all five edges containing a fixed pair of vertices.

For sufficiently large values n this was proved earlier by Füredi and Simonovits, and by
Keevash and Sudakov, who utilised the stability method.

§1. Introduction

With his seminal work [19], Turán initiated extremal graph theory as a separate subarea
of combinatorics. After proving his well known extremal result concerning graphs not
containing a clique of fixed order, he proposed to study similar problems for graphs
arising from platonic solids and for hypergraphs. For instance, for a given 3-uniform
hypergraph F and a given natural number n, there arises the question to determine
the largest number expn, F q of edges that a 3-uniform hypergraph H can have without
containing F as a subhypergraph.

Here a 3-uniform hypergraph H “ pV,Eq consists of a set V of vertices and a col-
lection E Ď V p3q of 3-element subsets of V , that are called the edges of H. Since all
hypergraphs occurring in this article are 3-uniform, we will henceforth abbreviate the
terminology and just say “hypergraph” when we mean “3-uniform hypergraph.”

Despite tremendous efforts over the last 70 years, our knowledge about these Turán
functions n ÞÝÑ expn, F q is very limited, even for very innocent looking hypergraphs F
such as the tetrahedron F “ K

p3q
4 . It is thus customary to focus on the Turán densities

πpF q “ lim
nÑ8

expn, F q
`

n
3

˘ ,

the existence of which follows from the fact that the sequences n ÞÝÑ expn, F q
L`

n
3

˘

are, by
a result of Katona, Nemetz, and Simonovits [7], monotonically decreasing. These Turán
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2 LOUIS BELLMANN AND CHRISTIAN REIHER

densities are not understood very well either and all one knows in this regard about the
tetrahedron are the estimates

5
9 ď π

`

K
p3q
4
˘

ď 0.5616 . (1.1)

The lower bound follows from an explicit construction due to Turán himself (see e.g. [2]),
which is widely believed to be optimal. The upper bound was established by Razborov [15]
by means of his flag algebraic approach introduced in [14].

Vera T. Sós proposed to study Turán’s hypergraph problem in the special case where
F “ F is the Fano plane, i.e., the projective plane over the field with two elements. More
precisely, one takes F to be the hypergraph with 7 vertices, which are the points of the
Fano plane, and whose 7 edges correspond to the lines of the Fano plane (see Fig. 1.1).

Figure 1.1. Fano plane

One verifies easily that no matter how the vertices of the Fano plane get coloured with
two colours, there will always be a monochromatic edge, which suggest that bipartite
hypergraphs could be relevant to the problem under discussion. Given a natural num-
ber n, we denote the balanced, complete, bipartite hypergraph on n vertices by Bn. This
hypergraph is defined so as to have a partition V pBnq “ X Ÿ Y of its n-element vertex
set with

ˇ

ˇ|X| ´ |Y |
ˇ

ˇ ď 1 such that a triple e Ď V pBnq is an edge of Bn if and only if it
intersects both X and Y . The above observation on vertex colourings implies F Ę Bn

and, hence, that expn,F q ě bpnq, where

bpnq “

ˆ

n

3

˙

´

ˆ

tn{2u

3

˙

´

ˆ

tpn` 1q{2u

3

˙

denotes the number of edges of Bn. This number rewrites more conveniently as

bpnq “

$

&

%

1
8n

2pn´ 2q if n is even,
1
8pn

2 ´ 1qpn´ 2q if n is odd.
(1.2)

Sós conjectured this construction to be optimal, i.e., that

expn,F q “ bpnq (1.3)

and that, moreover, Bn is the unique n-vertex hypergraph with bpnq edges not containing
a Fano plane. According to Füredi [4], this conjecture of Sós was widely known since
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the 1970’s. In her problem and survey article [18], which often serves as a reference for this
problem, she discusses several connections between design theory and extremal hypergraph
theory, even though (1.3) does not seem to be mentioned there.

The first result in this direction is due to de Caen and Füredi [1], who proved that
πpF q “ 3

4 holds for the Fano plane F . Their article introduced the so-called link
multigraph method on which all further progress on Sós’s conjecture is based, and which
has since then found many further applications (see e.g. [8, 12]). A few years later it
turned out that by combining the work in [1] with Simonovits’ stability method [17] one
can prove (1.3) for all sufficiently large n. This was done by Füredi and Simonovits in [6]
and, independently, by Keevash and Sudakov in [9]. It is not straigthforward to extract
optimal quantitative information from either of those articles but it seems safe to say that
following [6] closely (1.3) would be hard to show for all n ě 10100 and easy for n ě 10300,
while the arguments in [9] would probably require n to be larger than 10900.

The main result of the present work proves (1.3) for all n ě 7. Furthermore, we show
that for n ě 8 the balanced, complete, bipartite hypergraph is indeed the only extremal
configuration. For n “ 7, however, there is a second extremal example, which is the
hypergraph J7 remaining from the complete hypergraph K

p3q
7 when one deletes all five

edges involving a fixed pair of vertices. Plainly J7 has
`7

3

˘

´5 “ 30 “ bp7q edges and F Ę J7

follows from the fact that in the Fano plane every pair of points determines a line.

Theorem 1.1. For every integer n ě 7 we have

expn,F q “ bpnq “
n´ 2

2 ¨

Z

n2

4

^

,

where F denotes the Fano plane. Moreover, for n ě 8 the only extremal hypergraph is the
balanced, complete, bipartite hypergraph Bn, while for n “ 7 there are exactly two extremal
hypergraphs, namely B7 and J7.

The proof of Theorem 1.1 proceeds by induction on n and uses the link multigraph
method. Let us mention for completeness that for n ď 6 one trivially has expn,F q “

`

n
3

˘

,
the unique extremal configuration being the complete hypergraph Kp3q

n .

Organisation. We prove Theorem 1.1 in Section 4. Some auxiliary considerations dealing
with small hypergraphs and inductive characterisations of balanced, complete, bipartite
hypergraphs are gathered in Section 2. The results on multigraphs we shall require are
developed in Section 3.

§2. Preliminaries

2.1. Tetrahedra. The n-vertex hypergraphs we need to deal with in the proof of our main
result will have bpnq edges and, hence, an edge density of 3

4 ` op1q. In view of (1.1) such
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hypergraphs contain tetrahedra provided that n is sufficiently large. Later on it will be
important to know that this actually holds for small values of n as well, which can be seen
by means of the following well-known, elementary argument.

Starting from the obvious fact ex
`

4, Kp3q
4
˘

“ 3 one uses the monotonicity of the sequence

n ÞÝÑ
ex
`

n,K
p3q
4
˘

`

n
3

˘

in order to obtain

ex
`

n,K
p3q
4
˘

ď
3
4

ˆ

n

3

˙

for every n ě 4. Together with the estimate

3
4

ˆ

n

3

˙

“
npn´ 1qpn´ 2q

8 ă
pn` 1qpn´ 1qpn´ 2q

8
(1.2)
ď bpnq ,

which holds for all n ě 3, this leads to the following statement.

Fact 2.1. For n ě 4 every hypergraph on n vertices with bpnq edges contains a tetrahedron.

2.2. Finding Fano planes. This subsection discusses two ways of looking at the Fano
plane F that turn out to be helpful for realising that a given hypergraph H contains a
copy of F .

The first of them goes back to the work of de Caen and Füredi [1] and reappeared in all
subsequent articles addressing the Turán problem for the Fano plane. Given a vertex x of
an arbitrary hypergraph H one may form its so-called link graph with vertex set V pHq in
which two vertices u and v are declared to be adjacent if and only if the triple uvx is an
edge of H. Now the simple yet important observation one frequently uses is that if xyz
denotes an arbitrary edge of the Fano plane F , then the six further edges of F correspond
to certain edges of the link graphs of x, y, and z. Moreover, these edges in the link graphs
use four vertices only and they form a configuration which has, for obvious reasons, been
called “three crossing pairs” in [6] (see Fig. 2.1).

x

y

z

(a) Fano plane (b) Crossing pairs

Figure 2.1. The edge xyz and the link graphs of x, y, and z.
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Another way of locating Fano planes in dense hypergraphs focuses on the link graph
of a single vertex. Plainly, every vertex x of the Fano plane F belongs to three edges
of F , which correspond to a perfect matching M in the link graph of x restricted to
the six remaining vertices of F . There are four further edges in F forming a certain
tripartite hypergraph P , whose partition classes are given by M . Owing to its connection
with Pasch’s axiom in the axiomatic approach to planar Euclidean geometry (see [13, §2,
Grundsatz IV]), P is often called the Pasch hypergraph (see Fig. 2.2).

This perspective on the Fano plane is especially useful when combined with the stability
method, for the Pasch hypergraph is known to have vanishing Turán density—a fact
exploited both in [6] and in [9]. In the present work, the Pasch hypergraph plays a much
less prominent rôle and it will only be mentioned in the proof of Lemma 2.3 below.

x

Figure 2.2. The Pasch hypergraph contained in the Fano plane.

2.3. Small hypergraphs. In this subsection we gather several auxiliary statements ad-
dressing hypergraphs on 7 or 8 vertices. We begin with the case n “ 7 of Theorem 1.1,
which will later constitute the start of an induction.

Lemma 2.2. Every hypergraph with 7 vertices and 30 edges not containing a Fano plane
is isomorphic to either B7 or J7.

Proof. Let H be such a hypergraph with vertex set r7s and write H for its complement,
which has 5 edges.

For every permutation π P S7 we denote the number of triples among

πp1qπp2qπp3q, πp3qπp4qπp5q, πp1qπp5qπp6q, πp1qπp4qπp7q,

πp3qπp6qπp7q, πp2qπp5qπp7q, and πp2qπp4qπp6q ,

which are edges of H, by Apπq. As these seven triples form a Fano plane, the number Apπq
cannot vanish for any π P S7, wherefore

ÿ

πPS7

Apπq ě |S7| “ 7! .
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On the other hand, every edge of H appears in the above list for precisely 7 ¨ 3! ¨ 4! “ 7!{5
permutations π and a double-counting argument yields

ÿ

πPS7

Apπq “ 7!
5 ¨ epHq “ 7! .

For these reasons, we have Apπq “ 1 for every π P S7. If H would have two edges inter-
secting in a single vertex, then an appropriate permutation π P S7 would satisfy Apπq ě 2,
which has just been proved to be false. Therefore, any two distinct edges of H are either
disjoint or they intersect in a pair.

(a) B7 (b) J7

Figure 2.3. Possibilities for H.

A quick case analysis discloses that there are only two hypergraphs on 7 vertices with 5
edges having this property, namely the disjoint union of a tetrahedron and a single edge
(see Fig. 2.3a), and the hypergraph whose edges are the five triples containing a fixed pair
of vertices (see Fig. 2.3b). In the former case H is isomorphic to B7 and in the latter case
one has H – J7. �

The next lemma analyses certain Fano-free hypergraphs on 7 vertices with possibly
only 29 edges. It will allow us later to exclude several configurations on six vertices in a
hypothetical minimal counterexample to Theorem 1.1.

Lemma 2.3. Let H be a hypergraph on 7 vertices not containing a Fano plane. If some
vertex v of H satisfies dpvq ě 11 and epH r vq ě 18, then H r v is isomorphic to B6.

Proof. Set K “ V pHq r tvu and let L denote the link graph of v restricted to K. It
has 6 vertices and at least 11 edges, and thus it contains a perfect matching M , say
with edges x1x2, x3x4, x5x6. Assuming indirectly that H r v is not isomorphic to B6 one
checks easily that this hypergraph contains a copy of Kp3q

5 and we may henceforth suppose
that tx1, . . . , x5u is a clique of order 5 in H. In other words, x6 belongs to all edges of the
complement H˚ of H r v.
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x1

x2 x4

x3 x5

x6

v

K

M

Figure 2.4. The matching M in the link of v and two Pasch hypergraphs
(drawn red and blue).

Now both

x1x3x5, x1x4x6, x2x3x6, x2x4x5

and

x2x4x6, x2x3x5, x1x4x5, x1x3x6

are edge configurations forming Pasch hypergraphs that together with the matching M in
the link of v would yield a Fano plane (see Figure 2.4). Thus both of the above disjoint
rows contain a triple which fails to be an edge of H. On the other hand, by epH r vq ě 18
the complement H˚ can have at most two edges.

So without loss of generality we may suppose that the edges of H˚ are x1x4x6 and x2x4x6.
Now x1 and x2 are the only vertices of H˚ having degree 1. If there were a different perfect
matching M 1 in L not pairing these two vertices with each other, we could repeat the
entire argument with M 1 in place of M and would thus find a Fano plane in H.

This shows that all perfect matchings of L use the edge x1x2. Hence the graph Lr x1x2

with 6 vertices and at least 10 edges has no perfect matchings at all, which is only possible
if this graph consists of a K5 and an isolated vertex. As the edge x1x2 cannot belong to
this K5, the isolated vertex must be either x1 or x2. In both cases

x1x2, x3x5, x4x6

is a perfect matching in L. Together with the Pasch hypergraph

x1x3x4, x1x5x6, x2x3x6, x2x4x5

it leads to a Fano plane in H, which is absurd. Thus we have indeed pH r vq – B6. �

Finally, the last statement of this subsection will allow us later to eliminate a somewhat
annoying case that arises in the induction step from 7 to 8 due to the non-uniqueness of
the extremal hypergraph on 7 vertices.
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Fact 2.4. Let H be a hypergraph on 8 vertices not containing a Fano plane. If Kp3q
6 Ď H,

then epHq ď 46 ă bp8q.

Proof. Write V pHq “ K Y tx, yu, where K induces a Kp3q
6 in H. By Lemma 2.3 applied

to H r y there are at most 10 edges containing x but not y. Similarly, there are at most 10
edges containing y but not x. Finally, H can have at most |K| “ 6 edges containing both x
and y. So altogether we have indeed

epHq ď 20` 10` 10` 6 “ 46 ă 48 “ bp8q . �

2.4. Characterisations of Bn. In our inductive proof of Theorem 1.1 we will consider
a hypergraph H on some number n ě 8 of vertices with bpnq edges and F Ę H. These
assumptions will be shown to entail some strong structural properties of H and the purpose
of this subsection is to check that we can actually conclude H – Bn from those properties.

This is much easier when the number of vertices is even.

Lemma 2.5. Suppose that n ě 6 is even and that H is a hypergraph on n vertices. If for
every vertex v of H the hypergraph H r v is isomorphic to Bn´1, then H – Bn.

Proof. Let y P V pHq be arbitrary. Since H r y is isomorphic to Bn´1, there exists a
partition V pHq r tyu “ X Ÿ Y with |X| “ n

2 and |Y | “ n
2 ´ 1 such that X and Y are

independent sets in H. The same argument applies to every y1 P Y . Since Bn´1 has a
unique independent set of size n

2 , the outcome must be the partition

V pHqr ty1u “ X Ÿ
`

Y Y tyur ty1u
˘

for each y1 P Y .

This proves that H is isomorphic to Bn with vertex classes X and Y Y tyu. �

To handle the case where the number of vertices is odd we shall require the following
lemma. Its initial assumption concerning the case n “ 8 will turn out to be harmless, as
we will already know its truth when using the lemma for the first time.

Lemma 2.6. Assume that Theorem 1.1 holds for n “ 8. Now let n ě 9 be odd and let H
be a hypergraph on n vertices with bpnq edges which does not contain a Fano plane. Suppose
that whenever a four-element set K Ď V pHq induces a tetrahedron in H

(i ) we have pH rKq – Bn´4

(ii ) and for every v P V pH rKq there are exactly five pairs in Kp2q forming together
with v an edge of H.

Then H is isomorphic to Bn.

Proof. Recall that by Fact 2.1 there is a tetrahedron contained in H, say with vertex
set K Ď V pHq. Owing to condition (i ) there is a partition V rK “ X Ÿ Y witnessing
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that H r K is indeed isomorphic to Bn´4. Notice that due to n ě 9 we may suppose
that |X| ě 2 and |Y | ě 3.

Now consider any four distinct vertices x, x1 P X and y, y1 P Y . By clause (ii ) applied to
the tetrahedra K and K 1 “ tx, x1, y, y1u we obtain

epK YK 1
q “ epKq ` epK 1

q ` 5p|K| ` |K 1
|q “ 2 ¨ 4` 5 ¨ 8 “ 48 “ bp8q

and by the hypothesised validity of Theorem 1.1 for hypergraphs on 8 vertices it follows
that K Y K 1 induces a copy of B8 in H. As K induces a tetrahedron, there exists an
enumeration K “ tv1, v2, v3, v4u such that the two independent 4-sets of this B8 are,
possibly after relabelling y and y1,

(a ) either tv1, v2, x, x
1u and tv3, v4, y, y

1u

(b ) or tv1, v2, x, yu and tv3, v4, x
1, y1u.

v1 v2

v3 v4

x

x1

y

y2

y1

X

Y

K
K 1

Figure 2.5. The impossible case (b ). Tetrahedra are drawn as yellow
quadruples and independent sets as red lines.

Now assume for the sake of contradiction that the latter possibility occurs (see Fig. 2.5).
Let y2 P Y be an arbitrary vertex distinct from y and y1. When applying the argument
of the foregoing paragraph to tx, x1, y, y2u instead of K 1 we still have the independent
set tv1, v2, x, yu and, consequently tv3, v4, x

1, y2u is independent as well. Proceeding similarly
with the tetrahedron tx, x1, y1, y2u we learn that the set tv1, v2, x, y

2u is likewise independent.
In particular, neither v1v2y

2 nor v3v4y
2 belongs to EpHq, meaning that K and y2 violate

condition (ii ). This proves that alternative (b ) is indeed impossible.
Summarising the discussion so far, we know that depending on any four distinct vertices

x, x1 P X and y, y1 P Y there is an enumeration K “ tv1, v2, v3, v4u such that the two
independent 4-sets of the copy of B8 induced by K Y tx, x1, y, y1u are as mentioned in (a ).

Now if we keep y and y1 fixed and let the pair x, x1 vary through X we will always get
the same independent set tv3, v4, y, y

1u and thus the entire set X Y tv1, v2u is independent
in H. Similarly, Y Y tv3, v4u is independent as well. Consequently H is indeed isomorphic
to Bn with partition classes X Y tv1, v2u and Y Y tv3, v4u. �
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§3. Multigraphs

This section builds upon [6, Section 2-4] and collects several extremal results on multi-
graphs that will be applied at a later occasion to certain link multigraphs arising in
hypergraphs not containing Fano planes.

Definition 3.1. For a positive integer p, a p-tuple
á

G “ pG1, . . . , Gpq of graphs on the
same vertex set V p

á

Gq will be referred to as a p-multigraph.

Extending some pieces of graph theoretic notation to the context of multigraphs, we will
write ep

á

Gq “
řp
i“1 epGiq for the total number of edges of a p-multigraph

á

G “ pG1, . . . , Gpq.
Similarly, for every X Ď V p

á

Gq we put epXq “
řp
i“1 eGi

pXq and if the members of X are
enumerated explicitly we will omit a pair of curly braces and write, e.g., epx, y, zq instead
of the more baroque eptx, y, zuq. In the special case of two-element sets, the number epx, yq
will be called the multiplicity of the pair xy.

With each p-multigraph one can associate a corresponding weighted graph pV, eq given
by the set of vertices V “ V p

á

Gq and the multiplicity function px, yq ÞÝÑ epx, yq. There is
a rich literature on extremal problems in weighted graphs and the topic is studied both
for its own sake (see e.g. [5, 16]) and due to its applicability to other parts of extremal
combinatorics, such as Turán’s hypergraph problem and the Ramsey-Turán theory of
graphs (see e.g. [3, 10,11]).

The main difference between multigraphs and weighted graphs is that the former do
also keep track of the sets Mpx, yq Ď rps containing for every pair xy of vertices those
indices i P rps for which xy is an edge of Gi. Therefore, there is a richer variety of extremal
questions that can be asked in the setting of multigraphs. The following such problem is
closely tied to the Turán number of the Fano plane.

Definition 3.2. For p ě 3 a p-multigraph
á

G “ pG1, . . . , Gpq is said to contain three
crossing pairs (see Figure 3.1) if there are three distinct indices i, j, k P rps and four distinct
vertices w, x, y, z P V p

á

Gq such that
‚ wx, yz P EpGiq;
‚ wy, xz P EpGjq;
‚ and wz, xy P EpGkq.

The maximum total number of edges that a p-multigraph on n vertices can have without
containing three crossing pairs is denoted by fppnq.

The function f4p¨q was determined by Füredi and Simonovits in [6, Theorem 2.2]. Their
result plays an important rôle in the proof of our main result and reads as follows.

Theorem 3.3. For every n ě 4 one has

f4pnq “ 2
ˆ

n

2

˙

` 2
Z

n2

4

^

.
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y

w

z

x

Figure 3.1. Three crossing pairs in pGi, Gj, Gkq.

We would like to mention that Füredi and Simonovits also obtained a characteri-
sation of the extremal configurations on n ě 8 vertices (see Figure 3.2). Namely, if
á

G “ pG1, G2, G3, G4q denotes a 4-multigraph on at least 8 vertices with f4pnq edges that
does not contain three crossing pairs, then there are a partition V p

á

Gq “ X Ÿ Y and a
permutation π P S4 such that

‚ |X| “
X

n
2

\

, |Y | “
X

n`1
2

\

,
‚ E

`

Gπp1q
˘

“ E
`

Gπp2q
˘

“ Xp2q YKpX, Y q,
‚ and E

`

Gπp3q
˘

“ E
`

Gπp4q
˘

“ Y p2q YKpX, Y q,
where KpX, Y q denotes the collection of all pairs xy with x P X and y P Y .

|X| “
X

n
2

\

|Y | “
X

n`1
2

\

KpX, Y q “ EpG1q X EpG3q

Figure 3.2. An extremal 4-multigraph pG1, G2, G3, G4q with π “ id,
G1 “ G2, and G3 “ G4.

It can be shown that this characterisation of the extremal configurations extends to the
case n “ 7 as well, but for n P t4, 5, 6u further extremal multigraphs are mentioned in [6].

˚ ˚ ˚

The remainder of this section deals with the function f5p¨q. Two instructive examples of
5-multigraphs without three crossing pairs are the following.

‚ Let G1 “ G2 “ G3 “ G4 “ G5 be a K4-free Turán graph on n vertices. Notice that
this 5-multigraph has 5

X

n2

3

\

edges.
‚ Let

á

G˚ “ pG1, G2, G3, G4q be an extremal 4-multigraph without three crossing
pairs with vertex partition V p

á

G˚q “ X Ÿ Y as described earlier, take G5 to be the
complete bipartite graph between X and Y and consider

á

G “ pG1, . . . , G5q. Clearly
the 5-multigraph

á

G does not contain three crossing pairs either and its number of
edges is 2

`

n
2

˘

` 3
X

n2

4

\

.
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These examples demonstrate

f5pnq ě max
ˆ

5
Z

n2

3

^

, 2
ˆ

n

2

˙

` 3
Z

n2

4

^˙

(3.1)

and, as a matter of fact, one can show that equality holds for every n. The only proof of
this statement, which is known to us, is, however, quite laborious and relies on extensive
case distinctions. For this reason we will state and prove below a weaker result on f5p¨q

which still suffices for the application we have in mind.

Proposition 3.4. We have f5pnq ď
1
4p7n

2 ´ nq for every natural number n ě 3.

Before we turn to the proof of this fact we take a closer look at the case n “ 4.

Lemma 3.5. Let
á

G “ pG1, . . . , G5q be a 5-multigraph on four vertices not containing three
crossing pairs and set e “ ep

á

Gq.
(i ) If e ě 23, then there exists an enumeration V p

á

Gq “ tw, x, y, zu such that

epw, xq ` epy, zq ď 5 .

(ii ) If e ě 22, then there exist two distinct vertices u and v with epu, vq “ 5.

Proof. Write V p
á

Gq “ tw, x, y, zu and define a “ epw, xq ` epy, zq, b “ epw, yq ` epx, zq, as
well as c “ epw, zq` epx, yq to be the sums of the multiplicities of the three pairs of disjoint
edges. By symmetry we may suppose that the enumeration of V p

á

Gq we started with has
been chosen in such a way that a ď b ď c holds.

Now suppose for the sake of contradiction that

a ě 6, b ě 7, and c ě 8 . (‹)

Due to a ě 6 there is an index i P r5s such that wx and yz are edges of Gi. Similarly, b ě 7
implies that there are at least two indices j P r5s with the property that wy and xz are
edges of Gj and, hence, at least one of them is distinct from i. Proceeding in the same
way with c ě 8 one finds an index k ‰ i, j for which wz and xy are edges of Gk. We have
thereby found three crossing pairs in pGi, Gj, Gkq and this contradiction proves that p‹q is
indeed false.

Now part (i ) of the lemma follows from the observation that a ` b ` c “ e ě 23 and
10 ě c ě b ě a entail c ě 8 and b ě 7. So the failure of p‹q yields a ď 5, as desired.

For the proof of part (ii ) we notice that a`b`c “ e ě 22 and c ě b ě a still imply c ě 8.
The falsity of p‹q shows that at least one of the estimates a ď 5 or b ď 6 holds. In both cases
we obtain c ě 9, meaning that at least one of the two pairs wz or xy has multiplicity 5. �

Proof of Proposition 3.4. The trivial bound f5p3q ď 5
`3

2

˘

“ 15 shows that our claim holds
for n “ 3. Next, an easy averaging argument yields f5pnq ď

5
4f4pnq for every natural
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number n. Due to Theorem 3.3 and (3.1) this gives the exact values

f5p4q “ 25 and f5p5q “ 40 , (3.2)

which establish the desired estimate for n P t4, 5u. Arguing indirectly we now let n ě 6
denote the least integer for which there exists a 5-multigraph

á

G “ pG1, . . . , G5q on n

vertices with more than 1
4p7n

2 ´ nq edges that does not contain three crossing pairs. For
every set X Ď V “ V p

á

Gq of vertices we shall write e`pXq “ ep
á

Gq ´ epV rXq for the total
number of edges having at least one endvertex in X. As long as 0 ă |X| ď n ´ 3 the
minimality of n yields

epV rXq ď 1
4

`

7pn´ |X|q2 ´ pn´ |X|q
˘

,

whence
e`pXq ą 1

4p14n|X| ´ 7|X|2 ´ |X|q .

In particular, we obtain

e`pXq ě

$

’

’

’

&

’

’

’

%

1
2p7n´ 3q if |X| “ 1,

7n´ 7 if |X| “ 2,
21
2 n´ 16 if |X| “ 3.

(3.3)

Owing to ep
á

Gq ą 7
2

`

n
2

˘

the average edge multiplicity in
á

G is greater than 7
2 . Therefore,

there exist a set Q Ď V consisting of four vertices with epQq ą 6 ¨ 7
2 “ 21, and by

Lemma 3.5(ii ) it follows that there are two distinct vertices x and y with epx, yq “ 5.
According to (3.3) we have

ÿ

zPV rtx,yu

`

epx, zq ` epy, zq
˘

“ e`px, yq ´ 5 ě 7n´ 12 ą 7pn´ 2q .

Consequently, there exists a vertex z distinct from x and y with epx, zq ` epy, zq ě 8.
Altogether we have thereby shown that there exist triples px˚, y˚, z˚q of distinct vertices

with
epx˚, y˚q “ 5 and epx˚, z˚q ` epy˚, z˚q ě 8

and for the remainder of the proof we fix one such triple with the additional property that
epx˚, z˚q ` epy˚, z˚q ě 8 is maximal. Set α “ epx˚, z˚q as well as β “ epy˚, z˚q and observe
that we may suppose α ě β for reasons of symmetry. Clearly pα, βq is one of the four
ordered pairs p5, 5q, p5, 4q, p5, 3q, or p4, 4q.

Because of
ÿ

vPV rtx˚,y˚,z˚u

`

epv, x˚q ` epv, y˚q ` epv, z˚q
˘

“ e`px˚, y˚, z˚q ´ p5` α ` βq (3.4)

(3.3)
ě

`21
2 n´ 16

˘

´ 15 ą 10pn´ 3q
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there exists a vertex v˚ ‰ x˚, y˚, z˚ satisfying

epv˚, x˚q ` epv˚, y˚q ` epv˚, z˚q ě 11 . (3.5)

By applying the left part of (3.2) to the quadruple tv˚, x˚, y˚, z˚u we learn

α ` β ď 25´ 11´ 5 “ 9 ,

meaning that the pair pα, βq cannot be p5, 5q.

y˚

x˚

z˚

v˚

5

4

4

Figure 3.3. The case α “ β “ 4.

Assume next that α “ β “ 4 (see Figure 3.3), which yields epv˚, x˚, y˚, z˚q ě 13`11 “ 24.
Due to Lemma 3.5(i ) it follows that either epv˚, x˚q ď 1, epv˚, y˚q ď 1, or epv˚, z˚q “ 0. The
last alternative would contradict (3.5), so by symmetry we may suppose that epv˚, y˚q ď 1.
Invoking (3.5) once more we infer that epv˚, x˚q “ epv˚, z˚q “ 5. But now the edges of the
triangle pv˚, x˚, z˚q have multiplicities 5, 5, and 4, contrary to the maximal choice of α` β.
We have thereby proved that pα, βq ‰ p4, 4q.

For these reasons, it must be the case α “ 5 and β P t3, 4u (see Figure 3.4). Adding
ÿ

vPV rtx˚,y˚,z˚u

epv, x˚q “ e`px˚q ´ 10
(3.3)
ě 7

2n´
23
2

to (3.4) we infer
ÿ

vPV rtx˚,y˚,z˚u

`

2epv, x˚q ` epv, y˚q ` epv, z˚q
˘

ě
`21

2 n´ 16´ 14
˘

`
`7

2n´
23
2

˘

ą 14pn´ 3q ,

which shows that there exists a vertex w˚ ‰ x˚, y˚, z˚ such that

2epw˚, x˚q ` epw˚, y˚q ` epw˚, z˚q ě 15 . (3.6)

In particular, we have epw˚, x˚q ` epw˚, y˚q ` epw˚, z˚q ě 10 and, consequently,

epw˚, x˚, y˚, z˚q ě 13` 10 “ 23 .

Appealing to Lemma 3.5(i ) again we deduce that at least one of the three cases

epw˚, x˚q ď 2, epw˚, y˚q “ 0, or epw˚, z˚q “ 0
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y˚

x˚

z˚

w˚

5

β P t3, 4u

5

Figure 3.4. The case α “ 5 and β ă 5.

occurs. The first of them is incompatible with (3.6), so by symmetry we may suppose that
epw˚, y˚q “ 0. In combination with (3.6) this yields epw˚, x˚q “ epw˚, z˚q “ 5. But now
the triangle pw˚, x˚, z˚q contradicts the supposed maximality of α ` β. �

Let us finally summarise the properties of f5 that shall be utilised in the next section.

Conclusion 3.6. If n ě 9 is odd, then
(a ) bpn´ 5q ` f5pn´ 5q ` 7pn´ 5q ` 10 ă bpnq and
(b )

`

bpn´ 6q ` 1
2pn´ 9q

˘

` f5pn´ 6q `
`

n´6
2

˘

` 10pn´ 6q ` 20 ă bpnq.

Proof. Due to the explicit formula (1.2) for bpnq and the estimate on f5pn´ 5q provided
by Proposition 3.4, part (a ) is a consequence of 1 ă 1

8pn ´ 5q2, which is trivially valid.
Similarly, part (b ) reduces to 0 ă 1

4p3n´ 23q, which is likewise obvious. �

§4. Proof of the Main Theorem

This entire section is dedicated to the proof of Theorem 1.1, which proceeds by induction
on n. Since the base case n “ 7 was already treated in Lemma 2.2, we may suppose
that n ě 8 and that (1.1) as well as our statement addressing the extremal hypergraphs
hold for every n1 P r7, nq in place of n. Now let H “ pV,Eq be a hypergraph on |V | “ n

vertices with |E| “ bpnq edges that does not contain a Fano plane. We are to prove
that H – Bn. Let us distinguish two cases according to the parity of n.

First Case: n ě 8 is even.

For every vertex v P V we have epH r vq ď bpn ´ 1q, since otherwise the induction
hypothesis would yield a Fano plane in H r v. This shows that

dpvq ě bpnq ´ bpn´ 1q “ 3
ˆ

n{2
2

˙

“
3|E|
n

holds for every v P V . Due to
ř

vPV dpvq “ 3|E| this is only possible if every vertex
has degree 3

`

n{2
2

˘

. But now it follows that for every v P V the hypergraph H r v has
exactly bpn´1q edges. So if n ě 10 the induction hypothesis informs us that the assumption
of Lemma 2.5 is satisfied, meaning that H is indeed isomorphic to Bn. In the remaining
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case n “ 8 the same conclusion can still be drawn unless there is a vertex v P V with
pH r vq – J7. But this would entail Kp3q

6 Ď J7 Ď H and Fact 2.4 would show |E| ă bp8q,
which is absurd.

Second Case: n ě 9 is odd.

For K Ď V and i P t0, 1, 2, 3u let eipKq denote the number of edges of H with exactly i
vertices in K. Clearly, we have

e0pKq ` e1pKq ` e2pKq ` e3pKq “ |E| “ bpnq (4.1)

for every K Ď V .
We need to know later that H cannot contain a clique on five vertices and the claim

that follows prepares the proof of this fact.

Claim 4.1. If some six vertices of H span at least 18 edges, then they induce a copy of B6.

Proof. Let K “ tv1, . . . , v6u Ď V span at least 18 edges of H and suppose for the sake of
contradiction that the subhypergraph of H induced by K is not isomorphic to B6. This
hypergraph must then contain a clique on five vertices and there arises no loss of generality
by assuming that tv1, . . . , v5u induces a Kp3q

5 in H.
For n ě 13 we have n´ 6 ě 7 and the induction hypothesis yields, in particular,

e0pKq ď bpn´ 6q ` 1
2pn´ 9q , (4.2)

where the additional term 1
2pn ´ 9q is actually not needed. The reason for including it

here is that for n P t9, 11u it makes the right side equal to the trivial upper bound
`

n´6
3

˘

.
Therefore (4.2) holds in all possible cases.

Now consider the 6-multigraph
á

G “ pG1, . . . , G6q with vertex set V rK, where for j P r6s
the edges of Gj are inherited from the link graph of vj. Since tv1, . . . , v5u is a clique
in H, three crossing pairs in pG1, . . . , G5q would give rise to a Fano plane in H. Hence
epG1q ` . . . ` epG5q ď f5pn ´ 6q and together with the trivial bound epG6q ď

`

n´6
2

˘

we
obtain

e1pKq “ ep
á

Gq ď f5pn´ 6q `
ˆ

n´ 6
2

˙

. (4.3)

Moreover, Lemma 2.3 shows that every vertex v P V rK can contribute at most 10
edges to e2pKq, wherefore

e2pKq ď 10pn´ 6q . (4.4)
By plugging (4.2), (4.3), (4.4), and the trivial upper bound e3pKq ď

`6
3

˘

“ 20 into (4.1)
we arrive at the estimate

bpnq ď
`

bpn´ 6q ` 1
2pn´ 9q

˘

` f5pn´ 6q `
ˆ

n´ 6
2

˙

` 10pn´ 6q ` 20 ,

which contradicts Conclusion 3.6(b ). This proves Claim 4.1. �
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Claim 4.2. Kp3q
5 Ę H

Proof. Assume contrariwise that K “ tv1, . . . , v5u Ď V induces a Kp3q
5 in H. We contend

that e0pKq ď bpn ´ 5q. For n ě 13 this follows indeed from the induction hypothesis,
for n “ 9 we just need to appeal to the trivial bound e0pKq ď

`

n´5
3

˘

“ 4 “ bpn´ 5q and
for n “ 11 the desired estimate holds in view of Claim 4.1.

A link multigraph argument similar to the one encountered in the foregoing proof of (4.3)
shows that e1pKq ď f5pn ´ 5q. Owing to Claim 4.1 every vertex in V r K belongs to
at most 7 edges contributing to e2pKq, whence e2pKq ď 7pn ´ 5q. Combining all these
estimates and e3pKq “ 10 with (4.1) we learn

bpnq ď bpn´ 5q ` f5pn´ 5q ` 7pn´ 5q ` 10 ,

which, however, contradicts Conclusion 3.6(a ). Thereby Claim 4.2 is proved. �

In order to conclude the proof of our main result we will now show that H satisfies the
assumptions of Lemma 2.6. Suppose to this end that K Ď V induces a tetrahedron in H.
For n ě 11 the induction hypothesis gives e0pKq ď bpn ´ 4q and for n “ 9 this estimate
could only fail if V rK induces a Kp3q

5 in H, which would contradict Claim 4.2. Thus we
obtain

bpnq ď bpn´ 4q ` f4pn´ 4q ` 5pn´ 4q ` 4

in the usual manner, where the factor 5 in front of pn ´ 4q comes from the absence of
5-cliques in H. A short calculation exploiting Theorem 3.3 reveals that this estimate does
actually hold with equality. In particular, this yields

e0pKq “ bpn´ 4q (4.5)

and
e2pKq “ 5pn´ 4q .

The latter equation proves immediately that K obeys clause (ii ) from Lemma 2.6. It
remains to check that, similarly, (4.5) leads to (i ), i.e., to pH rKq – Bn´4. For n ě 13
this is indeed true due to the induction hypotheses. For n “ 11 we need to point out
additionally that H rK cannot be isomorphic to J7, as this hypergraph contains a copy
of Kp3q

5 , whilst H does not. Finally, for n “ 9 the desired statement is a simple consequence
of the fact that B5 – K

p3q´
5 is the only hypergraph on 5 vertices with bp5q “ 9 edges. This

concludes the proof of our main result.
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