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Abstract: The edge isoperimetric problem for a graph G is to determine, for each n, the
minimum number of edges leaving any set of n vertices. In general this problem is NP-hard,
but exact solutions are known in some special cases, for example when G is the usual integer
lattice. We solve the edge isoperimetric problem asymptotically for every Cayley graph
on Zd . The near-optimal shapes that we exhibit are zonotopes generated by line segments
corresponding to the generators of the Cayley graph.

1 Introduction

For every space equipped with notions of size and boundary of subsets there is a corresponding isoperi-
metric problem: how small can the boundary be over all subsets of a given size? For example, the classical
isoperimetric theorem states that the measurable subset of Rd with minimum boundary for a given volume
is an appropriate scaling of the unit ball. Isoperimetric problems can also be posed for graphs, where they
are closely related to the phenomenon of expansion. Isoperimetric inequalities measure how easy it is to
separate a set of vertices from the rest of the graph, which in turn can be related to the mixing time of
Markov chains [18], or performance of error correcting codes [27]. There are two commonly studied
isoperimetric problems on graphs, corresponding to two natural definitions of the boundary of a set of
vertices. It will be convenient to state the definitions for directed graphs; for undirected graphs consider
the directed graph obtained by replacing each edge by a pair of edges oriented in opposite directions.
Given a directed graph G, the edge boundary of a set S⊆V (G) is

∂ (S) = ∂G(S) = |{(u,v) ∈ E(G) : u ∈ S,v ∈V (G)\S}|,
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Graph Edge-optimal shapes Vertex-optimal shapes

Qd subcubes [12, 21, 2, 16] Hamming balls [13]
(Zd , l1) cubes (l∞-balls) [4] cross-polytopes (l1-balls) [29]
(Zd , l∞) cubes [24]

Table 1: Approximate shapes of optimal sets for isoperimetric problems on certain families of graphs.

and the vertex boundary is

∂v(S) = ∂v,G(S) = |{v ∈V (G)\S : there exists u ∈ S such that (u,v) ∈ E(G)}|.

That is, the edge boundary is the number of edges leaving S, and the vertex boundary is the number of
vertices we can reach by following these edges. Thus we always have the inequalities

∂v(S)≤ ∂ (S)≤ ∆in(G)∂v(S), (1)

where ∆in(G) is the maximum in-degree of any vertex in G. We write

∂
∗(n) = min

S⊆V (G) : |S|=n
∂ (S), ∂

∗
v (n) = min

S⊆V (G) : |S|=n
∂v(S)

for the minimum size of the edge or vertex boundary over all subsets of size n. The edge (respectively,
vertex) isoperimetric problem on G is to determine the function ∂ ∗ (respectively, ∂ ∗v ). Solving either of
these problems for a general graph G is NP-hard [11, 5], but results are known in several special cases
where G has a lot of structure. The approximate shape of the optimal sets for some families of graphs are
listed in Table 1.

The d-dimensional hypercube Qd is the graph on vertex set {0,1}d with edges between those pairs
of binary strings that differ in a single coordinate. With a coding theory application in mind, the edge
isoperimetric problem was solved by Harper [12], Lindsey [21], Bernstein [2] and Hart [16]. The optimal
sets include k-dimensional subcubes obtained by fixing d− k coordinates and allowing the rest to take
all 2k possible values. The corresponding vertex isoperimetric problem was solved by Harper [13]. The
optimal sets include Hamming balls: for each w, the sets of strings with at most w coordinates equal to 1.
This illustrates a typical feature of isoperimetric problems on graphs: the optimal shapes for each type of
boundary are very different.

Isoperimetric problems have also been studied for many grid-like graphs. Let (Zd , l1) be the graph
on vertex set Zd with edges between pairs of vertices at l1-distance 1. Wang and Wang [29] showed
that the optimal sets for the vertex isoperimetric problem on this graph include l1-balls consisting of
all vertices with l1-norm at most w. They also proved the same result for the restriction of this graph
to (Nd , l1). Bollobás and Leader [3] showed that these sets also remain optimal when restricted to the
finite grids ([k]d , l1) (where we write [k] = {1, . . . ,k}) generalising Harper’s result for Qd . The edge
isoperimetric problem on (Zd , l1) was solved by Bollobás and Leader [4]; the optimal shapes include
cubes. (An asymptotic solution follows from the Loomis–Whitney inequality [22].) More recently,

DISCRETE ANALYSIS, 2018:7, 16pp. 2

http://dx.doi.org/10.19086/da


ISOPERIMETRY IN INTEGER LATTICES

Radcliffe and Veomett [24] solved the vertex isoperimetric problem in the l∞-grid (Zd , l∞), where two
points are adjacent if they are at l∞-distance 1. Again, the optimal shapes include cubes.

For each of the preceding results the authors solved the isoperimetric problem exactly. In fact, they
found an ordering v1,v2, . . . of the vertex set such that, for each n, the set {v1, . . . ,vn} has boundary of
minimum size. These orderings remain consistent as the dimension d varies, in the following sense. Write
Gd for either Qd , (Zd , l1) or (Zd , l∞). Then viewing Gd as a subgraph of Gd+1 in the natural way, the
optimal order for Gd+1 restricts to an optimal ordering for Gd . This allows each of the preceding results
to be proved using ‘compression’ techniques: for more on compressions see [3] or [10].

Bollobás and Leader [4] also considered the edge isoperimetric problem on ([k]d , l1). Here, when the
number of vertices being considered is a large fraction of the size of the grid, the character of the optimal
sets changes as edge effects come into play: for example, the half-grid [k]d−1× [k/2] has a smaller edge
boundary in ([k]d , l1) than a cube containing the same number of points. More seriously, the transition
between such qualitatively different optimal sets is not smooth. In particular, there is no ordering of
the vertex set for which every initial segment is optimal; this seems to rule out the use of compression
techniques.

Instead, Bollobás and Leader used the following strategy. They first approximated the edge isoperi-
metric problem in ([k]d , l1) by a continuous problem concerning projections of subsets of [0,1]d . They
then solved this problem exactly, obtaining an approximate solution to the original edge isoperimetric
theorem. The same strategy has been applied by Harper [14] to the vertex isoperimetry problem in the
graph on [k]d with edges between points that differ in exactly one coordinate (those at distance 1 in the
Hamming metric). Again, the optimal solutions are not nested.

Our starting point is the following question:

Question. What is the solution to the edge isoperimetric problem on (Zd , l∞)?

An answer to this question would fill the gap in Table 1. In fact we will prove a more general result:
we will solve the edge isoperimetric problem asymptotically for every Cayley graph on Zd .

1.1 Cayley graphs

Let G be a group and let U be a generating set for G that does not contain the identity. The (directed)
Cayley graph GU has vertex set G and edge set {(g,ug) : g ∈ G,u ∈ U}. We shall always take G to be
(Zd ,+) for some d and U= {u1, . . . ,uk} to be a finite set of non-zero vectors. Then GU is a lattice-like
graph on Zd in which the neighbourhood of the origin is U and the neighbourhood of each other vertex
is obtained by translation. This construction includes both families of lattice graphs considered earlier:
taking U = {(±1,0, . . . ,0), . . . ,(0, . . . ,0,±1)} produces (Zd , l1); taking U = {−1,0,1}d \ {(0, . . . ,0)}
produces (Zd , l∞).

For subsets A,B of any abelian group, the sumset or Minkowski sum of A and B is

A+B = {a+b : a ∈ A,b ∈ B}.

We also write
nA = A+ · · ·+A︸ ︷︷ ︸

n times
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Figure 1: A near-optimal shape for the edge isoperimetric problem in (Z3, l∞). The dotted lines represent
the coordinate axes.

for an iterated sumset. This is in general distinct from the dilation

n ·A = {na : a ∈ A},

but if n is a positive integer and A is a convex subset of Rd then the two notions coincide.

Theorem 1. Let U= {u1, . . . ,uk} be a finite set of non-zero vectors that generate Zd as a group. Let Z0
be the sumset {0,u1}+{0,u2}+ · · ·+{0,uk} and let Z be the convex hull of Z0 in Rd . For every δ > 0,
there is an n0 = n0(δ ,U) such that, for every n≥ n0,

(1−δ )d vol(Z)1/dn1−1/d ≤ ∂
∗
GU

(n)≤ (1+δ )d vol(Z)1/dn1−1/d .

The upper bound is witnessed by intersections of scaled copies of Z with Zd .

The set Z is a ‘zonotope’ in Rd ; see Remark 4 in Section 2.2. If U fails to generate Zd as a group, then
GU breaks into several connected components, each isomorphic to GU′ for some other set U′ (possibly
with a different value of d). Given any set of vertices of GU it is easy to find a set of vertices in one of the
components with the same size and edge boundary, so the condition that U generates Zd as a group is not
a serious restriction.

When U = {(±1,0, . . . ,0), . . . ,(0, . . . ,0,±1)}, we have Z = [−1,1]d , so we recover an asymptotic
version of the edge isoperimetric theorem for (Zd , l1). When U= {−1,0,1}d \{(0, . . . ,0)}, corresponding
to (Zd , l∞), the zonotope Z is more complicated. For d = 2, it is an octagon obtained by cutting the
corners off a square through points one third of the way along each side. In this case there is in fact
a nested sequence of optimal sets, which interpolate between discrete versions of this octagon. This
was proved by Brass [6, Theorem 3] as part of his work on the Erdős distance problem in (R2, l∞). The
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zonotope Z for d = 3 is shown in Figure 1. When U= {±(1,0),±(0,1),±(1,1)}, GU is isomorphic to
the triangular lattice and Z corresponds to a regular hexagon. Harper [15, Theorem 7.2] proved that for
this lattice there is an optimal ordering interpolating between regular hexagons. As far as we are aware,
these are the only cases of Theorem 1 appearing in the literature. We might also ask about the vertex
isoperimetric problem on these more general lattices. It turns out that this question has already been
answered by Ruzsa [25].

Theorem 2 ([25]). Let U= {u1, . . . ,uk} be a finite set of non-zero vectors that generate Zd as a group.
Let U be the convex hull of U∪{0} in Rd . For every δ > 0, there is an n0 = n0(δ ,U) such that, for every
n≥ n0,

(1−δ )d vol(U)1/dn1−1/d ≤ ∂v,GU
(n)≤ (1+δ )d vol(U)1/dn1−1/d .

Ruzsa presents his result in the language of sumsets: for a fixed subset B of Zd such that B−B
generates Zd as a group, he seeks to minimise |S+B| over all subsets S of Zd of a given size. The vertex
boundary of a set S in GU can be expressed as

∂v(S) = |S+(U∪{0})|− |S|,

so, after translating B so that it contains 0, the two problems are easily seen to be equivalent.
The structures of the optimal sets in Theorems 1 and 2 do not seem promising for the use of

compression techniques. To use compressions to prove that the shape Z in Figure 1 is optimal for the
edge isoperimetric problem in (Z3, l∞) we would like to take slices of our graph isomorphic to (Z2, l∞)
and show that the intersection of each slice with Z is itself optimal; but most cross-sections through Z are
not octagons of the correct shape. To prove Theorem 2 Ruzsa instead solved a continuous approximation,
then used combinatorial methods to show that the approximation was good. We give a more detailed
sketch in Section 2.

We would like to take the same approach to proving Theorem 1. The edge isoperimetric problem has
a natural continuous analogue, and the solution suggests the correct statement of Theorem 1. (Indeed,
Theorem 1 has been conjectured independently by Tsukerman and Veomett [28].) However, it is not clear
that the continuous analogue is a good approximation to the original discrete problem. Instead, we will
show that the edge isoperimetric problem can be related to the vertex isoperimetric problem in a different
lattice.

In Section 2 we sketch the relationship between isoperimetric problems in GU and their continuous
analogues. In Section 3 we prove Theorem 1. Finally, in Section 4 we discuss some open problems.

2 Relation to continuous problems

In this section we indicate connections between isoperimetric problems in Cayley graphs on Zd and
classical results from convex geometry. For more background on the geometric results mentioned below,
see for example the book of Schneider [26].

2.1 Vertex isoperimetry

Write U0 = U∪{0} and recall that the vertex isoperimetric problem for GU is equivalent to minimising
|S+U0| over all subsets S of Zd of a given size. Given a subset S of Zd , write S̄ = S+ [0,1]d for
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the subset of Rd obtained by replacing each point of S by a unit cube. We hope that S̄ is a good
continuous approximation to S; for example, |S|= vol(S̄). We seek to bound |S+U0| from below using
the Brunn–Minkowski theorem.

Theorem 3 (Brunn–Minkowski). Let A and B be compact subsets of Rd with vol(A),vol(B)> 0. Then
vol(A+B)1/d ≥ vol(A)1/d +vol(B)1/d , with equality if and only if A and B are convex and homothetic
(that is, equal up to scaling and translation).

Heuristically we have

|S+U0| ≈ vol(S̄+ Ū0)

≥ (vol(S̄)1/d +vol(Ū0)
1/d)d

≈ vol(S̄)+d vol(Ū0)
1/d vol(S̄)(d−1)/d

= |S|+d vol(Ū0)
1/d |S|(d−1)/d ,

when S is large. The main problem with this argument is that the inequality from the Brunn–Minkowski
theorem will be weak if Ū0 is far from a convex set. To fix this, Ruzsa instead considers |S+ tU0| for
some large, fixed t. Since U0 generates Zd as a group, for large t the sumset tU0 ‘fills space’ and is well
approximated by its convex hull. Ruzsa completes his proof by using Plünnecke’s inequality [23], a result
from additive combinatorics, to relate the size of S+ tU0 to that of S+U0.

2.2 Edge isoperimetry

The first step to solving the vertex isoperimetric problem was to rephrase the problem in terms of sumsets.
We can attempt the same process here. Fix a dimension d and a set U as in the statement of Theorem 1.
For i ∈ [k] and S⊂ Zd , let Si = S+{0,ui} be the set obtained by ‘pushing out’ in the ui-direction. Then
∂i(S) = |Si|− |S| is the contribution to the edge boundary made by edges leaving S in the ui-direction.
The continuous analogue is the ‘weighted surface area’ of S̄ in direction ui; that is, the infinitesimal
change in volume when we take an infinitesimal step in the ui direction. More precisely, write [0,ui] for
the line segment from 0 to ui in Rd . Then we are interested in the quantity

lim
ε→0+

vol(S̄+ ε · [0,ui])−vol(S̄)
ε

.

This is an instance of a geometric quantity known as a ‘mixed volume’. Write Kd for the set of compact,
convex, non-empty subsets of Rd . There is a unique function V : Kd

d→R≥0 with the following properties.

• V is symmetric under permutations of its arguments.

• V (K, . . . ,K) = vol(K).

• V is ‘linear’ in each coordinate:

V (α1 ·L1 +α2 ·L2,K2, . . . ,Kd) = α1V (L1,K2, . . . ,Kd)+α2V (L2,K2, . . . ,Kd).
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We call V (K1, . . . ,Kd) the mixed volume of K1, . . . ,Kd .

Remark 4 (Zonotopes). The ‘linearity’ property of the mixed volume leads to particular interest in convex
bodies that can be expressed as Minkowski sums of simpler convex bodies. The simplest non-trivial
convex bodies are line segments; a zonotope is any convex body that can be expressed as a Minkowski
sum of line segments. The shape Z appearing in the statement of Theorem 1 is a zonotope, as the convex
hull of Z0 = {0,u1}+ · · ·+{0,uk} is the set{

k

∑
i=1

λiui : 0≤ λi ≤ 1 for each i

}
=

k

∑
i=1

[0,ui].

Examples of zonotopes include cubes (in any dimension) and centrally symmetric convex polygons in R2.

Theorem 5 (Minkowski). Let K1, . . . ,Kr be compact, convex, non-empty subsets of Rd . Then for all
λ1, . . . ,λr ∈ R≥0,

vol(λ1 ·K1 + · · ·+λr ·Kr) = ∑
j∈[r]d

V (K j1 , . . . ,K jd )λ j1 · · ·λ jd .

For A,B ∈Kd ,

vol(A+ ε ·B) =V (A, . . . ,A)+dεV (B,A, . . . ,A)+O(ε2),

so

dV (B,A, . . . ,A) = lim
ε→0+

vol(A+ ε ·B)−vol(A)
ε

is a measure of how fast A grows when we add a small copy of B to it. When B is a Euclidean ball,
dV (B,A, . . . ,A) is the usual ‘surface area’ (codimension 1 volume of the boundary) of A. By varying B we
obtain different notions of surface area. The following result is closely related to the Brunn–Minkowski
theorem.

Theorem 6 (Minkowski’s first inequality). Let A,B ∈Kd . Then

V (B,A, . . . ,A)≥ vol(B)1/d vol(A)(d−1)/d ,

with equality if and only if A and B are homothetic.

Minkowski’s first inequality is an extremely powerful tool for proving isoperimetric theorems. For
example, the classical isoperimetric theorem follows immediately by taking B to be a Euclidean ball. For
our edge isoperimetric problem we have the following heuristic argument.

∂ (S) =
k

∑
i=1

∂i(S)≈
k

∑
i=1

dV ([0,ui], S̄, . . . , S̄)

= dV

(
k

∑
i=1

[0,ui], S̄, . . . , S̄

)
= dV

(
Z, S̄, . . . , S̄

)
≥ d vol(Z)1/d vol(S̄)(d−1)/d = d vol(Z)1/d |S|(d−1)/d ,
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which should be close to optimal when S̄ is close to a scaling and translation of Z. This strongly
suggests the correct statement of Theorem 1. However, making this argument precise appears not to be
straightforward. The essential problem is that the volume of the projection of a unit cube varies between 1
and
√

d, and so the approximation of the discrete problem by the continuous problem is not automatically
good in every case. We shall instead take a slightly different approach. The philosophy is largely the
same, but we will do as much of our approximation as possible on the discrete side before applying
Theorem 2 to handle the transfer from the discrete to the continuous problem implicitly.

3 Proof of Theorem 1

Throughout this section we fix a dimension d and a set U as in the statement of Theorem 1. All
constants may depend on d and U but are otherwise absolute. Recall that we write Si = S+{0,ui}, and
∂i(S) = |Si|− |S| for the contribution to ∂ (S) in the ui-direction. For x ∈ [k]t , we write Sx = Sx1···xt =
S+{0,ux1}+ · · ·+{0,uxt}. Note that Sx depends only on the number of coordinates of x taking each
value, not on their order. We call a finite subset S of Zd ε-close to optimal if ∂ (S)≤ (1+ ε)∂ ∗(|S|).

3.1 Lower bound

We first collect together some simple properties of ∂ ∗.

Lemma 7. (i) ∂ ∗(n) is an increasing function of n.

(ii) There are constants 0 < c <C such that cn1−1/d ≤ ∂ ∗(n)≤Cn1−1/d .

(iii) For all m,n ∈ N, ∂ ∗(n+m)−∂ ∗(n)≤Cm1−1/d .

Proof. (i) Choose S⊂Zd with |S|= n+1 and ∂ (S)= ∂ ∗(n+1). Let w be a vector in Rd with algebraically
independent entries; then v 7→ v ·w is an injection from Zd to R. Let v be the unique element of S with
v ·w maximal. Then

• for each i ∈ [k] such that ui ·w > 0, v+ui 6∈ S.

• for each i ∈ [k] such that v−ui ∈ S, ui ·w > 0.

Hence

∂
∗
U(n)≤ ∂U(S\{v})

= ∂U(S)−|{i ∈ [k] : v+ui /∈ S}|+ |{i ∈ [k] : v−ui ∈ S)}|
≤ ∂U(S)−|{i ∈ [k] : ui ·w > 0}|+ |{i ∈ [k] : ui ·w > 0)}|
= ∂U(S) = ∂

∗
U(n+1).

(ii) The maximum in-degree of GU is k, so this follows from Theorem 2 and the inequalities (1).
(iii) Let S be a set of n points with ∂ (S) = ∂ ∗(n) and let T be a set of m points with ∂ (T ) = ∂ ∗(m).

By translating if necessary we may assume that the distance between S and T is greater than the length of
the longest vector in U. Then

∂
∗(m+n)≤ ∂ (S∪T ) = ∂

∗(n)+∂
∗(m)≤ ∂

∗(n)+Cm1−1/d ,

DISCRETE ANALYSIS, 2018:7, 16pp. 8

http://dx.doi.org/10.19086/da


ISOPERIMETRY IN INTEGER LATTICES

by (ii).

Lemma 7(iii) tells us that ∂ ∗(n) varies only slowly with n. It follows that if we make a small
modification to an optimal set then it should remain close to optimal. We now prove that the ‘pushing
out’ operation S 7→ Si causes suitably small modifications when applied to sets that are already close to
optimal.

Lemma 8. For every ε > 0, there is an n0 = n0(ε) such that, if S is ε-close to optimal and |S| ≥ n0, then
Si is 3ε-close to optimal for each i ∈ [k].

Proof. For i ∈ [k], let Fi = {v ∈ S : v+ui /∈ S} be the frontier of S in the ui-direction. We claim that, for
each j ∈ [k],

∂ j(Si)−∂ j(S)≤ ∂ j(S)−∂ j(S\Fi). (2)

That is, if the boundary in the u j-direction gets much larger when we pass from S to Si, then it also gets
much smaller if we pass from S to S\Fi. This seems unlikely if S is close to optimal.

If T,T ′ are disjoint finite subsets of Zd , then

∂ j(T ∪T ′)−∂ j(T ) = |{v ∈ T ′ : v+u j /∈ T ∪T ′}|− |{v ∈ T ′ : v−u j ∈ T}|
= |T ′ \

(
(T ∪T ′)−u j

)
|− |T ′∩ (T +u j)|,

(3)

as every edge that changes from contributing to the edge boundary to not contributing or vice versa has
exactly one endpoint in the set of new vertices T ′.

Taking T = S and T ′ = Si \S = Fi +ui gives

∂ j(Si)−∂ j(S) = |(Fi +ui)\ (Si−u j)|− |(Fi +ui)∩ (S+u j)|
= |(Fi +u j)\ (Si−ui)|− |(Fi−u j)∩ (S−ui)|,

and taking T = S\Fi and T ′ = Fi gives

∂ j(S)−∂ j(S\Fi) = |Fi \ (S−u j)|− |Fi∩ ((S\Fi)+u j)|
= |(Fi +u j)\S|− |(Fi−u j)∩ (S\Fi)|.

Observing that S⊆ Si−ui and S\Fi ⊆ S−ui proves (2).
Now

|Fi|= ∂i(S)≤ ∂ (S)≤ (1+ ε)∂ ∗(|S|)≤ (1+ ε)C|S|1−1/d ,

hence by summing (2) over j ∈ [k] and applying Lemma 7,

∂ (Si)≤ 2∂ (S)−∂ (S\Fi)

≤ (2+2ε)∂ ∗(|S|)−∂
∗(|S\Fi|)

= (1+2ε)∂ ∗(|S|)+∂
∗(|S|)−∂

∗(|S\Fi|)
≤ (1+2ε)∂ ∗(|S|)+C|Fi|1−1/d

≤ (1+2ε)∂ ∗(|S|)+C
(
(1+ ε)C|S|(1−1/d))1−1/d

≤ (1+3ε)∂ ∗(|S|)≤ (1+3ε)∂ ∗(|Si|),

provided |S| is sufficiently large, depending on ε .

DISCRETE ANALYSIS, 2018:7, 16pp. 9

http://dx.doi.org/10.19086/da


BEN BARBER AND JOSHUA ERDE

Repeated application of Lemma 8 tells us that, if S is ε-close to optimal, and x ∈ [k]t with t small,
then ∂ (Sx) is not much bigger than ∂ ∗(|Sx|). Next we show that, in fact, ∂ (Sx) is not much bigger than
∂ ∗(|S|).
Lemma 9. There exist constants (Ct)

∞
t=0 such that the following holds. For every t and every 0 < ε < 1,

there is an n0 = n0(ε, t) such that, if S is ε-close to optimal, |S| ≥ n0 and x ∈ [k]t , then

(i) |Sx|− |S| ≤Ct |S|1−1/d .

(ii) ∂ (Sx)≤ (1+2 ·3tε)∂ ∗(|S|).
Proof. (i) We proceed by induction on t. We can take C0 = 0. So assume we have found suitable
C0, . . . ,Ct , let x ∈ [k]t and let i ∈ [k]. Note that, by Lemma 8, since S is ε-close to optimal, Sx is 3tε-close
to optimal. Hence, by Lemma 7,

|Sxi|− |Sx| ≤ ∂ (Sx)≤ (1+3t
ε)∂ ∗(|Sx|)

= (1+3t
ε)
(
∂
∗(|S|)+∂

∗(|Sx|)−∂
∗(|S|)

)
≤ (1+3t

ε)
(
C|S|1−1/d +C(|Sx|− |S|)1−1/d).

Also, by induction, |Sx|− |S| ≤Ct |S|1−1/d , and so

|Sxi|− |S|= |Sxi|− |Sx|+ |Sx|− |S|
≤ (1+3t

ε)
(
C|S|1−1/d +C(|Sx|− |S|)1−1/d)+ |Sx|− |S|,

≤ (1+3t
ε)
(
C|S|1−1/d +C(Ct |S|1−1/d)1−1/d)+Ct |S|1−1/d

≤Ct+1|S|1−1/d ,

for some constant Ct+1.
(ii) By Lemma 7, and part (i)

∂
∗(|Sx|)−∂

∗(|S|)≤C(|Sx|− |S|)1−1/d ≤C(Ct |S|1−1/d)1−1/d ,

and so, since Sx is 3tε-close to optimal, it follows that

∂ (Sx)≤ (1+3t
ε)∂ ∗(|Sx|) = (1+3t

ε)
(
∂
∗(|S|)+∂

∗(|Sx|)−∂
∗(|S|)

)
≤ (1+3t

ε)
(
∂
∗(|S|)+C(Ct |S|1−1/d)1−1/d)

≤ (1+2 ·3t
ε)∂ ∗(|S|),

with the final inequality following from Lemma 7(ii), provided |S| is sufficiently large, depending on ε

and t.

To complete the proof of Theorem 1, we would like to argue as follows. Let S be close to optimal.
Then,

∂
∗(|S|)≈ ∂ (S) =

k

∑
i=1

(|Si|− |S|)

≈ (|S1|− |S|)+(|S12|− |S1|)+ · · ·+(|S1...k|− |S1...(k−1)|) (4)

= |S1...k|− |S|= |S+Z0|− |S|.
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The final expression is a vertex boundary, so can be bounded below using Theorem 2. However, there is a
problem with the second approximation step. We know that, say, ∂ (S1)≈ ∂ (S). But for the approximation
to hold term by term we would need the stronger result that ∂2(S1)≈ ∂2(S). To fix this we note that these
approximations cannot all be overestimates, and it is at least plausible that if we consider much longer
telescoping sums obtained by extending in a random direction at each stage then we will obtain a more
accurate approximation to a related quantity. This is the idea behind the proof below.

Proof of Theorem 1, lower bound. First fix η > 0 small depending on δ , t ∈ N large depending on η ,
ε > 0 small depending on t, n0 sufficiently large depending on ε , then let S be ε-close to optimal with
|S| ≥ n0. By applying Lemma 9(ii) to each Sx,

t(1+2 ·3t−1
ε)∂ ∗(|S|)≥

t−1

∑
s=0

E
x∈[k]s

∂ (Sx) =
t−1

∑
s=0

E
x∈[k]s

∑
k
i=1(|Sxi|− |Sx|)

= k
t−1

∑
s=0

(
E

x∈[k]s+1
|Sx|− E

x∈[k]s
|Sx|
)

= k E
x∈[k]t

(|Sx|− |S|),

where each expectation is over a uniform choice of x.
We now observe that a random x ∈ [k]t is very likely to have about t/k entries of each value. Since Sx

only depends on the number of coordinates of x with each value, not on their order, all of the terms in the
final expectation are then very close to one single value.

To make this precise, observe that, with probability at least 1− ke−2η2t/k2
, for each i ∈ [k], at least

(1−η)t/k entries of x take the value i. (The number of coordinates taking value i has binomial distribution
B(t,1/k), so this is a simple application of Chernoff’s inequality (see [17, Remark 2.5]) and the union
bound.)

For all such x, Sx ⊇ Sy, where y is a vector of length kd(1−η)t/ke with coordinates taking each
value in [k] equally often. Now

Sy = S+ d(1−η)t/ke({0,u1}+ · · ·+{0,uk}) = S+ d(1−η)t/keZ0,

and so by the Chernoff bound

E
x∈[k]t

(|Sx|− |S|)≥ (1− ke−2η2t/k2
)(|S+ d(1−η)t/keZ0|− |S|).

Note that the final term is the vertex boundary of the set S in the graph GU′ with U′= d(1−η)t/keZ0\{0}.
Since U′ ⊇ U it generates Zd as a group, so we may apply Theorem 2 to U′ with δ = η to obtain

E
x∈[k]t

(|Sx|− |S|)≥ (1− ke−2η2t/k2
)(1−η)d vol(d(1−η)t/keZ)1/d |S|1−1/d

≥ (1− ke−2η2t/k2
)(1−η)2 t

k
d vol(Z)1/d |S|1−1/d .
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Hence

∂
∗(|S|)≥ (1− ke−2η2t/k2

)(1−η)2

(1+2 ·3t−1ε)
d vol(Z)1/d |S|1−1/d

≥ (1−δ )d vol(Z)1/d |S|1−1/d .

3.2 Upper bound

In this section we show that the lower bound on ∂ ∗(n) from Section 3.1 is sharp by exhibiting a family of
sets for which we can prove a matching upper bound on the edge boundary. We again seek to use the
approximation (4). Since we only want an upper bound, it would be enough to show that ∂i(S1... j)≥ ∂i(S)
for all i, j ∈ [k]. This is not true for a general S, but it is true for some particular choices. Recall that the
zonotope Z is defined as the convex hull of Z0 = {0,u1}+{0,u2}+ · · ·+{0,uk} in Rd . We would like
to take S to be any scaled copy of Z, intersected with Zd . For technical reasons it will be convenient to
restrict to integer scale factors. Write Z(t) = (t ·Z)∩Zd for t ∈ N.

Proposition 10. For each t ∈ N,

(i) Z(t +1) = (Z∩Zd)+ tZ0. In particular, Z(t)+Z0 = Z(t +1).

(ii) if Z(t)⊆ S⊂ Zd and S is finite, then ∂ (S)≥ ∂ (Z(t)).

Proof. (i) Certainly (Z∩Zd)+ tZ0 ⊆ Z(t +1). For the reverse inclusion, let v ∈ Z(t +1). Then there are
coefficients αi, 0≤ αi ≤ t +1 such that v = ∑

k
i=1 αiui. For each i, write αi = ai +βi where 0≤ ai ≤ t is

an integer and 0≤ βi ≤ 1. Then

v =
k

∑
i=1

aiui +
k

∑
i=1

βiui ∈ tZ0 +Z.

Since v ∈ Zd and tZ0 ⊆ Zd , we in fact have v ∈ tZ0 +(Z∩Zd).
(ii) For each i ∈ [k] and v ∈ Zd , write Lv,i = {v+λui : λ ∈ Z} and Li = {Lv,i : v ∈ Zd}. We think

of Li as the set of ‘lines in direction ui’ (but note that, if the coordinates of ui have greatest common
factor h, then h distinct elements of Li are contained in the same line in Rd). For any finite S⊂ Zd , write
Li(S) = {L ∈ Li : L∩S 6= /0}. Every element of Li(S) contributes at least 1 to ∂i(S), so ∂i(S)≥ |Li(S)|.
Moreover, equality holds when S = Z(t) as every L ∈ Li(Z(t)) meets Z(t) in an interval (that is, a set of
the form {v+λui : λ ∈ Z,a≤ λ ≤ b} for some v ∈ Zd and a,b ∈ Z). Thus whenever Z(t)⊆ S, we have
for each i ∈ [k] that

∂i(S)≥ |Li(S)| ≥ |Li(Z(t))|= ∂i(Z(t)).

So we can use (4) to relate the edge boundary of Z(t) to |Z(t)+Z0|− |Z(t)|= |Z(t +1)|− |Z(t)|. We
can understand this quantity using the following classical result (see for example [1]).

Theorem 11 (Ehrhart polynomials). Let P be a polytope with vertices in Zd . Then for t ∈ N,

|t ·P∩Zd |=
d

∑
i=0

ait i,

for some coefficients ai with ad = vol(P).
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Proof of Theorem 1, upper bound. Let |Z(t)|= ∑
d
i=0 ait i be the Ehrhart polynomial of Z. Since |Z(t)|=

(1+o(1))vol(Z)td , we have

t = (1+o(1))
(
|Z(t)|
vol(Z)

)1/d

.

Hence,

∂ (Z(t)) =
k

∑
i=1

∂i(Z(t))≤
k

∑
i=1

∂i(Z(t)+{0,u1}+ · · ·+{0,ui−1})

=
k

∑
i=1
|Z(t)+{0,u1}+ · · ·+{0,ui}|− |Z(t)+{0,u1}+ · · ·+{0,ui−1}|

= |Z(t)+Z0|− |Z(t)|= |Z(t +1)|− |Z(t)|

=
d

∑
i=0

ai((t +1)i− t i) = (1+o(1))vol(Z)dtd−1

= (1+o(1))vol(Z)d
(
|Z(t)|
vol(Z)

)(d−1)/d

= (1+o(1))d vol(Z)1/d |Z(t)|(d−1)/d ,

as t grows large. Now for n ∈ N with n > |Z(1)|, let t be least with |Z(t)| ≥ n. Then

|Z(t)|−n≤ |Z(t)|− |Z(t−1)| ≤ (1+o(1))d vol(Z)1/d |Z(t−1)|(d−1)/d = o(n),

by the argument above, and so

∂
∗(n)≤ ∂

∗(|Z(t)|)≤ ∂ (Z(t)) = (1+o(1))d vol(Z)1/d |Z(t)|(d−1)/d

≤ (1+δ )d vol(Z)1/dn(d−1)/d ,

for any δ > 0 and n sufficiently large, depending on δ and Z.

4 Open Problems

Theorem 1 gives an approximate answer to the edge isoperimetric problem on GU, saying that no shape
can do much better than scalings of the zonotope Z. However, as mentioned in the introduction, for
many specific U much more is known. In particular, in all examples where a previous edge or vertex
isoperimetric result is known, there is a nested sequence of optimal sets. In these cases, the optimal sets
interpolate between integer scalings of the polytopes suggested by Theorems 1 and 2 by sequentially
‘filling in faces’ of the optimal set. It is not inconceivable that a similar ordering could exist in every case.

Question 1. Let U= {u1, . . . ,uk} be a finite set of non-zero vectors that generate Zd as a group.

• Is there always an ordering v1,v2, . . . of Zd such that ∂GU
({v1, . . . ,vn}) = ∂ ∗GU

(n)?

• Is there always an ordering w1,w2, . . . of Zd such that ∂v,GU
({w1, . . . ,wn}) = ∂ ∗v,GU

(n)?
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Even if this isn’t true, we could ask instead whether the optimal edge boundary is in fact achieved
by the shapes giving the ‘natural’ upper bounds, scalings of the zonotopes Z for the edge boundary and
the convex hulls U for the vertex boundary. For the continuous analogues in Section 2 it is known that
equality holds for these shapes (and only these shapes).

Question 2. Let U= {u1, . . . ,uk} be a finite set of non-zero vectors that generate Zd as a group. Let Z
be the convex hull of {0,u1}+ · · ·+{0,uk} in Rd , and let Z(t) = (t ·Z)∩Zd . Let U be the convex hull of
U∪{0} in Rd , and let U(t) = (t ·U)∩Zd .

• Is there an infinite sequence of ti ∈ N such that ∂GU
(Z(ti)) = ∂ ∗GU

(|Z(ti)|)?

• Is there an infinite sequence of t j ∈ N such that ∂v,GU
(U(t j)) = ∂ ∗v,GU

(|U(t j)|)?

Finally, for extremal problems in combinatorics it is often interesting to ask if a stability result holds:
if the boundary of a set is close to optimal, must the set be structurally close to some member of an
optimal family? For example, there has recently been much interest in stability results for the edge
isoperimetric inequality in the hypercube (see [7, 8, 19, 20]).

Question 3. Let U= {u1, . . . ,uk} be a finite set of non-zero vectors that generate Zd as a group.

• If ∂ (S)≈ ∂ ∗(|S|) must S be close to some Z(t)?

• If ∂v(S)≈ ∂ ∗v (|S|) must S be close to some U(t)?

We note that some stability results are known for the geometric results of Section 2 (see for example
[9]).
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