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Abstract

We give a combinatorial model for r-spin surfaces with parametrised boundary
based on [Nov]. The r-spin structure is encoded in terms of Zr-valued indices assigned
to the edges of a polygonal decomposition. With the help of this model we count the
number of mapping class group orbits on r-spin surfaces with parametrised boundary
and fixed r-spin structure on each boundary component, extending (and giving a
different proof of) results in [Ran, GG].

We use the combinatorial model to give a state sum construction of two-dimensional
topological field theories on r-spin surfaces. We show that an example of such a topo-
logical field theory computes the Arf-invariant of an r-spin surface as introduced in
[Ran, GG]. This implies in particular that the r-spin Arf-invariant is constant on
orbits of the mapping class group, providing an alternative proof of that fact.
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1 Introduction

The rotation group in two dimensions is fundamentally different from the higher dimen-
sional rotation groups. Namely, SO(n) for n ≥ 3 has universal cover Spin(n) which has
a finite fibre (namely Z2), while the universal cover of SO(2) is R which has an infinite
fibre given by Z. Accordingly, in two dimensions one can speak of r-spin structures, for
r ∈ Z≥0, where one considers the connected cover of SO(2) with fibre Zr. The special
case r = 0 is the universal cover. We review r-spin surfaces in detail in Section 2.1. Here
we only mention that a 1-spin surface is just an oriented surface, a 2-spin surface is what
is usually referred to as a surface with spin structure, and giving a 0-spin structure on a
surface is equivalent to giving a framing. We stress that the case r = 0 is included in all
of the following discussion.

In [Nov] a combinatorial description of r-spin surfaces is given based on the choice of a
triangulation. For our applications, triangulations are cumbersome due to the large num-
ber of triangles required even for simple surfaces. We give a more convenient combinatorial
model based on decompositions into polygons called PLCW-decompositions [Kir] (see Sec-
tion 2.2). For example, this allows one to describe a genus g-surface with b boundary
components with g+ b ≥ 1 in terms of a single (4g+ 3b)-gon with appropriately identified
edges.

We consider r-spin surfaces whose boundary components are parametrised by annuli
with r-spin structure. The r-spin structures on these annuli are in bijection with Zr. The
combinatorial representation of an r-spin structure on a surface Σ is in terms of a marked
PLCW-decomposition, that is:

• a PLCW decomposition of Σ such that each boundary component contains a single
edge and a single vertex,

• a choice of a marked edge for each face (before identification of the edges),

• an orientation of each edge,

• an edge index se ∈ Zr for each edge e,

and where the edge indices need to satisfy a consistency condition around each vertex,
see Section 2.3. To obtain an r-spin structure from the above data, one endows each face
with its unique (up to isomorphism) r-spin structure and then uses the edge indices to
define transition functions between the faces. Finally, one extends the r-spin structure to
the vertices, which is possible due to the above consistency condition. Different sets of
combinatorial data can describe isomorphic r-spin structures on a given surface, and we
give an equivalence relation which precisely encodes that redundancy (Theorem 2.13).

The r-spin surfaces with parametrised boundary form a symmetric monoidal category
Bordr2 , whose objects are “circles with r-spin structures”, which we describe as finite lists
of elements of Zr, and which dictate the restriction of the r-spin structure of a bordism to
the in- and outgoing boundary components.
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One defines a two-dimensional r-spin topological field theory (TFT) to be a symmetric
monoidal functor

Z : Bordr2 → S , (1.1)

for a symmetric monoidal target category S, which we will assume to be additive and
idempotent-complete (and have countable direct sums in case r = 0). We use the combi-
natorial model to give a state-sum construction of such TFTs which is easier to work with
than the one given in [Nov] in terms of triangulations (Theorem 3.8). The input data for
the state-sum construction is a Frobenius algebra A ∈ S whose Nakayama automorphism
N satisfies N r = idA, and whose window element µ ◦∆ ◦ η : I → A is invertible (here µ,
∆, η are the product, coproduct, and unit of A, respectively). State-sum constructions in
the case of 2-spin were considered previously in [BT, NR, GK].

Write ZA for the functor (1.1) obtained in this way. We show that

Zr(A) :=
⊕
λ∈Zr

Zλ , (1.2)

where Zλ is the value of the functor ZA on the r-spin circle λ, gets equipped by ZA with
a unital associative Zr-graded algebra structure which can be understood as a Zr-graded
version of the centre of an algebra (Proposition 3.10). For r = 2, this algebraic structure
on state spaces has also been found in [MS].

In [DK] Frobenius algebras with N r = id appear under the name of Λr-Frobenius
algebras in relation to r-spin surfaces. In [Ster] Λr-Frobenius algebras have been used
to describe r-spin TFTs defined on “open bordisms”, meaning that the objects in the
bordism category are disjoint unions of intervals. Our r-spin TFTs are defined on “closed
bordisms”, meaning that objects are disjoint unions of circles.

As an example, let S be the category of super vector spaces over some field k not of
characteristic 2 and A the Clifford algebra C`(1) = k⊕kθ in one odd generator θ. Assume
that r is even. One finds that Zλ = kθλ for λ ∈ Zr and that the following holds (Section 5.1
and Theorem 5.8):

Theorem 1.1. Let Σ be an r-spin surface of genus g with b ingoing boundary components
of r-spin structures λ1, . . . , λb ∈ Zr and no outgoing boundary components. Then

ZC`(1)(Σ)(θλ1 ⊗ · · · ⊗ θλb) = 21−g (−1)Arf(Σ) , (1.3)

where Arf(Σ) ∈ Z2 is the Arf-invariant of the r-spin structure of Σ as defined in [Ran, GG].

By construction, ZC`(1)(Σ) is invariant under the action of the mapping class group
of Σ. Thus the above theorem also proves that the r-spin Arf-invariant is constant on
mapping class group orbits, a fact already shown in [Ran, GG] by different means. For
usual spin structures, so r = 2, the fact that a spin-TFT can compute the Arf-invariant
(incidentally, for the same algebra) was already noticed in [MS, Gun, BT, GK]. From this
point of view Theorem 1.1 is not surprising as an r-spin structure for even r also defines a
2-spin structure, and this correspondence is compatible with the Arf-invariant.
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In [Ran, Thm. 2.9] mapping class group orbits of r-spin structures on a connected
surface Σg,b of genus g with b boundary components have been calculated for g, b ≥ 1 when
r = 2, and for g ≥ 2, b ≥ 1 when r > 0; in [GG, Prop. 5] the orbits are given for g ≥ 0,
b = 0 in case r > 0. The r-spin Arf invariant has been used to distinguish two orbits for r
even and g ≥ 2. We extended these results for arbitrary g and b and give an alternative
proof using the combinatorial formalism of Section 2. In order to state our theorem we
need to fix some conventions.

We call an integer d ∈ Z≥0 a divisor of r if there exists an integer n such that d ·n = r.
In particular, every non-negative integer is a divisor of 0. Let us denote by gcd(a, b) ∈ Z≥0

the non-negative generator of the ideal generated by a and b in Z. Similarly one can define
gcd(a, b, c) ∈ Z≥0, etc. With this definition, gcd(a, 0) = a for all a ∈ Z≥0.

Let Σg,b be a closed connected oriented surface of genus g ≥ 0 with b ≥ 0 ingoing
boundary components and no outgoing boundary components. For λ1, . . . , λb ∈ Zr denote
by Rr(Σ)λ1,...,λb the set of isomorphism classes of r-spin structures on Σg,b which near the
boundary circles restrict to the annulus r-spin structures given by λ1, . . . , λb (see Section 2.1
for details).

We will also need the abelian group O0(r) defined as the quotient:

O0(r) := (Zr)b/〈R̂i, Ĥij, G | i, j = 1 . . . b, i 6= j〉 . (1.4)

The generators G, R̂i, Ĥij ∈
∏b

i=1 Zr of the subgroup have components (G)i = 1, (R̂i)k =

δi,k(λi − 1), (Ĥij)i = (Ĥij)j = λi + λj − 1 and (Ĥij)k = 0 for k 6= i, j.
Our second main result is:

Theorem 1.2. Let r ≥ 0 and let Σg,b and λ1, . . . , λb be as above.

1. The set of isomorphism classes of r-spin structures Rr(Σ)λ1,...,λb is non-empty if and
only if

2− 2g ≡
b∑
i=1

λi (mod r) . (1.5)

2. If the condition in Part 1 is satisfied, then the number of isomorphism classes is:

r b, g |Rr(Σg,b)λ1,...,λb|
0 g = 0 and b ∈ {0, 1} 1

else infinite

> 0 b = 0 r2g

b ≥ 1 r2g+b−1

3. Suppose the condition in Part 1 is satisfied. Consider the action of the mapping class
group of Σg,b (which fixes the boundary pointwise) on Rr(Σ)λ1,...,λb by pullback. The
number of orbits is

5



g conditions number of orbits

0 (none) |O0(r)|
1 r even and at least one λi odd 2 ·#

(
divisors of gcd(r, λ1, . . . , λb)

)
else #

(
divisors of gcd(r, λ1, . . . , λb)

)
≥ 2 r even 2

r odd 1

Parts 1 and 2 of the theorem are proved in Proposition 2.19, Part 3 is proved in
Section 6. The existence condition in Part 1 and the counting for r > 0 in Part 2 is
well-known for closed surfaces from complex geometry, where it relates to roots of the
canonical bundle. The counting in Parts 2 and 3 extends results obtained in [Ran, GG]
using different methods.

Remark 1.3. 1. We formulated Theorem 1.2 for ingoing boundary components to
avoid notational complications. However, in the bordism category Bordr2 one natu-
rally has ingoing and outgoing boundary components. To incorporate these, define
Ri = λi − 1 for an ingoing boundary and Ri = 1 − λi for an outgoing boundary. If
one expresses Theorem 1.2 in terms of the Ri by replacing λi with Ri+1 everywhere,
the result applies to connected bordisms with both ingoing and outgoing boundary
components. The proof in Proposition 2.19 and in Section 6 is given in terms of the
Ri.

2. Let Σ : X → Y be a connected morphism in Bordr2 . Let B ⊂ Bordr2(X, Y ) be the
subset of all morphisms which have the same underlying surface as Σ. Since mor-
phisms in Bordr2 are diffeomorphism classes of r-spin bordisms, Part 3 of Theorem 1.2
precisely computes the number of elements in B.

3. We will see in Section 6 that O0(r) as defined in (1.4), and which appears in Part 3
of Theorem 1.2, is naturally in bijection with orbits of the mapping class group for
g = 0 and b ≥ 0. An explicit expression for the number of elements in O0(r) can
be found in Lemma 2.18 (b = 0), Corollary 2.20 (b = 1), Equation 6.4 (b = 2) and
Proposition 6.1 (b ≥ 2), but the general result is somewhat cumbersome. Here we
just list the answer for b = 0, 1, 2:

b condition |O0(r)|
0,1 (none) 1

2 r = 0 and λ1 = λ2 = 1 infinite

else gcd(r, λ1 − 1)

Recall that we assume the condition in Part 1 of Theorem 1.2 to hold. In particular,
for g = 0, b = 2 we have λ1 + λ2 ≡ 2 (mod r).

6



This paper is organised as follows. In Section 2 we describe the combinatorial model
for r-spin structures and state its main properties. In Section 3 we use this model to give a
state-sum construction of r-spin TFTs, and we compute the value of these TFTs on several
bordisms as an example. In Section 4, the action of a set of generators of the mapping
class group on r-spin structures is expressed in terms of the data of the combinatorial
model. In Section 5 we show that for r even, the r-spin state-sum TFT for the two-
dimensional Clifford algebra computes the r-spin Arf-invariant. Section 6 contains the
proof of Theorem 1.2 and also an explicit count of the mapping class group orbits in the
genus 0 case. Finally, in Appendix A we relate the description of r-spin structures in terms
of PLCW-decompositions that we use here to the triangulation-based model of [Nov]. We
furthermore give the proofs of those properties of the combinatorial model and of r-spin
state-sum TFTs which require the triangulation-based model and have been omitted in
the main text.
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2 Combinatorial description of r-spin surfaces

In this section we present the combinatorial model for of r-spin structures and state its
properties. We start by reviewing the definition of an r-spin structure (Section 2.1) and of
the decomposition of surfaces we will use (Section 2.2). The main results in this section
are the bijection of the combinatorial data modulo an appropriate equivalence relation and
isomorphism classes of r-spin structures (Theorem 2.13 in Section 2.3) and the counting of
these isomorphism classes for compact connected surfaces (Proposition 2.19 in Section 2.5).

2.1 r-spin surfaces

Here we recall the definition of r-spin structures and of related notions, following [Nov].
Denote by GL+

2 (R) the set of real 2×2 matrices of positive determinant, and let prGL :

G̃L
r

2 → GL+
2 (R) be the r-fold connected cover for r ∈ Z>0 and the universal cover for

r = 0. Note that in both cases the fibres are isomorphic to Zr = Z/rZ. By a surface
we mean an oriented two-dimensional smooth manifold. For a surface Σ we denote by
FGL+Σ → Σ the oriented frame bundle over Σ (“oriented” means that orientation on the
tangent space induced by the frame agrees with that of Σ).

Definition 2.1. 1. An r-spin structure on a surface Σ is a pair (η, p), where η : PG̃LΣ→
Σ is a principal G̃L

r

2-bundle and p : PG̃LΣ → FGL+Σ is a bundle map intertwining

the G̃L
r

2- and GL+
2 -actions on PG̃LΣ and FGL+Σ respectively.
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2. An r-spin surface is a surface together with an r-spin structure.

3. A morphism of r-spin surfaces f̃ : Σ → Σ′ is a bundle map between the r-spin
surfaces, such that the underlying map of surfaces f is a local diffeomorphism, and
such that the diagram

PG̃LΣ PG̃LΣ′

FGLΣ FGLΣ′

Σ Σ′

f̃

p p′

df∗

f

(2.1)

commutes, where df∗ denotes the induced map from the derivative of f .

4. A morphism of r-spin structures over Σ is a morphism of r-spin surfaces whose
underlying map of surfaces is the identity on Σ. We write

Rr(Σ) (2.2)

for the set of isomorphism classes of r-spin structures on Σ.

Note that p : PG̃LΣ → FGL+Σ is a Zr-principal bundle (r ∈ Z≥0). Also, morphisms
of r-spin structures are always isomorphisms as they are maps of principal bundles. A
diffeomorphism of r-spin surfaces is a morphism of r-spin surfaces with a diffeomorphism
as underlying map of surfaces. Let us denote by

Dr(Σ) (2.3)

the diffeomorphism classes of r-spin surfaces with underlying surface Σ. Note that by
construction we have a surjection

Rr(Σ) � Dr(Σ) , (2.4)

given by passing to orbits under the action of the mapping class group of Σ acting on
Rr(Σ). As we shall see, this surjection is almost never injective.

Even though we do not need it in the rest of the paper, let us mention that a 0-spin
structure is the same as a framing. A framing of Σ is a homotopy class of A framing of Σ
is a homotopy class of trivialisations of the oriented frame bundle over Σ. of the oriented
frame bundle over Σ. Let T (Σ) denote the set of framings of Σ. We have:

Proposition 2.2. There is a bijection T (Σ)
∼−−→ R0(Σ).
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Proof. Take a framing and pick a representative trivialisation, i.e. an isomorphism of GL+
2

principal bundles ϕ : FGLΣ
∼−−→ GL+

2 × Σ. Define

pϕ :=

[
G̃L

0

2 × Σ
p0
GL×idΣ−−−−−→ GL+

2 × Σ
ϕ−1

−−→ FGLΣ

]
,

πϕ :=
[
G̃L

0

2 × Σ
pϕ−→ FGLΣ→ Σ

]
. (2.5)

Then ρϕ := (πϕ, pϕ) is a 0-spin structure. Changing ϕ by a homotopy gives an isomorphic
0-spin structure [Hus, Ch. 4, Thm. 9.9]. This defines a map F : T (Σ)→ R0(Σ).

Next we define a map in the opposite direction. Since G̃L
0

2 is contractible, for any

0-spin structure ζ = (π : PG̃LΣ → Σ, p), π is a trivialisable G̃L
0

2 principal bundle [Stee,

Thm. 12.2]. Let φ̃ζ : PG̃LΣ → G̃L
0

2 × Σ denote such a trivialisation. Then there exists a
unique morphism of principal GL+

2 bundles φζ : FGLΣ→ GL+
2 × Σ such that

PG̃LΣ G̃L
0

2 × Σ

FGLΣ GL+
2 × Σ

φ̃ζ

p p0
GL×idΣ

φζ

(2.6)

commutes. Again by contractability, any two choices of trivialisations φ̃ζ are homotopic
and so the corresponding φζ are homotopic, too. By the same argument, different choices
of representatives of isomorphism classes of 0-spin structures give homotopic φζ ’s. This
defines a map G : R0(Σ)

∼−−→ T (Σ).
The two maps F and G are inverse to each other. Indeed, for [ζ] ∈ R0(Σ), the 0-spin

structure one obtains after constructing F (G([ζ])) is isomorphic to ζ via φ̃ζ as in (2.6), so
that indeed F (G([ζ])) = [ζ]. Conversely, starting from a homotopy class of trivialisations
[ϕ] ∈ T (Σ), in computing G(F ([ϕ])) we see that in (2.6) we can take φ̃ζ = id and φζ = ϕ,
so that G(F ([ϕ])) = [ϕ].

After this aside on framings, let us return to r-spin surfaces and give a basic example
which will later serve to parametrise the boundary components of r-spin bordisms.

Example 2.3. For κ ∈ Z let Cκ denote the r-spin structure on C× given by the trivial

principal G̃L
r

2-bundle G̃L
r

2 × C× and the map

pκ : G̃L
r

2 × C× → GL+
2 × C×

(g, z) 7→ (zκ.prGL(g), z) , (2.7)

where z ∈ C× acts on M ∈ GL+
2 by

z.M =

(
Rez −Imz
Imz Rez

)
M . (2.8)

9



Since the G̃L
r

2-action is from the right and prGL is a group homomorphism, pκ indeed

intertwines the G̃L
r

2- and GL+
2 -actions.

Lemma 2.4 ([Nov, Sec. 3.4]). Cκ and Cκ′ are isomorphic r-spin structures if and only if
κ ≡ κ′ (mod r). The map Zr → Rr(C×), κ 7→ [Cκ] is a bijection.

In the case that r > 0, it will be convenient to fix once and for all a set of representatives
of Zr in Z, say {0, 1, . . . , r−1}, and to agree that for λ ∈ Zr, Cλ stands for Cκ, with κ ∈ Z
the chosen representative for λ.

Notations 2.5. For an r-spin surface Σ, by abuse of notation we will often use the same
symbol Σ to denote its underlying surface. That is, Σ stands for the triple Σ, η, p from
Definition 2.1 (1).

A collar is an open neighbourhood of S1 in C×. An ingoing (resp. outgoing) collar is
the intersection of a collar with the set { z ∈ C× | |z| ≥ 1 } (resp. { z ∈ C× | |z| ≤ 1 }). A
boundary parametrisation of a surface Σ is:

1. A disjoint decomposition Bin t Bout = π0(∂Σ) (the in- and outgoing boundary com-
ponents). Bin and/or Bout are allowed to be empty.

2. A collection of ingoing collars Ub, b ∈ Bin, and outgoing collars Vc, c ∈ Bout, together
with a pair of orientation preserving embeddings

φin :
⊔
b∈Bin

Ub ↪→ Σ←↩
⊔

c∈Bout

Vc : φout . (2.9)

We require that for each b, the restriction φin|Ub maps S1 diffeomorphically to the
connected component b of ∂Σ, and analogously for φout|Vc .

An r-spin boundary parametrisation of an r-spin surface Σ is:

1. A boundary parametrisation of the underlying surface Σ as above; we use the same
notation notation as in (2.9).

2. A pair of maps fixing the restriction of the r-spin structure to the in- and outgoing
boundary components

λ : Bin → Zr and µ : Bout → Zr. (2.10)

b 7→ λb c 7→ µc

3. A pair of morphisms of r-spin surfaces which parametrise the in- and outgoing bound-
ary components by collars with r-spin structure,

ϕin :
⊔
b∈Bin

Uλb
b ↪→ Σ←↩

⊔
c∈Bout

V µc
c : ϕout . (2.11)

Here, Uλb
b is the restriction of Cλb to the ingoing collar Ub, and analogously V µc

c :=
Cµc|Vc . The maps of surfaces underlying ϕin/out are required to be the maps φin/out

in (2.9) from Part 1.
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Note that by Lemma 2.4, the maps λ, µ in part 2 are not extra data, but are uniquely
determined by the r-spin surface Σ and the boundary parametrisation.

For diffeomorphisms between r-spin surfaces with parametrised boundary we only re-
quire that they respect germs of the boundary parametrisation. In more detail, let Σ be
as in (2.11) and let

ψin :
⊔
d∈B′in

P ρd
d ↪→ Ξ←↩

⊔
e∈B′out

Qσe
e : ψout (2.12)

be another r-spin surface with boundary parametrisation. A diffeomorphism of r-spin
surfaces with boundary parametrisation Σ → Ξ is an r-spin diffeomorphism f : Σ → Ξ
subject to the following compatibility condition. Let b ∈ BΣ

in be an ingoing boundary
component of Σ and let f∗(b) ∈ π0(∂Ξ) be its image under f . We require that f∗(b) ∈ BΞ

in

and that λb = ρf∗(b). Furthermore, there has to exist an ingoing collar C contained in both
Ub and Pf∗(b) such that the diagram

Uλb
b Σ

Cλb

P
ρf∗(b)
f∗(b)

Ξ

ϕin

f

ψin

(2.13)

of r-spin morphisms commutes. An analogous condition has to hold for each outgoing
boundary component c ∈ Bout.

By an r-spin object we mean a pair (X, ρ) consisting of a finite set X and a map
ρ : X → Zr, x 7→ ρx. Below we will construct a category whose objects are r-spin objects,
and whose morphisms are certain equivalence classes of r-spin surfaces, which we turn to
now.

Definition 2.6. Let (X, ρ) and (Y, σ) be two r-spin objects. An r-spin bordism from
(X, ρ) to (Y, σ) is a compact r-spin surface Σ with boundary parametrisation as in (2.11)
together with bijections βin : X

∼−−→ Bin and βout : Y
∼−−→ Bout such that

X Bin

Zr

βin

ρ λ
and

Y Bout

Zr

βout

σ µ
(2.14)

commute. We will often abbreviate an r-spin bordism Σ from (X, ρ) to (Y, σ) as Σ : ρ→ σ.

Given r-spin bordisms Σ : ρ→ σ and Ξ : σ → τ , the glued r-spin bordism Ξ◦Σ : ρ→ τ
is defined as follows. Denote by Y the source of σ, i.e. σ : Y → Zr. For every y ∈ Y , the
boundary component βΣ

out(y) of Σ is glued to the boundary component βΞ
in(y) of Ξ using

11



the r-spin boundary parametrisations ϕΣ
out and ϕΞ

in. The diagrams in (2.14) ensure that the
r-spin structures on the corresponding collars are restrictions of the same r-spin structure
on C×.

Two r-spin bordisms between the same r-spin objects, Σ,Σ′ : (X, ρ) → (Y, σ) are
called equivalent if there is a diffeomorphism f : Σ→ Σ′ of r-spin surfaces with boundary
parametrisation such that with f∗ : π0(∂Σ)→ π0(∂Σ′),

Bin

X

B′in

f∗

βin

β′in

and

Bout

Y

B′out

f∗

βout

β′out

(2.15)

commute. Let [Ξ] : σ → τ and [Σ] : ρ→ σ be equivalence classes of r-spin bordisms. The
composition [Ξ] ◦ [Σ] := [Ξ ◦ Σ] : ρ → τ is well defined, that is independent of the choice
of representatives Ξ, Σ of the classes to be glued. In the following we will by abuse of
notation write the same symbol Σ for an r-spin bordism Σ and its equivalence class [Σ].

Definition 2.7. The category of r-spin bordisms Bordr2 has r-spin objects as objects and
equivalence classes of r-spin bordisms as morphisms.

Bordr2 is a symmetric monoidal category with tensor product on objects and morphisms
given by disjoint union. The identities and the symmetric structure are given by r-spin
cylinders with appropriately parametrised boundary.

2.2 PLCW decompositions

In Section 2.3 we will use a cell decomposition to combinatorially encode r-spin structures
on surfaces, and in Section 3.3 we will use this description to build an r-spin TFT. For
explicit calculations it is helpful to keep the number of faces and edges to a minimum.
The notion of a PLCW decomposition from [Kir], and which we review in this section, is

u u′

v′

v v′

v

u = u′ u = u′

v = v′

Figure 1: Glueing a torus from a rectangle. Each step is a regular cell map and each generalised
cell decomposition is a PLCW decomposition.
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well suited for such calculations. For example, there is a PLCW decomposition of a torus
consisting of 1 face, 2 edges and 1 vertex, see Figure 1. For comparison, using simplicial
sets would require at least 2 faces, 3 edges and 1 vertex; using simplicial complexes (i.e.
triangulations, as in [Nov]) would require at least 14 faces, 21 edges and 7 vertices (see e.g.
[Lut]).

Now we turn to the definitions following [Kir]. Let C ⊂ RN be a compact set, let C̊

denote its interior and let
•

C := C \ C̊ denote its boundary. Let BN = [−1, 1]N ∈ RN

denote the closed N -ball, or rather a piece-wise linear (PL for short) version thereof. Then
•

BN = SN−1 is the (PL-version of the) (N − 1)-sphere. A PL map ϕ : C → RM is called
a regular map if ϕ|Int(C) is injective. A compact subset C ⊂ RN is a generalised n-cell (or

simply cell), if C̊ = ϕ(B̊n) and
•

C = ϕ(
•

Bn) for a regular map ϕ : Bn → C, which we call a
characteristic map of C. A generalised cell decomposition is a finite collection of cells such
that the interiors of cells do not intersect and the boundary of any cell is a union of cells.
Examples are shown in Figure 1 and in Figure 2. We denote the n-skeleton of K by Kn,
which is the union of the set of k-cells Kk with k ≤ n, and we define the dimension dimK
of K to be the highest integer n for which the set of n-cells is nonempty. We denote the set
of boundaries of an n-cell C ∈ Kn by ∂(C) ⊂ Kn−1. A regular cell map f : L→ K between
generalised cell decompositions L and K is a piecewise linear map f :

⋃
C∈LC →

⋃
D∈K D

such that for every C ∈ L with characteristic map ϕ there is a cell D = f(C) ∈ K for
which f ◦ϕ is a characteristic map. An example of a regular cell map is shown in Figure 1,
a non-example is shown in Figure 2 b).

Definition 2.8. A PLCW decomposition K is a generalised cell decomposition of dimen-
sion n such that if n > 0

• Kn−1 is a PLCW decomposition and

• for any n-cell A ∈ Kn with characteristic map ϕ there is a PLCW decomposition L
of Sn−1, such that ϕ|Sn−1 : L→ Kn−1 is a regular cell map.

Examples of PLCW decompositions are shown in Figure 1, Figure 2 b) and c). A
generalised cell decomposition which is not a PLCW decomposition is shown in Figure 2
a). Each PLCW decomposition can be related by a series of local elementary moves (cf.
Section 2.4 below), and each PLCW decomposition can be refined to a simplicial complex
[Kir, Thm. 6.3]. For more details see [Kir, Sec. 6–8].

From now on we specialise to 2 dimensional PLCW decompositions. Let Σ be a compact
surface with a PLCW decomposition Σ = Σ2∪Σ1∪Σ0. We call these sets faces, edges and
vertices respectively; one can think of faces as n-gons with n ≥ 1. For g + b ≥ 1, PLCW
decompositions also allow for a decomposition of any compact connected surface Σg,b of
genus g and with b boundary components into a single face which is a (4g + 3b)-gon, see
Section 2.5.

To apply PLCW decompositions to smooth manifolds, we can use that a PLCW de-
composition can be refined to a simplicial complex, and that PL cell maps for a simplicial
complex can be approximated by smooth maps, giving smooth manifolds [Mun, Sec. 10].

13



a) b) c)

Figure 2: a) A generalised cell decomposition which is not a PLCW decomposition. There are
one 2-cell, four 1-cells and four 0-cells. One can visualise it by folding a paper and glueing it
only along the bottom edge. b) A triangle with two sides identified and a 1-gon, both PLCW
decompositions. The map between them is not a regular cell map as the edge in the middle has
no image. c) A PLCW decomposition of a sphere into two faces, one edge (red line) and one
vertex.

2.3 Combinatorial description of r-spin structures

In this section we extend the combinatorial description of r-spin structures in [Nov], which
uses a triangulation of the underlying surface, to PLCW decompositions. We will only
consider PLCW decompositions where the boundary components consist of a single vertex
and a single edge.

Let Σ be a surface with parametrised boundary, with a PLCW decomposition, with
a marking of one edge of each face and an orientation of each edge. We do not require
that the orientation of the boundary edges corresponds to the orientation of the boundary
components, but we orient the faces according to the orientation of the surface. This
induces an ordering of the edges of each face, the starting edge being the marked one, see
Figure 3. By an edge index assignment we mean a map s : Σ1 → Zr, e 7→ se.

Definition 2.9. We call an assignment of edge markings, edge orientations and edge
indices a marking of a PLCW decomposition and a PLCW decomposition together with a
marking a marked PLCW decomposition.

For a vertex v ∈ Σ0 let Dv be the number of faces whose marked edge has v as its
boundary vertex in clockwise direction (with respect to the orientation of the face), as
shown in Figure 3. Let ∂−1(v) ⊂ Σ1 denote the edges whose boundary contain v:

∂−1(v) := { e ∈ Σ1 | v ∈ ∂(e) } . (2.16)

The orientation of an edge gives a starting and an ending vertex, which might be the same.
Let N start

v (resp. N end
v ) be the number of edges starting (resp. ending) at the vertex v and

let

Nv = N start
v +N end

v . (2.17)

14



e

v

Figure 3: Figure of a face with adjacent edges and vertices in a marked PLCW decomposition.
The orientation of the face is that of the paper plane, the orientation of the edges is indicated by
an arrow on them. The half-dot indicates the marked edge of the face the half-dot lies in. The
arrow in the middle shows the clockwise direction along the marked edge e and v is the vertex
sitting on the boundary of e in clockwise direction. Note that the clockwise vertex v of the edge
e is determined by the orientation of the face and not by the orientation of the edge e.

We note that an edge which starts and ends at v contributes 1 to both N start
v and to N end

v .
For every edge e ∈ ∂−1(v) let

ŝe =


−1 if e starts and ends at v,

se if e is pointing out of v,

−1− se if e is pointing into v.

(2.18)

Recall the maps λ : Bin → Zr and µ : Bout → Zr from (2.10), as well as our convention
that we only consider PLCW decompositions with exactly one vertex and one edge on
each boundary component. For a vertex u on a boundary component let us write by slight
abuse of notation u for this boundary component and let

Ru :=

{
λu − 1 if u ∈ Bin,

1− µu if u ∈ Bout.
(2.19)

We call a marking admissible with given maps λ and µ, if for every vertex v ∈ Σ0 which
is not on the boundary and for every vertex u ∈ Σ0 on the boundary vertex and one edge
on each boundary component) the following conditions are satisfied:∑

e∈∂−1(v)

ŝe ≡ Dv −Nv + 1 (mod r) , (2.20)

∑
e∈∂−1(u)

ŝe ≡ Du −Nu + 1−Ru (mod r) . (2.21)

For an arbitrary marking of a PLCW decomposition of Σ one can define an r-spin
structure with r-spin boundary parametrisation on Σ minus its vertices by taking the
trivial r-spin structure on faces and fixing the transition functions using the marking. The
above r-spin structure extends uniquely to the vertices of Σ, if and only if the marking is
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se

e

−se − 1

e

(1)

s1

e1

(3)

se

e

se − 1

e

(2a)

se

e

se + 1

e

(2b)

e3e4e
5

=
e

3

e2

e1

e3e4e
5

=
e

3
e2

s2

s3s4

s
5

=
s

3

s1 + k

s 2
+
k

s3

s 4
− k

s
5

=
s

3

Figure 4: Moves of Lemma 2.11 for a face of Σ. All edge orientations and markings are arbitrary
unless shown explicitly. (1) Flipping the edge orientation of e. (2a), (2b) Moving the edge marking
for a face. (3) Shifting the edge indices for a face. The dotted edges e3 and e5 are identified,
hence the edge index remains unchanged. The edges e1 and e2 are counterclockwise oriented,
hence the +k shift of the corresponding edge indices s1 and s2, the edge e4 is clockwise oriented,
hence the −k shift of s4.

admissible for λ and µ. The r-spin boundary parametrisations are given by the inclusion of
r-spin collars (as prescribed by λ and µ) over the collars of the boundary parametrisation
of Σ. For more details on this construction we refer the reader to Appendix A.3.

Definition 2.10. Denote the r-spin structure with r-spin boundary parametrisation de-
fined above by Σ(s, λ, µ).

There is some redundancy in the description of an r-spin structure via a marking. A one-
to-one correspondence between certain equivalence classes of markings and isomorphism
classes of r-spin structures will be given in Theorem 2.13 below. As preparation we first
give a list of local modifications of the marking which lead to isomorphic r-spin structures.

Lemma 2.11. The following changes of the marking of the PLCW decomposition of Σ
(but keeping the PLCW decomposition fixed) give isomorphic r-spin structures:

1. Flip the orientation of an edge e and change its edge index se 7→ −1 − se (see
Figure 4 (1)).

2. Move the marking on an edge e of a polygon to the following edge counterclockwise
and change the edge index of the previously marked edge se 7→ se − 1, if this edge is
oriented counterclockwise, se 7→ se + 1 otherwise (see Figure 4 (2a) and (2b)).

3. Let k ∈ Z. Shift the edge index of each edge of a polygon by +k, if the edge is
oriented counterclockwise with respect to the orientation of the polygon, and by −k
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otherwise. If two edges of a polygon are identified (i.e. are given by the same e ∈ Σ1),
do not change its edge index. For an illustration, see Figure 4 Part 3. We call this a
deck transformation.

These operations on the marking commute with each other in the sense that the final edge
indices do not depend on the order in which a given set of operations 1–3 is applied.

Note that the operation in 3 is the same as moving around the marking of a face
completely by applying operation 2. This lemma is proved in Appendix A.4.

Let Σ be a surface with a fixed PLCW decomposition. Write (m, o, s) for a given
marking of Σ, where m denotes the edge markings of the faces, o the edge orientations
and s the edge indices (cf. Definition 2.9). LetM(Σ)PLCWλ,µ denote the set of all admissible
markings for the maps λ and µ on Σ. The operations in Lemma 2.11 generate an equivalence
relation ∼fix on M(Σ)PLCWλ,µ . Let us denote equivalence classes by [m, o, s]. The following
lemma gives a more concrete description of the equivalence classes.

Lemma 2.12. Let (m, o, s) ∈M(Σ)PLCWλ,µ . We have:

1. For every choice m′, o′ there is some s′ such that [m, o, s] ∼fix [m′, o′, s′].

2. For a given choice of edge indices s̃ we have [m, o, s] ∼fix [m, o, s̃] if and only if s and
s̃ are related by a sequence of deck transformations (operation 3) in Lemma 2.11.

Proof. The first statement is immediate from operations 1 and 2 in Lemma 2.11. For the
second statement recall that operations 1–3 commute, and operation 3 is redundant. Any
sequence of operations can thus be written asM =

∏
e(op. 1 for edge e)

∏
f (op. 2 for face f).

Since m and o do not change, operation 1 for an edge e must occur in pairs, leav-
ing se unchanged, and operation 2 for a face f must occur in multiples of the number
of edges of that face, so that the total change is expressible in terms of operation 3,
M =

∏
f (op. 3 for face f).

Let Rr(Σ)λ,µ denote the isomorphism classes of r-spin structures with r-spin boundary
parametrisation for the maps λ and µ. The following theorem is proved in Appendix A.4.

Theorem 2.13. Let Σ be a surface with PLCW decomposition. The map

M(Σ)PLCWλ,µ / ∼fix −→ Rr(Σ)λ,µ

[m, o, s] 7−→ [Σ(s, λ, µ)] (2.22)

is a bijection. On the right hand side it is understood that the edge markings and orien-
tations of Σ are given by m, o.

Remark 2.14. When combined with Lemma 2.12, this shows that for a fixed edge mark-
ing and orientation the admissible edge index assignments up to deck transformations
are in bijection with the isomorphism classes of r-spin structures with r-spin boundary
parametrisation for the maps λ and µ.
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0

a) b)

v v′ v v′
s

s

s

f ff ′ f ′
w w

w′ w′

w′′

Figure 5: Elementary moves of a marked PLCW decomposition. Figure a) shows edges between
faces f and f ′ (which are allowed to be the same). The edges are marked so that the vertex w
is the clockwise vertex for the face f (cf. Figure 3). This convention is not restrictive as one can
change the orientation of the edges and the markings using Lemma 2.11. In Figure b), on the left
hand side the horizontal edge between the vertices v and v′ (which are allowed to be the same)
is marked for the top polygon, but not for the bottom polygon, and it has edge index 0. For
the joint polygon on the right hand side, the marked edge is taken to be that from the bottom
polygon on the left. Note that this latter convention for the markings is not restrictive, as using
Lemma 2.11 one can move the markings around.

2.4 Elementary moves on marked PLCW decompositions

In the previous section we defined the r-spin structure Σ(s, λ, µ) in terms of a marked
PLCW decomposition, and we explained how to change the marking while staying within
a given isomorphism class of r-spin structures. In this section we state how the marking
needs to change when modifying the underlying PLCW decomposition by elementary moves
in order to produce isomorphic r-spin structures.

Definition 2.15. An elementary move on a PLCW decomposition of a surface is either

• removing or adding a bivalent vertex as shown in Figure 5 a), or

• removing or adding an edge as shown in Figure 5 b).

By [Kir, Thm. 7.4], any two PLCW decompositions can be related by elementary moves.
We prove the following proposition in Appendix A.4.

Proposition 2.16. The elementary moves in Figure 5 induce isomorphisms of r-spin struc-
tures.

The edge index of an edge with a univalent vertex is fixed by the orientation and
the marking of the edge, in particular it is independent of the rest of the edge indices.
In Lemma A.6 we will show that removing univalent vertices induces an isomorphism of
r-spin structures. For an illustration, see Figure 6.

2.5 Example: Connected r-spin surfaces

In this section we illustrate how one can use the combinatorial formalism to count isomor-
phism classes of r-spin structures. This recovers results obtained in [Ran, GG] using a
different formalism.
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0

Figure 6: The edge index of an univalent vertex is fixed by only the marking and orientation of
edges. Removing a univalent vertex induces an isomorphism of r-spin structures.

Notations 2.17. Whenever it does not cause confusion we will use the same symbols for
edge labels and for edge indices. For example for e ∈ Σ1 we will simply write e ∈ Zr
instead of se ∈ Zr.

Lemma 2.18. There exists r-spin structures on the sphere if and only if r = 1 or r = 2.
If there exists an r-spin structure on the sphere then it is unique up to isomorphism.

Proof. Let us consider the sphere decomposed into two 1-gons, one edge u and one vertex
v as in Figure 2 c), with edge index u (cf. Notations 2.17). Let us collect the ingredients
for the vertex condition (2.20). The edge u starts and ends at the vertex, therefore û = −1
from (2.18).

The number Nv of in- and outgoing edges for v is Nv = 1 + 1 = 2, cf. (2.17). The
number of faces with v in clockwise direction from their marked edge is Dv = 2, since the
edge is marked for both faces. The vertex condition (2.20) then reads

−1 ≡ 2− 2 + 1 (mod r),

which holds if and only if r = 1 or r = 2. The edge index u can be set arbitrarily by
operation 3 in Lemma 2.11, and together with Remark 2.14 we see that for any two values
of u the r-spin structures on the sphere are isomorphic.

Proposition 2.19. Let Σg,b be a connected surface of genus g with b boundary components
and with maps λ and µ. There exists an r-spin structure on Σg,b if and only if

χ(Σg,b) ≡
∑

u∈π0(∂Σ)

Ru (mod r), (2.23)

where χ(Σg,b) = 2−2g−b denotes the Euler characteristic and Ru was defined in (2.19). If
(2.23) holds, the number |Rr(Σg,b)λ,µ| of isomorphism classes of r-spin structures on Σg,b

is given by:

r b, g |Rr(Σg,b)λ,µ|
0 g = 0 and b ∈ {0, 1} 1

else infinite

> 0 b = 0 r2g

b ≥ 1 r2g+b−1
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Figure 7: PLCW decomposition of Σg,b for g + b ≥ 1 using only one face, shown after glueing
(Fig. a) and before glueing (Fig. b) – the edges labeled with the same symbols are identified. In
Fig. b, the bigger arrows indicate the marked edge, namely edge r1 in case b > 0 and edge s1 in
case b = 0.

A similar result has been obtained for the existence of r-spin structures on closed
hyperbolic orbifolds for r > 0 in [GG, Thm. 3]. Note that in complex geometry, (2.23) (for
r > 0 and b = 0) is just the condition for the existence of an r-th root of the canonical line
bundle (see e.g. [Wit]).

Proof. The case g = b = 0 has been discussed in Lemma 2.18, so we can assume g+ b ≥ 1.
Decompose Σg,b into a (4g + 3b)-gon consisting of 2g + 2b inner edges, b boundary edges,
one inner vertex v0 and b boundary vertices vj, j = 1, . . . , b, as shown in Figure 7 a) and b).
Assign the edge indices si, ti, rj and uj, where i = 1, . . . , g and j = 1, . . . , b. Mark the
edge s1 if g 6= 0 or the edge r1 if g = 0, see Figure 7 b).

We now evaluate the admissibility condition at each vertex. For the boundary vertex
vj there is the incoming inner edge rj and the boundary edge uj which starts and ends at
the same vertex vj. Therefore by (2.18), relative to vj one has r̂j = −rj − 1 and ûj = −1.
For either of the two markings (for g 6= 0 and for g = 0) Dvj = 0 and Nvj = 3, therefore
we have

−rj − 1− 1 ≡ 0− 3 + 1−Ruj (mod r) for j = 1, . . . , b. (2.24)

Thus the rj are uniquely fixed by the boundary parametrisation λ, µ to be rj ≡ Ruj (mod r)
for all j.

For the inner vertex v0 there are b edges leaving the vertex and 2g edges which start and
end there. Therefore by (2.18), relative to v0 one has r̂j = rj and ŝi = t̂i = −1. Dv0 = 1
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and Nv0 = 4g + b, and so

b∑
j=1

rj − 2g ≡ 1− (4g + b) + 1 (mod r) . (2.25)

Combining (2.24) and (2.25) one obtains (2.23).
By Remark 2.14, for a fixed marking and orientation, edge index assignments up to

deck transformations are in bijection with r-spin structures. From (2.24) and (2.25) every
(si, ti, uj) ∈ (Zr)2g+b gives an admissible edge index assignment. A deck transformation on
the face shifts the uj parameters simultaneously and leaves the si and ti parameters fixed.
By a simple counting we get the number of isomorphism classes of r-spin structures.

Corollary 2.20. There is a unique r-spin structure on the disk with boundary condition
λ = 2 (ingoing boundary) or λ = 0 (outgoing boundary), and no r-spin structure else.

Let Rj := Ruj from (2.19) and let us denote the r-spin structure on Σg,b given by the
parameters si, ti, uj ∈ Zr for i = 1, . . . , g and j = 1, . . . , b from Figure 7 by

Σg,b(si, ti, uj, Rj) (2.26)

(and recall from Notation 2.17 that the same symbols denote edges and the assigned edge
indices).

3 State-sum construction of r-spin TFTs

Our first application of the combinatorial description of r-spin structures is a state-sum
construction of r-spin TFTs, see [BT, NR, GK] for the 2-spin case and [Nov] for general
r. We generalise the construction in [Nov] from triangulations to PLCW-decompositions,
which are much more convenient for explicit computations. In Sections 3.1 and 3.2 we
present some algebraic preliminaries, and in Section 3.3 we explain how suitable Frobenius
algebras produce an r-spin TFT via a state-sum construction (Theorem 3.8). In Section 3.4
we compute the value of the state-sum TFT on connected r-spin bordisms.

3.1 Algebraic notions

Let S denote a strict symmetric monoidal category with tensor product ⊗, tensor unit I
and braiding c. We use the graphical calculus as shown in Figure 8, and we will omit the
labels for objects if they are understood, as e.g. in Figure 9.

An object A ∈ S together with morphisms µ ∈ S(A⊗A,A) (multiplication), η ∈ S(I, A)
(unit), ∆ ∈ S(A,A ⊗ A) (comultiplication) and ε ∈ S(A, I) (counit), see Figure 9, is a
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f cA,B =

A B

AB

A B C

D E

idA =

A

A

Figure 8: String diagram notion of a morphism f ∈ S(A ⊗ B ⊗ C,D ⊗ E), the symmetric
braiding cA,B and the identity idA.

η = ε =µ = ∆ =

Figure 9: String diagrams we will use for the structure morphisms of a Frobenius algebra.

Frobenius algebra if the following relations hold:

= = == (3.1)

= = (3.2)

These relations imply that a Frobenius algebra is in particular an associative algebra and
coassociative coalgebra, see [Koc, Prop. 2.3.24]. For more details on the definition of alge-
bras, coalgebras and Frobenius algebras in monoidal categories we refer to e.g. [FS].

For a Frobenius algebra A we define the window element τ = µ ◦ ∆ ◦ η [LP] and the
Nakayama automorphism N = (idA⊗(ε ◦ µ))◦ (cA,A ⊗ idA)◦ (idA⊗(∆ ◦ η)), see Figure 10.
Then τ is central (as follows from an easy calculation) and N is a morphism of Frobenius

τ = N = Nk = kN−1 =

Figure 10: The window element τ , the Nakayama automorphism N , its inverse N−1 [Nov,
Sec. 5.3] and our string diagram abbreviation for the k’th power of N .
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algebras (see [FS] and [NR, Prop. 4.5]). A is called symmetric if ε ◦µ ◦ cA,A = ε ◦µ. It can
be shown from a straightforward calculation that A is symmetric if and only if N = idA.

Lemma 3.1. Let A ∈ S Frobenius algebra with Nakayama automorphism N . Then for
every n ∈ Z

n

=

−nn

=

n

=

n
(3.3)

Proof. The first and second equations are proven in [Nov, Lem. 5.12]. The third equation
follows from a direct calculation.

A morphism κ : I → A is called invertible if there is a morphism κ′ : I → A such that
µ◦ (κ⊗κ′) = η = µ◦ (κ′⊗κ). In this case we write κ−1 instead of κ′ for the unique inverse.

Let r ∈ Z≥0, (A, µ, η,∆, ε) be a Frobenius algebra in S with invertible window element
τ and with Nakayama automorphism N , such that N r = idA (for r = 0 this last condition
is empty). A Frobenius algebra with N r = idA is called a Λr-Frobenius algebra in [DK,
Prop. I.41]. Define

Pλ := (τ−1 · (−)) ◦ µ ◦ cA,A ◦ (id⊗N1−λ) ◦∆ ∈ End(A) . (3.4)

We collect some properties of Pλ in the following lemma.

Lemma 3.2. Pλ is an idempotent, and for any λ1, λ2 ∈ Zr one has that:

N ◦ Pλ1 = Pλ1 ◦N (3.5)

µ ◦ (Pλ1 ⊗ Pλ2) = Pλ1+λ2 ◦ µ ◦ (Pλ1 ⊗ Pλ2) , η = P0 ◦ η , (3.6)

(Pλ1 ⊗ Pλ2) ◦∆ = (Pλ1 ⊗ Pλ2) ◦∆ ◦ Pλ1+λ2−2 , ε = ε ◦ P2 . (3.7)

Proof. That Pλ is an idempotent is a direct generalisation of [Nov, Lem. 5.12 (1)]. The
additional (τ−1 · (−)) removes the “bubble” µ ◦ ∆. The identity (3.5) is immediate from
the definition of Pλ in (3.4) and the fact that N is an automorphism of Frobenius algebras.
The first identity in (3.6) is a more general version of [Nov, Lem. 6.8] and the proof works
along the same lines. To show the second identity in each of (3.6) and (3.7) just write out
the definition of Pλ, N and N−1. For the first identity in (3.7) use (3.6) together with

((ε ◦ µ)⊗ idA) ◦ (idA⊗Pλ ⊗ idA) ◦ (idA⊗(∆ ◦ η)) = P2−λ, (3.8)

which follows from a direct calculation.
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3.2 The Zr-graded center

Let A ∈ S be a Frobenius algebra with invertible window element. Let S be furthermore
additive (in particular, finite direct sums distribute over tensor products) and assume that
the idempotents Pλ split in S, i.e.

Pλ =
[
A

πλ−→ Zλ
ιλ−→ A

]
,

[
Zλ

ιλ−→ A
πλ−→ Zλ

]
= idZλ , (3.9)

for some object Zλ ∈ S. For r = 0 assume furthermore that S has countably infinite direct
sums which distribute over the tensor product. We can now define:

Definition 3.3. Let r ∈ Z≥0. The Zr-graded center of a Frobenius algebra A with invert-
ible window element and which satisfies N r = id is the direct sum

Zr(A) :=
⊕
λ∈Zr

Zλ . (3.10)

This is a Zr-graded object and we call λ ∈ Zr the degree of Zλ.

Next we will endow Zr(A) with an algebra structure induced by A. Write

eλ : Zλ → Zr(A) (3.11)

for the embeddings of the summands in (3.11) and pλ for the induced projections which
satisfy [

Zλ1

eλ1−−→ Zr(A)
pλ2−−→ Zλ2

]
= δλ1,λ2 idZλ1

. (3.12)

Lemma 3.2 suggests to define, for λ1, λ2 ∈ Zr,

µλ1,λ2 :=
[
Zλ1 ⊗ Zλ2

ιλ1
⊗ιλ2−−−−→ A⊗ A µ−→ A

πλ1+λ2−−−−→ Zλ1+λ2

]
. (3.13)

By the universal property of direct sums (which in the countably infinite case for r = 0
still distribute over ⊗ by our assumptions) there is a unique map

µ̄ : Zr(A)⊗ Zr(A) −→ Zr(A) (3.14)

which satisfies µ̄ ◦ (eλ1 ⊗ eλ2) = eλ1+λ2 ◦ µλ1,λ2 . Let us furthermore define

η̄ :=
[
I η−→ A

π0−→ Z0
e0−→ Zr(A)

]
, (3.15)

The morphisms µ̄ and η̄ are degree preserving. It is straightforward to verify that Zr(A)
together with µ̄ and η̄ becomes an associative unital Zr-graded algebra in S.

One can restrict the Nakayama automorphism of A on the Zλ’s by

NZλ :=
[
Zλ

ιλ−→ A
N−→ A

πλ−→ Zλ

]
(3.16)
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As in [Nov, Lem. 5.12/3] on verifies that

N
gcd(1−λ,r)
Zλ

= idZλ . (3.17)

Recall from the introduction that gcd(a, b) denotes the non-negative generator of the ideal
〈a, b〉 ⊂ Z. In particular, for r = 0 we have gcd(1 − λ, r) = |1 − λ|. The product µ̄ is in
general not commutative, but a simple computation shows that its components satisfy:

µλ1,λ2 ◦ cZλ2
,Zλ1

= µλ2,λ1 ◦
(
N−λ1
λ2
⊗ idZλ1

)
= µλ2,λ1 ◦

(
idZλ2

⊗N+λ2
λ1

)
.

(3.18)

Let N̄ : Zr(A)→ Zr(A) be the unique morphism such that N̄ ◦ eλ = eλ ◦Nλ for all λ.
Combining the fact that N is an automorphism of Frobenius algebras with the definition
of µ̄ and η̄ and using (3.5) shows that N̄ is an algebra automorphism. By (3.17) we have
N̄
r

= id. We collect the above results in the following proposition.

Proposition 3.4. Let A be as in Definition 3.3. The Zr-graded center Zr(A) of A is
an associative unital algebra via µ̄, η̄ and is equipped with the algebra automorphism N̄
satisfying N̄

r
= id. The algebra Zr(A) satisfies the commutativity conditions, for λ ∈ Zr,

µ̄ ◦ cZr(A),Zr(A) ◦ (id⊗eλ) = µ̄ ◦ (N̄
−λ ⊗ eλ) ,

µ̄ ◦ cZr(A),Zr(A) ◦ (eλ ⊗ id) = µ̄ ◦ (eλ ⊗ N̄
λ
) .

(3.19)

Corollary 3.5. The component Z0 of Zr(A) is a subalgebra and is the centre of A.

Frobenius algebra structure for r > 0

For the rest of this section let us assume that r > 0. Since now Zr is finite, we can define
the coproduct as the sum

∆̄ :=
∑

λ1,λ2∈Zr

[
Zr(A)

pλ1+λ2−2−−−−−→ Zλ1+λ2−2

∆λ1,λ2−−−−→ Zλ1 ⊗ Zλ2

eλ1
⊗eλ2−−−−−→ Zr(A)⊗ Zr(A)

]
,

(3.20)

with component maps

∆λ1,λ2 :=
[
Zλ1+λ2−2

ιλ1+λ2−2−−−−−→ A
∆◦(τ ·(−))−−−−−→ A⊗ A

πλ1
⊗πλ2−−−−−→ Zλ2 ⊗ Zλ1

]
. (3.21)

We define the counit

ε̄ :=

[
Zr(A)

p2−→ Z2
ι2−→ A

(τ−1·(−))−−−−−→ A
ε−→ I
]
. (3.22)

The morphisms ∆̄ and ε̄ have degree +2 and -2 respectively. Note that we inserted a
multiplication with τ and its inverse in the definition of ε̄ and ∆̄. The reason for this is
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that we want these maps to match the structure maps calculated in Section 3.4 from the
state-sum construction.

It is straightforward to see that altogether Zr(A) becomes a Frobenius algebra, just
verify (3.1) and (3.2) restricted to individual summands of Zr(A) by using Lemma 3.2 to
move projectors past structure maps of A and by the properties of A itself. Altogether we
have:

Proposition 3.6. Let A be as in Definition 3.3. For r > 0, the Zr graded center of A
together with µ̄, η̄, ∆̄, ε̄ is a Zr-graded Frobenius algebra. The morphisms µ̄ and η̄ have
degree 0, while ∆̄ has degree 2 and ε̄ has degree −2.

Remark 3.7. 1. The condition N r = idA amounts to A being a representation of the
group Zr. Instead of defining this in a general category, let k be a field and let us
assume that A ∈ Repk(Zr), the category of k-linear representations of Zr. Then
the algebra Zr(A) is the full center of A as defined in [Dav], and is in particular
a commutative algebra in Z(Repk(Zr)), the monoidal center of Repk(Zr). To see
this one needs to check that Zr(A) has the form of the full center as given in [Dav,
Prop. 9.6], which has been done in (3.18).

Note, however, that unless r = 1 or r = 2, the counit ε̄ and the comultiplication ∆̄
are not degree preserving, i.e. Zr(A) is not a Frobenius algebra in Z(Zr) with these
structure maps.

2. For r = 0 one still obtains for every λ1, λ2 ∈ Z a non-degeneracy condition, which we
do not explain in detail.

3.3 State-sum construction

Let again r ≥ 0 and A ∈ S be a Frobenius algebra with invertible window element τ and
with N r = idA. In this section we define a symmetric monoidal functor ZA : Bordr2 → S,
that is, a TFT on two-dimensional r-spin bordisms.

Recall the direct sum decomposition Zr(A) =
⊕

λ∈Zr Zλ of the Zr-graded centre from
Definition 3.3. We define the TFT ZA on objects as follows: Let ρ : X → Zr be an r-spin
object. Then

ZA(ρ) :=
⊗
x∈X

Zρx . (3.23)

To define ZA on morphisms is more involved and will take up the remainder of this
section. Let (X, ρ) and (Y, σ) be two r-spin objects. Let Σ : ρ → σ be an r-spin bordism
with maps λ : Bin → Zr, µ : Bout → Zr. Choose a decorated PLCW decomposition
Σ = Σ2 ∪ Σ1 ∪ Σ0 of the surface Σ with admissible edge index assignment s such that the
r-spin structure with parametrised boundary Σ(s, λ, µ) from Definition 2.10 is isomorphic
to the r-spin structure of the r-spin bordism Σ : ρ → σ. Recall that Bin and Bout denote
the in- and outgoing boundary components respectively and that by our conventions they
are in bijection with edges on the boundary.
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(e, l)

s e

e

se + 1ge=(e, r)

(e, l) (e, r)a) b)

Figure 11: a) Left and right sides (e, l) and (e, r) of an inner edge e, determined by the
orientation of Σ (paper orientation) and of e (arrow). The edge index of e is se. b) Convention
for connecting tensor factors belonging to edge sides (e, l) and (e, r) of an inner edge e with the
tensor factors belonging to the morphism ge.

For a face f ∈ Σ2 which is an nf -gon let us write (f, k), k = 1, . . . , nf for the sides of
f , where (f, 1) denotes the marked edge of f , and the labeling proceeds counter-clockwise
with respect to the orientation of f . We collect the sides of all faces into a set:

S := { (f, k) | f ∈ Σ2, k = 1, . . . , nf } . (3.24)

We double the set of edges by considering Σ1 × {l, r}, where “l” and “r” stand for left
and right, respectively. Let E ⊂ Σ1 × {l, r} be the subset of all (e, l) (resp. (e, r)), which
have a face attached on the left (resp. right) side, cf. Figure 11 a). Thus for an inner edge
e ∈ Σ1 the set E contains both (e, l) and (e, r), but for a boundary edge e′ ∈ Σ1 the set E
contains either (e′, l) or (e′, r). By construction of S and E we obtain a bijection

Φ : E
∼−−→ S , (e, x) 7→ (f, k) , (3.25)

where e is the k’th edge on the boundary of the face f lying on the side x of e, counted
counter-clockwise from the marked edge of f .

For every vertex v ∈ Σ0 in the interior of Σ or on an ingoing boundary component of
Σ choose a side of an edge (e, x) ∈ E for which v ∈ ∂(e). Let

V : Σ0 \Bout → E (3.26)

be the resulting function.
To define ZA(Σ) we proceed with the following steps.

1. Let us introduce the tensor products

AS :=
⊗

(f,k)∈S

A(f,k) , AE :=
⊗

(e,x)∈E

A(e,x) ,

Ain :=
⊗
b∈Bin

A(b,in) , Aout :=
⊗
c∈Bout

A(c,out) .
(3.27)

Every tensor factor is equal to A, but the various superscripts will help us distinguish
tensor factors in the source and target objects of the morphisms we define in the
remaining steps.

27



2. For an edge e ∈ Σ1 we set

ge :=


A(e,in) N−se−1

−−−−→ A(e,in) ; e ∈ Bin

I η−→ A
∆−→ A⊗ A idA⊗Nse+1

−−−−−−−→ A(e,l) ⊗ A(e,out) ; e ∈ Bout, surface is left of e

I η−→ A
∆−→ A⊗ A idA⊗Nse+1

−−−−−−−→ A(e,out) ⊗ A(e,r) ; e ∈ Bout, surface is right of e

I η−→ A
∆−→ A⊗ A idA⊗Nse+1

−−−−−−−→ A(e,l) ⊗ A(e,r) ; e inner edge

(3.28)

cf. Figure 11. Define the linear map

C :=
⊗
e∈Σ1

ge : Ain → AE ⊗Aout , (3.29)

where it is understood that the tensor factors in AE ⊗Aout are assigned as indicated
in (3.28).

3. Note that since all tensor factors in AE are algebras, so is AE itself. For a : I → A
and (e, x) ∈ E write

a(e,x) = η ⊗ · · · ⊗ a⊗ · · · ⊗ η : I→ AE , (3.30)

where a maps to the tensor factor A(e,x). Define z : I→ AE as the following product
in the k-algebra S(I,AE):

z =
∏

v∈Σ0\Bout

(τ−1)V (v) . (3.31)

Finally, we let Z be the endomorphism of AE obtained by multiplying with z,

Z :=
[
AE

z·(−)−−−→ AE
]
. (3.32)

4. Let µ(1) := idA and let µ(n) denote the n-fold product for n ≥ 2. Assign to every face
f ∈ Σ2 obtained from an nf -gon the morphism ε ◦ µ(nf ) : A(f,1) ⊗ · · · ⊗ A(f,nf ) → I
and take their tensor product:

F :=
⊗
f∈Σ2

(
ε ◦ µ(nf )

)
: AS → I . (3.33)

5. We will now put the above morphisms together to obtain a morphism L : Ain → Aout.
Denote by ΠΦ the permutation of tensor factors induced by Φ : E → S,

ΠΦ : AE → AS . (3.34)

Using this, we define

K :=
[
AE

Z−→ AE
ΠΦ−→ AS

F−→ I
]
, (3.35)

L :=

[
Ain

C−→ AE ⊗Aout
K⊗idAout−−−−−→ Aout

]
. (3.36)
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6. Let Πin and Πout denote the permutation of tensor factors induced by the maps βin
and βout respectively:

Πin :ZA(ρ) =
⊗
x∈X

Zρx →
⊗
b∈Bin

Zλb , (3.37)

Πout :
⊗
c∈Bout

Zµc →
⊗
y∈Y

Zσy = ZA(σ) . (3.38)

Using these permutations and the embedding and projection maps ιλ, πλ from (3.9)
we construct the morphisms linking the action of ZA on objects to the tensor products
Ain/out:

Ein :=

[
ZA(ρ)

Πin−−→
⊗
b∈Bin

Zλb

⊗
b∈Bin

ιλb−−−−−−→ Ain

]
, (3.39)

Eout :=

[
Aout

⊗
c∈Bout

πµc−−−−−−−→
⊗
c∈Bout

Zµc
Πout−−→ ZA(σ)

]
. (3.40)

We have now gathered all ingredients to define the action of ZA on morphisms:

ZA(Σ) :=
[
ZA(ρ)

Ein−−→ Ain
L−→ Aout

Eout−−→ ZA(σ)
]
. (3.41)

Theorem 3.8. Let A ∈ S be a Frobenius algebra with invertible window element τ and
with N r = idA.

1. The morphism defined in (3.41) is independent of the choice of the marked PLCW
decomposition and the assignment V .

2. The state-sum construction yields a symmetric monoidal functor ZA : Bordr2 → S
whose action on objects and morphisms is given by (3.23) and (3.41), respectively.

The proof of this theorem works by reducing to the corresponding statement for trian-
gulations and is given in Appendix A.5.

Remark 3.9. The above construction yields a TFT on the category of closed r-spin
bordisms, where the complete boundary of the r-spin bordisms is parametrised, so the
parametrised boundary is a closed manifold. One can define a different r-spin bordism
category, called the open-closed r-spin bordism category, where only a one dimensional
submanifold of the boundary of r-spin surfaces is parametrised. The subcategory of the
latter generated by the open cup, the open pair of pants and their duals is called the open
r-spin bordism category. In [Ster] a TFT on open r-spin bordisms was constructed us-
ing Λr-Frobenius algebras [DK, Prop. I.41] which are Frobenius algebras whose Nakayama
automorphism N satisfies N r = id.
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3.4 Evaluation of state-sum TFTs on generating r-spin bordisms

In this section we apply the state-sum construction from Theorem 3.8 to pairs of pants
and discs with r-spin structure. On the one hand, these bordisms generate Bordr2 , and on
the other hand, we will recover the algebra structure of the Zr-graded center Zr(A) of A
in this way. Finally, we evaluate ZA on a connected bordism of genus g with only ingoing
boundary components.

Pair of pants as multiplication

Consider the r-spin 3-holed sphere parametrised as in Section 2.5 with 2 ingoing boundary
components Bin = {u1, u2} and 1 outgoing boundary component Bout = {u3} between
r-spin objects ρ : {x1, x2} → Zr and σ : {y} → Zr with βin(xi) = ui (i = 1, 2) and
βout(y) = u3. Let λ1 := λu1 , λ2 := λu2 and λ3 := µu3 . Then by (2.19) Ru1 = λ1 − 1,
Ru2 = λ2− 1 and Ru3 = 1− λ3. Substituting these and χ(Σ0,3) = 2− 0− 3 = −1 in (2.23)
gives

λ1 + λ2 ≡ λ3 (mod r) . (3.42)

Denote this r-spin bordism by

S1,2(u1, u2, u3, λ1, λ2) := Σ0,3(u1, u2, u3, λ1 − 1, λ2 − 1, 1− λ3) : ρ→ σ ,

(cf. (2.26)). The sets S, E are (see Figure 7)

S ={ (f, k) | k = 1, . . . , 9 } ' {1, . . . , 9} , (3.43)

E = {(u1, r), (u2, r), (r1, l), (r1, r), (r2, l), (r2, r), (r3, l), (r3, r), (u3, r)}
'{1, . . . , 9} , (3.44)

where in (3.44) the isomorphism is given by the order of elements of E as listed. We have
one inner vertex v0 and 3 boundary vertices v1, v2 and v3, with v3 placed on the outgoing
boundary component. We set

V (v0) : = (r2, r) , V (v1) : = (u1, r) , V (v2) : = (u2, r) . (3.45)

Following the steps of the state-sum construction we get:

2. For the various edge indices

C = N−u1−1 ⊗N−u2−1 ⊗ gr1 ⊗ gr2 ⊗ gr3 ⊗ gu3

from (3.29). Recall from Notation 2.17 that the same symbols denote edges and the
assigned edge indices.

3. For the inner vertex and the ingoing vertices we set

z = (τ−1)⊗2 ⊗ η⊗3 ⊗ (τ−1)⊗ η⊗3

from (3.31) according to the map V in (3.45).
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4. For the single 9-gon F = ε ◦ µ(9) from (3.33).

5. The permutation is ΠΦ = (12543)(89) from (3.34) where we use the cycle notation
for the permutation of tensor factors. After a calculation using associativity of the
product and the last equation of (3.3), the morphism L in (3.36) is[

A⊗ A
Pλ1
◦N−u1−1⊗Pλ2

◦N−u2−1

−−−−−−−−−−−−−−−−→ A⊗ A µ−→ A
Pλ1+λ2

◦Nu3+1

−−−−−−−−−→ A

]
. (3.46)

6. For the in- and outgoing boundary components we get Ein = ιλ1⊗ιλ2 and Eout = πλ1+λ2

from (3.39) and (3.40), since the permutations induced by βin and βout from (3.37)
and (3.38) are identities. Also note that ρx1 = λ1, etc. Finally by composing L with
Ein and Eout as in (3.41) we obtain

ZA (S1,2(u1, u2, u3, λ1, λ2))

=

[
Zλ1 ⊗ Zλ2

N
−u1
λ1
⊗N−u2

λ2−−−−−−−→ Zλ1 ⊗ Zλ2

µλ1,λ2−−−→ Zλ1+λ2

N
u3
λ3−−→ Zλ1+λ2

]
.

(3.47)

Observe that ZA (S1,2(0, 0, 0, λ1, λ2)) = µλ1,λ2 from (3.13).

Cup as unit

Consider a disk with outgoing boundary. By Corollary 2.20, we get a unique r-spin struc-
ture for boundary parametrisation, namely µ = 0. Note that the map βout is unique.
Using the notation in (2.26) we write S1,0 := Σ0,1(u, 0) : ∅ → ρ. with ρ : {∗} → Zr ρ∗ = 0.
However, since the r-spin structure is actually independent of u we may as well set u = 0.
We have

S ={ (f, k) | k = 1, 2, 3 } ' {1, 2, 3} , (3.48)

E = {(r1, l), (r1, r), (u1, r)} ' {1, 2, 3} . (3.49)

There is an inner vertex v0 and an outgoing boundary vertex v1, and we set

V (v0) := (u1, r) . (3.50)

By the state-sum construction one has

2. For the 2 edges C = gr1 ⊗ gu1 from (3.29).

3. For the inner vertex z = η⊗2 ⊗ τ−1 from (3.31).

4. For the single 3-gon F = ε ◦ µ(3) from (3.33).

5. The permutation is ΠΦ = (23) from (3.34). Putting the above together according to
(3.36) we get

L = P0 ◦ η . (3.51)

31



6. For the (empty) in- and outgoing boundary components we get Ein = idI and Eout = π0

from (3.39) and (3.40). From (3.41) we finally get

ZA(S1,0) =
[
I η−→ A

π0−→ Z0

]
. (3.52)

Observe that

[
I ZA(S1,0)−−−−−→ Z0

e0−→ ⊕λ∈ZrZλ
]

= η̄ from (3.15).

Pair of pants as comultiplication

Consider a 3-holed sphere with the parametrisation as above, just with in- and outgoing
boundary components exchanged, i.e. λ1, λ2 stand for outgoing boundary components, λ3

for the ingoing etc. Then from (2.23) one has:

λ1 + λ2 − 2 ≡ λ3 (mod r) . (3.53)

Denote this r-spin surface with parametrised boundary by

S2,1(u1, u2, u3, λ1, λ2) := Σ0,3(u1, u2, u3, 1− λ1, 1− λ2, λ3 − 1) : σ → ρ ,

(cf. (2.26)). The morphism L in (3.36) assigned to it by the state-sum construction is[
A

Pλ1+λ2−2◦N−u3−1

−−−−−−−−−−−→ A
∆◦(τ ·(−))−−−−−→ A⊗ A

Pλ1
◦Nu1+1⊗Pλ2

◦Nu2+1

−−−−−−−−−−−−−−→ A⊗ A
]
. (3.54)

and from (3.41) one obtains

ZA (S2,1(u1, u2, u3, λ1, λ2)) =[
Zλ1+λ2−2

N
−u3
λ1+λ2−2−−−−−−→ Zλ1+λ2−2

∆λ1,λ2−−−−→ Zλ1 ⊗ Zλ2

N
u1
λ1
⊗Nu2

λ2−−−−−−→ Zλ1 ⊗ Zλ2

]
. (3.55)

Observe that ZA (S2,1(0, 0, 0, λ1, λ2)) = ∆λ1,λ2 from (3.21). While the above morphism is
defined also for r = 0, as was remarked in Section 3.2 one can sum these morphisms only
in the case when r 6= 0, in which case one obtains (3.20).

Cap as counit

Consider an r-spin disk with ingoing boundary. By Corollary 2.20, the boundary parametri-
sation has λ = 2 and the r-spin structure is independent of the edge indices. Denote this
r-spin surface with parametrised boundary with S0,1 := Σ0,1(0, 2) : σ → ∅, (cf. (2.26)),
with σ : {∗} → Zr σ∗ = 2. By the state-sum construction one has

ZA(S0,1) =

[
Z2

ι2−→ A
(τ−1·(−))−−−−−→ A

ε−→ I
]
. (3.56)
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Observe that

[
⊕λ∈ZrZλ

p2−→ Z2
ZA(S1,0)−−−−−→ I

]
= ε̄ from (3.22).

We collect the above computations for ZA evaluated on generators in the following
proposition:

Proposition 3.10. Let A ∈ S be a Frobenius algebra with invertible window element
τ and with N r = idA, and let ZA be the r-spin TFT ZA defined in Theorem 3.8. The
the Zr-graded center Zr(A) is equal to

⊕
λ∈Zr ZA(λ) with product and unit (restricted

to the corresponding graded components) given by ZA (S1,2(0, 0, 0, λ1, λ2)) and ZA(S1,0),
respectively. For r > 0, we obtain an equality of Frobenius algebras.

For r = 2, the above relation between state spaces and the Zr-graded center was already
observed in [MS].

Connected r-spin bordisms

Finally, let us evaluate ZA on a general connected r-spin bordism with only ingoing bound-
ary components, that is, on Σg,b(si, ti, uj, λj − 1) in the notation of (2.26). Write

t+ 1s+ 1ϕ(s, t) := (3.57)

Using the decomposition of Σg,b from Figure 7 a), a straightforward computation along the
same lines as above gives the following proposition.

Proposition 3.11. Let Σg,b(si, ti, uj, λj − 1) denote the r-spin surface of Definition 2.10
with only ingoing boundary components. Then

ZA(Σg,b(si, ti, uj, λj − 1)) = ε ◦ (τ−1 · (−)) ◦
g∏
i=1

ϕ(si, ti) ◦ µ(b) ◦
b⊗

j=1

(N−uj−1 ◦ ιλj). (3.58)

4 Action of the mapping class group

Since the TFT is defined on diffeomorphism classes of r-spin surfaces with parametrised
boundary, it is of natural interest to calculate these classes. Bundles related by homo-
topic underlying surface diffeomorphisms are isomorphic, therefore studying diffeomor-
phism classes of r-spin surfaces is the same as finding the orbits of the mapping class
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Figure 12: Dehn twists along the following loops provide a choice of generators of the MCG.
a) Loops in Σ0,b: { ∂i, hij | i, j = 1, . . . , b, i 6= j }. Here, ∂j denotes the boundary component j
and, for b ≥ 2, hij denotes the connected sum of ∂i and ∂j . The connected sum is taken with
respect to a choice of points on each loop and a path between these points, so that the result is
as shown in the figure. Note that hij = hji.
b) Loops in Σg,b for g ≥ 1: { ∂i, hij } as before, and { fi, al, bl, dx | i = 1, . . . , b, l = 1, . . . , g, x =
1, . . . , g − 1 }. Here, fi denotes the connected sum of ∂i and b1; dx denotes the connected sum of
bx and −bx+1 and occurs only if g ≥ 2.

group acting on the set of isomorphism classes of r-spin structures on fixed surfaces. Here
by mapping class group (MCG) we mean diffeomorphisms of the surface which restrict to
the identity on the boundary, up to smooth homotopy which fix the boundary, see [FM,
Sec. 2.1].

We consider Σg,b, a connected surface of genus g with b boundary components. Genera-
tors of the MCG of Σg,b are given by Dehn twists along loops in Σg,b as shown in Figure 12.
For g = 0 this can be shown combining [FM, Thm. 4.9, Prop. 3.19 and Sect. 9.3]; for g ≥ 1
this is shown in [FM, Sect. 4.4.4].

We will compute the action of these generators on the set Rr(Σg,b)λ,µ of isomorphism
classes of r-spin structures with parametrised boundary for given maps λ : Bin → Zr and
µ : Bout → Zr in terms of the parametrisation given in Section 2.5. We will then use these
results in Section 6 in order to prove our main result, Theorem 1.2.

Lemma 4.1. Consider a surface with a PLCW decomposition which has a cylinder inside
decomposed into a square with identified opposite edges as in Figure 13. A Dehn twist
around the edge labeled by t sends t 7→ t+ s and does not change the other edge labels.

Proof. First refine the decomposition of Figure 13 a) as in Figure 14 a). This gives an
isomorphic r-spin structure to the original one by Proposition 2.16. Pulling back the r-
spin structure along the induced action of the Dehn twists yields the r-spin surface shown
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Figure 13: Action of a Dehn twist along the edge labeled by t. The two vertical edges labelled
by s are identified.
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a) t

0 0s
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b) t+ s

s s0

p
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Figure 14: Pulling back the r-spin structure along an (inverse) Dehn twist along the edge labeled
by t: a) insert the diagonal edge labelled 0; b) carry out a Dehn-twist along the upper horizontal
edge labelled t; c) apply a deck transformation to the top right triangle to change the label of
the diagonal edge to 0.

in Figure 14 b). Now apply Part 3 of Lemma 2.11 on the upper triangle to obtain Fig-
ure 14 c). Remove the middle edge by Proposition 2.16 to get the r-spin surface described
by Figure 13 b).

Lemma 4.2. Recall the parametrisation of r-spin structures on Σg,b from (2.26) and Fig-
ure 7. Let l denote a loop in Σg,b and let Dl denote the isomorphism of r-spin surfaces
induced by a Dehn twist around l. We write

Dl (Σg,b(si, ti, uj, Rj)) = Σg,b(s
′
i, t
′
i, u
′
j, Rj) . (4.1)

Then the action of Dehn twists along the loops shown in Figure 12 is as listed in the
following table (only the parameters that change are listed):

loop effect on parameters

∂j u′j = uj −Rj

hij u′i = ui +Ri +Rj + 1 and u′j = uj +Ri +Rj + 1

ai s′i = si − ti
bi t′i = ti − si
fj u′j = uj + s1 + 1 +Rj and t′1 = t1 − s1 − 1−Rj

di t′i = ti + si+1 − si + 1 and t′i+1 = ti+1 − si+1 + si − 1
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Figure 15: The loop f2 (above, in 2 segments, between edges r2 and s1) and the loop dg−1

(below, in 4 segments, between edges tg−1, sg−1, tg and sg) on the PLCW decomposition.
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Figure 16: Calculation of the Dehn twist along the loop f2. a) The cylinder along the loop f2.
The empty dot denotes the boundary vertex, the full dot the inner vertex. The vertical edges
labeled by p are identified. b) Move the marking to the s edge (Lemma 2.11 (2)), shift the labels
on the left square by s+ 1 (Lemma 2.11 (3)), and remove the middle edge (Proposition 2.16). c)
Add an edge between two opposite corners with edge index 0. d) Move the markings and flip the
middle edge orientation. e) Apply a Dehn twist along the top horizontal edges (marked s and 0).
f) Apply a deck transformation to the top left triangle and move right marking. g) Remove the
diagonal edge, insert new vertical edge. h) Shift edge indices on left square, move left marking.

36



0 0

0 0

t t tps

0

0 −1

−1 t− p 0

−t + p− 1 −1

−
s

+
p

0

−
s

+
p

00

s + t− p

−s− t + p− 1 p− 1

−p− 1

t− p 0

−t + p− 1 −1

−
s

+
p

s + t− p

−s− t + p− 1 p− 1

−p− 1
−
s

+
p

0

t− p 0

−t + p− 1 −1

0

s + t− p

−s− t + p− 1 p− 1

−p− 1

0−s+ p

s + t− 2p− 1 s− p− 1

−t + p− 1 −1

s
−
p
−

1

2s + t− 2p− 1

−s− t + p− 1 p− 1

s− 2p− 2

s
−
p
−

1

0 0 0

s + t− 2p− 1 s− p− 1

−t + p 0

−
s

+
p

2s + t− 2p− 1

−s− t + p p− 1

s− 2p− 2

−
s

+
p

0 0 0

s− p− 1 s− p− 1

0 0

t

s− p− 1

0 −1

ts t p

s− p− 2

a)

c)

e)

g)

b)

f)

d)

Figure 17: Calculation of a Dehn twist along the loop dg−1. The left-most and right-most
vertical edges are identified in all figures. a) The cylinder along the loop dg−1. b) Move the
markings, flip the “p” edge orientation and shift the edge indices on the 3 rectangles on the left.
c) Remove the 3 inner edges and add a new edge. d) Do a Dehn twist along the dg−1 loop. e)
Shift the edge indices on the upper triangle by s− p− 1; flip the orientation of the middle edge
and then remove the middle edge; put back 3 edges. f) Move the markings, flip the first and
fourth edge orientation. g) Shift the edge indices on the 3 rectangles on the left.
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Figure 18: Part of the PLCW decomposition after a Dehn twist along the loop dg−1. We shift
the edge indices by Q := s− p− 1 on the following polygons: on the 2 triangles marked by dots;
on the rectangle with edge labels Q− 1, p, −1 and t; on the triangle below with edge labels −1,
q and 0; on the rectangle below with edge labels 0, Q, −1 and t; on the triangle below with edge
labels Q, p and t.
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Figure 19: The loop h12 (in two segments between the edges r1 and r2) in the PLCW decom-
position of Σg,b and a cylinder around it.
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Figure 20: Dehn twist along the loop h12. a) Take the cylinder from Figure 19. b) After
changing the marking one obtains a similar cylinder as in Figure 16 a). c) Do the same steps as
in Figure 16 to apply the Dehn twist. d) Change back the marking.
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Proof. • ai, bi: For the loops ai and bi the statement is a direct consequence of Lemma 4.1.
For example for a1 split the edge t1 in two by inserting a vertex, then insert an edge parallel
to s1. Then apply the lemma and remove the previously added edge and vertex.

• ∂j: For the loop ∂j the statement follows along the same lines, together with (2.24).

• fj: We prove the statement for fj in the example j = 2. Let s := s1 and p := r2. First
find the curve f2 on the polygon decomposition, insert the dotted edges parallel to the loop
f2 using Proposition 2.16 and change orientations using Lemma 2.11 (1) as in Figure 15.
We need to consider the part of the decomposition which is a cylinder glued together from
two rectangles as shown in Figure 16 a). Then proceed with the sequence of steps shown
in Figure 16. Finally apply a deck transformation by −p− s− 1 on the rectangle bounded
by the edges with edge index t1, p+s+1, u2 and p+s. The result is a decomposition as on
Figure 15 with t1 replaced by t1− p− s− 1 and u2 replaced by u2 + p+ s+ 1. Now remove
the newly added edges via Proposition 2.16 (flipping the edges labelled −1) to arrive to
the statement.

• di: We treat the case i = g − 1 as an example by applying a similar argument as before.
Let s := sg−1, p := sg, t := tg−1 and q := tg. First add vertices and dotted edges parallel to
the loop dg−1 as shown in Figure 15. We will concentrate on the cylinder cut out by these
edges, as shown in Figure 17 a). Proceed along the steps shown in Figure 17, after which
one is left with the marked PLCW decomposition shown in Figure 18. Let Q := s− p− 1
and shift edge indices by Q according to the steps in Figure 18. This amounts to

t 7→t−Q and q 7→q +Q ,

after removing the newly added edges and vertices.

• hij: We show the computation for i = 1, j = 2 as an example, for other values of i and j
the argument is the same. Add vertices and dotted edges parallel to the loop h12 as shown
in Figure 19. We then follow the steps in Figure 20. As the last step, one shifts the edge
indices by r1 + r2 + 1 = R1 + R2 + 1 by a deck transformation on the square which has
edges u1 and u2 on opposite sides.

5 r-spin TFT computing the Arf-invariant

In this section we give an example for the state-sum construction of r-spin TFTs, namely
for the two-dimensional Clifford algebra in super vector spaces, and we compute its value on
connected r-spin bordisms (Section 5.1). We then recall the definition of the Arf invariant
for r-spin surfaces and observe that the TFT obtained from the Clifford algebra computes
this invariant (Section 5.2).

5.1 r-spin TFT from a Clifford algebra

Let r ∈ Z≥0 be even and let k be a field not of characteristic 2. Let C` ∈ SVect be the
Clifford algebra with one odd generator θ, i.e. C` = k ⊕ kθ with θ2 = 1. We turn C` into
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a Frobenius algebra via

ε(1) = 2 , ε(θ) = 0 , ∆(1) =
1

2
(1⊗ 1 + θ ⊗ θ) , ∆(θ) =

1

2
(θ ⊗ 1 + 1⊗ θ) . (5.1)

Lemma 5.1. For the Frobenius algebra C` the following hold.

1. τ = µ ◦∆ ◦ η = η, hence C` has invertible window element.

2. The Nakayama automorphism is given by N(θm) = (−1)mθm.

3. For λ ∈ Zr, Pλ(θm) = 1
2

[
1 + (−1)λ−m

]
θm, hence Zλ = kθλ.

4. The morphism ϕs,t from (3.57) is given by ϕs,t = 1
2
(−1)(s+1)(t+1) idC`.

Proof. 1. τ(1) = µ ◦∆ ◦ η(1) = µ
(

1
2
(θn ⊗ θ−n)

)
= 1 = η(1). Its inverse is η.

2. N(1) = 1 in any Frobenius algebra. We calculate N(θ) in steps:

θ 7→ θ ⊗ (1⊗ 1 + θ ⊗ θ)/2 7→ (1⊗ θ ⊗ 1− θ ⊗ θ ⊗ θ)/2 7→ −θ .

3. We calculate Pλ(θ
m) in steps according to (3.4):

θm 7→ 1

2
(θm ⊗ 1 + θm−1 ⊗ θ) 7→ 1

2
(θm ⊗ 1 + (−1)1−λθm−1 ⊗ θ)

7→ 1

2
(1⊗ θm + (−1)m−λθ ⊗ θm−1) 7→ 1

2
θm(1 + (−1)m−λ) .

We see that if λ and m have the same parity this is the identity, otherwise this is
zero, i.e. Pλ is a projection onto k.θλ.

4. We calculate ϕs,t(θ
m) in steps according to (3.57):

θm 7→1

2

1∑
n=0

θm−n ⊗ θn 7→ 1

4

1∑
n,p=0

θm−n ⊗ θn−p ⊗ θp

7→1

4

1∑
n,p=0

(−1)(s+1)(n−p)+(t+1)pθm−n ⊗ θn−p ⊗ θp

7→1

4

1∑
n,p=0

(−1)(s+1)(n−p)+(t+1)p+(n−p)pθm−n ⊗ θp ⊗ θn−p

7→1

4
θm

1∑
n,p=0

(−1)(s+1)(n−p)+(t+1)p+(n−p)p

=
1

4
θm

1∑
n,p=0

(−1)(s+1+p)(t+1+n−p)−(s+1)(t+1) =
1

2
θm(−1)(s+1)(t+1) ,

where at the last step we execute first the summation over n for a fixed p and notice
that we either get 0 or 2.
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Let ZC` denote the TFT from Theorem 3.8 given by the Frobenius algebra C` and recall
from Section 2.5 the r-spin structure with parametrised boundary Σg,b(si, ti, uj, λj − 1)
with only ingoing boundary components and where g + b ≥ 1. By calculating (3.58) in
Proposition 3.11 and using (2.23) we get the following proposition.

Proposition 5.2. The value of the TFT ZC` is

ZC`(Σg,b(si, ti, uj, λj − 1))(θλ1 ⊗ · · · ⊗ θλb) = 21−g(−1)
∑g
n=1(sn+1)(tn+1)+

∑b−1
j=1(uj−ub)λj . (5.2)

The following corollary will be used to distinguish 2 MCG orbits on Rr(Σg,b)λ,µ for
g ≥ 2 and r even.

Corollary 5.3. Assume that g ≥ 1 or that b ≥ 1 and at least one of the λj’s is odd
(by (2.23) in this case b ≥ 2 and at least two λj’s are odd). Then the following map is
surjective:

Rr(Σg,b)λ → {+1,−1}
[Σg,b(si, ti, uj, λj − 1)] 7→ 2g−1 · ZC`(Σg,b(si, ti, uj, λj − 1))(θλ1 ⊗ · · · ⊗ θλb) (5.3)

Remark 5.4. 1. One can show, using a similar argument as in [Nov, Sec. 6.5], that for
any choice of Frobenius algebra A ∈ Vect with invertible window element and with
N r = idA the TFT ZA of Section 3.3 is independent of the r-spin structure. The idea
is that if there exists a symmetric Frobenius algebra structure on an algebra A, then
ZA is independent of the r-spin structure for every other Frobenius algebra structure
on A as well.

2. Let r be a positive integer and let us consider the category of Zr-graded k-vector
spaces VectZr . By using the correspondence between braided monoidal structures on
VectZr and quadratic forms on Zr [JS] (see [FRS, App. A] for a review) one can check
that for odd r there is only one symmetric monoidal structure on VectZr . For even
r there are two: the trivial one inherited from Vect and the non-trivial one given by
the super grading.

3. One may wonder whether taking VectZr with some choice of symmetric monoidal
structure would yield more examples of r-spin TFTs than what one can find with
target Vect or SVect. Part 2 shows that this is not so: All symmetric monoidal
structures on VectZr are inherited from Vect or SVect (and only from the former for
r odd). Thus all algebras A ∈ VectZr as in Theorem 3.8 are also algebras in Vect,
respectively SVect, with the same properties, and produce the same results in the
state-sum construction.

5.2 The r-spin Arf-invariant

Let Σ be a compact r-spin surface with parametrised boundary with maps λ : Bin → Zr
and µ : Bout → Zr. By a curve in Σ we mean a smooth immersion γ : [0, 1] → Σ (i.e. γ
has nowhere vanishing derivative), and which is either closed, or which starts and ends on
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Figure 21: Two arcs p, q ∈ A(γ) of a curve γ on a face f . Here fp = fq = f , ŝep = −sep − 1,

ŝeq = seq , δ̂
p
fp

= +1 and δ̂qfq = 0.

the boundary of Σ. In the former case we require in addition that the tangent vectors at
the start and end point agree: d

dt
γ(0) = d

dt
γ(1). In the latter case we require that the start

and end points are the images of 1 ∈ S1 ⊂ C under the boundary parametrisation maps
and that the tangent vector of the curve is the same as the tangent vector of the boundary
curve. Two curves γ0 and γ1 with γ0(0) = γ1(0) and γ0(1) = γ1(1) are homotopic if there
is a homotopy (s, t) 7→ γs(t) between them, such that for each s, γs is a curve in the above
sense. In particular, since d

dt
γ must remain nonzero everywhere along the homotopy, one

cannot “pull straight” a loop in the curve.
Pick a lift γF : [0, 1]→ FGLΣ of γ to the oriented frame bundle by taking the tangent

vector of γ (which is non-zero since γ is an immersion) and adding another non-zero and
non-parallel vector such that the orientation induced by them agrees with the orientation
of the surface. Such a lift of a curve in Σ to FGLΣ is unique up to homotopy, see e.g. [Nov,
p. 26]. Also, if two curves in Σ are homotopic, then their lifts to FGLΣ are homotopic as
well.

Consider a disc D around 1 in C× with r-spin structure Dκ given by the restriction
of Cκ for κ ∈ Zr as in Example 2.3. As on a contractible surface, all r-spin structures
are isomorphic (see e.g. [Nov, Lem. 3.10]), there is an isomorphism of r-spin structures
D0 → Dκ. In fact, there are exactly r such isomorphisms, and we pick the one which acts
as the identity on the fibre over 1 (by Example 2.3, the fibre and projection over 1 ∈ C×
agree for all Cκ). This construction will be needed to assign a holonomy to curves between
different boundary components.

Recall that PG̃LΣ is a principal Zr bundle over FGLΣ. Pick a lift γ̃ : [0, 1] → PG̃LΣ of

γF to the r-spin bundle. Since the fibers of PG̃LΣ
p−→ FGLΣ are discrete, this lift is unique

after fixing it at one point and homotopic curves in FGLΣ lift to homotopic curves in PG̃LΣ.
If γ is a closed curve let ζ(γ) ∈ Zr denote the holonomy of γ̃ at γ(0) = γ(1). If γ is not
closed, use the isomorphism D0 → Dκ from above to identify the fibers Zr over the start-
and end-point of γF , and let again ζ(γ) ∈ Zr denote the resulting holonomy of γ̃.

We now explain how to compute these holonomies in terms of the combinatorial de-
scription of r-spin structures. Take a decorated PLCW decomposition of Σ with edge index
assignment s and consider the r-spin structure Σ(s, λ, µ) given by Definition 2.10. We may
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assume the PLCW decomposition to be fine enough so that its edges split γ into a set of
arcs A(γ) as in Figure 21. Then for every a ∈ A(γ) there is a face fa ∈ Σ2 containing a
and an edge ea in the boundary of fa where the arc a leaves the face fa (see Figure 21).
Let us assume that ea is not a boundary edge. For sea the edge index of the edge ea let
ŝaea = sea if the edge ea and a cross positively, and ŝaea = −sea − 1 otherwise (see again

Figure 21 for conventions). Let δ̂afa = +1 if the clockwise vertex of the marked edge of the

face fa is on the right side of a (before glueing the edges) and δ̂afa = 0 otherwise. If γ is not
a closed curve, let estart (resp. eend) denote the boundary edge where γ starts (resp. ends),
and let sestart (resp. seend

) be its edge index. Recall that at the starting (ending) point of
γ the tangent vector of γ is parallel to the boundary edge. Set ŝestart := −sestart − 1 if the
edge estart and the tangent vector point in the same direction and ŝestart := sestart otherwise.
Set ŝeend

:= seend
if the edge eend and the tangent vector point in the same direction and

ŝeend
:= −seend

− 1 otherwise.
The proof of the following lemma relies on the relation to triangulations introduced in

Appendix A and is given in Appendix A.6.

Lemma 5.5. Let γ be a curve in Σ. Then:

1. If γ bounds a disc D embedded in Σ, ζ(γ) = 1 if γ is oriented counter-clockwise
around the boundary of D and ζ(γ) = −1 otherwise.

2. If γ′ is a curve homotopic to γ then ζ(γ′) = ζ(γ);

3. We have

ζ(γ) =
∑
a∈A(γ)

(ŝaea + δ̂afa) +

{
0 ; γ is closed ,

ŝestart + 1 ; γ is not closed .
(5.4)

Note that in Part 3, in case the curve goes from boundary to boundary, the edge index
of the boundary edge where the endpoint of the curve lies is included in the sum over A(γ).

Let g+b ≥ 1 and consider a compact connected surface Σg,b of genus g with b boundary
components with parametrised ingoing boundary and fix a set of curves in the surface Σg,b

as shown in Figure 22 a). Let us consider a marked PLCW decomposition of Σg,b as in
Section 2.5 and recall the corresponding r-spin structure Σg,b(si, ti, uj, λj − 1) from (2.26).

Corollary 5.6. The holonomies of the curves in Figure 22 are

ζ(ai) = si, ζ(bi) = ti, ζ(cj) = uj − ub + 1, ζ(∂j) = 1− λj, (5.5)

for i = 1, . . . , g and j = 1, . . . , b− 1.

Proof. We only show the calculation of the latter two holonomies. There is only one face,
let us denote it by f . The tangent vectors of the edge ub and the loop cj point in the same
direction and the loop starts at this edge (ub = estart), therefore ŝfub = ŝestart = −ub − 1;
the tangent vectors of the edge uj and the loop cj point in the same direction and the loop
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Figure 22: a) A set of curves in Σg,b: { ai, bi, cj | i = 1, . . . , g; j = 1, . . . , b− 1 }. b) These curves
in the PLCW decomposition of Σg,b (cf. Figure 7). The bigger arrows on the edges show the
marked edge: r1 for b > 0 and s1 for b = 0.

ends at this edge (uj = eend), therefore ŝfuj = ŝeend
= uj; the clockwise vertex determined

by the marked edge of the face f is on the right side of the curve cj so δ̂
cj
f = 1. Taking the

sum of all these we get ζ(cj) = uj + 1 − ub − 1 + 1 = uj − ub + 1. The edge rj and the
loop ∂j cross negatively and the clockwise vertex is on the right side of the loop, so we get
ζ(∂j) = −rj − 1 + 1 = 1− λj.

Definition 5.7 ([Ran, Sec. 2.4] and [GG, Sec. 5]). Let r ≥ 0 be even. The r-spin Arf-
invariant of the r-spin surface Σg,b is

Arf(Σg,b) =

g∑
i=1

(ζ(ai) + 1) · (ζ(bi) + 1) +
b−1∑
j=1

(ζ(cj) + 1) · (ζ(∂j) + 1) (mod 2) . (5.6)

Notice that for r even, r-spin structures naturally factorise through 2-spin structures.
Therefore it makes sense to talk about the Arf-invariant of them, which was introduced for
2-spin structures [Joh]. Arf(Σg,b) is invariant under the action of the mapping class group
of Σg,b, which has been proven in [Ran, Prop. 2.8] and [GG, Lem. 7]. We provide a different
proof of this result in the corollary to the following theorem.

Theorem 5.8. The TFT ZC` computes the r-spin Arf-invariant:

ZC`(Σg,b(si, ti, uj, λj − 1))(θλ1 ⊗ · · · ⊗ θλb) = 21−g · (−1)Arf(Σg,b(si,ti,uj ,λj−1)) . (5.7)

Proof. This is immediate from Proposition 5.2, Corollary 5.6 and Definition 5.7.
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Since the morphisms in Bordr2 are diffeomorphism classes of r-spin bordisms (rel bound-
ary), we get (cf. Remark 1.3 (2)):

Corollary 5.9. The r-spin Arf invariant is constant on mapping class group orbits.

6 Counting mapping class group orbits

In this section we present the proof of Part 3 of Theorem 1.2. As we advertised it in
Part 3 of Remark 1.3, we give an explicit expression for the number of mapping class
group orbits of r-spin structures on Σ0,b, i.e. |O0(r)|, depending on the value of r and the
Ri’s. Our proof follows the same ideas used in [Ran, GG] to count orbits. Specifically,
in [Ran, Thm. 2.9] the number of orbits is given for r = 2 in case g = 1, b > 0 and for
general r > 0 in case g ≥ 2, b > 0 and in [GG, Prop. 5] it is given for general r > 0,
g ≥ 0 and b = 0. Indeed, the authors of [Ran, GG] also calculate how the lifts of Dehn
twists act on the isomorphism classes of r-spin structures in terms of a parametrisation
and use these operations to reduce the parametrisation to a simpler form. Our proof
uses the combinatorial model we introduced in Section 2.3, which is is different from the
parametrisation used in [Ran, GG], and we add the missing cases g = 0, b > 0 and g = 1,
b > 0 for arbitrary r ≥ 0.

Recall that a non-negative integer d ∈ Z≥0 is a divisor of r if there exists an integer n
such that d ·n = r. In particular, with this definition every non-negative integer is a divisor
of 0. As before we denote by gcd(a, b) ∈ Z≥0 the non-negative integer that generates the
ideal generated by a and b in Z.

The g = 0 case

For g = 0 the MCG is generated by Dehn twists along loops ∂j and hij shown in Figure 12.
The cases b = 0 and b = 1 have been treated in Lemma 2.18 and in Corollary 2.20, so let
us assume b ≥ 2.

• Recall from Proposition 2.19 that the set of isomorphism classes of r-spin structures
is given by

∏b
i=1 Zr/〈G〉, where G = (1, 1, . . . , 1).

• By applying Lemma 4.2 for the loop ∂j, Σ0,b(uj, Rj) and Σ0,b(u
′
j, Rj) are in the same

orbit if

uj ≡ u′j +Rj (mod r) . (6.1)

• By applying Lemma 4.2 for the loop hij, Σ0,b(uj, Rj) and Σ0,b(u
′
j, Rj) are in the same

orbit if

uj ≡ u′j +Ri +Rj + 1 (mod r) ,

ui ≡ u′i +Ri +Rj + 1 (mod r) . (6.2)
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Let n ∈ Z≥0 and let R̂i, Ĥij ∈
∏b

i=1 Zn for i, j = 1, . . . , b, i 6= j have components

(R̂i)k = δi,kRi, (Ĥij)i = (Ĥij)j = Ri +Rj + 1 and (Ĥij)k = 0 for k 6= i, j. Let us define the
quotient group

O0(n) := (Zn)b/〈R̂i, Ĥij, G〉 . (6.3)

By construction, the set O0(r) is in bijection with orbits under the action of the MCG
on isomorphism classes of r-spin structures. This proves the g = 0 case of Part 3 of
Theorem 1.2. Notice that in case b = 2, O0(r) can be computed explicitly by hand:

O0(r) = Zgcd(R1,r) × Zgcd(R2,r)/〈G〉 ' Zgcd(R1,r) , (6.4)

since by (2.23) R1 + R2 ≡ 0 (mod r). We continue with computing the order of the set
O0(r).

Explicit count of MCG orbits in the g = 0 case

Proposition 6.1. The number of orbits |O0(r)| of the mapping class group on the set of
isomorphism classes of r-spin structures on Σ0,b with b ≥ 2 and with boundary parameters
Rj, j = 1, . . . , b, is:

• r = 0:

∗ |O0(0)| =∞ if b = 2 and R1 = R2 = 0,

∗ |O0(0)| = gcd (2(Rj + 1)(Rk + 1), Rk(Rk + 1)|j, k 6= i, j 6= k) if b ≥ 3 andRi = 0
for an i ∈ {1, . . . , b},
∗ |O0(0)| = |O0(R1 ·R2 · · ·Rb)| else.

• r > 0: Let r = pα1
1 . . . pαLL , αi > 0, be the prime decomposition of r. Then |O0(r)| =∏L

i=1 |O0(pαii )|, with |O0(pαii )| as computed in Lemma 6.3.

In the following we give the proof of this proposition.1 Let us first suppose that r > 0
and let r = pα1

1 . . . pαLL be the prime factorisation of r. The following lemma, whose proof
is elementary, allows one to consider each pαii separately.

Lemma 6.2. Let ϕ : (Zn)b → (Zpα1
1

)b×· · ·×(ZpαLL )b be the isomorphism of abelian groups

provided by the Chinese Remainder Theorem. Let U = 〈u1, . . . , uN〉 be the subgroup of
(Zn)b generated by N elements um ∈ (Zn)b, and let V = ϕ(U) be its image. Then V

is generated by the LN elements u
(l)
m , l = 1, . . . , L, m = 1, . . . , N , whose components in

(Zpαii )b are (
u(l)
m

)
i

=

{
um mod pαii i = l ,

0 i 6= l .
(6.5)

1 We are indebted to Ehud Meir for showing us how to obtain an explicit expression for the order of
O0(r) by first passing to the prime factorisation and then analysing each prime separately.
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This lemma allows us to write O0(r) =
∏L

i=1O0(pαii ). The key observation is the next
lemma.

Lemma 6.3. Let α ∈ Z>0 and p a prime number. Then the order of O0(pα) is given as
follows:

p #{Rk divisible by p} |O0(pα)|
2 0 or odd 1

2 gcd(2α, {Rk s.t. 2|Rk}, {Rk + 1 s.t. 2 - Rk})
> 2 and even 2

> 2 2 gcd(pα, {Rk s.t. p|Rk}, {Rk + 1 s.t. p - Rk})
6= 2 1

Proof. We start by rewriting

O0(pα) =
(∏b

i=1 Zgcd(Ri,pα)

)
/〈Hij, G〉 =

(∏b
i=1 Zpβi

)
/〈Hij, G〉 , (6.6)

where we defined βi ∈ {0, 1, . . . , α} via gcd(Ri, p
α) = pβi . Let Hij ∈

∏b
i=1 Zpβi for i, j =

1, . . . , b, i 6= j have components (Hij)i = Rj+1, (Hij)j = Ri+1 and (Hij)k = 0 for k 6= i, j.

That is, Ĥij = Hij in
∏b

i=1 Zpβi .
Note that Ri = Sip

βi for some integer Si (which may still be divisible by p). Now if
some Ri is not divisible by p, then βi = 0 and so this factor can be omitted from the above
product. Let

I ⊂ {1, 2, . . . , b} (6.7)

consist of elements i for which βi > 0. The generators Hij now split into two sets, namely

Hij with i, j ∈ I, i 6= j, and H
(k)
i , with i ∈ I, k /∈ I, whose only non-zero component is the

i’th one, which is equal to Rk + 1. We arrive at

O0(pα) =
(∏

i∈I Zpβi
)
/〈Hij, H

(k)
i , G〉 . (6.8)

Pick a pair i, j ∈ I with i 6= j and such that βi ≤ βj. Then in A := Zpβi × Zpβj we

have Hij = (1, Ri + 1). Since Ri is divisible by p, Ri + 1 is not, and hence is invertible
modulo pβj . Let q ∈ Z be such that q(Ri+1) ≡ 1 mod pβj . Since βi ≤ βj this implies also
that q ≡ 1 mod pβi (as Ri ≡ 0 mod pβi). Altogether, in A we have q(1, Ri + 1) = (1, 1).
Conversely, (Ri + 1)(1, 1) = (1, Ri + 1) in A, and so we can replace the generator Hij by
H̄ij ∈

∏
k∈I Zpβk which has entries 0 everywhere except for in positions i, j ∈ I, where it

has entry 1. The group O0(pα) can thus be written as

O0(pα) =
(∏

i∈I Zpβi
)
/〈H̄ij, H

(k)
i , G〉 =

(∏
i∈I Zpβ′i

)
/〈H̄ij, G〉 , (6.9)

where now, for i ∈ I,

pβ
′
i = gcd (pα, Ri, {Rk + 1}k/∈I) . (6.10)

At this point we distinguish cases by the number of elements in I:
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• |I| = 0, 1: In this case G already generates the group and so O0(pa) = {0}.

• |I| = 2: Then I = {i, j} for some i 6= j and H̄ij = G. Thus O0(pa) ∼= Zγ with
γ = gcd (pα, {Rk}k∈I , {Rk + 1}k/∈I).

• |I| ≥ 3: Then H̄12 + H̄13 − H̄23 has 2 at the first component and 0 everywhere
else. This means that one can take the first component (mod 2), and by a similar
argument also for all the other components, that is

O0(pα) = {0} if p 6= 2 . (6.11)

If p = 2, first note that if |I| is odd, then using G one can generate a 1 in any one
component, with zeros in all other components, so furthermore

O0(2α) = {0} if |I| odd . (6.12)

If |I| is even, by the above argument we can take every entry (mod 2), and it is then
easy to see that there are exactly two orbits:

O0(2α) ∼= Z2 if |I| even . (6.13)

Next we turn to the case r = 0.

Lemma 6.4. If Ri 6= 0 for every i = 1, . . . , b then O0(0) = O0(R1 · R2 · · ·Rb). If Ri = 0
for some i and b = 2 then the order of O0(0) is infinite. If Ri = 0 for some i and b ≥ 3
then the order of O0(0) is gcd (2(Rj + 1)(Rk + 1), Rk(Rk + 1)|j, k 6= i, j 6= k).

Proof. Let us assume that Ri 6= 0 for every i = 1, . . . , b. Then observe that

O0(0) =
b∏
i=1

ZRi/〈Hij, G〉 = O0(R1 ·R2 · · ·Rb) , (6.14)

by gcd(R1 ·R2 · · ·Rb, Ri) = Ri as in (6.6).
Assume that there is an i0 such that Ri0 = 0. If b = 2 then using (2.23) we see that

R1 = R2 = 0. Hence R̂1 = R̂2 = 0, Ĥ12 = G and so (6.3) reduces to O0(0) = Z2/〈G〉 ∼= Z.
Suppose now that b ≥ 3. For simplicity we take i0 = 1. Note that the element∑
j>1H1j − G has −1 +

∑
j>1(Rj + 1) = −2 +

∑b
j=1(Rj + 1) as the first component

and 0 everywhere else. But by (2.23) we have that
∑b

i=1(Ri + 1) = 2, so that we get
G =

∑
j>1H1j, i.e. the generator G is redundant. Furthermore, the following elements are

in the subgroup 〈Hij〉 of Z×
∏b

j=2 ZRj , for i, j > 1, i 6= j:

RjH1j = (Rj(Rj + 1), 0, . . . , 0) ,

(Ri + 1)H1j + (Rj + 1)H1i −Hij = (2(Ri + 1)(Rj + 1), 0, . . . , 0) . (6.15)
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Write g = gcd(2(Ri + 1)(Rj + 1), Rj(Rj + 1)|i, j > 1, i 6= j) and consider the map

φ : O0(0) =
b∏
i=1

ZRi/〈Hij〉 −→ Zg , (a1, . . . , ab) 7→ a1 −
b∑

j=2

(Rj + 1)aj . (6.16)

Note that this map is indeed well-defined on the quotient and is a surjection. The map
ψ : Zg →

∏b
i=1 ZRi / 〈Hij〉, m 7→ (m, 0, . . . , 0) is equally well defined thanks to the elements

in the subgroup listed in (6.15). By construction, φ◦ψ = id. We now show that ψ ◦φ = id.
The composition maps

(a1, . . . , ab) 7→ (

[
a1 −

b∑
j=2

(Rj + 1)aj

]
, 0, . . . , 0) . (6.17)

By adding
∑b

j=2 ajH1,j we get back (a1, . . . , ab). Thus |O0(0)| = g.

This completes the proof of Proposition 6.1, i.e. the explicit count of MCG orbits in
the g = 0 case mentioned in Part 3 of Remark 1.3.

The g = 1 case

By Lemma 4.2, the set of MCG orbits is in bijection with

O1(r) :=
(
Z2
r ×

∏b
i=1 Zgcd(Ri,r)

)
/T , (6.18)

the set of orbits under the action a group T generated by the following affine-linear trans-
formations. Write an element of the above product as

~x = (s, t;u1, . . . , ub) . (6.19)

Then T is generated by the transformations (recall that di in Lemma 4.2 only appears for
g > 1)

TG(~x) = (s, t;u1 + 1, . . . , un + 1) ,

Ta(~x) = (s− t, t;u1, . . . , ub) ,

Tb(~x) = (s, t− s;u1, . . . , ub) ,

Tfj(~x) = (s, t− s− 1−Rj;u1, . . . , uj + s+ 1, . . . , ub) ; 1 ≤ j ≤ b ,

Thij(~x) = (s, t;u1, . . . , ui +Rj + 1, . . . , uj +Ri + 1, . . . , ub) ; 1 ≤ i < j ≤ b . (6.20)

It will be convenient to replace Tfj by Tj := T−1
b Tfj which acts as

Tj(~x) = (s, t− (Rj + 1);u1, . . . , uj + s+ 1, . . . , ub) . (6.21)

Another convenient combination of generators is

TS := TaT
−1
b Ta(~x) = (−t, s;u1, . . . , ub) . (6.22)

Note that Ta and Tb give an action of SL(2,Z) on Z2
r. The orbits of this action are

parametrised by divisors of r:

49



Lemma 6.5. Let Dr denote the set of divisors of r. The map Dr → Z2
r/SL(2,Z), d 7→

[(0, d)], is a bijection.

Proof. Surjectivity: Let (s, t) ∈ Z2 be arbitrary and let g := gcd(s, t) and d := gcd(r, g),
in particular d ∈ Dr. We can find u, v ∈ Z such that us + vt = g and x, y ∈ Z such that
xr + yg = d. Consider the elements

A =

(
t/g −s/g
u v

)
and B =

(
g/d −r/d
x y

)
(6.23)

in SL(2,Z). They satisfy A[(s, t)] = [(0, g)] = [(r, g)] and B[(r, g)] = [(0, d)] in Z2
r. So we

have that BA[(s, t)] = [(0, d)].

Injectivity: Let d, d′ ∈ Dr and assume that (0, d) and (0, d′) lie on the same SL(2,Z)-orbit.
That is, there is an A ∈ SL(2,Z) such that A(0, d) = (0, d′) holds in Z2

r. It follows that
there is an integer a ∈ Z such that ad ≡ d′ (mod r). Conversely, there is an integer a′ such
that a′d′ ≡ d (mod r). These relations, together with the fact that d and d′ are divisors of
r, show that the ideal 〈r, d, d′〉 in Z generated by r, d, d′ is equal to 〈d〉 and equal to 〈d′〉.
But then d = ±d′, and since both are non-negative, we have d = d′.

To analyse the set of orbits O1(r) we distinguish three cases by the number of boundary
components.

• b = 0: In this case T is generated by Ta and Tb only and we can directly use Lemma 6.5
to conclude that |O1(r)| = |Dr|.
• b = 1: In this case, TG(s, t;u1) = (s, t;u1 + 1), which removes the factor Zgcd(R1,r) in
(6.18). The remaining non-trivial generators acting now on Z2

r are Ta, Tb and T1(s, t) =
(s, t − (R1 + 1)). But by (2.23) we have R1 + 1 = 0, and so T1 also acts trivially. This
reduces us to the b = 0 case and we again have |O1(r)| = |Dr|.
• b ≥ 2: The generators TG and Thij commute with all generators. Let U ⊂ T be the
subgroup generated by TG and Thij and write

A :=
(
Z2
r ×

∏b
i=1 Zgcd(Ri,r)

)
/U (6.24)

Note that the quotient by U amounts to dividing out a subgroup, and so A is still an
abelian group. In the following, we will consider the action of T on A. By construction,
we have A/T = O1(r).

For all i 6= j we have

Xij(~x) := TRi+1
j T

Rj+1
i (~x) = (s, t− 2(Ri + 1)(Rj + 1);u′1, . . . , u

′
b) , (6.25)

where u′i = ui + (s+ 1)(Rj + 1), u′j = uj + (s+ 1)(Ri + 1) and u′k = uk for k 6= i, j. We can

set u′i and u′j back to ui and to uj respectively by acting with T−s−1
hij

, and so in A we just
have that

Xij(~x) = (s, t− 2(Ri + 1)(Rj + 1);u1, . . . , ub) . (6.26)
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Condition (2.23) now reads
∑b

i=1(Ri + 1) = 0. Using this, we compute the iterated com-
position

b∏
i=1,i 6=j

Xij(~x) = (s, t+ 2(Rj + 1)(Rj + 1);u1, . . . , ub) . (6.27)

The Rj’s power of Tj acts as T
Rj
j (~x) = (s, t−Rj(Rj + 1);u1, . . . , ub), so that altogether we

find elements Yj ∈ T which act on A as

Yj(~x) = (s, t− 2(Rj + 1);u1, . . . , ub) . (6.28)

The cases Rj even and Rj odd behave differently:

• Rj even: the action of T
Rj
j can be obtained as a power of Yj,

• Rj odd: an appropriate combination of T
Rj
j and Yj maps ~x to (s, t+Rj+1;u1, . . . , ub).

We define

Pi :=

{
2(Ri + 1) ;Ri even

Ri + 1 ;Ri odd
(6.29)

and g := gcd(r, P1, . . . , Pb). With this notation, T contains an element that maps (s, t; ~u)
to (s, t+ Pj; ~u), j = 1, . . . , b. By conjugating with TS from (6.22) one furthermore obtains
a group element that maps (s, t; ~u) to (s+Pj, t; ~u). We are therefore reduced to considering
the T -orbits in

A′ :=
(
Z2
g ×

∏b
i=1 Zgcd(Ri,r)

)
/U . (6.30)

As before, A′ is an abelian group, and by construction we have A′/T = O1(r).
The above expression for g can be simplified. Indeed, the number of times a prime

p ≥ 3 divides Pi is equal to the number of times it divides Ri + 1, as the presence of a
factor of 2 makes no difference. For the prime p = 2 note that 2 divides Pi exactly once if
Ri is even, and at least once if Ri is odd. One easily checks that with

g′ = gcd(r, R1 + 1, . . . , Rb + 1) (6.31)

we have

g =

{
2g′ ; r even and at least one Ri even,

g′ ; else.
(6.32)

At this point it is easy to give a lower bound on the number of orbits: Consider the
projection A′ → Z2

g′ , (s, t, ~u) 7→ (s, t), with g′ as in (6.31). On Z2
g′ the generators TG, Tj,

Thij all act trivially, so that we obtain a surjection

A′/T −→ Z2
g′/SL(2,Z) . (6.33)

By Lemma 6.5, the right hand side consists of Dg′ many orbits. Altogether,

|O1(r)| ≥ |Dg′ | . (6.34)
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We now give an upper bound for the number of orbits. From Lemma 6.5 we know that
each orbit contains a representative

~y := (0, d;u1, . . . , ub) , (6.35)

where d now is a divisor of g. Since irrespective of the parity of Rj, adding 2(Rj + 1) to
the second entry of A′ acts trivially, we have T 2

j (~y) = (0, d;u1, . . . , uj + 2, . . . , ub).
We now go through various cases depending on the parity of r and the Rj:

• r odd: In this case gcd(r, Rj) is odd for all j, and the above shift by 2 can be
replaced by a shift by 1, so that each orbit in A′/T contains an element (0, d; 0, . . . , 0).
Furthermore, by (6.32) we have g = g′ and so the lower bound (6.34) is strict.

• r even: Define J ⊂ {1, 2, . . . , b} as

J = { j |Rj even} . (6.36)

Suppose that j /∈ J , i.e. that Rj is odd. Then adding Rj + 1 acts trivially on the
second component in A′, and so Tj(~y) = (0, d;u1, . . . , uj + 1, . . . , ub). In this way one
can set all entries uj of ~u to zero for which j 6= J . Depending on the number of even
Rj’s, we see different behaviour:

. |J | = 0: All Rj are odd and hence g = g′ and each orbit contains a representative
(0, d; 0, . . . , 0). Thus the lower bound (6.34) is strict.

. |J | odd: This case cannot occur as
∑b

j=1(Rj + 1) = 0 by (2.23). Indeed, taking
this mod 2 and using that Rj+1 is even for j /∈ J shows that 0 ≡

∑
j∈J(Rj+1) ≡

|J | (mod 2).

. |J | ≥ 2 even: We already know that every entry of ~u can be reduced mod 2. Let
i, j ∈ J with i 6= j. Applying the generator Thij and reducing mod 2 shows that
we can find an element of U that maps ~y to (0, d;u1, . . . , ui+1, . . . , uj+1, . . . , ud).
Without loss of generality let us assume that 1 ∈ J . Using the above shifts, and
the mod 2 reduction we have anyway, we can transform (0, d; ~u) to one of

(0, d; 0, 0, . . . , 0) or (0, d; 1, 0, . . . , 0) . (6.37)

Furthermore, acting with T1 shows that, for ε ∈ {0, 1},

(0, d; ε, 0, . . . , 0) and (0, d+ (R1 + 1); ε+ 1 (mod 2), 0, . . . , 0) (6.38)

lie on the same T -orbit.

By definition, d is a divisor of g = 2g′. But using (6.38) on a given orbit we
can always find a representative of the form (6.37) where d is actually a divisor
of g′. Indeed, in the present case g′ is odd, and so if d divides g but not g′, it
must be even, and d+R1 + 1 is odd. As in the proof of Lemma 6.5 we can use
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the SL(2,Z) action to replace d+R1 + 1 by gcd(0, d+R1 + 1, 2g′) which is odd
and hence a divisor of g′.

From the surjection (6.33) we know that different divisors d of g′ lie on different
orbits of T .

It remains to show that for each d ∈ Dg′ , the two elements in (6.37) lie on distinct
orbits. We can assume without loss of generality that all boundary components
are ingoing by changing the corresponding Rj to −Rj, since by this operation
we do not change the parity. With this assumption we use Proposition 5.2 for
Σ1,b(0, d, ε, 0, . . . , 0, R1, . . . , Rb). One computes the RHS of (5.2) to be

(−1)d+1+ε·(R1+1) . (6.39)

Since R1 + 1 is odd, different values of ε produce different signs.

Altogether, we have shown that in the present case, the number of orbits is

|O1(r)| = 2|Dg′| . (6.40)

This proves the g = 1 case of Part 3 of Theorem 1.2.

The g ≥ 2 case

For g ≥ 2 one can set si = 0 for every i = 1, . . . , g as before and by using Lemma 4.2 for
the loops ∂j and fj one can set uj = 0 for every j = 1, . . . , b. Then using the lemma for
the loops di one can set ti = 0 for i = 2, . . . , g. Let us focus on (s1, t1, s2, t2) and apply the
lemma for the following loops:

(0, t, 0, 0)
loop d1−−−−→ (0, t− 1, 0,+1)

loops a2, b2−−−−−−→ (0, t− 1, 0,−1)
loop d1−−−−→ (0, t− 2, 0, 0).

This shows that there are at most 2 orbits for r even and 1 orbit for r odd. Again, as in
the g = 1 case we assume that all boundary components are ingoing. By Corollary 5.3
there are at least 2 orbits for r even.

This completes the proof of the g ≥ 2 case of Part 3 of Theorem 1.2 and thereby the
proof of the entire theorem.

A From triangulations to PLCW decompositions

By a triangulation of a surface we mean a smooth simplicial complex for the surface such
that each boundary component consists of 3 edges and 3 vertices. In [Nov] a combinatorial
description of r-spin surfaces was given using triangulations. The purpose of this appendix
is to show how to obtain the combinatorial description of r-spin surfaces using PLCW
decomposition of Section 2 from triangulations.
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Figure 23: The 3 edges and 3 vertices of a boundary component together with the additional
marking of one edge. The curly arrow shows the orientation of the boundary component and the
empty vertex shows the ending vertex of the additionally marked edge.

A.1 r-spin surfaces with triangulations

Let us summarise the results of [Nov]. More precisely let us look at the differences between
that formalism and the formalism developed in Section 2.

Let Σ be a marked triangulation of a surface with parametrised boundary, i.e. every
edge has an orientation and an edge index and every face has a marked edge. Let us assume
that all boundary components are ingoing and recall the notions of Section 2.3. Put an
additional marking on one of the edges of each boundary component b. The induced
orientation of the boundary component gives a starting and and ending vertex of this
additionally marked edge, see Figure 23. For a boundary vertex u let αu := +1 if it is an
ending vertex for the additionally marked edge and αu := 0 otherwise. We furthermore
assume that the orientation of boundary edges agrees with the induced orientation of the
boundary components. The marking is called admissible for a given map λ̃ : π0(∂Σ)→ Zr
b 7→ λ̃b, if the following hold for every inner vertex v and every boundary vertex u on a
boundary component b.∑

e∈∂−1(v)

ŝe ≡ Dv −Nv + 1 (mod r) , (A.1)

∑
e∈∂−1(u)

ŝe ≡ Du −Nu + 1 + αu · (1− λ̃b) (mod r) . (A.2)

Here, Dv/u, Nv/u and ŝe are defined as in Section 2.3. According to the construction in
[Nov, Sec. 4.8] we proceed as follows:

• Define an r-spin structure on Σ minus edges and vertices by giving the interior of the
faces the r-spin structure C0.

• Define transition functions for every pair of faces fixed by the edge indices to extend
the above to Σ minus vertices.

• There is a unique r-spin structure Σ(s) extending to the vertices if and only if the
edge index assignment is admissible. Extend the r-spin structure to the vertices.
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• The r-spin boundary parametrisation map is the inclusion of the r-spin collars ac-
cording to the map λ̃. The inclusions map 1 ∈ Cλ̃ to the boundary vertex determined
by the extra marking of the given boundary component.

A.2 Distinguishing in- and outgoing boundary components

The glueing of r-spin surfaces with parametrised boundary is defined as follows. First
for every κ ∈ Zr we specify an r-spin lift Iκε : Cκ → C2−κ (s̃ε in [Nov, Eqn. (3.35)]) of
the map z 7→ z−1 given by an element ε ∈ Zr. Take two boundary components with
r-spin structure on a neighbourhood of these components Cκ and C2−κ. We can glue these
boundary components along their r-spin boundary parametrisation composed with Iκε .

To define outgoing boundary components we precompose the above boundary parametri-
sations with Iκε for outgoing boundary components. (For convenience we will choose ε = 0,
as different choices of ε can be seen as composition with different r-spin cylinders.) Then
one can glue r-spin boundary components along in- and outgoing boundary parametrisa-
tions as described in Section 2.1. We now give more details on the construction.

Let Σ be an r-spin surface with ingoing r-spin boundary parametrisation

ϕ̃ :
⊔

b∈π0(∂Σ)

U λ̃b
b → Σ

for a map λ̃ : π0(∂Σ) → Zr which maps b 7→ λ̃b. In order to distinguish in- and outgoing
boundary components we first fix two sets Bin, Bout ⊂ π0(∂Σ) as in Section 2.1. Let
Î : Zr → Zr be the map x 7→ 2 − x. We define maps λ : Bin → Zr and µ : Bout → Zr by
λ := λ̃|Bin and µ := Î ◦ λ̃|Bout . For the in- and outgoing r-spin boundary parametrisations
we set

ϕin := ϕ̃|⊔
b∈Bin

U
λb
b

and ϕout := ϕ̃|⊔
c∈Bout

Uλcc
◦

( ⊔
c∈Bout

Iλc0

)
respectively. The admissibility condition (A.2) needs to be changed since we are parametris-

ing outgoing boundary components c ∈ Bout with C2−λ̃c instead of with Cλ̃c . This means
that for a vertex u on an outgoing boundary component c the factor αu needs to be −1
instead of +1, since 1− (2− λ̃c) = −(1− λ̃c).

A.3 Refining PLCW decompositions of r-spin surfaces

By a series of radial subdivisions we mean radially subdividing the 1-cells and then the
2-cells, see Figure 24. This means splitting each edge in two by adding a vertex, adding a
vertex to the interior of each face and adding edges between this new vertex and all other
vertices of this face. The following lemmas follow from straightforward calculations.

Lemma A.1. Let L be a PLCW decomposition obtained by a series of radial subdivisions
from a PLCW decomposition K with admissible marking. Assign to new edges the mark-
ings, orientations and edge labels as shown in Figure 24. The vertex conditions (A.1) and
(A.2) are satisfied at the old and new vertices.
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Figure 24: New edge indices after a series of radial subdivision. The new edge connecting the
new vertex in the middle with the vertex which was in the clockwise direction of the marked side
of the face (cf. Figure 3) has edge index -2, all other new edges inside the face have edge index -1.
The admissibility conditions (A.1) and (A.2) at the vertices remain unchanged at the old vertices
and they are satisfied at the new vertices.

rb

-2 -2
-2-2

0 0 0 0

u u u

rb

rb

rb

rbrb

rb

rb

rb rb

v0 v0

v1 v1

v2 v3

Figure 25: Refinement at a boundary component b. Edges without labels have edge index -1,
the edges between v0 and v1 with edge label rb are identified.

Since we assumed that every boundary component consists of a single vertex and a
single edge, applying two series of radial subdivisions gives four vertices and four edges on
each boundary component. In order to get a triangulation we will modify this refinement
as follows.

Lemma A.2. Let L be a marked PLCW decomposition obtained by applying the steps
in Lemma A.1 twice on another PLCW decomposition K with admissible marking. Add 7
triangles at each boundary component and assign the marking to the new edges as shown
in Figure 25 and put the extra markings on edges on boundary components so that the
ending vertex is v0 in Figure 25. Then the conditions (A.1) and (A.2) hold at old and new
vertices.

Sketch of proof. Let us assume that at each boundary component there are only two edges
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connecting to the single vertex: the boundary edge and another one coming from the
interior of the surface. In such a situation the refinement is shown in Figure 25. The
conditions (A.1) and (A.2) can be checked by hand at every vertex.

If there are boundary components where more edges connect to the boundary vertex
from the interior in the original PLCW decomposition, checking the conditions (A.1) and
(A.2) is similar, but we omit the figure here.

We now have all the ingredients needed to define an r-spin structure with r-spin bound-
ary parametrisation using the tools developed by [Nov]. We proceed as follows.

• Take a surface with parametrised boundary and a marked PLCW decomposition with
some edge indices s and maps λ : Bin → Zr and µ : Bout → Zr.

• Refine this marked PLCW decomposition as described in Lemma A.2. This is a
triangulation by [Kir, Thm. 6.3].

The new marking obtained this way is admissible in the sense of [Nov] (i.e. (A.1) and (A.2)
hold) if and only if the marking of the original PLCW decomposition is admissible in the
sense of Section 2.3 (i.e. (2.20) and (2.21) hold).

Definition A.3. Let Σ(s, λ, µ) denote the r-spin structure on Σ obtained by the above
steps.

A.4 Proofs for Section 2

Proof of Lemma 2.11. Operation 1 follows directly from part 2 of [Nov, Lem. 4.11].
For Operation 3 do a deck transformation [Nov, Part 1 of Lem. 4.11] on all triangles

inside the polygon.
For Operation 2 first notice that moving the marking of a polygon to the next clock-

wise edge amounts to changing the edge indices as in Figure 26. This is done by a deck
transformation on all filled triangles.

It is a straightforward calculation to show that these operations commute with each
other.

Proof of Theorem 2.13. Let Σ be a surface with PLCW decomposition. Let Σ′ the same
surface, but now with a triangulation as obtained by a two-fold series of radial subdivi-
sions as in Section A.3. For clarity, in this proof we will write Σ for the surface without
decomposition underlying both Σ and Σ′.

In [Nov, Sec. 4.8]M(Σ′)triang

λ̃
the set of admissible markings for a fixed triangulation of

Σ with only ingoing boundary components and fixed map λ̃ has been defined along with
a similar equivalence relation as ∼fix, which we denote by ∼triang

fix . [Nov, Thm. 4.18] gives
the isomorphism from the quotient of this set by ∼triang

fix to Rr(Σ)λ̃ the isomorphism classes
of r-spin structures. By a simple reparametrisation as in Section A.2 one obtains from
this the set of admissible markings for in- and outgoing boundary componentsM(Σ′)triang

λ,µ
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Figure 26: Shifting the marking on a face of a PLCW decomposition clockwise. All unlabeled
edges have index -1. a) Part of a face of a marked PLCW decomposition showing the marked
edge. b) The corresponding triangulation after two series of radial subdivisions. c) Execute a
deck transformation on the 12 filled triangles. d) The PLCW decomposition with shifted marked
edge which produces the triangulation shown in c).

and the set of isomorphism classes of r-spin structures with in- and outgoing boundary
components Rr(Σ)λ,µ. Thus we get a bijection

M(Σ′)triang
λ,µ / ∼triang

fix

f−−−→ Rr(Σ)λ,µ . (A.3)

Let us denote by α : M(Σ)PLCW
λ,µ →M(Σ′)triang

λ,µ the map that sends a marked PLCW
decomposition to its refinement according to Section A.3. Since the generators of the
equivalence relation ∼fix are built up from generators of the equivalence relation ∼triang

fix

(see the proof of Lemma 2.11 above), we get a well defined map

M(Σ)PLCW
λ,µ / ∼fix

ᾱ−−−→ M(Σ′)triang
λ,µ / ∼triang

fix . (A.4)

By construction the composition of the maps (A.3) and (A.4) is the map (2.22) in the
statement of the theorem. It therefore remains to show that ᾱ is a bijection.

ᾱ is surjective: Let (m′, o′, s′) be an admissible marking of Σ′. As a first step, use the
relation ∼triang

fix to change the edge markings m′ and orientations o′ to the form prescribed
in Section A.3, resulting in a marking (m′′, o′′, s′′). Next follow the algorithm described in
Figure 27 to bring all edge indices of Σ′ in the interior of faces of Σ to the form shown
in Figure 25. Denote the resulting marking by (m′′, o′′, s̃). Let e be an interior edge of Σ
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I

II

III

Figure 27: To convert the edge indices of all edges of the triangulation in the interior of some face
of the PLCW decomposition to the form shown in Figure 25 apply the following algorithm to all
faces: I) Pick a triangle in area I; proceeding clockwise around the vertex, use deck transformations
on each triangle to bring the edge index of each edge radiating from the central vertex to the
prescribed value (−1 or −2); note that the final edge in this procedure automatically has the
correct index due to the admissibility condition around the central vertex. II) Pick a triangle t
in region II which shares an edge with region I but whose neighbour t′ in anti-clockwise direction
of region II does not. Use a deck transformation on t to set the edge index of the edge on the
boundary of region I to the value in Figure 25; proceed clockwise around region II setting the
edge index between two triangles of region II to the correct value; the edge indices between II and
I are determined by the admissibility condition (and so automatically as stated in Figure 25);
finally, the edge between t′ and t has the correct value by the admissibility condition around the
vertex between region I and II shared by t and t′. III) If the face in question has a boundary
component, then in region III one proceeds in the same way as in region II.

and let e1, . . . , e4 be the edges of Σ′ which cover e, and v12, v23, v34 the three additional
vertices on e. The admissibility condition around v12, v23, v34 implies that the edge indices
on e1, . . . , e4 must all be equal. The same argument shows that edge indices on boundary
components are all equal. This shows that (m′′, o′′, s̃) lies in the image of α.

ᾱ is injective: Let (m, o, s), (m′, o′, s′) ∈ M(Σ)PLCW
λ,µ such that ᾱ[(m, o, s)] = ᾱ[(m′, o′, s′)],

i.e. α(m, o, s) ∼triang
fix α(m′, o′, s′). Notice that Lemma 2.12 and Remark 2.14 apply to

marked triangulations as well. This means that we can assume that the marked edges and
the edge orientations agree (m = m′ and o = o′) for the PLCW decomposition and the
triangulation as well. Furthermore, α(m, o, s) and α(m, o, s′) are related by a series D of
deck transformation on the triangulation: D(α(m, o, s)) = α(m, o, s′).

Write δ∆(k) for a deck transformation by k units on the triangle ∆ of the triangu-
lation of Σ′. Deck transformations on different triangles commute, so we can write the
sequence of deck transformations as D =

∏
∆ δ∆(k∆). It is not hard to see that the

identity D(α(m, o, s)) = α(m, o, s′) requires the k∆ for all ∆ belonging to a given face
of the PLCW-decomposition of Σ to be equal. But this precisely means that D can
be written as a product of deck transformations on the PLCW-decomposition of Σ, i.e.
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Figure 28: Pachner 3-1 move

sC

sA
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sC + s+ 1

sA + s+ 1

sB

s D
+

2s
+

1

s

Figure 29: Pachner 2-2 move

(m, o, s) ∼fix (m′, o′, s′).

In the following we are going to give some tools that relate different marked triangula-
tions and marked PLCW decompositions which parametrise isomorphic r-spin structures.
First we recall [Nov, Prop. 4.19 and 4.20].

Lemma A.4. Let Σ and Σ′ be two r-spin surfaces with triangulation and with the same
underlying surface related by a Pachner 3-1 or 2-2 move as in Figure 28 and 29. Then
these two r-spin structures are isomorphic.

We define the Tn-moves for n ≥ 2 as in Figure 30, which takes a 2n-gon glued together
from 2n triangles to a 2n-gon glued together from 2(n− 1) triangles.

Lemma A.5. The Tn move induces an isomorphism of r-spin structures.

Proof. First we show that one can obtain the Tn move on a triangulation without any

−2 −1

−1

−2
−2

−2

−1

−1

−2

−2

−1

−1

−1

−2
−2

−2

−1−2

−1

s1

s2

s
1 +

1

s2 + 1

Figure 30: Tn move for n ≥ 2. We remove or add the filled triangles.
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Figure 31: T2 move without marking

Figure 32: Induction step for the Tn+1 move

marking by a series of Pachner moves by induction on n. For n = 2 do a Pachner 2-2 move
and then a Pachner 3-1 move as in Figure 31. Now assume that the statement holds for n
and show for n + 1. First we do two Pachner 2-2 moves and then apply a Tn move as in
Figure 32 to get exactly the Tn+1 move.

Since the Pachner moves in Figures 28 and 29 only change the marking locally, it is
enough to check how the marking can possibly change near the vertices that are touched
by these moves. If one calculates (2.20) for these vertices before and after a Tn move one
sees that the marking can only change according to Figure 30.

Lemma A.6. Removing a univalent vertex (whose edge was not marked) induces an
isomorphism of r-spin structures.

Proof. When we remove an edge from a PLCW decomposition we need to compare the
associated triangulation with marking from Definition A.3 and then use the above defined
moves to go from one to the other. The part of the triangulations that need to be trans-
formed into one another together with the transformation steps are shown in Figure 33.

Proof of Proposition 2.16.
Move b) in Figure 5 for v 6= v′: As in the proof of Lemma A.6 we need to compare
the marked triangulations associated to the marked PLCW decompositions. The part
of the triangulations that need to be transformed into one another together with the
transformation steps are shown in Figure 34.

Since we did local moves which induce isomorphisms of r-spin structures, it is enough
to check how the edge indices will change at those vertices which have been touched by
the above moves. These vertices are marked with a circle. Observe that at the vertices vl,
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Figure 33: The part of the triangulations that need to be transformed into one another in case
of removing or adding an univalent vertex v with its edge. The dotted edges have edge index
-2, all other unlabeled edges have edge index -1. The orientation of the edges is left implicit,
cf. Definition A.3. We need to remove the 24 numbered triangles from the middle, we proceed
by removing them in pairs. We use the Tn moves consecutively: first remove the two triangles
marked by 1, then the two triangles marked by 2, etc until finally removing the two triangles
marked by 12.

vm and vr one does not get any condition on s. The vertices vup
l , vdown

l , vup
r and vdown

r get
identified with others.

Assume that the vertices v and v′ are distinct and that s′i = si (i = 1, . . . , 4). At these
two vertices one obtains s ≡ 0 (mod r).

Move a) in Figure 5: When removing a bivalent vertex as in Figure 5 a), a similar argument
applies.

Move b) in Figure 5 for v = v′: Indeed, look at the original PLCW decomposition and
assume that the vertices v and v′ are the same. Insert a bivalent vertex on the edge, remove
one of the two new edges by the above and then the univalent vertex with its edge using
Lemma A.6. Again, one obtains s ≡ 0 (mod r).

This completes the proof of the proposition.
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Figure 34: The part of the triangulations that need to be transformed into one another in case
of removing or adding an edge between the vertices v and v′ (cf. Figure 5 b)). The edges between
v, vup

l and vup
m have edge index -2, all other edges without edge index have edge index -1. We

need to remove the 24 triangles from the middle, of which 12 has been numbered in pairs. We use
the Tn moves consecutively: first remove the two triangles marked by 1, then the two triangles
marked by 2, etc until finally removing the two triangles marked by 6. Then do the same thing
again for the mirror pairs.

A.5 Proof of Theorem 3.8

For Part 1 a direct computation shows that the morphism assigned to a PLCW decompo-
sition and the morphism assigned to the triangulation obtained by the refinement of the
PLCW decomposition are the same. One needs to use that multiplication with the τ−1’s
in the state-sum construction amount to canceling the “bubbles” µ ◦∆. Independence of
the choice of the function V follows from the fact that τ is a central element.

Next we check independence from the triangulation and from the choice of marking (for
a given r-spin structure). Let us assume that Σ has b ingoing and no outgoing boundary
components. Let TA(Σ) denote the morphism in S assigned to Σ using a triangulation by
the state sum construction of [Nov]. Note that we get three tensor factors of A for each
boundary component, since each boundary component consists of three edges. Now we
explain how to reduce A⊗3 to A for each boundary component. Recall that we used the
notation (13) for the cyclic permutation of the first and third tensor factors. Composing
TA(Σ) with

⊗b
i=1(13) ◦ (∆⊗ idA) ◦∆ ◦ (τ−2 · (−)) ◦ ιλi , we obtain the morphism in (3.41).

To show this we use that the factors of τ−1 remove the “bubbles” µ ◦ τ . If Σ has outgoing
boundary components, it is easy to see that composing with appropriate factors of Γi,j,ε
maps of [Nov, Sec. 5.4] and πλi◦µ(3)◦(13) again yields the morphism in (3.41). Independence
of the details of the triangulation is shown in [Nov, Thm. 5.10]. This latter theorem also
states that TA(Σ) = TA(Σ′) for isomorphic r-spin surfaces Σ and Σ′, so that the assignment
ZA : Bordr2 → S is well defined on morphisms.
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Figure 35: Detail of a face with interior edges of a refined PLCW decomposition with the
segment p ∈ A(γ) of the curve γ crossing it. Using Part 2, we can assume that the segment of
the curve crosses as shown in the figure. All edge indices without edge labels are −1. Notice that
when crossing the dotted area, the lift of the curve does not pick up any of the ωe contributions.

0 0 0

1 1 1

Figure 36: The different values of κe for different positions of the crossing curve segment. The
edge e is where the line segment leaves the triangle.

For Part 2 functoriality can now be seen easily from the above discussion and by using
[Nov, Prop. 5.11], since the embeddings and projectors ιλi and πλi compose to Pλi , which
can be omitted due to [Nov, Prop. 5.13]. Monoidality and symmetry follow directly from
the construction. This completes the proof of Theorem 3.8.

A.6 Proof of Lemma 5.5

Part 1 does not involve the marked PLCW decomposition and is shown in [Nov, Lem. 3.12].
Part 2 follows directly from the discussion in the main text: homotopic curves in Σ

(in the sense described in the beginning of Section 5.2) have homotopic lifts in FGLΣ and
homotopic curves in FGLΣ have the same lifts in PG̃LΣ after fixing them at the same
starting point.

For Part 3, we are going to calculate the holonomy by summing up the contributions
for all arcs A(γ) as in (5.4).

The contribution for p ∈ A(γ) can be computed as follows. Take the face fp which p
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seend
sestart sestart sestartseend

seend

0

b)a)

0 0 0 0 0 0 0

Figure 37: Detail of two (not necessarily different) faces with two boundary edges of a refined
PLCW decomposition where the curve γ starts (b) and ends (a), i.e. at the image of 1 ∈ C×
under the boundary parametrisation. All edge indices are −1 unless otherwise noted.

crosses and take its refinement to a triangulation as in Section A.3. Let us first assume
that this face has only inner edges, as in Figure 35. Let efp be the edge where p leaves the
face fp. The contribution of p can now be calculated by summing up for each triangle the
“ωe” contributions of [Nov, Section 4.7]. For a given triangle t and edge e, where the curve
leaves t, the contribution is ωe = ŝe + κe by [Nov, (4.33)], where κe is given in Figure 36.

First the curve crosses 3 triangles, which give a contribution of

(0 + 0) + (0 + 0) + (0 + 0) = 0 .

Notice that when afterwards crossing the dotted area, the lift of the curve does not pick
up any of contributions: for every group of 4 triangles the contribution is

(−2 + 1) + (0 + 1) + (−2 + 1) + (0 + 1) = 0 .

If the marked edge of the face fp is on the right side of p with respect to the orientation of fp
then the curve has crossed the corresponding edge with edge label -2 and the contribution
is

δ̂pfp = 1.

Finally the curve crosses 6 triangles, which give a contribution of

(−2 + 1) + (0 + 1) + (−2 + 1) + (−1 + 1) + (−1 + 1) + (ŝep + 1) = ŝep .

This proves the formula (5.4) if γ is a closed curve.
If the curve γ starts and ends on the boundary of the surface then we take it into

account as follows. The parts of the triangulation where γ starts and ends is shown in
Figure 37. As described in the main text we have r-spin isomorphisms Dκ → D0 of some
neighbourhoods of the starting and ending point of γ, both sending these two points to
1 ∈ D0 ⊂ C0. Under these isomorphisms the neighbourhood of 1, together with a part of
γ and the boundary edges is shown in Figure 38. This way we can handle γ as a closed
curve and by Part 3 we can modify the curve by a homotopy as in Figure 38, so that it
crosses the edges estart and eend.
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seend

sestart

× 10

D0

Figure 38: Detail of D0 with the image of the identification of the neighbourhoods of the starting
and ending point of γ. The circle denotes the two boundary components mapped onto each other.
We obtain a closed curve which, by using Part 2, we are allowed to change by a homotopy to
the dotted curve. This allows us to compute the holonomy in terms of the “ωe” contributions as
before.

We can now calculate the contribution of these crossed triangles as before. The curve
first crosses the boundary triangle in Figure 38 picking up the contribution

ŝestart + 1 .

Then it crosses the two triangles in Figure 37 b) picking up the contribution

(0 + 0) + (−1 + 0) .

After crossing inner edges finally it crosses the two triangles in Figure 37 a), using Figure 38,
picking up the contribution

(0 + 1) + (0 + ŝeend
) .

Summing up the above contributions, we get formula (5.4).
This completes the proof of Lemma 5.5.
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