
SQUARES OF HAMILTONIAN CYCLES IN 3-UNIFORM
HYPERGRAPHS

WIEBKE BEDENKNECHT, CHRISTIAN REIHER

Abstract. We show that every 3-uniform hypergraph H “ pV, Eq with |V pHq| “ n

and minimum pair degree at least p4{5 ` op1qqn contains a squared Hamiltonian cycle.
This may be regarded as a first step towards a hypergraph version of the Pósa-Seymour
conjecture.

§1. Introduction

G. A. Dirac [3] proved in 1952 that every graph G “ pV,Eq with |V | ě 3 and minimum
vertex degree δpGq ě |V |{2 contains a Hamiltonian cycle. Since on any set V of at least
three vertices there are graphs G with minimum degree δpGq “ r|V |{2s´ 1, which do not
contain a Hamiltonian cycle, this is an optimal result. Moreover, in 1962 Pósa conjectured
that every graph G “ pV,Eq with |V | ě 5 and minimum degree δpGq ě 2|V |{3 contains
the square of a Hamiltonian cycle. This conjecture was generalised further by Seymour [14]
to the so-called Pósa-Seymour conjecture, asking for the k-th power of a Hamiltonian cycle
in graphs G with δpGq ě k

k`1 |V |.
A proof of this generalised conjecture for large graphs was obtained by Komlós, Sárközy,

and Szemerédi [7]. Their proof is based on the regularity method for graphs and uses the
so-called blow-up lemma [6] that was developed by the same authors shortly before. We
study an analogous Pósa-type problem for 3-uniform hypergraphs, i.e., what minimum
pair-degree condition guarantees the existence of a squared Hamiltonian cycle?

A 3-uniform hypergraph H “ pV,Eq consists of a finite set V “ V pHq of vertices and a
family E “ EpHq of 3-element subsets of V , which are called (hyper)edges. Throughout
this article if we talk about hypergraphs we will always mean 3-uniform hypergraphs. We
will write xy and xyz instead of tx, yu and tx, y, zu for edges and hyperedges. Similarly,
we shall say that wxyz is a tetrahedron or a Kp3q

4 in a hypergraph H if the triples wxy,
wxz, wyz, and xyz are edges of H.
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There are at least two concepts of minimum degree and several notions of cycles like
tight, loose and Berge cycles [1] (see also [2]). Here we will only introduce some of these
notions.

If H “ pV,Eq is a hypergraph and v P V is a vertex of H, then we denote by

dHpvq “ |te P E : v P eu|

the degree of v and by
δ1pHq “ mintdHpvq : v P V u

the minimum vertex degree of H taken over all v P V .
Similarly, for two vertices u, v P V we denote by

dHpu, vq “ |NHpu, vq| “ |te P E : u, v P eu|

the pair-degree of u and v and by

δ2pHq “ mintdHpu, vq : uv P V p2qu

the minimum pair-degree of H taken over all pairs of vertices of H.
We call a hypergraph P a tight path of length `, if |V pP q| “ ` ` 2 and there exists an

ordering of the vertices V pP q “ tv1, . . . , v``2u such that a triple e forms a hyperedge of P
iff e “ tvi, vi`1, vi`2u for some i P r`s. A tight cycle C of length ` ě 4 consists of a path
v1 . . . v` of length `´ 2 and the additional hyperedges tv`´1, v`, v1u and tv`, v1, v2u.

Moreover, we call a hypergraph P 1 a squared path of length ` ě 2, if |V pP 1q| “ ` ` 2
and there exists an ordering of the vertices V pP 1q “ tv1, . . . , v``2u such that a triple e
forms a hyperedge iff e Ď tvi, vi`1, vi`2, vi`3u for some i P r` ´ 1s. Similarly, a squared
cycle C 1 of length ` ě 5 consists of a squared path v1 . . . v` of length ` ´ 2 and the
additional hyperedges e, which are 3-subsets of at least one of the sets tv`´2, v`´1, v`, v1u,
tv`´1, v`, v1, v2u or tv`, v1, v2, v3u.

Thus an n-vertex hypergraph H contains a spanning squared cycle if its vertices can be
arranged on a circle in such a way that every triple of vertices contained in an interval of
length 4 is an edge of H. Such spanning squared cycles will be called squared Hamiltonian
cycles in this article. Clearly this is a natural analogue of the concept of squared Hamiltonian
cycles in graphs, where any pair contained in an interval of length 3 is required to be an
edge.

The first asymptotically optimal Dirac-type result for 3-uniform hypergraphs was obtained
by Rödl, Ruciński, and Szemerédi, who proved in [11] that every n-vertex hypergraph H
with δ2pHq ě

`1
2 ` op1q

˘

n contains a Hamiltonian cycle. In [12] they showed this for
large n under the optimal assumption δ2pHq ě tn{2u. Moreover, it was proved in [10] that
a minimum vertex degree condition of δ1pHq ě

`5
9 ` op1q

˘

n2

2 guarantees the existence of a



SQUARES OF HAMILTONIAN CYCLES IN 3-UNIFORM HYPERGRAPHS 3

Hamiltonian cycle as well, where the constant 5{9 is again best possible. We will study
which pair-degree condition implies a squared Hamiltonian cycle in 3-uniform hypergraphs
and we will prove the following theorem.

Theorem 1.1. For every α ą 0 there exists an integer n0 such that every 3-uniform
hypergraph H with n ě n0 vertices and with minimum pair-degree δ2pHq ě p4

5 ` αqn

contains a squared Hamiltonian cycle.

We will denote by Kp3q
4 the complete 3-uniform hypergraph on 4 vertices. Note that any

four consecutive vertices in a squared Hamiltonian cycle span a copy of Kp3q
4 . Therefore, if n

is divisible by 4, a squared Hamiltonian cycle contains a Kp3q
4 -tiling, i.e., n4 vertex disjoint

copies of Kp3q
4 . The problem to enforce Kp3q

4 -tilings by an appropriate pair-degree condition
was studied by Pikhurko [9], who exhibited for every n divisible by 4 a hypergraph H

on n vertices with δ2pHq “
3
4n´ 3 not containing a Kp3q

4 -tiling. Moreover, he proved that
every n-vertex hypergraph H with δ2pHq ě

`3
4 ` op1q

˘

n contains vertex-disjoint copies
of Kp3q

4 covering all but at most 14 vertices. We remark that based on Pikhurko’s work
[9] the pair-degree problem for Kp3q

4 -tilings was solved by Keevash and Mycroft in [5].
They showed that all 3-uniform hypergraphs H of sufficiently large order n with 4 | n and
minimum pair-degree

δ2pHq ě

$

&

%

3n{4´ 2 if 8 | n,

3n{4´ 1 otherwise

contain a perfect Kp3q
4 -tiling.

Notice that in view of Pikhurko’s example the constant 4
5 occurring in Theorem 1.1

cannot be replaced by anything below 3
4 in case 4 | n. In order to extend this observation to

all congruence classes modulo 4 we take a closer look at the construction from [9]. Partition
the vertex set V “ A0 ŸA1 ŸA2 ŸA3 such that

ˇ

ˇ|Ai| ´ |Aj|
ˇ

ˇ ď 1 for 0 ď i ă j ď 3. Let H
be the hypergraph consisting of all the triples e that satisfy one of the following properties
(see Fig. 1.1):

‚ |A0 X e| “ 2;
‚ e intersects each of A0, Ai, Aj for some 1 ď i ă j ď 3;
‚ e Ď Ai for some i P r3s;
‚ |eX Ai| “ 1 and |eX Aj| “ 2 for some pair ij P r3sp2q.

Every Kp3q
4 intersecting A0 has exactly 2 vertices in A0, since A0 spans no edge and if a

K
p3q
4 would intersect A0 in only one vertex, then its remaining three vertices must come

from A1, A2, A3 (one from each set), but three such vertices do not form an edge in H. A
squared Hamiltonian cycle C Ď H needs to contain at least one Kp3q

4 that intersects A0,
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A0

A1

A2

A3

Figure 1.1. Complement of the hypergraph H, where the existing kinds of
edges are indicated in red, e.g. all triples with 3 vertices in A0 form an edge
in the complement of H.

but then each Kp3q
4 Ď C needs to intersect A0 in two vertices. This implies |A0| ě n{2,

which contradicts our assumption and shows that H is indeed not containing a squared
Hamiltonian cycle.

The proof of Theorem 1.1 is based on the absorption method developed by Rödl, Ruciński,
and Szemerédi in [12]. In Section 2 we will discuss the general structure of the proof.

§2. Building squared Hamiltonian Cycles in Hypergraphs

In this section we will show the outline of the proof of Theorem 1.1. We start by
presenting the dependencies of the auxiliary constants we use in the propositions required
for the proof of Theorem 1.1. We write a " b to indicate that b will be chosen sufficiently
small depending on a and all other constants appearing on the left of b. In Theorem 1.1
some α with 1 " α ą 0 is given. We fix the auxiliary constants ϑ˚ and an integer M P N,
such that

1 " α " 1{M " ϑ˚ " 1{n .

The connecting lemma stated below plays a crucial rôle in the proof of Theorem 1.1. It
asserts that any two disjoint triples of vertices can be connected by many “short” squared
paths.
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Proposition 2.1 (Connecting Lemma). There are an integer M and ϑ˚ ą 0, such that
for all sufficiently large hypergraphs H “ pV,Eq with δ2pHq ě p4{5`αq|V | and all disjoint
triples pa, b, cq and px, y, zq with abc, xyz P E there exists some m ăM for which there are
at least ϑ˚nm squared paths from abc to xyz with m internal vertices.

The proof of the connecting lemma forms the content of Section 3. We can connect any
two squared paths by the connecting lemma using their start or endtriples, but for our
constructions it will be important that we do not interfere with any already constructed
subpath. Therefore we put a small reservoir of vertices aside, such that if we do not connect
too many times it is possible to use vertices of the reservoir set only. The following lemma,
which we prove in Section 4, shows the existence of such a set.

Proposition 2.2 (Reservoir Lemma). Suppose that for a given α ą 0 the constants
1{M " ϑ˚ are as provided by the connecting lemma and that H “ pV,Eq is a sufficiently
large hypergraph with |V | “ n and δ2pHq ě p4{5` αqn. Then there exists a reservoir set
R Ď V of size |R| ď ϑ2

˚n such that for all R1 Ď R with |R1| ď ϑ4
˚n and for all disjoint

triples pa, b, cq and px, y, zq with abc, xyz P E there exists a connecting squared path in H
with less than M internal vertices all of which belong to R r R1.

Moreover, we put aside an absorbing path PA, which will absorb an arbitrary but not
too large set X of leftover vertices at the end of the proof, such that we get a squared
Hamiltonian cycle.

Proposition 2.3 (Absorbing path). Let α " 1{M " ϑ˚ be as usual and let H “ pV,Eq

be a sufficiently large hypergraph with |V | “ n and δ2pHq ě p4{5 ` αqn. There exists an
(absorbing) squared path PA Ď H ´R such that

(1) |V pPAq| ď ϑ˚n,
(2) for every set X Ď V r V pPAq with |X| ď 2ϑ2

˚n there is a squared path in H whose
set of vertices is V pPAq YX and whose end-triples are the same as those of PA.

In Section 5 we prove Proposition 2.3 and in Section 6 we will show the following theorem.

Theorem 2.4. Given α, µ ą 0 and Q P N there exists n0 P N such that in every hyper-
graph H with vpHq “ n ě n0 and δ2pHq ě p3{4`αqn all but at most µn vertices of H can
be covered by vertex-disjoint squared paths with Q vertices.

Also in Section 6 we use this theorem to prove the existence of an almost spanning
squared cycle that covers all but at most 2ϑ2

˚n vertices.
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Proposition 2.5. Given α ą 0 let ϑ˚ ą 0 and M P N be the constants from the connecting
lemma. There exists n0 P N such that in every hypergraph H with vpHq “ n ě n0 and
δ2pHq ě p4{5` αqn all but at most 2ϑ2

˚n vertices of H can be covered by a squared cycle
such that some absorbing squared path PA is an induced subgraph of this cycle.

Combining Proposition 2.3 and Proposition 2.5 implies the existence of a squared
Hamiltonian cycle and therefore proves Theorem 1.1.

§3. Connecting Lemma

We will show some of our results with the constant 3
4 and others for 4

5 . Moreover we fix
the auxiliary constants β, γ, ϑ˚ and integers K, `,M P N obeying the hierarchy

1 " α " β, γ, 1{` " 1{K " 1{M " ϑ˚ " 1{n .

3.1. Connecting properties. We prove that the graph properties stated in the following
lemma imply a connecting property and use this lemma later to show that some auxiliary
graphs G3 and Gv have this connecting property.

Lemma 3.1. Let γ ď 1{16 and let G “ pV,Eq with |V | “ n be a graph with δpGq ě ?γn
such that for every partition X Ÿ Y “ V of the vertex set with |X|, |Y | ě ?γn we have
eGpX, Y q ě γn2.
Then for every pair of distinct vertices x, y P V pGq there exists some s “ spx, yq ď 4{γ

for which there are at least Ωpns´1q many x-y-walks of length s.

Proof. For an arbitrary vertex x P V and an integer i ě 1 we define

Zi
x “ tz P V : there are at least pγ2

{4qsns´1 x-z-walks of length s in G for some s ď iu .

For i ě 2 we have Zi
x Ě Zi´1

x and therefore

|Zi
x| ě |Z

1
x| “ |NGpxq| ě δpGq ě

?
γn .

Now we show that for every integer i with 1 ď i ď 2{γ at least one of the following holds:

|V r Zi
x| ă

?
γn or |Zi`1

x r Zi
x| ě

γn

2 . (3.1)

If |V r Zi
x| ě

?
γn, then the assumption yields that

eGpZ
i
x, V r Zi

xq ě γn2 .

This implies that at least γn{2 vertices in V r Zi
x have at least γn{2 neighbours in Zi

x.
For such a vertex u P V r Zi

x at least a proportion of 1{i ě γ{2 of its neighbours in Zi
x

is connected to x by walks of the same length, which implies u P Zi`1
x . As this argument
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applies to γn{2 vertices outside Zi
x we thus obtain |Zi`1

x r Zi
x| ě γn{2, which concludes

the proof of (3.1).
It is not possible that the right outcome of (3.1) holds for each positive i ď 2{γ.

Therefore we have |V r Zj
x| ă

?
γn for j “ t2{γu. So for x, y P V at least n´ 2?γn ě n{2

vertices z are contained in the intersection Zj
x XZ

j
y . For each z P Zj

x XZ
j
y we get constants

s1, s2 ď j ď 2{γ such that there are at least pγ2{4qs1ns1´1 x-z-walks of length s1 and there
are at least pγ2{4qs2ns2´1 z-y-walks of length s2. Therefore, for sz “ s1 ` s2 ě 2 there are
at least pγ2{4qsznsz´2 x-y-walks of length sz passing through z.

There are at least n{2 vertices this argument applies to and by the box principle
at least n

2 {
4
γ2 of them give rise to the same pair ps1, s2q and, consequently, the same

value of sz. Moreover, the walks obtained for those vertices are distinct and hence for
some spx, yq P r2, 4{γs there are at least

pγ2n{8q ¨ pγ2
{4qspx,yqnspx,yq´2

ě 1
2pγ

2
{4q4{γ`1nspx,yq´1

x-y-walks of length spx, yq. �

3.2. The auxiliary graph G3. The first auxiliary graph we will study is the following.

Definition 3.2. For a 3-uniform hypergraph H “ pV,Eq we define the auxiliary graph G3

(see Fig. 3.1) as the graph with vertex set V pG3q “ V and

xy P EpG3q ðñ x ‰ y and #tpa, b, cq P V 3 : abcx and abcy are Kp3q
4 u ě βn3 .

a

x

b

c

y

Figure 3.1. We have an edge xy P EpG3q iff there are “many” edges
abc P EpHq for which ab, ac, bc P Lpxq X Lpyq.

The main result of this subsection is the following proposition.

Proposition 3.3. Given α ą 0 there exist n0, ` P N such that in every hypergraph H with
vpHq “ n ě n0 and δ2pHq ě p3{4`αqn for every pair of distinct vertices x, y P V pGq there
exists some t “ tpx, yq ď ` for which there are at least Ωpnt´1q x-y-walks of length t in G3.
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The next lemma gives us a lower bound on the minimum degree of G3.

Lemma 3.4. If n " α´1 and H is a hypergraph on n vertices with δ2pHq ě p3{4 ` αqn,
then δpG3q ě p1{4` αqn.

Proof. Let x P V and β ă α{8. We count the ordered quadruples pa, b, c, yq P V 4, such
that ta, b, c, yu and tx, a, b, cu induce distinct tetrahedra in H. That is, we estimate the
size of the set

Ax “ tpa, b, c, yq P V
4 : x ‰ y and xabc and abcy are Kp3q

4 u .

Due to our assumption about δ2pHq the number A of triples pa, b, cq P V 3, which form
a Kp3q

4 with x, can be estimated by

A “ #tpa, b, cq P V 3 : abcx is a Kp3q
4 u

ě pn´ 1q
´3n

4 ` αn
¯´n

4 ` 3αn
¯

ě
n3

8 (3.2)

for n sufficiently large. Using the minimum pair-degree condition again we obtain

|Ax| ě A
´n

4 ` 3αn´ 1
¯

ě

´1
4 ` 2α

¯

An . (3.3)

On the other hand, the assumption dG3pxq ď n{4` αn would imply that

|Ax| “
ÿ

yPV rtxu

#tpa, b, cq P V 3 : abcy and abcx are Kp3q
4 u ď n ¨ βn3

` pn{4` αnqA .

Together with (3.3) this yields that
´1

4 ` 2α
¯

An ď βn4
`

´1
4 ` α

¯

An ,

i.e., βn3 ě αA
(3.2)
ě αn3{8. Since β ă α{8 this is a contradiction and shows that the

minimum degree of G3 is at least p1{4` αqn. �

Lemma 3.5. If β, γ ! α and H is a hypergraph on n vertices with minimum pair-
degree δ2pHq ě p3{4 ` αqn, then for every partition X Ÿ Y “ V of the vertex set with
|X|, |Y | ě p1{4` α{2qn we have eG3pX, Y q ě γn2 .

Proof. W.l.o.g. we can assume that |X| ď |Y |. Since |X| ě p1{4 ` α{2qn, we know that
|Y | ď p3{4 ´ α{2qn. Counting the ordered triples with two vertices in X and one in Y
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which induce an edge in H, we get

#tpx, x1, yq P X2
ˆ Y : xx1y P EpHqu

“
ÿ

px,yqPXˆY

|Npx, yq XX|

ě |X||Y | ¨ pδ2pHq ´ |Y |q

ě
3
16n

2
¨

3αn
2 “

9α
32n

3 .

The number of Kp3q
4 including such a triple px, x1, yq can thus be estimated by

ˇ

ˇtpx, x1, y, y1q P X2
ˆ Y 2 : xx1yy1 is a Kp3q

4 u
ˇ

ˇ`
ˇ

ˇtpx, x1, x2, yq P X3
ˆ Y : xx1x2y is a Kp3q

4 u
ˇ

ˇ

ě
9αn3

32 ¨
n

4 “
9α
128n

4 .

Now we will distinguish two cases depending on whether the number of Kp3q
4 with exactly

two or exactly three vertices in X is bigger than 9α
256n

4.

Case 1. #tpx, x1, y, y1q P X2 ˆ Y 2 : xx1yy1 is a Kp3q
4 u ě

9α
256n

4

Define A Ď X2 ˆ Y 2 ˆ V to be the set of all quintuples px, x1, y, y1, zq satisfying

(i ) xx1yy1 is a Kp3q
4 ;

(ii ) zxx1, zyy1 P EpHq;
(iii ) and at least three of zxy, zx1y1, zxy1, zx1y are edges in H.

We claim that the size of A can be bounded from below by

|A| ě
9α2

64 n
5 . (3.4)

Since we are in Case 1, it suffices to prove that every tetrahedron px, x1, y, y1q P X2 ˆ Y 2

extends to at least 4αn members of A.
Writing

fpzq “ |txy, xy1, x1y, x1y1u X EpLzq| ` 2|txx1, yy1u X EpLzq|

for every z P V we get
ÿ

zPV

fpzq “ dHpx, yq ` dHpx, y
1
q ` dHpx

1, yq ` dHpx
1, y1q ` 2dHpx, x1q ` 2dHpy, y1q

ě 8δ2pHq ě p6` 8αqn .

As fpzq ď 8 holds for each z P V it follows that there are at least 4αn vertices with
fpzq ě 7. For each of them we have px, x1, y, y1, zq P A. Thereby (3.4) is proved.

To derive an upper bound on |A|, we break the symmetry in (iii ). Denoting by A1 the
set of quintuples px, x1, y, y1, zq P X2 ˆ Y 2 ˆ V satisfying (i ), (ii ), and
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(iv ) xy1z, x1yz, x1y1z P EpHq

we have
|A| ď 4|A1| . (3.5)

Moreover

|A1| ď
ÿ

px,yqPXˆY

#tpx1, y1, zq P X ˆ Y ˆ V : xx1y1z and x1yy1z are Kp3q
4 u

ď eG3pX, Y q ¨ |X||Y ||V | ` |X||Y | ¨ βn
3

ď
1
4eG3pX, Y qn

3
`

1
4βn

5 .

Therefore with (3.4) and (3.5) it follows that

eG3pX, Y q ě
´9α2

64 ´ β
¯

n2 .

Case 2. #tpx, x1, x2, yq P X3 ˆ Y : xx1x2y is a Kp3q
4 u ě

9α
256n

4

Define A Ď X3 ˆ Y ˆ V to be the set of all quintuples px, x1, x2, y, zq satisfying

(i ) xx1x2y is a Kp3q
4 ;

(ii ) if z P Y at least one of the vertex sets tx, x2, yu, tx, x1, yu, tx1, x2, yu induces a
triangle in Lz;

(iii ) if z P X the vertex set tx, x1, x2u induces a triangle in Lz .

We claim that the size of A can be bounded from below by

|A| ě
27α2

256 n
5 . (3.6)

Since we are in Case 2, it suffices to prove that every tetrahedron px, x1, x2, yq P X3 ˆ Y

extends to at least 3αn members of A.
Writing

fpzq “ |txy, xx1, xx2, x1x2, x1y, x2yu X EpLzq|

for every z P V we get
ÿ

zPV

fpzq “ dHpx, yq ` dHpx, x
1
q ` dHpx, x

2
q ` dHpx

1, x2q ` dHpx
1, yq ` dHpx

2, yq

ě 6δ2pHq ě p9{2` 6αqn .

If z P Y is a vertex with px, x1, x2, y, zq R A then fpzq ď 4 and if z P X is a vertex with
px, x1, x2, y, zq R A then fpzq ď 5. Hence we have

p9{2` 6αqn ď 5|X| ` 4|Y | `
ˇ

ˇtz P X : px, x1, x2, y, zq P Au
ˇ

ˇ` 2
ˇ

ˇtz P Y : px, x1, x2, y, zq P Au
ˇ

ˇ .



SQUARES OF HAMILTONIAN CYCLES IN 3-UNIFORM HYPERGRAPHS 11

Since 5|X| ` 4|Y | “ 4n` |X| ď 9{2n, it follows that

3αn ď
ˇ

ˇtz P X : px, x1, x2, y, zq P Au
ˇ

ˇ`
ˇ

ˇtz P Y : px, x1, x2, y, zq P Au
ˇ

ˇ ,

as claimed.
Like before in Case 1 we obtain the upper bound

|A| ď βn5
` eG3pX, Y qn

3 .

Therefore with (3.6) it follows that

eG3pX, Y q ě
´27α2

256 ´ β
¯

n2 . �

Proof of Proposition 3.3. Because of Lemma 3.1, Lemma 3.4, and Lemma 3.5 it remains
to check that for every partition V “ X Ÿ Y with ?γn ď |X| ď p1{4` α{2qn we have
eG3pX, Y q ě γn2. This follows easily from

eG3pX, Y q “
ÿ

xPX

dG3
Y pxq ě δpG3q ¨ |X| ´ |X|

2

and Lemma 3.4. �

3.3. The auxiliary graphs Gv. The second kind of auxiliary graphs we will study is the
following.

Definition 3.6. For a 3-uniform hypergraph H “ pV,Eq and a vertex v P V we define
the auxiliary graph Gv as the graph with vertex set V pGvq “ V r tvu and

xy P EpGvq ðñ x ‰ y and #tpa, bq P V 2 : xabv and yabv are Kp3q
4 u ě βn2 .

a

x

v

b

y

V r tvu

Figure 3.2. We have xy P EpGvq iff there are “many” pairs pa, bq P V 2 for
which abx, aby P EpHq and abx, aby span triangles in Lv.
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The main result of this subsection is the following proposition.

Proposition 3.7. Given α ą 0 there exist n0, ` P N such that in every hypergraph H with
vpHq “ n ě n0 and δ2pHq ě p3{4`αqn for every pair of distinct vertices x, y P V pGq there
exists some t “ tpx, yq ď ` for which there are at least Ωpnt´1q x-y-walks of length t in Gv.

The next lemma gives us a lower bound on the minimum degree of Gv.

Lemma 3.8. If n " α´1 and H is a hypergraph on n vertices with δ2pHq ě p3{4 ` αqn,
then δpGvq ě p1{4` αqn .

Proof. Let x P V r tvu. We count the triples pa, b, yq P V 3, such that ty, a, b, vu and
tx, a, b, vu induce distinct tetrahedra in H. That is, we estimate the size of the set

Ax “ tpa, b, yq P V
3 : x ‰ y ‰ v and xabv and yabv are Kp3q

4 u .

Due to our assumption about δ2pHq the number A of pairs pa, bq P V 2, which form a Kp3q
4

with x and v, can be estimated by

A “ #tpa, bq P V 2 : abxv is a Kp3q
4 u

ě

´3n
4 ` αn

¯´n

4 ` 3αn
¯

ě
n2

8 . (3.7)

Moreover we have

|Ax| ě A
´n

4 ` 3αn´ 1
¯

ě

´1
4 ` 2α

¯

An . (3.8)

On the other hand, the assumption dGvpxq ď n{4` αn would imply that

|Ax| “
ÿ

yPV rtv,xu

#tpa, bq P V 2 : abvy and abvx are Kp3q
4 u ď n ¨ βn2

` pn{4` αnqA .

Together with (3.8) this yields that
´1

4 ` 2α
¯

An ď βn3
`

´1
4 ` α

¯

An ,

i.e., βn2 ě αA
(3.7)
ě αn2{8. Since β ă α{8 this is a contradiction and shows that the

minimum degree of Gv is at least p1{4` αqn. �

Lemma 3.9. If n " β´1, γ´1 " α´1 and H is a hypergraph on n vertices with minimum
pair-degree δ2pHq ě p3{4 ` αqn, then for every partition X Ÿ Y “ V r tvu of the vertex
set with |X|, |Y | ě p1{4` α{2qn we have eGvpX, Y q ě γn2 .
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Proof. We begin by showing that the set

A‹ “ tpx, y, zq P X ˆ Y ˆ pV r tvuq : vxyz is a Kp3q
4 in Hu ,

satisfies
|A‹| ě

n3

32 . (3.9)

For the proof of this fact we may assume that |X| ď |Y |. Thus |X| P rn4 ,
n
2 s and hence

|A‹| ě |X| ¨ pδ2pHq ´ |X|q ¨ p3δ2pHq ´ 2nq

ě |X| ¨
´3

4n´ |X|
¯

¨
n

4

ě
n2

8 ¨
n

4 “
n3

32 ,

as desired.
It follows that

|A‹ X pX ˆ Y ˆXq| ` |A‹ X pX ˆ Y 2
q| “ |A‹| ě

n3

32
and w.l.o.g. we can assume that |A‹ X pX ˆ Y ˆXq| ě n3{64. Now we study the set

A‹‹ “ tpa, b, y, zq P X
2
ˆ Y ˆ pV r tvuq : abvy, abvz are Kp3q

4 and yz P EpLvqu .

Given any triple pa, y, bq P A‹ X pX ˆ Y ˆ Xq the quadruple abvy forms a tetrahedron,
there are at least 3δ2pHq ´ 2n vertices z for which abvz forms a tetrahedron as well, and
for at most n´ δ2pHq of those the condition yz P EpLvq fails. Hence

|A‹‹| ě |A‹ X pX ˆ Y ˆXq| ¨ rp3δ2pHq ´ 2nq ´ pn´ δ2pHqqs

ě 4αn ¨ |A‹ X pX ˆ Y ˆXq| ě
α

16n
4 .

Case 1. |A‹‹ X pX2 ˆ Y ˆXq| ě αn4{32.

Owing to
αn4

32 ď |A‹‹ X pX
2
ˆ Y ˆXq|

ď
ÿ

pz,yqPXˆY

#tpa, bq P X2 : abzv and abvy are Kp3q
4 u

ď βn2
|X||Y | ` eGvpX, Y q ¨ n

2

ď βn2
¨ n2
{4` eGvpX, Y q ¨ n2

we have
eGvpX, Y q ě

´ α

32 ´
β

4

¯

n2 ,

as desired.
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x1

x

y

y1

z

Figure 3.3. Example of a quintuple in A, where the link graph of v is
indicated in green and hyperedges of H in red.

Case 2. |A‹‹ X pX2 ˆ Y 2q| ě αn4{32

Define A Ď X2 ˆ Y 2 ˆ pV r tvuq to be the set of all quintuples px, x1, y, y1, zq satisfying

(i ) xx1yy1 is a K4 in Lv
(ii ) at least one of xx1, yy1 forms a Kp3q

4 with v and z
(iii ) at least one of xy, xy1, x1y, x1y1 forms a Kp3q

4 with v and z.

Notice that condition (i ) holds for every px, x1, y, y1q P A‹‹ X pX2 ˆ Y 2q. Let us now fix
some such quadruple px, x1, y, y1q. Due to our assumption about δ2pHq we have

dHpx, yq ` dHpx, y
1
q ` dHpx

1, yq ` dHpx
1, y1q ` 2

`

dHpx, x
1
q ` dHpy, y

1
q
˘

`2
`

dLvpxq ` dLvpx
1
q ` dLvpyq ` dLvpy

1
q
˘

ě 16δ2pHq ě p12` 16αqn .

So writing

fpzq “ |txy, xy1, x1y, x1y1u X EpLzq| ` 2|txx1, yy1u X EpLzq| ` 2|tvx, vx1, vy, vy1u X EpLzq|

for every z P V we get
ÿ

zPV

fpzq ě p12` 16αqn .

If z is a vertex with px, x1, y, y1, zq R A, then fpzq ď 12, and hence we have

#tz P V : px, x1, y, y1, zq P Au ě 16αn{4 “ 4αn .

Applying this argument to every px, x1, y, y1q P A‹‹ X pX2 ˆ Y 2q we obtain, since we are in
Case 2, that

|A| ě
α

32n
4
¨ 4αn “ α2

8 n
5 . (3.10)

Now let Ax (resp. Ay) be the number of quintuples px, x1, y, y1, zq P X2ˆ Y 2ˆ pV r tvuq
such that

‚ xx1vz (resp. yy1vz) and x1yvz are Kp3q
4 .
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By symmetry we have

Ax ` Ay ě
1
4 |A|

(3.10)
ě

α2

32n
5 .

Consequently at least one of Ax, Ay is at least α2

64n
5. In either case one can prove that

eGvpX, Y q ě γn2 and below we display the argument assuming Ax ě α2

64n
5. In this case

Ax ď
ÿ

px,yqPXˆY

#tpx1, y1, zq P V 3 : xx1zv and yx1zv are Kp3q
4 u

ď n
ÿ

px,yqPXˆY

#tpx1, zq P V 2 : xx1zv and yx1zv are Kp3q
4 u

ď |X||Y |βn3
` eGvpX, Y qn

3

yields

eGvpX, Y q ě
´α2

64 ´
β

4

¯

n2 ,

as desired. The case Ay ě α2

64n
5 is similar. �

Proof of Proposition 3.7. Because of Lemma 3.8 and the fact that

eGvpX, Y q “
ÿ

xPX

dGvY pxq ě δpGvq ¨ |X| ´ |X|
2 ,

Lemma 3.9 is already true if |X|, |Y | ě ?γn. Therefore the assumptions of Lemma 3.1
hold for the graph Gv, which implies Proposition 3.7. �

3.4. Connecting Lemma. For the rest of this section we will use the constant 4
5 , i.e., the

minimum pair-degree hypothesis δ2pHq ě p4{5` αqn.

Definition 3.10. For a 3-uniform hypergraph H “ pV,Eq and vertices v, r, s P V we write

Nvpr, sq “ Npr, s, vq “ Npr, vq XNps, vq XNpr, sq .

Notice that our minimum pair-degree condition entails

|Nvpr, sq| ě n{4 (3.11)

for all v, r, s P V .

Definition 3.11. Given n " α´1, a hypergraph H on n vertices with minimum pair-degree
δ2pHq ě p4{5`αqn and two distinct vertices v, w P V pHq we define the auxiliary graph Gvw

by V pGvwq “ Npv, wq and

uu1 P EpGvwq ðñ uu1vw is a Kp3q
4 .

Due to our assumption about the minimum pair-degree we know that the size n1 of the
vertex set satisfies n1 “ |V pGvwq| ě p4{5` αqn.
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Lemma 3.12. Let v, w P V and b, x P V pGvwq. There are at least Ωpn2q walks of length 3
from b to x in Gvw.

Proof. For a vertex r P V pGvwq we have

dGvwprq ě |V pGvwq| ´ 2pn´ δ2pHqq

ě
|V pGvwq|

2 `
δ2pHq

2 ´ 2pn´ δ2pHqq

“
|V pGvwq|

2 `
5δ2pHq

2 ´ 2n ě n1

2 `
5αn

2 ě

´1
2 ` α

¯

n1 .

Thus the minimum degree of Gvw can be bounded from below by δpGvwq ě p1{2` αqn1

and any two vertices of Gvw have at least 2αn1 common neighbours in Gvw. Due to this
and the minimum vertex degree condition in Gvw we can therefore find at least

n1

2 ¨ 2αn
1
“ αpn1q2 ě

α

2n
2

walks of length 3 from b to x in Gvw. This shows Lemma 3.12. �

Lemma 3.13. If vbc, vxy P E and |Nvpb, cq X Nvpx, yq| “ m, then there are at least
Ωpm2n2q quadruples pw0, b1, c1, w1q such that bcw0b1c1w1xy is

‚ a walk in H and
‚ a squared walk in Lv .

w1w0

b c b1 c1 x y

Figure 3.4. Quadruple pw0, b1, c1, w1q that fulfills the conditions of
Lemma 3.13, where the link graph of v is indicated in green and hyper-
edges of H in red.

Proof. For every w P Nvpb, cq XNvpx, yq Lemma 3.12 states that there are at least Ωpn2q

walks in Gvw from c to x of length 3. Let

Xb1c1 “ tw P Nvpb, cq XNvpx, yq : cb1c1x is a walk in Gvwu
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for b1, c1 P V . Thus
ÿ

pb1,c1qPV 2

|Xb1c1 | ě Ωpmn2
q

and therefore the Cauchy-Schwarz inequality yields that
ÿ

pb1,c1qPV 2

|Xb1c1 |
2
ě Ωpm2n2

q .

If b1, c1 P V and w0, w1 P Xb1c1 , then bcw0b1c1w1xy has the desired properties. �

Proposition 3.14. There is an integer K, such that for all edges abc, xyz P E and vertices
v P Npa, b, cq XNpx, y, zq there are for some k “ kpabc, xyzq ď K with k ” 1 pmod 3q at
least Ωpnkq many pu1, . . . , ukq P V

k for which abcu1 . . . ukxyz is

‚ a walk in H
‚ a squared walk in Lv .

Proof. Recall that in Proposition 3.7 we found an integer ` and a function t : V p2q Ñ r`s such
that for all distinct r, s P V there are Ωpntpr,sq´1q walks of length tpr, sq from r to s in Gv.
By the box principle there exists an integer t ď ` such that the set Q Ď Nvpb, cq ˆNvpx, yq

of all pairs pu, u1q P Nvpb, cq ˆNvpx, yq with tpu, u1q “ t satisfies

|Q| ě |Nvpb, cq| ¨ |Nvpx, yq|

`

(3.11)
ě

n2

16` .

For each walk v0v1 . . . vt in Gv there are by Definition 3.6 at least pβn2qt many p2tq-tuples
pb1, c1, . . . , bt, ctq such that

(i ) biciv P E for i “ 1, . . . , t,
(ii ) v0 P Nvpb1, c1q and vt P Nvpbt, ctq,
(iii ) vi P Nvpbi, ciq XNvpbi`1, ci`1q for i “ 1, . . . , t´ 1 .

vtvt´1v1v0

b c b1 c1 b2 c2 bt ct x y

Figure 3.5. A p3t` 1q-tuple pv0, v1, . . . , vt, b1, c1, . . . , bt, ctq P V
3t`1 satisfy-

ing (i ), (ii ), (iii ), and (iv ), where the link graph of v is indicated in green
and hyperedges of H in red.
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Consequently, there are at least

n2

16` ¨ Ωpn
t´1
q ¨ pβn2

q
t
“ Ωpn3t`1

q

p3t` 1q-tuples pv0, v1, . . . , vt, b1, c1, . . . , bt, ctq P V
3t`1 satisfying (i ), (ii ), (iii ) as well as

(iv ) v0 P Nvpb, cq and vt P Nvpx, yq .

On the other hand, we can also write the number of these p3t` 1q-tuples as
ÿ

á
vPΨ

|I0p
á
vq| ¨ |I1p

á
vq| ¨ . . . ¨ |Itp

á
vq| ,

where
Ψ “ tpb1, c1, . . . , bt, ctq P V

2t : biciv P E for i “ 1, . . . , tu

and for fixed á
v “ pb1, c1, . . . , bt, ctq P Ψ

‚ I0p
á
vq “ Nvpb, cq XNvpb1, c1q

‚ Iip
á
vq “ Nvpbi, ciq XNvpbi`1, ci`1q for i “ 1, . . . , t´ 1

‚ Itp
á
vq “ Nvpbt, ctq XNvpx, yq .

Altogether we have thereby shown that
ÿ

á
vPΨ

|I0p
á
vq| ¨ |I1p

á
vq| ¨ . . . ¨ |Itp

á
vq| ě Ωpn3t`1

q . (3.12)

Due to (3.12) and Lemma 3.13 there are at least
ÿ

á
vPΨ

Ωp|I0p
á
vq|2n2

q ¨ . . . ¨ Ωp|Itpávq|2n2
q

ě Ωpn2t`2
q
ÿ

á
vPΨ

p|I0p
á
vq| ¨ . . . ¨ |Itp

á
vq|q2

ě Ωpn2t`2
q

´

ř

á
vPΨ
|I0p

á
vq| ¨ . . . ¨ |Itp

á
vq|

¯2

|Ψ|

ě Ωpn2t`2
q

´Ωpn3t`1q

nt

¯2
“ Ωpn6t`4

q

p6t` 4q-tuples, which fulfill the conditions of Proposition 3.14. Since 6t` 4 ” 1 pmod 3q
this concludes the proof. �

Definition 3.15. We call a sequence of vertices v1 . . . vh a squared v-walk from abc to xyz
with h interior vertices if abcv1 . . . vhxyz is a walk in H and a squared walk in Lv.

Proposition 3.16. For all abc, xyz P E and v P Npa, b, cq XNpx, y, zq there are for some
k1 “ k1pabc, xyz, vq ď K ` 2 with k1 ” 0 pmod 3q at least Ωpnk1q many squared v-walks
with k1 interior vertices from abc to xyz.
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Proof. We choose vertices d P Nvpb, cq and e P Nvpc, dq, and with Proposition 3.14 we
find at least Ωpnkq many squared v-walks from cde to xyz, where k “ kpcde, xyzq ď K

and k ” 1 pmod 3q. Notice that if u1 . . . uk is such a walk, then deu1 . . . uk is a squared
v-walk from abc to xyz. Since |Nvpb, cq|, |Nvpc, dq| ě n{4 holds by (3.11), there are for
some k ď K with k ” 1 pmod 3q at least n2{16

K
“ Ωpn2q pairs pd, eq with kpcde, xyzq “ k.

Now altogether there are Ωpnk`2q squared v-walks from abc to xyz with k ` 2 interior
vertices. This implies Proposition 3.16, since k ` 2 ” 0 pmod 3q. �

Lemma 3.17. If abc, xyz P E and |Npa, b, cq XNpx, y, zq| “ m, then there is an integer
t “ tpabc, xyzq ď pK ` 2q{3 such that at least Ωpmt`1n3tq squared walks from abc to xyz
with 4t` 1 interior vertices exist.

Proof. For every w P Npa, b, cq XNpx, y, zq Proposition 3.16 states that for some integer
k1 “ k1pwq ď K ` 2 with k1 ” 0 pmod 3q there are at least Ωpnk1q many squared w-walks
from abc to xyz with k1 interior vertices. By the box principle there exists an integer
k2 ď K`2 with k2 ” 0 pmod 3q such that the set Q Ď Npa, b, cqXNpx, y, zq of all vertices
w1 P Npa, b, cq XNpx, y, zq with k1pwq “ k2 satisfies

|Q| ě |Npa, b, cq XNpx, y, zq|
K ` 2 “

m

K ` 2 .

For P “ pu1, . . . , uk2q P V
k2 let XP Ď Q be the set of vertices u P Q such that P is a

squared u-walk from abc to xyz. Since |Q| ě m{pK ` 2q, the average size of XP is at least
Ωpm{pK ` 2qq “ Ωpmq by Proposition 3.16 and double counting. Since

ř

PPV k
2 X

k2{3`1
P

nk2
ě

´

ř

PPV k
2 XP

nk2

¯k2{3`1
ě Ωpmk2{3`1

q ,

we get
ÿ

PPV k2

X
k2{3`1
P ě Ωpmk2{3`1nk

2

q .

Since k2 ” 0 pmod 3q and every ordered k2-tuple P of vertices gives rise to X
k2{3`1
P

squared walks from abc to xyz with 4k2{3` 1 interior vertices, this implies Lemma 3.17
with t “ k2{3. �

Finally we come to the main result of this section stated earlier as Proposition 2.1.

Proposition 3.18 (Connecting Lemma). There are an integer M and ϑ˚ ą 0, such that
for all disjoint triples pa, b, cq and px, y, zq with abc, xyz P E there exists m ăM for which
there are at least ϑ˚nm squared paths from abc to xyz with m internal vertices.

Proof. Recall that in Proposition 3.3 we found an integer ` and a function t : V p2q Ñ r`s such
that for all distinct r, s P V there are Ωpntpr,sq´1q walks of length tpr, sq from r to s in G3. By
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the box principle there exists an integer t ď ` such that the set Q Ď Npa, b, cq ˆNpx, y, zq

of pairs pu, u1q P Npa, b, cq ˆNpx, y, zq with tpu, u1q “ t satisfies

|Q| ě |Npa, b, cq| ¨ |Npx, y, zq|
`

ě
n2

16` .

For each path v0v1 . . . vt in G3 there are by Definition 3.2 at least pβn3qt many p3tq-tuples
pa1, b1, c1, . . . , at, bt, ctq such that

(i ) aibici P E for i “ 1, . . . , t
(ii ) v0 P Npa1, b1, c1q and vt P Npat, bt, ctq
(iii ) vi P Npai, bi, ciq XNpai`1, bi`1, ci`1q for i “ 1, . . . , t´ 1 .

Consequently, there are at least
n2

16` ¨ Ωpn
t´1
q ¨ pβn3

q
t
“ Ωpn4t`1

q

p4t` 1q-tuples pv0, . . . , vt, a1, b1, c1, . . . , at, bt, ctq P V
4t`1 satisfying (i ), (ii ), (iii ) as well as

(iv ) v0 P Npa, b, cq and vt P Npx, y, zq .

vtvt´1v1v0

a

b

c a1

b1

c1 a2

b2

c2 at

bt

ct x

y

z

Figure 3.6. A p4t` 1q-tuple pv0, . . . , vt, a1, b1, c1, . . . , at, bt, ctq P V
4t`1 sat-

isfying (i ), (ii ), (iii ), and (iv ), where orange quadruples indicate a copy
of Kp3q

4 , hyperedges of H are indicated in red, and green pairs are in the link
graph of the corresponding vi.

On the other hand, we can also write the number of these p4t` 1q-tuples as
ÿ

á
vPΨ

|I0p
á
vq| ¨ |I1p

á
vq| ¨ . . . ¨ |Itp

á
vq| ,

where
Ψ “ tpa1, b1, c1, . . . , at, bt, ctq P V

3t : aibici P E for i “ 1, . . . , tu

and for fixed á
v “ pa1, b1, c1, . . . , at, bt, ctq P Ψ

‚ I0p
á
vq “ Npa, b, cq XNpa1, b1, c1q

‚ Iip
á
vq “ Npai, bi, ciq XNpai`1, bi`1, ci`1q for i “ 1, . . . , t´ 1

‚ Itp
á
vq “ Npat, bt, ctq XNpx, y, zq



SQUARES OF HAMILTONIAN CYCLES IN 3-UNIFORM HYPERGRAPHS 21

Altogether we have thereby shown that
ÿ

á
vPΨ

|I0p
á
vq| ¨ |I1p

á
vq| ¨ . . . ¨ |Itp

á
vq| ě Ωpn4t`1

q .

Lemma 3.17 gives us for every á
v P Ψ some integers

‚ t0p
á
vq “ tpabc, a1b1c1q

‚ tip
á
vq “ tpaibici, ai`1bi`1ci`1q for i “ 1, 2, . . . , t´ 1

‚ and ttpávq “ tpatbtct, xyzq.
By the box principle there are Ψ‹ Ď Ψ and a pt` 1q-tuple pt0, . . . , ttq P r1, pK ` 2q{3st`1

such that
ÿ

á
vPΨ‹

|I0p
á
vq| ¨ |I1p

á
vq| ¨ . . . ¨ |Itp

á
vq| ě Ωpn4t`1

q (3.13)

and tip
á
vq “ ti for all i P t0, . . . , tu and á

v P Ψ˚. Set m “ 4t ` 4
řt
i“0 ti ` 1. Due to

Lemma 3.17 there are at least
ÿ

á
vPΨ‹

Ωp|I0p
á
vq|t0`1n3t0q ¨ . . . ¨ Ωp|Itpávq|tt`1n3ttq

“ Ωpn3
řt
i“0 tiq

ÿ

á
vPΨ‹

|I0p
á
vq|t0`1

¨ . . . ¨ |Itp
á
vq|tt`1

m-tuples, which up to repeated vertices fulfill the conditions of Proposition 3.18. Let
T “ maxpt0, . . . , ttq. Since

|Iip
á
vq|T`1

“ |Iip
á
vq|ti`1

¨ |Iip
á
vq|T´ti ď |Iip

á
vq|ti`1

¨ nT´ti ,

we get

nT pt`1q´
řt
i“0 ti

ÿ

á
vPΨ‹

t
ź

i“0
|Iip

á
vq|ti`1

“
ÿ

á
vPΨ‹

t
ź

i“0
nT´ti |Iip

á
vq|ti`1

ě
ÿ

á
vPΨ‹

|I0p
á
vq|T`1

¨ . . . ¨ |Itp
á
vq|T`1

“
ÿ

á
vPΨ‹

p|I0p
á
vq| ¨ . . . ¨ |Itp

á
vq|qT`1

ě

˜

ř

á
vPΨ‹

|I0p
á
vq| ¨ . . . ¨ |Itp

á
vq|

|Ψ‹|

¸T`1

¨ |Ψ‹|

(3.13)
ě

´Ωpn4t`1q

n3t

¯T`1
¨ n3t

ě Ωpn3t`pt`1qpT`1q
q ,

which implies that

Ωpn3
řt
i“0 tiq

ÿ

á
vPΨ‹

|I0p
á
vq|t0`1

¨ . . . ¨ |Itp
á
vq|tt`1

ě Ωpn3t`pt`1q`
řt
i“0 ti`3

řt
i“0 tiq “ Ωpnmq .

At most Opnm´1q tuples can fail being paths due to repeated vertices, thus there are Ωpnmq
squared paths from abc to xyz. This proves Proposition 3.18 withM “ r4``4p``1q¨K`2

3 `2s,
since m “ 4t` 4

řt
i“0 ti ` 1 ď 4`` 4p`` 1q ¨ K`2

3 ` 1. �
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§4. Reservoir Set

In all proofs using a reservoir lemma the reservoir set R is obtained by taking a random
subset of V . On a technical level there are several possibilities which properties of R one
actually requires and below we follow closely the approach of [10].

Proposition 4.1. Let ϑ˚ and M be the constants given by the Connecting Lemma. Then

there exists a reservoir set R Ď V with ϑ2
˚n

2 ď |R| ď ϑ2
˚n, such that for all disjoint triples

pa, b, cq and px, y, zq with abc, xyz P E there are at least ϑ˚|R|mpabc,xyzq{2 connecting squared
paths in H all of whose mpabc, xyzq ăM internal vertices belong to R.

Proof. Consider a random subset R Ď V with elements included independently with
probability

p “
´

1´ 3
10M

¯

ϑ2
˚ .

Therefore |R| is binomially distributed and Chernoff’s inequality yields

Pp|R| ă ϑ2
˚n{2q “ op1q . (4.1)

Since

ϑ2
˚n ě p4{3q1{Mpn ě p1` cqEr|R|s

for some sufficiently small c “ cpMq ą 0, we have

Pp|R| ą ϑ2
˚nq ď P

`

|R| ą p4{3q1{Mpn
˘

“ op1q . (4.2)

The Connecting Lemma ensures that for all triples pa, b, cq and px, y, zq there are at
least ϑ˚nm squared paths connecting them with m “ mpabc, xyzq ăM internal vertices.

Let X “ Xppa, b, cq, px, y, zqq be the random variable counting the number of squared
paths from pa, b, cq to px, y, zq with m internal vertices in R. We get

ErXs ě pmϑ˚n
m . (4.3)

Including or not including a particular vertex into R affects the random variable X by
at most mnm´1, wherefore the Azuma-Hoeffding inequality (see, e.g., [4, Corollary 2.27])
implies

P
`

X ď 2
3ϑ˚ppnq

m
˘ (4.3)
ď P

`

X ď 2
3ErXs

˘

ď exp
˜

´
2ErXs2

9npmnm´1q2

¸

“ expp´Ωpnqq . (4.4)
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Since there are at most n6 pairs of triples that we have to consider, the union bound and
(4.1), (4.2) tell us that asymptotically almost surely the reservoir R satisfies

ϑ2
˚n

2 ď |R| ď p4{3q1{Mpn ď ϑ2
˚n (4.5)

and
Xppa, b, cq, px, y, zqq ě

2
3ϑ˚ppnq

m (4.6)

for all pairs of disjoint edges abc, xyz P E. In particular, there is some R Ď V satisfying
(4.5) and (4.6). Now it follows that

Xppa, b, cq, px, y, zqq ě ϑ˚|R|m{2

holds for all abc, xyz P E as well, meaning that R has the desired properties. �

Lemma 4.2. Let R Ď V be a reservoir set, ϑ˚ the constant given by the Connecting
Lemma and R1 Ď R an arbitrary subset of size at most ϑ4

˚n. Then for all triples pa, b, cq
and px, y, zq there exist a connecting squared path with mpabc, xyzq ăM internal vertices
in H whose internal vertices belong to R r R1.

Proof. Let m “ mpabc, xyzq. Since |R| ě ϑ2
˚n

2 and ϑ˚ !M´1, we can arrange that

|R1
| ď ϑ4

˚n ď
ϑ˚
4m |R| .

Every vertex in R1 is a member of at most m|R|m´1 squared paths with internal vertices
in R. Consequently, there are at least

ϑ˚
2 |R|

m
´ |R1

|m|R|m´1
ě
ϑ˚
2 |R|

m
´
ϑ˚
4mm|R|m ą 0

such paths with all internal vertices in R r R1. �

To conclude this section we remark that taken together Proposition 4.1 and Lemma 4.2
entail Proposition 2.2.

§5. Absorbing Path

The goal of this section is to establish Proposition 2.3 which, let us recall, requires the
minimum degree condition δ2pHq ě p4{5 ` αq|V pHq|. The common assumptions of all
statements of this section are that we have

‚ 1 " α "M´1 " ϑ˚ " n´1 such that the connecting lemma holds,
‚ a hypergraph H “ pV,Eq with |V | “ n and δ2pHq ě p4{5` αqn,
‚ and a reservoir set R Ď V satisfying, in particular, that |R| ď ϑ2

˚n.

Definition 5.1. Given a vertex v P V and a 6-tuple pa, b, c, d, e, fq P pV r tvuq6 of distinct
vertices, we call such a 6-tuple v-absorber if abcdef and abcvdef are squared paths in H.



24 WIEBKE BEDENKNECHT, CHRISTIAN REIHER

d

v

a

b

c

e

f

Figure 5.1. Example of a v-absorber, where the link graph of v is indicated
in green and orange or red 4-edges indicate a copy of Kp3q

4 .

Lemma 5.2. For every v P V there are at least α3n6 many v-absorbers in pV r Rq6.

Proof. Given v P V we choose the vertices of the 6-tuple in alphabetic order. For the
first vertex we have n possible choices and for the second we still have more than 4n{5
possibilities, since we only have the condition that vab P E. For the third vertex we already
have 3 conditions, namely abc, vbc, vac P E. Consequently, we have more than 2n{5 choices
for c. For the vertices d, e, f we always have 5 conditions, so we have for each of them at
least 5αn possible choices. This implies that for given v P V we find more than

n ¨ 4n{5 ¨ 2n{5 ¨ p5αnq3 “ 40α3n6

6-tuples meeting all the requirements from the v-absorber definition except that some of
the 7 vertices v, a, . . . , f might coincide. There are at most

`7
2

˘

n5 “ 21n5 such bad 6-tuples
and at most 6ϑ2

˚n
6 members of V 6 can use a vertex from the reservoir. Consequently, the

number of v-absorbers in pV r Rq6 is at least
`

40α3 ´ 21
n
´ 6ϑ2

˚

˘

n6 ě α3n6. �

Lemma 5.3. There is a set F Ď pV r Rq6 with the following properties:

(1) |F | ď 8α´3ϑ2
˚n,

(2) all vertices of every 6-tuple in F are distinct and the 6-tuples in F are pairwise
disjoint,

(3) if pa, b, c, d, e, fq P F , then abcdef is a squared path in H
(4) and for every v P V there are at least 2ϑ2

˚n many v-absorbers in F .

Proof. Consider a random selection X Ď pV r Rq6 containing each 6-tuple independently
with probability p “ γn´5, where γ “ 4ϑ2

˚{α
3. Since Er|X |s ď pn6 “ γn, Markov’s
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inequality yields
Pp|X | ą 2γnq ď 1{2 . (5.1)

We call two distinct 6-tuples from V 6 overlapping if there is a vertex occurring in both.
There are at most 36n11 ordered pairs of overlapping 6-tuples. Let P be the random
variable giving the number of such pairs both of whose components are in X . Since
ErP s ď 36n11p2 “ 36γ2n and 12γ ď ϑ˚, Markov’s inequality yields

PpP ą ϑ2
˚nq ď PpP ą 144γ2nq ď

1
4 . (5.2)

In view of Lemma 5.2 for each vertex v P V the set Av containing all v-absorbers in
pV r Rq6 has the property Er|Av X X |s ě α3n6p “ α3γn “ 4ϑ2

˚n. Since |Av X X | is
binomially distributed, Chernoff’s inequality gives for every v P V

Pp|Av X X | ď 3ϑ2
˚nq ď expp´Ωpnqq ă 1

5n . (5.3)

Owing to (5.1), (5.2), and (5.3) there is an “instance” F‹ of X satisfying the following:

‚ |F‹| ď 2γn,
‚ F‹ contains at most ϑ2

˚n ordered pairs of overlapping 6-tuples,
‚ and for every v P V the number of v-absorbers in F‹ is at least 3ϑ2

˚n.

If we delete from F‹ all the 6-tuples containing some vertex more than once, all that
belong to an overlapping pair, and all violating (3), we get a set F which fulfills (1), since
|F | ď |F‹|. The properties (2) and (3) hold by construction and for (4) we recall that
v-absorbers satisfy (3) by definition. Therefore the set F has all the desired properties. �

We are now ready to prove Proposition 2.3, which we restate for the reader’s convenience.

Proposition 5.4 (Absorbing path). There exists an (absorbing) squared path PA Ď H´R
such that

(1) |V pPAq| ď ϑ˚n,
(2) for every set X Ď V r V pPAq with |X| ď 2ϑ2

˚n there is a squared path in H whose
set of vertices is V pPAq YX and whose end-triples are the same as those of PA.

Proof. Let F Ď pV r Rq6 be as obtained in Lemma 5.3. Recall that F is a family of at
most 8α´3ϑ2

˚n vertex-disjoint squared paths with six vertices.
We will prove that there is a path PA Ď H ´R with the following properties:

(a) PA contains all members of F as subpaths,
(b) |V pPAq| ď pM ` 6q|F |.

Basically we will construct such a path PA starting with any member of F by applying the
connecting lemma |F | ´ 1 times, attaching on further part from F each time.
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Let F˚ Ď F be a maximal subset such that some path P ˚A Ď H´R has the properties (a)
and (b) with F replaced by F˚. Obviously P ˚A ‰ ∅. From (b) and 1 " α,M´1 " ϑ˚ we
infer

|V pP ˚Aq| ď pM ` 6q|F˚| ď 2M |F | ď 16Mα´3ϑ2
˚n ď ϑ3{2

˚ n (5.4)

and thus our upper bound on the size of the reservoir leads to

|V pP ˚Aq| ` |R| ď 2ϑ3{2
˚ n ď

ϑ˚n

2M . (5.5)

Assume for the sake of contradiction that F˚ ‰ F . Let px, y, zq be the ending triple of P ˚A
and let P be an arbitrary path in F rF˚ with starting triple pu, v, wq. Then the connecting
lemma tells us that there are at least ϑ˚nm connecting squared paths with m interior
vertices, where m “ mpxyz, uvwq ă M . By (5.5) at least half of them are disjoint to
V pP ˚Aq YR. At least one such connection gives us a path P ˚˚A Ď H ´R starting with P ˚A,
ending with P and satisfying

|V pP ˚˚A q| “ |V pP
˚
Aq| `m` |V pP q| ď |V pP

˚
Aq| `m` 6 ď pM ` 6qp|F˚| ` 1q .

So F˚ Y tP u contradicts the maximality of F˚ and proves that we have indeed F˚ “ F .
Therefore there exists a path PA with the properties (a) and (b).

As proved in (5.4) this path satisfies condition (1) of Proposition 5.4. To establish (2)
one absorbs the up to at most 2ϑ2

˚n vertices in X one by one into PA. This is possible due
to (a) combined with (4) from Lemma 5.3. �

§6. Almost spanning cycle

The main work of this section goes into the proof of Theorem 2.4, which will occupy
the Subsections 6.1–6.4. Having obtained this result we will deduce Proposition 2.5 in
Subsection 6.5.

The proof of Theorem 2.4 itself is structured as follows. In Subsection 6.1 we derive an
“approximate version” of Pikhurko’s Kp3q

4 -factor theorem (see Lemma 6.1) by imitating his
proof from [9]. This lemma leads to Theorem 2.4 in the light of the hypergraph regularity
method, which we recall in Subsection 6.2. In Subsection 6.3 we explain why “tetrahedra
in the reduced hypergraph” correspond to regular “tetrads” large fractions of which can be
covered by long squared paths. Finally in Subsection 6.4 we put everything together and
complete the proof of Theorem 2.4.

6.1. Kp3q
4 -tilings. The subsequent lemma will later be applied to a hypergraph obtained

by means of the regularity lemma.
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Lemma 6.1. Let t ě 36, 0 ă α ă 1{4 and τ ! α. Given a hypergraph G on t vertices
such that all but at most τt2 unordered pairs xy P V p2q of distinct vertices satisfy dpx, yq ě
p3{4 ` αqt, it is possible to delete at most 2

?
τt ` 13 vertices and find a K

p3q
4 -factor

afterwards.

The following proof is similar to Pikhurko’s argument establishing [9, Theorem 1].

G

TV r V 1 V 1 r V pT q

ď
?
τtď

?
τt

Figure 6.1. Example of a tiling T with maximal weight, where good pairs
are indicated by green edges.

Proof. Let us call a pair of vertices bad if its pair-degree is smaller than p3{4`αqt. Moreover
we will call a subhypergraph of G good if it does not contain any bad pair of vertices.

First of all we will delete vertices which are in many bad pairs. More precisely we will
successively delete vertices if such a vertex is in at least

?
τt bad pairs. Since there are at

most τt2 bad pairs, we are deleting at most
?
τt vertices and in the remaining hypergraph

G1 “ pV 1, E 1q every vertex is in at most
?
τt bad pairs.

Let F be a set of hypergraphs. By an F-tiling in G we mean a collection of vertex-disjoint
good subgraphs, each of which is isomorphic to some member of F . Moreover let w2 “ 2,
w3 “ 6, and w4 “ 11 be weight factors.

In the following we will consider a
 

K
p3q
2 , K

p3q
3 , K

p3q
4
(

-tiling T in G1 that maximises the
weight function wpT q “ w2`2 ` w3`3 ` w4`4, where `i denote the number of copies of Kp3q

i

in T .
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At most
?
τt vertices of V 1 are missed by the tiling T . Indeed, otherwise we find a good

subgraph isomorphic to Kp3q
2 not in the tiling, since every vertex in V 1 is in at most

?
τt

bad pairs. Because w2 ą 0 this is a contradiction to the maximality of T .
We say a hypergraph F P T makes a connection with the vertex x P V 1rV pF q (denoted

by pF, xq P C) if |V pF q| ď 3 and V pF qYtxu spans a complete good hypergraph. Examining
the properties of connections, we get the following results.

‚ A K
p3q
i -subgraph F P T with i ď 3 can only make a connection to a vertex x that

belongs to a Kp3q
j -subgraph of T with j ą i.

Otherwise moving x to F would increase the weight of T , since w4 ` w2 ´ 2w3 “ 1,
w4 ´w2 ´w3 “ 3, w3 ´ 2w2 “ 2, and all other possible weight changes are positive as well.

‚ Each Kp3q
2 -subgraph F in T makes at least p3

4 `
α
2 qt connections.

Let ta, bu be the vertex set of Kp3q
2 -subgraph F of T . The subgraph F makes a connection

with a vertex x P V 1r V pF q if abx P EpGq and ab, ax, bx are good pairs. Recalling that ab
is a good pair due to the definition of tiling, we can relax the second condition to ax, bx
being good pairs. There are at least p3

4 ` α ´
?
τqt vertices in V 1 r V pF q that form an

edge with ab in G. Since every vertex in V 1 is in at most
?
τt bad pairs, at most 2

?
τt

vertices, which form an edge with ab in G, can fail the second condition. Thus, every
K
p3q
2 -subgraph F of T makes at least p3

4 ` α ´ 3
?
τqt connections, which due to τ ă α2

36 is
more than p3

4 `
α
2 qt.

‚ Every Kp3q
3 -subgraph F in T makes at least p1

4 ` αqt connections.

For each K
p3q
3 -subgraph F of T there are at least p9

4 ` αqt edges that intersect it in
exactly two vertices and consists of no bad pairs. Let c denote the number of connections
made by a Kp3q

3 -subgraph of T . Thus, we get
´9

4 ` α
¯

t ď 3c` 2pt´ 3´ cq ,

i.e.,
´9

4 ` α
¯

t´ 2t` 6 ď c .

‚ `3 ď 3.

Otherwise let F1, F2, F3, F4 be Kp3q
3 -subgraphs in T . All connections made by a Fi belong

to a Kp3q
4 -subgraph of T by the first bullet above. An upper bound for the number of Kp3q

4

in T is tt{4u. Since

4
´1

4 ` α
¯

t ą 4tt{4u ,

the vertices of some Kp3q
4 -subgraph F of T make at least 5 connections with F1, F2, F3, F4.

Therefore we find two distinct vertices x, y P V pF q and i, j P r4s with i ‰ j, such that
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pFi, xq, pFj, yq P C. Moving x to Fi and y to Fj and thereby reducing F to a Kp3q
2 would

increase the weight of T , since 2pw4 ´ w3q ` pw2 ´ w4q “ 1. Thus, we get a contradiction
to the maximality of T .

Case 1. `2 ě 3

Let F1, F2, F3 be Kp3q
2 -subgraphs in T .

‚ There is no Kp3q
3 -subgraph F P T with the property that F1, F2, F3 make more

than 3 connections to F .

Otherwise we could find distinct vertices x, y P V pF q and i, j P r3s with i ‰ j, such that
pFi, xq, pFj, yq P C. Moving x to Fi and y to Fj and thereby eliminating F would increase
the weight of T , since 2pw3´w2q´w3 “ 2. Thus, we get a contradiction to the maximality
of T .

‚ There is no Kp3q
4 -subgraph F P T with the property that F1, F2, F3 make more

than 8 connections to F .

Otherwise we could find distinct vertices x1, x2, x3 P V pF q, such that pFi, xiq P C for
every i P r3s. This is because every bipartite graph with nine edges and partition classes of
size 3 and 4 contains a matching of size 3. Moving each xi to Fi and thereby eliminating F
would increase the weight of T , since 3pw3 ´ w2q ´ w4 “ 1. Thus, we get a contradiction
to the maximality of T .

Finally, by estimating the number of connections created by F1, F2, F3 we obtain

3
´3

4 `
α

2

¯

t ď 3`3 ` 8`4 .

Since `3 ď 3 and `4 ď tt{4u, we have
´9

4 `
3
2α

¯

t ď 9` 8tt{4u ,

which contradicts t ě 36.

Case 2. `2 ď 2

We have deleted
?
τt vertices from G to obtain the graph G1, another

?
τt vertices can

be missed by the tiling T , and at most 2`2 ` 3`3 ď 13 vertices of V pT q are not covered by
K
p3q
4 subgraphs. Therefore it is possible to delete at most 2

?
τt` 13 vertices and find a

K
p3q
4 -factor afterwards. �

6.2. Hypergraph regularity method. We denote by KpX, Y q the complete bipartite
graph with vertex partition X Ÿ Y . For a bipartite graph P “ pX Ÿ Y,Eq we say it is
pδ2, d2q-quasirandom if

ˇ

ˇepX 1, Y 1q ´ d2|X
1
||Y 1|

ˇ

ˇ ď δ2|X||Y |
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holds for all subsets X 1 Ď X and Y 1 Ď Y , where epX 1, Y 1q denotes the number of edges
in P with one vertex in X 1 and one in Y 1. Given a k-partite graph P “ pX1 Ÿ . . . ŸXk, Eq

with k ě 2 we say P is pδ2, d2q-quasirandom, if all naturally induced bipartite subgraphs
P rXi, Xjs are pδ2, d2q-quasirandom. Moreover, for a tripartite graph P “ pX Ÿ Y Ÿ Z,Eq

we denote by
K3pP q “

 

tx, y, zu Ď X Y Y Y Z : xy, xz, yz P E
(

the triples of vertices in P spanning a triangle. For a pδ2, d2q-quasirandom tripartite graph
P “ pX Ÿ Y Ÿ Z,Eq the so-called triangle counting lemma implies that

d3
2|X||Y ||Z| ´ 3δ2|X||Y ||Z| ď |K3pP q| ď d3

2|X||Y ||Z| ` 3δ2|X||Y ||Z| . (6.1)

Definition 6.2. Given a 3-uniform hypergraph H “ pV,EHq and a tripartite graph
P “ pX Ÿ Y Ÿ Z,Eq with X Y Y Y Z Ď V we say H is pδ3, d3q-quasirandom with respect
to P if for every tripartite subgraph Q Ď P we have

ˇ

ˇ|EH XK3pQq| ´ d3|K3pQq|
ˇ

ˇ ď δ3|K3pP q| .

Furthermore, we say H is δ3-quasirandom with respect to P , if it is pδ3, d3q-quasirandom
for some d3 ě 0.

We define the relative density of H with respect to P by

dpH|P q “
|EH XK3pP q|

|K3pP q|
,

where dpH|P q “ 0 if K3pP q “ ∅.
A refined version of the regularity lemma (see [13, Theorem 2.3]) states the following.

Lemma 6.3 (Regularity Lemma). For every δ3 ą 0, every δ2 : N Ñ p0, 1s, and every
t0 P N there exists an integer T0 such that for every n ě t0 and every n-vertex 3-uniform
hypergraph H “ pV,EHq the following holds.

There are integers t and ` with t0 ď t ď T0 and ` ď T0 and there exists a vertex partition
V0 Ÿ V1 Ÿ . . . Ÿ Vt “ V and for all 1 ď i ă j ď t there exists a partition

P ij
“ tP ij

α “ pVi Ÿ Vj, E
ij
α q : 1 ď α ď `u

of the edge set of the complete bipartite graph KpVi, Vjq satisfying the following properties

(1) |V0| ď δ3n and |V1| “ . . . “ |Vt|,
(2) for every 1 ď i ă j ď t and α P r`s the bipartite graph P ij

α is pδ2p`q, 1{`q-
quasirandom, and

(3) H is δ3-quasirandom w.r.t P ijk
αβγ for all but at most δ3t

3`3 tripartite graphs

P ijk
αβγ “ P ij

α Ÿ P
ik
β Ÿ P

jk
γ “ pVi Ÿ Vj Ÿ Vk, E

ij
α Ÿ E

ik
β Ÿ E

jk
γ q ,

with 1 ď i ă j ă k ď t and α, β, γ P r`s.
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The tripartite graphs P ijk
αβγ appearing in (3) are usually called triads. Furthermore we

will use the following version of the embedding lemma from [8].

Lemma 6.4. For every p P N and ξ, d3 ą 0 there exist δ3 ą 0 and functions δ2 : NÑ p0, 1q,
N : NÑ N such that the following holds.

Let ` P N and let G “
Ť

¨ 1ďiăjďpG
ij be a p-partite graph with vertex partition V1 Ÿ . . .ŸVp,

where |V1| “ . . . “ |Vp| “ n ě Np`q, such that each Gij “ GrVi, Vjs is pδ2p`q, 1{`q-
quasirandom. Moreover, let H be a 3-uniform hypergraph that is pδ3, dijkq-quasirandom
with respect to Gijk for all 1 ď i ă j ă k ď p, where Gijk “ GrVi, Vj, Vks and dijk ě d3.
Then the number |KppHq| of complete, 3-uniform hypergraphs on p vertices in H with one
vertex from each Vi satisfies

|KppHq| ě p1´ ξqd3
pp3qp1{`qp

p
2qnp .

6.3. Squared paths in quasirandom tetrads. The Embedding Lemma 6.4 can be
utilised to find squared path in appropriate 4-partite environments.

Lemma 6.5. Given Q P N and d3 ą 0, there exist δ3 ą 0, and functions δ2 : N Ñ p0, 1s
and N : NÑ N, such that that the following holds for every ` P N.

Let P “ pV1ŸV2ŸV3ŸV4, EP q be a 4-partite graph with |V1| “ . . . “ |V4| “ n ě Np`q such
that P ij “ pVi Ÿ Vj, E

ijq is pδ2p`q, 1{`q-quasirandom for every pair ij P r4sp2q. Suppose H
is a 4-partite, 3-uniform hypergraph with vertex classes V1, . . . , V4, which satisfies for
every ijk P r4sp3q that H is pδ3, dijkq-quasirandom w.r.t. the tripartite graphs P ijk “

P ij Ÿ P ik Ÿ P jk for some dijk ě d3. Then there exists a squared path with Q vertices in H.

Proof. For p “ Q, ξ “ 1{2 and the current d3 let δ3 ą 0 and functions δ2 : N Ñ p0, 1q,
N : N Ñ N be given by Lemma 6.4. Moreover, let W1, . . . ,WQ be disjoint vertex sets
of size n. Choose for every j P rQs and i P r4s with i ” j pmod 4q a bijective function
ϕj : Vi Ñ Wj. We copy EP and EpHq onto W1 Ÿ . . . ŸWQ in the following way.

‚ If for 1 ď i ă j ď Q the integers i1, j1 P r4s satisfying i ” i1 pmod 4q and j ” j1

pmod 4q are distinct, let Eij
W be the bipartite graph on Wi ŸWj defined by

xy P Ei1j1
ðñ ϕipxqϕjpyq P E

ij
W

for all x P Vi1 and y P Vj1 .
‚ If for 1 ď i ă j ă k ď Q the integers i1, j1, k1 P r4s satisfying i ” i1 pmod 4q, j ” j1

pmod 4q, and k ” k1 pmod 4q are distinct, let H ijk
W be the tripartite hypergraph on

Wi ŸWj ŸWk defined by

xyz P EpHq ðñ ϕipxqϕjpyqϕkpzq P H
ijk
W

for all x P Vi1 , y P Vj1 , and z P Vk1 .
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For technical reasons we also need to specify bipartite graphs Eij
W for distinct i, j P rQs

that are congruent modulo 4 in order to make Lemma 6.4 applicable. The precise choice
of these graphs is immaterial in the following and we just take arbitrary pδ2p`q, 1{`q-
quasirandom bipartite graphs. E.g., we could declare all theses graphs to be isomorphic
to P 12. Similarly, we need to define 3-partite hypergraphs H ijk

W for distinct i, j, k P rQs
at least two of which are congruent modulo 4. This time we may just take the complete
3-partite hypergraphs between Wi,Wj,Wk, which are certainly pδ3, 1q-quasirandom with
respect to pWi ŸWj ŸWk, E

ij
W Ÿ E

ik
W Ÿ E

jk
W q.

By Lemma 6.4 applied to GW “ pW1 Ÿ . . . ŸWQ, EW q, where EW “
Ť

¨ 1ďiăjďQE
ij
W and

the hypergraph HW “
Ť

¨ 1ďiăjăkďQH
ijk
W we find at least p1{2qnQp1{`qp

Q
2qd
pQ3q
3 squared paths

v1 . . . vQ in HW with vi P Wi for every i P rQs. Notice that every squared such path in HW

corresponds to a squared walk in H via the inverses of the maps ϕi. It may happen that
vertices get identified under this correspondence and therefore there might be squared
paths in HW not yielding squared paths in H. However

`

Q
2

˘

nQ´1 is a straightforward upper
bound on the number of times this can occur and since for n sufficiently large we have

1
2n

Q
p1{`qp

Q
2qd
pQ3q
3 ą

ˆ

Q

2

˙

nQ´1 ,

we find at least one squared path in H. �

Lemma 6.6. Given Q P N with Q ” 0 pmod 4q, d3 ą 0, and ν ą 0. There exist δ3 ą 0,
δ2 : N Ñ p0, 1q, and N : N Ñ N, such that the following holds for every ` P N. Let
P “ pV1 Ÿ V2 Ÿ V3 Ÿ V4, EP q be a 4-partite graph with |V1| “ . . . “ |V4| “ n ě Np`q and let
P ij “ pVi Ÿ Vj, E

ijq be pδ2p`q, 1{`q-quasirandom for every ij P r4sp2q. Suppose that H is a
3-uniform hypergraph, which satisfies for every ijk P r4sp3q that H is pδ3, dijkq-quasirandom
with respect to the tripartite graph P ijk “ P ij Ÿ P ik Ÿ P jk for some dijk ě d3. Then all but
at most νn vertices of V1 Ÿ . . . Ÿ V4 can be covered by vertex-disjoint squared paths with Q
vertices each.

Proof. Let δ˚3 ą 0, δ˚2 : NÑ p0, 1s, N˚ : NÑ N be the number and functions obtained by
applying Lemma 6.5 to Q and d3{2. Define

δ3 “
δ˚3ν

3

128 , δ2p`q “ min
´δ˚2 p`qν

2

16 ,
ν2

144`3

¯

, Np`q “
Q4N˚p`q

ν

U

for each ` P N. Let P “ pV1 ŸV2 ŸV3 ŸV4, EP q and H be as described above for some ` P N.
Consider a maximal collection S1, . . . , Sm of vertex-disjoint squared paths on Q vertices
in H. For i P r4s let V 1i Ď Vi denote the set of vertices not belonging to any of these paths.
Due to 4 | Q the sets V 11 , . . . , V 14 have the same size, say n˚. If n˚ ă νn{4 we are done, so
assume from now on that n˚ ě νn{4. Then our choice of δ2p`q implies that the bipartite
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graphs P ijrV 1i Ÿ V 1j s are pδ˚˚2 p`q, 1{`q-quasirandom, where δ˚˚2 p`q “ minpδ˚2 p`q, 1
9`3 q. So by

Lemma 6.5 we get a contradiction to the maximality of m provided we can show that H is
pδ˚3 , dijkq-quasirandom w.r.t. the subtriads P ijk

˚ of P ijk induced by V 1i Y V 1j Y V 1k . This is
indeed the case, since the triangle counting lemma yields that

|K3pP
123
q| ď |V1||V2||V3|

`

1{`3
` 3δ2p`q

˘

n˚ěνn{4
ď

43|V 11 ||V
1

2 ||V
1

3 |

ν3 p1{`3
` 3δ2p`qq

ď
64 ¨K3pP rV

1
1 , V

1
2 , V

1
3sq

ν3 ¨
p1{`3 ` 3δ2p`qq

p1{`3 ´ 3δ˚˚2 p`qq

ď 128 ¨ K3pP
123
˚ q

ν3 ,

i.e.,

δ3|K3pP
123
q| ď δ˚3 |K3pP

123
˚ q| ,

and the same argument applies to every other triple ijk P r4sp3q. �

6.4. Vertex-disjoint squared paths with Q vertices. Next we restate and prove
Theorem 2.4.

Theorem 6.7. Given α, µ ą 0 and Q P N there exists n0 P N such that in every hyper-
graph H with vpHq “ n ě n0 and δ2pHq ě p3{4`αqn all but at most µn vertices of H can
be covered by vertex-disjoint squared paths with Q vertices.

Proof. As we could replace Q by 4Q if necessary we may suppose that Q is a multiple
of 4. Pick sufficiently small d3, ν, τ ! α, µ and let δ3 ą 0, δ2 : NÑ p0, 1q, N : NÑ N be the
number and functions obtained by applying Lemma 6.6 to Q, ν, and d3. W.l.o.g. δ3, δ2p¨q

are sufficiently small, such that δ3 ! α, τ , and δ2p`q ! α, `´1, τ . For t0 sufficiently large we
can use Lemma 6.3 with δ3, δ2, t0 and get an integer T0. Finally we let n0 be sufficiently
large.

Now let H be a 3-uniform hypergraph with vpHq “ n ě n0 and δ2pHq ě p
3
4 ` αqn. Due

to Lemma 6.3 there exists a vertex partition V0 Ÿ V1 Ÿ . . . Ÿ Vt “ V and pair partitions

P ij
“ tP ij

α “ pVi Ÿ Vj, E
ij
α q : 1 ď α ď `u

of the complete bipartite graphs KpVi, Vjq for 1 ď i ă j ď t satisfying (1)-(3).
We call a triad P ijk

αβγ dense if dpH|P ijk
αβγq ě α{10. For every pair i˚j˚ P rtsp2q and every

λ P r`s we denote the set of dense triads involving Vi˚ , Vj˚ , and P
i˚j˚
λ by Dλpi˚, j˚q.

Claim 6.8. For every i˚j˚ P rtsp2q we have |Dλpi˚, j˚q| ě p
3
4 `

α
2 q`

2t.
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Proof. Notice that Lemma 6.3(1) yields

np1´ δ3q

t
ď |Vk| ď

n

t
(6.2)

for every k P rts. Appealing to the pδ2p`q, 1{`q-quasirandomness of P i˚j˚
λ we infer

|Ei˚j˚
λ | ě

´1
`
´ δ2p`q

¯

|Vi˚ ||Vj˚ |

ě

´1
`
´ δ2p`q

¯´

p1´ δ3qn

t

¯2
.

Together with the lower bound on δ2pHq and |V0| ď δ3n it follows that
´1
`
´ δ2p`q

¯´

p1´ δ3qn

t

¯2´3
4 ` α ´ δ3

¯

n ď
ÿ

xyPE
i˚j˚
λ

|Npx, yqr V0| . (6.3)

On the other hand we can derive an upper bound on the right side by counting the edges
in each triad using Ei˚j˚

λ separately. Due to the triangle counting lemma and (6.2) each
such triad contains at most

´ 1
`3 ` 3δ2p`q

¯´n

t

¯3

triangles. Therefore we have
ÿ

xyPE
i˚j˚
λ

|Npx, yqr V0| ď t`2 α

10

´n

t

¯3´ 1
`3 ` 3δ2p`q

¯

` |Dλpi˚, j˚q|
´n

t

¯3´ 1
`3 ` 3δ2p`q

¯

.

Combined with (6.3) this leads because of δ3 ! α and δ2 ! α{`3 to

|Dλpi˚, j˚q| ě p3{4` α{2q`2t . �

For every f : rts2 Ñ r`s we define a hypergraph Jf on the vertex set rts such that
a 3-element set ti, j, ku is an edge of Jf if the triad P ijk

fpijqfpikqfpjkq is dense and H is
δ3-quasirandom w.r.t. this triad.

Claim 6.9. There is f : rtsp2q Ñ r`s such that all but at most τt2 pairs ij P rtsp2q have at
least pair-degree p3

4 `
α
8 qt in Jf .

Proof. Let Df be the hypergraph on rts whose edges are the triples ijk such that the triad
P ijk
fpijqfpikqfpjkq is dense, and let Rf be the hypergraph consisting of all sets ti, j, ku such

that H is δ3-quasirandom with respect to the triad P ijk
fpijqfpikqfpjkq. Clearly, Jf “ Df XRf .

We will show that if we choose f uniformly at random, then with positive probability
EpRf q ď 2δ3t

3 and δ2pDf q ě p3{4` α{4qt hold.
The expected value of the number of missing edges in Rf is

EpEpRf qq ď
1
`3 ¨ δ3t

3`3
“ δ3t

3 ,
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since by Lemma 6.3(3) there are at most δ3t
3`3 irregular triads. Thus, due to Markov’s

inequality

PpEpRf q ą 2δ3t
3
q ă

δ3t
3

2δ3t3
“

1
2 . (6.4)

Now fix a pair i˚j˚ P rtsp2q. Estimating the expected value of dDf pi˚, j˚q, we get for every
λ P r`s that

E
`

dDf pi˚, j˚q|fpi˚, j˚q “ λ
˘

“
1

`p
t
2q´1

ÿ

f : rts2Ñr`s,fpi˚,j˚q“λ

dDf pi˚, j˚q

“
|Dλpi˚, j˚q|

`2 .

By Claim 6.8 it follows that

E
`

dDf pi˚, j˚q|fpi˚, j˚q “ λ
˘

ě p3{4` α{2qt .

Moreover, for f : rts2 Ñ r`s with fpi˚, j˚q “ λ the value of dDf pi˚, j˚q is completely
determined by the 2pt´ 2q numbers fpi, jq with |ti, ju X ti˚, j˚u| “ 1 and if one changes
one of these 2pt ´ 2q values of f , then dDf pi˚, j˚q can change by at most 1. Thus, the
Azuma-Hoeffding inequality (see, e.g., [4, Corollary 2.27]) leads to

P
`

dDf pi˚, j˚q ă p3{4` α{4qt
ˇ

ˇfpi˚, j˚q “ λq ă exp
´

´
2pαt{4q2
2pt´ 2q

¯

.

Therefore,
P
`

dDf pi˚, j˚q ă p3{4` α{4qt
ˇ

ˇfpi˚, j˚q “ λ
˘

ă e´Ωptq

for each λ P r`s and hence

PpdDf pi˚, j˚q ă p3{4` α{4qtq ă e´Ωptq . (6.5)

Therefore the probability that some pair has a pair-degree less than p3{4` α{4qt is less
than t2{eΩptq, which proves that with probability greater then 1{2 the minimum pair-degree
of Df is at least p3{4` α{4qt. Together with (6.4) this shows that the probability that a
function f fulfills EpRf q ď 2δ3t

3 and δ2pDf q ě p3{4` α{4qt is greater than zero.
From now on let f : rts2 Ñ r`s be a fixed function having these two properties. Notice

that Df XRf arise from Df by deleting at most 2δ3t
3 edges. We can estimate the number

τt2 of pairs, which have afterwards a pair-degree smaller than p3{4` α{8qt, by

τt2αt{8 ď 6δ3t
3 .

Thus τ ď 48δ3
α

and by our choice of δ3 ! α, τ it follows that τ ď τ . In other words, there
are indeed at most τt2 pairs ij P rtsp2q whose pair-degree in Jf is smaller than p3

4 `
α
8 qt. �
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From now on we will denote the bipartite graph P ij
fpi,jq simply by P ij, where f is the

function obtained in Claim 6.9. Due to Claim 6.9 we can apply Lemma 6.1 to Jf with
α1 “ α{8 instead of α and find a Kp3q

4 -factor missing at most 2
?
τt`13 vertices with τ ! α1.

Since Q ” 0 pmod 4q, we can apply Lemma 6.6 to the “tetrads” corresponding to these
K
p3q
4 in the reduced hypergraph. Therefore all but at most

n

t
p2
?
τt` 13q ` t

4 ¨ ν ¨
n

t
` δ3n ď µn

vertices can be covered by vertex-disjoint squared paths with Q vertices. �

6.5. Almost squared cycle. Finally we establish Proposition 2.5 by connecting the
absorbing path and a collection of many long squared paths provided by the foregoing
theorem, which yields an almost spanning squared cycle.

Proposition 6.10. Given α ą 0, let ϑ˚ ą 0, M P N be the constants from the connecting
lemma and let PA be an absorbing squared path. There exists n0 P N such that in every
hypergraph H with vpHq “ n ě n0 and δ2pHq ě p4{5` αqn all but at most 2ϑ2

˚n vertices
of H can be covered by a squared cycle and PA is an induced subhypergraph of this cycle.

Proof. Applying Theorem 6.7 to the hypergraph H r pPA YRq, where R is the reservoir
set, with α1 “ α{2 instead of α, with some Q ě 2Mϑ´4

˚ divisible by 4, and µ “ ϑ2
˚. We

get less than n{Q squared paths with Q vertices and miss at most µn vertices. We will
connect these paths and the absorbing path PA to a squared cycle by using Lemma 4.2,
which is applicable each time, since Mp n

Q
` 1q ď ϑ4

˚n for Q ě 2Mϑ´4
˚ and n sufficiently

large. Therefore we just used vertices of the reservoir set. Because µ ď ϑ2
˚ and |R| ď ϑ2

˚n

we miss at most µn` |R| ď 2ϑ2
˚n vertices. �
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