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Abstract. We present a precise definition of extended homotopy quantum field theories and de-
velop an orbifold construction for these theories when the target space is the classifying space of
a finite group G, i.e. for G-equivariant topological field theories. More precisely, we use a bicat-
egorical version of the parallel section functor to associate to an extended equivariant topological
field theory an ordinary extended topological field theory. Thereby, we give a unification, geometric
underpinning and vast generalization of algebraic concepts of orbifoldization. In the special case
of 3-2-1-dimensional equivariant topological field theories, we investigate the equivariant modular
structure on the categories that such theories yield upon evaluation on the circle. By means of our
orbifold construction this equivariant modular structure will be related to the modular structure
on the orbifold category. We also generalize our orbifold construction to a pushforward operation
along an arbitrary morphism of finite groups and hence provide a valuable tool for the construction
of extended homotopy quantum field theories.
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1 Introduction and summary

1 Introduction and summary

Homotopy quantum field theories, as introduced in [Tur99] and further developed in the monograph [Tur10],
are topological field theories defined on bordisms equipped with maps to a fixed target space. In the most
investigated special case, this target is chosen to be aspherical, i.e. the classifying space of a (finite) group.
Homotopy quantum field theories with such a choice of target space are called equivariant topological field
theories.

It is an interesting question whether equivariant topological field theories allow for a orbifoldization, i.e. a con-
struction which assigns to a given equivariant topological field theory a non-equivariant topological field theory,
the orbifold theory. Such an orbifold construction should be understood as a sum over twisted sectors combined
with a computation of the invariants of the theory in the appropriate sense, see [DVVV89] for this perspective
on orbifoldization. Such a construction provides insight into the relation of equivariant and non-equivariant field
theories, but also has applications on a purely algebraic level: Topological field theories, both equivariant and
non-equivariant ones, produce by evaluation on certain manifolds algebraic structures of independent interest
for which sometimes orbifoldization procedures are known, e.g. for crossed Frobenius algebras, see [Kau02] and
[SW17a], or equivariant categories, see e.g. [Kir04] or [GNN09]. An orbifold construction on the level of field
theories provides a profitable and unifying geometric access to these concepts.

In this paper we give an orbifold construction for extended equivariant topological field theories, where the
specification extended refers to the bicategorical nature of the theory. Also we focus on oriented theories
although the construction does not depend on orientability. For a given finite group G, the construction
takes as an input an extended G-equivariant topological field theory, i.e. a symmetric monoidal functor Z :
G-Cob(n, n − 1, n − 2) −→ 2Vect from the symmetric monoidal bicategory G-Cob(n, n − 1, n − 2) of n-
dimensional bordisms equipped with a map into BG to the symmetric monoidal bicategory 2Vect of 2-vector
spaces. The output of our construction is the orbifold theory Z/G : Cob(n, n − 1, n − 2) −→ 2Vect, a non-
equivariant topological field theory. Our orbifold construction Z 7−→ Z/G generalizes previous work [SW17a]
in the non-extended case. We proceed as follows:

(1) First we produce from the equivariant theory Z a symmetric monoidal functor Ẑ : Cob(n, n−1, n−2) −→
2VecBunGrpd from the cobordism category to the symmetric monoidal bicategory 2VecBunGrpd
built in [SW17b] from 2-vector bundles over essentially finite groupoids and (higher) spans of groupoids.
Hence, this step changes the coefficients of the theory from 2Vect to the more complicated coefficients
2VecBunGrpd which, in exchange, now contain information about the equivariance. This step will be
referred to as change to equivariant coefficients and will be explained in Section 3.1. It produces examples
for extended topological field theories with non-trivial coefficients.

(2) To produce topological field theories valued in 2Vect, we need the symmetric monoidal parallel section
functor

Par : 2VecBunGrpd −→ 2Vect

whose construction was the main result of [SW17b]. It takes (homotopy) invariants of 2-vector bundles
and sends (higher) spans of groupoids to certain pull-push maps combined with (higher) intertwiners.

Now we can define the orbifold theory as the concatenation

Z

G
: Cob(n)

Ẑ−→ VecBunCGrpd
Par−−→ VectC.

The construction is functorial in Z, so the orbifoldization takes the form of a functor

?

G
: HSym(G-Cob(n, n− 1, n− 2),2Vect) −→ Sym(Cob(n, n− 1, n− 2),2Vect), Z 7−→ Z/G

from the 2-groupoid HSym(G-Cob(n, n−1, n−2),2Vect) of extended G-equivariant topological field theories to
the 2-groupoid Sym(Cob(n, n− 1, n− 2),2Vect) of extended topological field theories. An explicit description
of the orbifold construction is given in Proposition 3.3. In Section 3.3, finally, we generalize the orbifold
construction to a pushforward operation for equivariant topological field theories along a morphism of finite
groups.

In the rest of the article we investigate the orbifold construction for 3-2-1-dimensional field theories. Sec-
tions 4.1-4.4 concentrate on the category CZ (more precisely: 2-vector space) obtained as the value of a 3-2-
1-dimensional G-equivariant topological field theory on the circle. These sections can be read independently
of the sections involving the orbifold construction. We prove that by evaluation of the field theory on the
cylinder this category comes with the structure of a 2-vector bundle over the loop groupoid G//G of G and is,
by evaluation on the pair of pants, endowed with an equivariant tensor structure (Proposition 4.2). Moreover,
CZ has duals (Proposition 4.6) and comes with a G-braiding (Proposition 4.9). The Dehn twist yields a G-twist
(Proposition 4.11) which can be interpreted as a homotopical relaxation of the self-invariance of twisted sectors
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Extended Homotopy Quantum Field Theories and their Orbifoldization

known from G-crossed Frobenius algebras (Remark 4.12). In Proposition 4.14 we explicitly compute how the
G-ribbon structure of CZ behaves under the geometric orbifold construction, and in Theorem 4.16 we prove
that the orbifold structure coincides with the one obtained via the purely algebraic orbifoldization procedure
via orbifold categories, see e.g. [Kir04] or [GNN09], i.e. the square

3-2-1-dimensional G-equivariant
topological field theories

complex finitely semisimple
G-ribbon categories

3-2-1-dimensional
topological field theories

complex finitely semisimple
ribbon categories

evaluation on the circle

orbifoldization ?/G orbifold category

evaluation on the circle

commutes weakly.
We make the following statements about the modularity of the categories appearing on the right hand side: We

show that the category CZ obtained from 3-2-1-dimensional G-equivariant topological field theory via evaluation
on the circle is G-modular if its tensor unit is simple and thereby generalize one of the main results of [BDSPV15]
to the equivariant case (Theorem 4.31). The proof makes explicit use of the interplay between the geometric
and algebraic orbifoldization. In case the tensor unit of CZ is not simple, we prove that CZ is G-multimodular
(Theorem 4.33), see Definition 4.28 for notion of G-multimodularity.

As an application, our construction provides a uniform geometric formulation for the following two instances
of orbifoldization:

• In combination with the cover functor [BS11] our orbifold construction yields permutation orbifolds
[FKS92, Ban98, Ban02], see Example 4.22.

• The orbifoldization of extended cohomological homotopy quantum field theories leads to the twisted
Drinfeld doubles of a finite group from [DPR90], as will be discussed in the forthcoming publication
[MW18].

Our construction ensures the existence of these orbifold theories as extended topological field theories and makes
them explicitly computable. For example, we provide a formula for the number of simple objects of the orbifold
theory (Theorem 4.19), which as a byproduct yields restrictions for manifold invariants coming from homotopy
quantum field theories (Corollary 4.17).
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Conventions

All vector spaces or higher analogues thereof encountered in this article will be over the field of complex numbers.
Therefore we suppress the field in the notation and write Vect instead of VectC. Still all constructions would
also work over an algebraically closed field of characteristic zero.

We will refer to 2-functors between bicategories just as functors unless we want to stress the categorical level.
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2 A definition of extended homotopy quantum field theories and extended equivariant topological field theories

2 A definition of extended homotopy quantum field theories and
extended equivariant topological field theories

In this first section we develop a higher categorical version of the notion of a homotopy quantum field theory
in [Tur10]. By specializing to aspherical targets we obtain extended equivariant topological field theories. In
the 3-2-1-dimensional case, equivariant topological field theories have also been defined in [MNS12] using the
language of principal fiber bundles. The present generalization to arbitrary dimension and target space seems
to be new.

2.1 Extended homotopy quantum field theories

The definition of an extended homotopy quantum field theory requires a suitable symmetric monoidal bordism
bicategory T -Cob(n, n − 1, n − 2) for an arbitrary target space T . It will generalize the symmetric monoidal
bordism bicategory Cob(n, n−1, n−2) used as the domain of extended topological field theories, see e.g. [SP11],
in the sense that all manifolds involved are additionally equipped with continuous maps to T .

For the definition of T -Cob(n, n − 1, n − 2) we need not only manifolds and manifolds with boundary, but
also manifolds with corners whose definition we briefly recall, see also [SP11, Section 3.1.1]: An n-dimensional
manifold with corners of codimension 2 is a second countable Hausdorff space M together with a maximal atlas
of charts of the form

M ⊇ U ϕ−→ V ⊂ Rn−2 × (R≥0)2.

Given x ∈M we define the index of x to be the number of coordinates of (pr(R≥0)2 ◦ ϕ)(x) equal to 0 for some

chart ϕ (and hence for all charts). A connected face of M is the closure of a maximal connected subset of points
of index 1. A face is the disjoint union of connected faces. A manifold with faces is a manifold with corners
such that every point of index 2 belongs to exactly two different connected faces.

Finally, an n-dimensional 〈2〉-manifold is an n-dimensional manifold M with faces together with a decompo-
sition ∂M = ∂0M ∪ ∂1M of its topological boundary into faces such that ∂0M ∩ ∂1M is the set of corners of
M . We call ∂0M the 0-boundary of M and ∂1M the 1-boundary of M .

Definition 2.1 – Bordism bicategory for arbitrary target space. Let n ≥ 2. For a non-empty topolog-
ical space T , referred to as the target space, the bicategory T -Cob(n, n− 1, n− 2) of bordisms with maps to T
is defined in the following way:

(0) Objects, i.e. 0-cells, are pairs (S, ξ), where S is a n−2-dimensional oriented closed manifold and ξ : S −→ T
a map (by a map between topological spaces we always mean a continuous map).

(1) A 1-morphism or 1-cell (Σ,ϕ) : (S0, ξ0) −→ (S1, ξ1) is an oriented compact collared bordism (Σ,χ−, χ+) :
S0 −→ S1, i.e. a compact oriented n− 1-dimensional manifold Σ with boundary together with orientation
preserving diffeomorphisms χ− : S0 × [0, 1) −→ Σ− and χ+ : S0 × (−1, 0] −→ Σ+, where Σ− ∪ Σ+ is a
collar of ∂Σ, and a continuous map ϕ : Σ −→ T such that the diagram of maps

Σ

S0 × {0} S1 × {0}

T

ϕ

χ−

ξ0

χ+

ξ1

commutes. We do not assume any compatibility on the collars. Composition of 1-morphisms is by
gluing of bordisms along collars and maps, respectively. Note that the collars are necessary to define the
composition. Identities are given by cylinders decorated with the homotopy constant along the cylinder
axis.

(2) A 2-morphism or 2-cell (Σ,ϕ) =⇒ (Σ′, ϕ′) between 1-morphisms (S0, ξ0) −→ (S1, ξ1) is an equivalence
class of pairs (M,ψ), where M : Σ −→ Σ′ is an n-dimensional collared compact oriented bordism with
corners and a map ψ : M −→ T . Here an n-dimensional collared compact oriented bordism with corners
is a 〈2〉-manifold M together with

• a decomposition of its 0-boundary ∂0M = ∂0M− ∪ ∂0M+ and corresponding orientation preserv-
ing diffeomorphisms δ− : Σ × [0, 1) −→ M− and δ+ : Σ′ × (−1, 0] −→ M+ onto collars of this
decomposition,

• a decomposition of its 1-boundary ∂1M = ∂1M− ∪ ∂1M+ and corresponding orientation preserving
diffeomorphisms α− : S0 × [0, 1)× [0, 1] −→ N− and α+ : S1 × (−1, 0]× [0, 1] −→ N− onto collars of
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Extended Homotopy Quantum Field Theories and their Orbifoldization

this decomposition such that there is an ε > 0 and commutative triangles

S0 × [0, 1)× [0, ε) M S1 × (−1, 0]× [0, ε)

Σ × [0, ε)

α−

χ−×id

α+

χ+×id
δ− (2.1)

and

Σ′ × (−ε, 0]

S0 × [0, 1)× (1− ε, 1] M S1 × (−1, 0]× (1− ε, 1]

δ+

α−

χ′−×id−1

α+

χ′+×id−1
. (2.2)

Furthermore, we require

M

S0 × [0, 1] tΣ S0 × [0, 1] tΣ′

T

ψ

α−tδ−

ξ0◦prS0tϕ

α+tδ+

ξ1◦prS1tϕ
′

to commute. Note again that we do not assume any compatibility on the collars.

Two such pairs (M,ψ) and (M̃, ψ̃) are defined to be equivalent if there is an orientation-preserving
diffeomorphism Φ : M −→M making the diagram

M

Σ × [0, 1) Σ′ × (−1, 0]

M̃

Φ

δ−

δ̃−

δ+

δ̃+

and a similar diagram for the collars of the 1-boundary commute such that additionally ψ = ψ̃ ◦ Φ.

To define the vertical composition of 2-morphisms we fix once and for all a diffeomorphism [0, 2] −→ [0, 1] which
is the identity on a neighborhood of 0 and near 2 given by x 7−→ x− 1. Now the vertical composition is given
by gluing using the collars of 0-boundaries. Furthermore, we can use the diffeomorphism fixed above to rescale
the ingoing and outgoing 1-collars. As for 1-morphisms there is no problem in gluing maps to T .

Horizontal composition of 2-morphisms is defined by gluing manifolds and maps along 1-boundaries. The
new 0-collars can be constructed from the old ones by restricting them to [0, ε) such that condition (2.1) and
(2.2) ensure that we can glue them along the boundary and then rescaling the interval keeping a neighbourhood
of 0 fixed.

Disjoint union endows the bicategory T -Cob(n, n − 1, n − 2) with the structure of a symmetric monoidal
bicategory with duals.

Remarks 2.2.

(a) Following standard conventions we will denote the composition of 1-morphisms and 2-morphisms from
right to left by using the concatenation symbol ◦. Whenever we draw pictures of bordisms, however,
composition has to be read from left to right.

(b) To maintain readability, we will often suppress the collars in the notation.

(c) Consider a 1-morphism (Σ,ϕ) : (S0, ξ0) −→ (S1, ξ1), a compact collared bordism Σ′ : S0 −→ S1 and a
diffeomorphism Φ : Σ −→ Σ′ preserving orientation and the collars. This data gives rise to an invertible 2-
morphism (M,ψ) : (Σ,ϕ) −→ (Σ′, Φ∗ϕ := ϕ◦Φ−1) as follows: As the underyling compact collared bordism
with corners M we take the result of gluing Σ × [0, 1] and Σ′ × [0, 1] via Φ. Moreover, ψ : M −→ T is
the map that ϕ and Φ∗ϕ give rise to. For details on this mapping cylinder construction, see [MS17,
Appendix A.2].

Having defined our bordism bicategory with target T we are now ready to generalize the definition of a homotopy
quantum field theory in [Tur10].

5



2 A definition of extended homotopy quantum field theories and extended equivariant topological field theories

Definition 2.3 – Extended homotopy quantum field theory. An n-dimensional extended homotopy
quantum field theory with target space T taking values in a symmetric monoidal bicategory S is a symmetric
monoidal functor Z : T -Cob(n, n − 1, n − 2) −→ S satisfying the homotopy invariance property : For two
2-morphisms (M,ψ), (M,ψ′) : (Σa, ϕa) =⇒ (Σb, ϕb) between the 1-morphisms (Σa, ϕa), (Σb, ϕb) : (S0, ξ0) −→
(S1, ξ1) with ψ ' ψ′ relative ∂M we have the equality

Z(S0, ξ0) Z(S1, ξ1) =

Z(Σa, ϕa)

Z(Σb, ϕb)

Z(M,ψ) Z(S0, ξ0) Z(S1, ξ1)

Z(Σa, ϕa)

Z(Σb, ϕb)

Z(M,ψ′)

of 2-morphisms. We denote by HSym(T -Cob(n, n − 1, n − 2),S) the bicategory of n-dimensional extended
homotopy quantum field theories, i.e. the bicategory of homotopy invariant symmetric monoidal functors
T -Cob(n, n− 1, n− 2) −→ S.

Remarks 2.4.

(a) This definition contains the appropriate bicategorical version of the homotopy invariance property in
[Tur10]. It is made in such a way that we recover the usual homotopy invariance property if we pass from
extended homotopy quantum field theories to non-extended ones by restriction to the endomorphisms of
the monoidal unit in both domain and codomain.

(b) The symmetric monoidal bicategory S being the codomain of Z will be referred to as the coefficients of
coefficient category of Z.

(c) The bicategory HSym(T -Cob(n, n− 1, n− 2),S) is in fact a 2-groupoid.

(d) Let Z be an n-dimensional extended homotopy quantum field theory, Σ : S0 −→ S1 be a 1-morphism in

Cob(n, n − 1, n − 2) and ϕ and ϕ′ two maps Σ −→ T . Then for any homotopy ϕ
h' ϕ′ relative ∂Σ we

obtain a 2-isomorphism Z(h) : Z(Σ,ϕ) =⇒ Z(Σ,ϕ′) by evaluation of Z on Σ × [0, 1] equipped with h.
Note that Z(h) only depends on the equivalence class of the homotopy h.

For two topological spaces X and Y we denote by Y X the space of maps X −→ Y equipped with the compact-
open topology. Depending on what is convenient we can see X and Y and Y X also as Kan complexes. For any
space or Kan complex Z we denote by Π(Z) = Π1(Z) and Π2(Z) the fundamental groupoid and the funda-
mental 2-groupoid, respectively, and also set Πj(X,Y ) := Πj(Y

X) for j = 1, 2. We obtain a straightforward
generalization of [SW17a, Proposition 2.10]:

Proposition 2.5. For any extended homotopy quantum field theory Z : T -Cob(n, n − 1, n − 2) −→ S and
any closed oriented n− 2-dimensional manifold S we naturally obtain a representation

Ẑ(S) := Z(S, ?) : Π2(S, T ) = Π2

(
TS
)
−→ S,

i.e. a 2-functor Π2

(
TS
)
−→ S sending ξ : S −→ T to Z(S, ξ). Definition on homotopies and homotopies of

homotopies is by evaluation on the cylinder S × [0, 1] over S and the cylinder S × [0, 1]2 over the cylinder over
S.
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Extended Homotopy Quantum Field Theories and their Orbifoldization

2.2 Aspherical targets: Extended equivariant topological field theories

Specifying for the target space the classifying space of a (finite) group leads to equivariant topological field
theories, see also [Tur10] for non-extended case. We can now provide the following analogue in the extended
case:

Definition 2.6 – Extended equivariant topological field theory. For a group G let us set G-Cob(n, n−
1, n − 2) := BG-Cob(n, n − 1, n − 2) for the classifying space BG of G. An n-dimensional extended G-
equivariant topological field theories with values in a symmetric bicategory S is a homotopy quantum field
theory Z : G-Cob(n, n− 1, n− 2) −→ S, where we set .

Remarks 2.7.

(a) A G-equivariant topological field theory assigns data to manifolds decorated with maps to BG. Homotopy
classes of such maps correspond to isomorphism classes of principal G-bundles, and in [SW17a, Section 2.3]
it is explained that this identification extends to groupoids.

(b) A class of examples of examples of extended G-equivariant topological field theories is constructed in
[MNS12].

In the sequel it will be crucial to know the following basic fact about mapping spaces with aspherical target
space, i.e. classifying space of a group (or more generally a groupoid):

Lemma 2.8. Let Γ be a groupoid. For any space X the mapping space BΓX is (the nerve of) a groupoid.

Proof. We see X as a Kan complex. Since the fundamental groupoid functor Π : Kan −→ Grpd from the
category of Kan complexes to the category of groupoids is left-adjoint to the nerve functor B : Grpd −→ Kan
we find for any Kan complex X

HomKan(Y,BΓX) ∼= HomKan(Y ×X,BΓ )
∼= HomGrpd(Π(Y ×X), Γ )
∼= HomGrpd(Π(Y )×Π(X), Γ )
∼= HomGrpd(Π(Y ), [Π(X), Γ ])
∼= HomKan(Y,B[Π(X), Γ ]).

The Yoneda Lemma implies BΓX is isomorphic to the nerve B[Π(X), Γ ] of the groupoid of functors from Π(X)
to Γ . �

Remark 2.9. This result says that for an extended G-equivariant topological field theory Z : G-Cob(n, n −
1, n − 2) −→ S the representation Z(S, ?) : Π2 (S,BG) −→ S from Proposition 2.5 can and will be treated as
the representation of of or rather as a 2-vector bundle over the groupoid Π(S,BG) in the sense of [SW17b,
Definition 2.4]. This will turn out to be a tremendous simplification.

Example 2.10 – The cover functor. For a finite group G there is a canonical symmetric monoidal functor

Cov : G-Cob(n, n− 1, n− 2) −→ Cob(n, n− 1, n− 2),

the so-called cover functor, which is studied in [BS11] and defined as follows: For a closed oriented n − 2-
dimensional manifold S with a map ξ : S −→ BG we take the pullback bundle ξ∗EG −→ S. This G-bundle is a
covering map and by [Lee12, Proposition 4.40 and 15.35] the total space ξ∗EG inherits the structure of a closed
oriented manifold of dimension n − 2. The assignment Cov(S, ξ) := ξ∗EG extends to a symmetric monoidal
functor. If we are given an extended topological field theory Z : Cob(n, n − 1, n − 2) −→ 2Vect, its pullback
Cov∗ Z along the cover functor is a G-equivariant topological field theory. This provides an important class of
examples of G-equivariant field theories. In Example 4.22 we will use the cover functor to formalize the idea of
the permutation orbifolds appearing in [FKS92, Ban98, Ban02].
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3 The orbifold theory of an extended equivariant topological field theory

3 The orbifold theory of an extended equivariant topological field
theory

In this section we set up the orbifold construction for extended equivariant topological field theories. We only
consider equivariant topological field theories with coefficients 2Vect, the symmetric monoidal bicategory of
2-vector spaces, see e.g. [Mor11] or [SW17b, Example 2.6].

3.1 Equivariant coefficients

Given a G-equivariant topological field theory Z : G-Cob(n, n−1, n−2) −→ 2Vect we will produce an ordinary

topological field theory Ẑ : Cob(n, n − 1, n − 2) −→ 2VecBunGrpd which has coefficients in the symmetric
monoidal bicategory 2VecBunGrpd which was introduced in [SW17b, Section 4.1] and whose definition we
now recall briefly:

(0) Objects are pairs (Γ, %), where Γ is an essentially finite groupoid and % a 2-vector bundle over Γ , i.e. a
representation % : Γ −→ 2Vect.

(1) A 1-morphism (Γ0, %0) −→ (Γ1, %1) is a span

Γ0
r0←− Λ r1−→ Γ1

of essentially finite groupoids and an intertwiner

λ : r∗0%0 −→ r∗1%1.

(2) A 2-morphism between the 1-morphisms (Γ0, %0)
r0←− (Λ, λ)

r1−→ (Γ1, %1) and (Γ0, %0)
r′0←− (Λ, λ)

r′1−→
(Γ1, %1) is an equivalence of class of

B a span of spans, i.e. a diagram

Γ0

Λ

Γ1

Λ′

Ω

r0 r1

r′0 r′1
t′

t

α0 α1

in essentially finite groupoids commutative up to the indicated natural isomorphisms

B together with a natural morphism

(r0t)
∗%0 = t∗r∗0%0 t∗r∗1%1 = (r1t)

∗%1

(r′0t
′)∗%0 = t′

∗
r′0
∗
%0 t′

∗
r′1
∗
%1 = (r′1t

′)∗%1

t∗λ

%0(α0)

t′∗λ′

%1(α1)
ω

of intertwiners.

We will refer to these coefficients as equivariant coefficients.
The following result generalizes the constructions in [SW17a, Section 3.4]:

Theorem 3.1. For any finite group G the assignment Z 7−→ Ẑ from Proposition 2.5 naturally extends to a
functor

?̂ : HSym(G-Cob(n, n− 1, n− 2),2Vect) −→ Sym(Cob(n, n− 1, n− 2),2VecBunGrpd) (3.1)

assigning to a G-equivariant topological field theory a topological field theory with values in 2VecBunGrpd.
We call (3.1) the change to equivariant coefficients.
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Extended Homotopy Quantum Field Theories and their Orbifoldization

Proof. In the first step we specify all the data needed to define Ẑ for an extended G-equivariant topological
field theory Z : G-Cob(n, n− 1, n− 2) −→ 2Vect:

(0) To an object S in Cob(n, n − 1, n − 2) we assign the 2-vector bundle Ẑ(S) : Π(S,BG) −→ 2Vect from
Proposition 2.5 taking into account Remark 2.9.

(1) To a 1-morphism Σ : S0 −→ S1 in Cob(n, n− 1, n− 2) we assign the span

Π(S0, BG)
r0←− Π(Σ,BG)

r1−→ Π(S1, BG)

(r0 and r1 are the obvious restriction functors) and the intertwiner

Z(Σ, ?) : r∗0Ẑ(S0) −→ r∗1Ẑ(S1)

consisting of the map Z(Σ,ϕ) : Z(S0, ϕ|S0
) −→ Z(S1, ϕ|S1

) for each map ϕ : Σ −→ BG and natural
isomorphisms

Z(S0, ϕ|S0) Z(S1, ϕ|S1)

Z(S0, ϕ
′|S0

) Z(S1, ϕ
′|S1

)

Z(Σ,ϕ)

Z(S0 × I, h|S0 ) Z(S1 × I, h|S1 )

Z(Σ,ϕ′)

∼=
(3.2)

for every equivalence class ϕ
h' ϕ′ of homotopies between maps ϕ,ϕ′ : Σ −→ BG. These isomorphisms

(3.2) are obtained as follows: First we will define an invertible 2-morphism

((S1 × I) ◦Σ ◦ (S0 × I), h|S1 ∪ ϕ ∪ idϕ0|S0 )
ĥ

=⇒ ((S1 × I) ◦Σ ◦ (S0 × I), idϕ′|S1 ∪ϕ
′ ∪ h|S0

) (3.3)

in G-Cob(n, n− 1, n− 2) and use it together with the functoriality of Z to obtain the isomorphisms (3.2)
as

Z(S1 × I, h|S1) ◦ Z(Σ,ϕ) ∼= Z(S1 × I, h|S1) ◦ Z(Σ,ϕ) ◦ Z(S0 × I, idϕ0|S0 )

∼= Z((S1 × I) ◦Σ ◦ (S0 × I), h|S1
∪ ϕ ∪ idϕ0|S0 )

Z(ĥ)∼= Z((S1 × I) ◦Σ ◦ (S0 × I), idϕ′|S1 ∪ϕ
′ ∪ h|S0

)

∼= Z(S1 × I, idϕ′|S1 ) ◦ Z(Σ,ϕ′) ◦ Z(S0 × I, h|S0
)

∼= Z(S1 × I, idϕ′|S1 ) ◦ Z(Σ,ϕ′).

The needed 2-isomorphism (3.3) will be obtained as a homotopy

h|S1 ∪ ϕ ∪ idϕ0|S0
ĥ' idϕ′|S1 ∪ϕ

′ ∪ h|S0 : (S1 × I) ◦Σ ◦ (S0 × I) −→ BG

relative boundary, see also Remark 2.4, (d) for this strategy. For the definition of this homotopy we note
that h gives rise to homotopies homotopies

ϕ|S0

h' ht|S0
,

ht|S1

h' ϕ′|S1

for all t ∈ I, which by abuse of notation we just denote by h again. Now the map ĥt : (S0× I) ◦Σ ◦ (S1×
I) −→ BG is defined by gluing together ht and these two auxiliary homotopies as indicated in the picture

9



3 The orbifold theory of an extended equivariant topological field theory

ht

'jS0

h

' htjS0
htjS1

h

' '0jS1

,

in which we see Σ with the cylinders over S0 and S1, respectively, glued to it. A direct computation shows
that the isomorphisms (3.2) are coherent.

(2) To a 2-morphism M : Σa =⇒ Σb between 1-morphisms Σa, Σb : S0 −→ S1 the functor Ẑ assigns the strict
span of spans

Π(S0, BG)

Π(Σ,BG)

Π(S1, BG)

Π(Σ′, BG)

Π(M,BG)

r0 r1

r′0 r′1
t′

t

coming from restriction of maps together with the map

Z(M, ?) : t∗Z(Σ, ?) −→ t′
∗
Z(Σ′, ?)

of intertwiners coming from evaluation of Z on maps M −→ BG. For this to be really a map of intertwiners
we need to verify the condition given in [SW17b, Remark 2.5, (c), (2)]. Combining this with [SW17b,

Remark 2.5, (b)] we see that we need to prove that for every equivalence class ψ
h' ψ′ : M −→ BG of

homotopies the 2-cell

Z(S0, ψ
′|S0) Z(S1, ψ

′|S1)

Z(S0, ψ|S0
) Z(S1, ψ|S1

)

Z(S0, ψ
′|S0

) Z(S1, ψ
′|S1

)

∼=

∼=

∼= ∼=idZ(S0,ψ′|S0 ) idZ(S1,ψ′|S1 )

Z(Σa, ψ|Σa )

Z(Σb, ψ|Σb )

Z(Σa, ψ
′|Σa )

Z(Σb, ψ
′|Σb )

Z(S0 × I, h|S0 ) Z(S1 × I, h|S1 )

Z(S0 × I, h|S0 ) Z(S1 × I, h|S1 )

Z(M,ψ) (3.4)

in 2Vect, in which the 2-cells occupying the two squares in the middle block come from the definition
of ?̂ on 1-morphisms, is equal to Z(M,ψ′) : Z(Σa, ψ

′|Σa) −→ Z(Σb, ψ
′|Σb). Indeed, this follows from

homotopy invariance because (3.4) can be described by evaluation of Z on a map on M homotopic to ψ′

relative ∂M .

In the next step one needs to prove that Ẑ is a symmetric monoidal functor. The proof is a generalization
of the proof of [SW17a, Theorem 3.23] and relies on the gluing property of the stack Π(?, BG), see [SW17a,
Section 3.3] for a review, and the fact that Z is symmetric monoidal. Let us give a few more details: For two

10



Extended Homotopy Quantum Field Theories and their Orbifoldization

1-morphisms Σ : S0 −→ S1 and Σ′ : S1 −→ S2 in Cob(n, n− 1, n− 2) consider the diagram

Π(Σ′ ◦Σ,BG)

Π(S0, BG)

Π(Σ,BG)

Π(S1, BG)

Π(Σ′, BG)

Π(S2, BG)

Π(Σ,BG)×Π(S1,BG) Π(Σ′, BG)

R

s0 s2

r0 r1 r′1 r′2

p p′

η

,

r0, r1, r
′
1, r2, s0 and s2 are the restriction functors, the inner square is the homotopy pullback and R also comes

from restriction. The gluing property of Π(?, BG) says that R is an equivalence, which exhibits Π(Σ′ ◦ Σ)
as another model for the homotopy pullback (and it is a strict one). Now by [SW17b, Remark 4.2 (a)] the

composition Ẑ(Σ′) ◦ Ẑ(Σ) is canonically 2-isomorphic to the 1-morphism in 2VecBunGrpd with span part

Π(S0, BG)
s0←− Π(Σ ◦Σ′, BG)

s2−→ Π(S2, BG)

and intertwiner s∗0Ẑ(S0) −→ s∗2Ẑ(S2) whose evaluation on ϕ : Σ′ ◦Σ −→ BG is given by

Z(Σ′, ϕ|Σ′) ◦ Z(Σ,ϕ|Σ) ∼= Z(Σ′ ◦Σ,ϕ),

where this last isomorphism is part of the data of Z. This gives us the needed isomorphism Ẑ(Σ′) ◦ Ẑ(Σ) ∼=
Ẑ(Σ′ ◦Σ).

The proof of the strict preservation of vertical composition of 2-morphisms and the preservation of the
horizontal composition of 2-morphisms up to the 2-isomorphisms for the composition of 1-morphisms just
constructed proceeds in an analogous way using the gluing property of Π(?, BG).

The symmetric monoidal structure comes from the additivity of Π(?, BG) and the monoidal structure of Z.

Finally, we observe that Ẑ is functorial in Z. This shown as in the proof of [SW17a, Proposition 3.26]. �

3.2 Definition and explicit description of the orbifold construction

As outlined in the introduction, the orbifold construction for equivariant topological field theory is obtained by
first changing to equivariant coefficients using Theorem 3.1 and then applying the parallel section functor

Par : 2VecBunGrpd −→ 2Vect

from [SW17b, Theorem 4.7] which extends taking parallel sections of 2-vector bundles [SW17b, Section 2.3] to
a symmetric monoidal functor by means of pull-push constructions. We are now ready to state the following
central definition:

Definition 3.2 – Orbifold construction for extended G-equivariant topological field theories. Let
G be a finite group. Then the orbifold construction for extended G-equivariant topological field theories is the
functor

?

G
: HSym(G-Cob(n, n− 1, n− 2),2Vect) −→ Sym(Cob(n, n− 1, n− 2),2Vect)

from the 2-groupoid of extendedG-equivariant topological field theories to the 2-groupoid of extended topological
field theories defined as the concatenation

HSym(G-Cob(n, n− 1, n− 2),2Vect) Sym(Cob(n, n− 1, n− 2),2VecBunGrpd)

Sym(Cob(n, n− 1, n− 2),2Vect)

?̂

Par∗ = Par ◦?
?/G

.
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3 The orbifold theory of an extended equivariant topological field theory

For an extended G-equivariant topological field theory Z we call the extended topological field theory Z/G the
orbifold theory of Z.

From the prescriptions for the change of coefficients and the definition of the parallel section functor, see [SW17b,
Section 4.2], it is straightforward to deduce the following explicit description of the orbifold construction:

Proposition 3.3. For any finite groupG and an extendedG-equivariant topological field theory Z : G-Cob(n, n−
1, n− 2) −→ Vect the orbifold theory Z/G : Cob(n, n− 1, n− 2) −→ Vect admits the following description:

(a) To an object S in Cob(n, n− 1, n− 2) the orbifold theory assigns the 2-vector space

Z

G
(S) = Par Ẑ(S)

of parallel sections of the 2-vector bundle Ẑ(S) = Z(S, ?) over the groupoid Π(S,BG), see Proposition 2.5.

(b) To a 1-morphism Σ : S0 −→ S1 in Cob(n, n− 1, n− 2) the orbifold theory assigns the 2-linear map (i.e.
a linear functor)

Z

G
(Σ) :

Z

G
(S0) = Par Ẑ(S0) −→ Z

G
(S0) = Par Ẑ(S0)

given by(
Z

G
(Σ)s

)
(ξ1) = lim

(ϕ,h)∈r−1
1 [ξ1]

Z(S1 × [0, 1], h)Z(Σ,ϕ)s(ϕ|S0
) for all s ∈ Par Ẑ(S0), ξ1 : S1 −→ BG,

where r1 : Π(Σ,BG) −→ Π(S1, BG) is the restriction functor.

(c) For a 2-morphism M : Σa =⇒ Σb between 1-morphisms Σa, Σb : S0 −→ S1 in Cob(n, n − 1, n − 2) the
value of the 2-morphism

Z

G
(M) :

Z

G
(Σa) −→ Z

G
(Σb)

on s ∈ Par Ẑ(S0) and ξ1 : S1 −→ BG is given by the commutativity of the square(
Z

G
(Σa)s

)
(ξ1)

lim
(ϕb,hb,ψ,g)

∈(rb1)
−1[ξ1]×Π(Σb,BG)Π(M,BG)

Z(S1 × [0, 1], hb ∗ g|S1)Z(Σa, ψ|Σa)s(ψ|S0)

(
Z

G
(Σb)s

)
(ξ1)

lim
(ϕb,hb,ψ,g)

∈(rb1)
−1[ξ1]×Π(Σb,BG)Π(M,BG)

Z(S1 × [0, 1], hb)Z(Σb, ψ|Σb)s(ψ|S0)

pull

Z

G
(M) Z(M, ?)

push
,

where

• the pull map uses the pullback of limits along the functor (rb1)−1[ξ1] ×Π(Σb,BG) Π(M,BG) −→
(ra1)−1[ξ1] defined using the universal property of the homotopy pullbacks involved,

• the map labelled with Z(M, ?) uses the transformation vertex-wise transformation coming from the

transformation Z(Σa, ψ|Σa)
Z(M,ψ)−−−−−→ Z(Σb, ψ|Σb), the isomorphism Z(S1 × [0, 1], g|S1)Z(Σb, ψ|Σb) ∼=

Z(Σb, ψ|Σb)Z(S0 × [0, 1], g|S0
) and the fact that s is parallel,

• and the push map uses pushes forward of limits in 2-vector spaces, see [SW17b, Section 2.1], along
the functor (rb1)−1[ξ1] ×Π(Σb,BG) Π(M,BG) −→ (ra1)−1[ξ1] defined using the universal property of
the homotopy pullbacks involved.

The orbifold construction for extended equivariant topological field theories generalizes previous work in [SW17a].
Indeed, it can be compared with the orbifoldization in the non-extended case if we take into account that an
extended field theory can be restricted to the endomorphisms of the empty set to obtain a non-extended field
theory. Recalling how we generalized the change of coefficients in Theorem 3.1 and the parallel section functor,
see [SW17b] and in particular Proposition 4.8 therein, we obtain the following statement:

12
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Proposition 3.4. For any finite group G the square

HSym(G-Cob(n, n− 1, n− 2),2Vect) Sym(Cob(n, n− 1, n− 2),2Vect)

HSym(G-Cob(n, n− 1),Vect) Sym(Cob(n, n− 1),Vect)

?/G

restriction restriction

?/G

is weakly commutative. The upper horizontal functor is the bicategorical orbifold construction in the extended
case from Definition 3.2, the lower horizontal functor is the categorical orbifold construction in the non-extended
case from [SW17a, Definition 3.42].

3.3 Generalization of the orbifold construction to a pushforward along a group
morphism

In [SW17a, Section 6] we generalized the non-extended orbifold construction to a push operation along an
arbitrary morphism λ : G −→ H of finite groups in the sense that the orbifold construction corresponds to the
pushforward along the morphism G −→ 1 to the trivial group. This is also possible for the extended orbifold
construction as we will sketch now: First denote by

λ∗ : Π(?, BG) −→ Π(?, BH)

the stack morphism induced by λ, see [SW17a, Section 5.3] for details. For an extended G-equivariant topological
field theory Z : G-Cob(n, n − 1, n − 2) −→ 2Vect we would like to define a symmetric monoidal functor

Ẑλ : H-Cob(n, n− 1, n− 2) −→ 2VecBunGrpd. To an object (S, ξ) in H-Cob(n, n− 1, n− 2), i.e. an n− 2-
dimensional closed oriented manifold together with a map ξ : S −→ BH it assigns the pullback q∗Z(S, ?) of
the 2-vector bundle Z(S, ?) : Π(S,BG) −→ 2Vect along the functor q : λ−1

∗ [ξ] −→ Π(S,BG) featuring in the
defining square of the homotopy fiber

λ−1
∗ [ξ] Π(S,BG)

? Π(S,BH)

q

λ∗

ξ

of λ∗ : Π(S,BG) −→ Π(S,BH) over ξ. On 1-morphisms and 2-morphisms one straightforwardly generalizes

the assignments made in [SW17a, Section 6] to obtain Ẑλ. The construction is obviously functorial in Z, so we
obtain a the following result:

Proposition 3.5. For any morphism λ : G −→ H of finite groups the assignment Z 7−→ Ẑλ extends to a
functor

?̂
λ

: HSym(G-Cob(n, n− 1, n− 2),2Vect) −→ HSym(H-Cob(n, n− 1, n− 2),2VecBunGrpd).

Definition 3.6. For a morphism λ : G −→ H of finite groups define the pushforward of G-equivariant
topological field theories

λ∗ : HSym(G-Cob(n, n− 1, n− 2),2Vect) −→ HSym(H-Cob(n, n− 1, n− 2),2Vect) (3.5)

along λ as the concatenation

HSym(G-Cob(n, n− 1, n− 2),2Vect) HSym(H-Cob(n, n− 1, n− 2),2VecBunGrpd)

HSym(H-Cob(n, n− 1, n− 2),2Vect)

?̂
λ

Par∗
λ∗

.
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4 The 3-2-1-dimensional case and the orbifold construction for modular categories

This generalizes the construction given in [SW17a, Section 6.2]. The orbifold construction can be identified
with the pushforward along the group morphism G −→ 1 to the trivial group.

The results in [SW17a, Section] will genralize to the present context of extended field theories although the
details are involved and will not be pursued further in this article: For composable morphisms λ : G −→ H and
µ : H −→ J of finite groups we will obtain the composition law (µ ◦ λ)∗ ∼= µ∗ ◦ λ∗, where ∼= denotes a canonical
coherent equivalence of functors between 2-groupoids. Then by sending a finite group G to the 2-groupoid of
extended G-equivariant topological field theories and a morphism of finite groups to the corresponding push
functor (3.5) we will obtain a 3-functor

FinGrpd −→ 2-Grpd (3.6)

from the category of finite groups (seen) as a tricategory to the tricategory of 2-groupoids.
As in [SW17a] we can deduce by means of (3.6) that the orbifold construction is essentially surjective, i.e.

any extended topological field theory arises as an orbifold theory of a G-equivariant theory for any given finite
group G.

In the forthcoming publication [MW18] we use the pushforward for the construction of examples of extended
homotopy quantum field theories.

4 The 3-2-1-dimensional case and the orbifold construction for
modular categories

The main focus of this section lies on equivariant topological field theories and their orbifoldization in the 3-2-1-
dimensional case because there the situation allows for an interesting algebraic description in terms of equivariant
modular categories and their orbifoldization via taking homotopy fixed points, i.e. via orbifold categories, see
e.g. [Kir04]. Before addressing this orbifoldization and the relation to our geometrically motivated construction
we have to establish a few facts on 3-2-1-dimensional equivariant topological field theories which are interesting
in their own right.

Let Z : G-Cob(3, 2, 1) −→ 2Vect be an extended G-equivariant topological field theory for a finite group G.
Then by the construction from Proposition 2.5 and Remark 2.9 we obtain a 2-vector bundle over the groupoid
of G-bundles over S1 by evaluation of Z on the circle S1 equipped with G-bundles over the circle.

The groupoid PBunG(S1) of G-bundles over S1 is non-canonically equivalent to the action groupoid G//G.
More precisely, the equivalence chooses a basepoint and orientation of S1 and assigns to a given bundle the
holonomy of the based loop surrounding S1 once in the positive direction. So whenever a bundle is characterized
by a group element, we actually mean the holonomy with respect the loop determined by the basepoint and the
orientation. To illustrate this issue, consider the bent cylinder (as a bordism S1

∐
S1 −→ ∅)

g

g−1

1

with the identity homotopy on it. On all circle-shaped slices of the cylinder we have the same bundle. But
since the upper and the lower copy of the circle carry different orientations we obtain holonomy values which
are invserse to each other.

By means of a fixed equivalence PBunG(S1) ∼= G//G we obtain from Z a 2-vector bundle

G//G −→ 2Vect

14
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sending an object g ∈ G in G//G to a 2-vector space CZg = Z(S1, g) and a morphism h : g −→ hgh−1 in G//G
to a 2-linear equivalence

φh : CZg = Z(S1, g) −→ CZhgh−1 = Z(S1, hgh−1). (4.1)

We use the notation h.X := φhX. By construction this 2-linear equivalence arises by evaluation of Z on the
cylinder with ingoing holonomy g and outgoing holonomy hgh−1. The two bundles characterized by these
holonomies are isomorphic by a gauge transformation h. Technically, we have to understand h as a homotopy
of the classifying maps for the bundles characterized by the holonomies g and hgh−1. This homotopy is put on
the cylinder such that we can evaluate Z on it. Depending on what is convenient we will switch between the
pictorial representations

g

h

hgh−1

g

h

hgh−1

for the corresponding 1-morphism in G-Cob(3, 2, 1).
Now

• the category

CZ :=
⊕
g∈G
CZg

• together with the equivalences φh : CZ −→ CZ obtained from the equivalences (4.1)

• and the coherence data of our 2-vector bundle consisting of natural isomorphisms αg,h : φg ◦ φh ∼= φgh
and φ1

∼= idCZ

form a G-equivariant category in the terminology of [Kir04]. Using a physics inspired terminology we call Cg
the twisted sector for the group element g ∈ G. The sector CZ1 of the neutral element 1 ∈ G is called the neutral
sector.

In the following sections we will investigate this category further and see that just like in the non-equivariant
case treated in [BDSPV15] it carries a lot of interesting structure, which arises from the geometric framework
provided by the topological field theory. For an equivariant version of Dijkgraaf-Witten theory this analysis has
already been carried out in [MNS12].

4.1 Equivariant monoidal structure

The pair of pants, appropriately decorated with bundles, will give an equivariant monoidal structure on the
category obtained by evluation of an equivariant 3-2-1-dimensional topological field theory on the circle.

Definition 4.1 – Equivariant monoidal category, after [Tur10, VI.2.1]. Let G be a finite group. A
G-equivariant monoidal category is a G-equivariant category C =

⊕
g∈G Cg, i.e. a 2-vector bundle over G//G

taking values in the 2-category of categories, together with monoidal structure on C and the structure of a
monoidal functor on each of the equivalences φg : C −→ C such that

(1) for X ∈ Cg and Y ∈ Ch we have X ⊗ Y ∈ Cgh,

(2) the coherence isomorphisms of C are compatible with the structure isomorphisms of the group elements
acting as monoidal functors, see [MNS12, Definition 4.2].

We call a G-equivariant monoidal category complex finitely semisimple if C is a C-linear, Abelian, finitely
semisimple category such that the tensor product is C-bilinear (or equivalently a 2-linear map C � C −→ C
defined on the Deligne product of C with itself).

The pair of pants with bundles g, h ∈ G on the ingoing circles has the bundle gh on the outgoing circle;
pictorially:
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g h

gh

Or, in other words, the evaluation of the stack Π(?, BG) of G-bundles on the pair of pants yields the span

G//G×G//G B←− (G×G)//G
M−→ G//G, (4.2)

where B is the obvious functor and M the multiplication. Hence, evaluation of Z on the pair of pants decorated
with ingoing bundles g and h yields a 2-linear functor ⊗g,h : CZg � CZh −→ CZgh. These functors assemble to give

the tensor product ⊗ : CZ � CZ −→ CZ . As required for an equivariant tensor product, it carries X ∈ CZg and

Y ∈ CZh to X ⊗ Y ∈ CZgh. Evaluation on the disk seen as bordism ∅ −→ S1 decorated with the trivial G-bundle

yields a 2-linear functor η : FinVect −→ CZ1 , which is determined by the object I := η(C) in CZ1 . This object
can easily be seen to be the tensor unit. Let us formally state these findings:

Proposition 4.2. For any extended G-equivariant topological field theory Z : G-Cob(3, 2, 1) −→ 2Vect the
evaluation on the pair of pants endows CZ with the structure of a complex finitely semisimple G-equivariant
monoidal category.

Proof. We have already given the tensor product. The necessary associators and unitors can be found just
as in the non-equivariant case treated in [BDSPV15]. Hence, the only thing left to prove is the fact that the
action of G on CZ by (4.1) is by monoidal functors: Since the disk is contractible, for g ∈ G there is a natural
isomorphism

FinVect CZ1

CZ1

η

φg
η

∼=

.

Next we have to exhibit natural isomorphisms

CZa � CZb CZab

CZgag−1 � CZgbg−1 CZgabg−1

⊗

φg � φg φg

⊗

κg

for a, b, g ∈ G. To obtain the isomorphism κg note that the clockwise composition is naturally isomorphic to
the evaluation of Z on
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a gag−1

gbg−1b

a

b

g

g

g−1

g−1

(a; b)

ab gabg−1

g

.

We have just added on the left cancellable homotopies representing g. But this is naturally isomorphic to the
counterclockwise composition because this bordism can be seen as a cylinder with the homotopy g on it followed
by a pair of pants with ingoing bundles gag−1 and gbg−1 (the bundle decoration of pair of pants is determined
by the ingoing bundles). From this way of constructing κg it follows that it satisfies the necessary coherence
conditions. �

The following observations we allow us to compute a 3-2-1-dimensional G-equivariant topological field theory
Z just by means of the tensor structure on CZ : The tensor product in CZ is built from the 2-linear maps

⊗g,h : CZg � CZh −→ CZgh
obtained by evaluation on the pair of pants decorated with bundles as explained above. Evaluation Z on the
same manifold read backwards yields 2-linear maps

∆g,h : CZgh −→ CZg � CZh .

The obvious generalization of the adjunction relation in [BDSPV15] gives us the adjunction

⊗g,h a ∆g,h (4.3)

in 2Vect. The same arguments apply to the monoidal unit

η : FinVect −→ CZ1
and the evaluation of Z on the manifold read backwards, namely

ε : CZ1 −→ FinVect,

i.e. we obtain the adjunction

η a ε (4.4)

in 2Vect
In order to use these adjunctions, we recall from [BDSPV15, Section 2.2] some needed facts on the symmetric

monoidal bicategory Bimod of 2-vector spaces, bimodules (here a bimodule from V to W between C-linear
categories V and W is a functor P : Vopp �W −→ FinVect) and natural transformations. The composition of
bimodules P : Uopp � V −→ FinVect and Q : Vopp �W −→ FinVect is the bimodule Q ◦ P : Uopp �W −→
FinVect given by the coend

(Q ◦ P )(U,W ) :=

ˆ V ∈V
Q(V,W )⊗ P (U, V ) for all U ∈ U , W ∈ W,

see [ML98] for an introduction to coends. Any 2-linear map F : V −→ W gives rise to a bimodule F∗ :
Wopp � V −→ FinVect by

F∗(W,V ) := HomW(W,FV ) for all V ∈ V, W ∈ W.

This assingment extends to a 2-functor

?∗ : 2Vect −→ Bimod.
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4 The 3-2-1-dimensional case and the orbifold construction for modular categories

The functoriality of ?∗ implies that for 2-linear maps F : U −→ V and G : V −→ W

HomW(W,GFU) ∼=
ˆ V ∈V

HomW(W,GV )⊗HomV(V, FU) for all U ∈ U , W ∈ W (4.5)

by a canonical isomorphism of vector spaces. Note that F : V −→ W also gives rise a bimodule F ∗ : Vopp�W −→
Vect by

F ∗(V,W ) := HomW(FV,W ) for all V ∈ V, W ∈ W,

which is related to F∗ by the adjunction

F∗ a F ∗ (4.6)

in Bimod.
Now from (4.3) we first deduce

(⊗g,h)∗ a (∆g,h)∗,

but by (4.6) also

(⊗g,h)∗ a ⊗∗g,h.

Uniqueness of adjoints yields a canonical isomorphism

(∆g,h)∗ ∼= ⊗∗g,h.

If we apply this also to (4.4), we have proven the following:

Proposition 4.3. Let G be a finite group and g, h ∈ G. For a 3-2-1-dimensional G-equivariant topological
field theory Z we obtain the following adjunction relations for the structure functors obtained from surfaces
with boundary:

(a) (∆g,h)∗ ∼= ⊗∗g,h
(b) and ε∗ ∼= η∗

If we use the notation η∗(X) := η∗(X,C) and the dual convention for ε we arrive at:

Corollary 4.4. For g, h ∈ G we have

(a) ⊗g,h∗(W,X � Y ) = HomCZgh(W,X ⊗ Y ) for all X ∈ CZg , Y ∈ CZh and W ∈ CZgh,

(b) ∆g,h∗(Y �W,X) = HomCZgh(Y ⊗W,X) for all X ∈ CZgh, Y ∈ CZg and W ∈ CZh ,

(c) η∗(X) = HomCZ1 (X, I) for all X ∈ CZ1
(d) and ε∗(X) = HomCZ1 (I,X) for all X ∈ CZ1 .

Corollary 4.4 allows us to compute the evaluation of an extended G-equivariant topological field theory on any
surface decorated with bundles purely in terms of the tensor structure.

Example 4.5. As an illustration let us compute the evaluation

Z(Bg) : CZg � CZg−1 −→ FinVect

of a 3-2-1-dimensional extended G-equivariant topological field theory Z on the bent cylinder Bg decorated with
bundles as on page 14. By cutting Bg into a pair of pants and a cup we find by functoriality of Z, (4.5) and
Corollary 4.4

Z(Bg)(X,Y ) ∼=
ˆ W∈CZ1

HomCZ1 (I,W )⊗HomCZ1 (W,X ⊗ Y ) for all X ∈ CZg , Y ∈ CZg−1 .

By the coYoneda Lemma, see [Rie14, Example 1.4.6], this implies

Z(Bg)(X,Y ) ∼= HomCZ1 (I,X ⊗ Y ),

i.e. Z(Bg)(X,Y ) is given by the invariants in the tensor product X ⊗ Y .

18
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4.2 Duality

In the next step we prove that CZ is also rigid:

Proposition 4.6. For any extended G-equivariant topological field theory Z : G-Cob(3, 2, 1) −→ 2Vect the
monoidal category CZ has duals.

Proof. The proof uses the appropriate equivariant versions of the arguments given in [BDSPV15] in the
non-equivariant case: For a group element g ∈ G we denote the 1-morphism

g

g−1

g

g g ,

in G-Cob(3, 2, 1) by Ng. This is the 1-morphism appearing in the proof of [BDSPV15, Proposition 4.2] ap-
propriately decorated with bundles. It is diffeomorphic to the cylinder with g on the ingoing and outgoing
circle and the identitity homotopy on it. This gives us a natural isomorphism idCZg

∼= Z(Ng) of 2-linear maps

CZg −→ CZg . By slicing up Ng as indicated and using the functoriality and monoidality of Z we find yet another

2-linear map CZg −→ CZg , which is also naturally isomorphic to the identity functor. By looking at the resulting

isomorphism for the corresponding bimodules (CZg )opp � CZg −→ Vect one deduces as in [BDSPV15, Proposi-

tions 4.2 and 4.8] that for any X ∈ CZg there is an object X ′ ∈ CZg−1 together with morphisms α : I −→ X ′ ⊗X
and β : X ⊗X ′ −→ I such that

β

α

X

X

X
0

is the identity of X. Again, as in the proof of [BDSPV15, Propositions 4.8], this implies that the endomorphism
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4 The 3-2-1-dimensional case and the orbifold construction for modular categories

β

α

X
0

X

X
0

of X ′ is an idempotent, and by finite (co)completeness of CZg−1 it splits into morphisms γ : X ′ −→ X∗ and

δ : X∗ −→ X ′ in CZg−1 such that δ ◦ γ = idX∗ . A direct computation in the graphical calculus shows that

X∗ ∈ CZg−1 is dual to X with evaluation evX := β ◦ (δ ⊗ idX) and coevaluation coevX := (idX ⊗γ) ◦ α. �

Corollary 4.7. For any extended G-equivariant topological field theory Z : G-Cob(3, 2, 1) −→ 2Vect the
duality in the category CZ has the following properties:

(a) The dual X∗ of an object X ∈ CZg lives in the sector CZg−1 .

(b) For g, h ∈ G and X ∈ CZg the object h.X∗ is dual to h.X, i.e. (h.X)∗ ∼= h.X∗.

Proof. Assertion (a) is clear from the proof of Proposition 4.6 and also a necessity since X ⊗ X∗ needs
to be in the neutral sector. Assertion (b) follows directly from the fact that G acts by monoidal functors
(Proposition 4.2). �

4.3 Equivariant braiding

The next piece of structure on the category CZ obtained from a 3-2-1-dimensional G-equivariant topological
field theory Z is a G-braiding. First let us recall the relevant notion:

Definition 4.8 – Equivariant braided category, after [Tur10, VI.2.2]. Let G be a finite group G. A
G-braiding on a G-equivariant monoidal category C is a family of isomorphisms

cX,Y : X ⊗ Y −→ g.Y ⊗X for all X ∈ Cg, Y ∈ Ch, g, h ∈ G

which are natural in X and Y and satisfy an analogue of the hexagon axiom, see e.g. [MNS12, Definition 4.5].

To construct the G-braiding we use that the 1-morphism in G-Cob(3, 2, 1) giving us the tensor product can
be written as the pair of pants

g h

gh .

The holonomies around the ingoing circles are g and h, respectively, and consequently the outgoing circle
carries holonomy gh. Rotating the inner circles counterclockwise around each other while keeping the outgoing
circle fixed yields a diffeomorphism of the pair of pants relative boundary. In the sense of Remark 2.2, (c)
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this diffeomorphism gives rise to an invertible 2-morphism G-Cob(3, 2, 1), also described in detail in [MNS12,
Lemma 3.25], on which we can evaluate Z. As a result we get natural isomorphisms

cX,Y : X ⊗ Y −→ g.Y ⊗X for all X ∈ CZg , Y ∈ CZh . (4.7)

Proposition 4.9. For any extended G-equivariant topological field theory Z : G-Cob(3, 2, 1) −→ 2Vect the
G-equivariant monoidal category CZ is G-braided by (4.7).

Proof. The above description of the relevant 2-morphism as coming from a rotation allows us to verify directly
the hexagon axiom of [Tur10, Appendix 5, Definition 1.8]. It remains to check that the braiding is compatible
with the G-action in the sense of [MNS12, Definition 4.5]. But this follows from the fact that the rotation giving
rise to the braiding commutes with gluing in cylinders with cancellable homotopies on them, which gave rise to
the structure maps for the elements of G as monoidal functors. �

4.4 Twist

Finally, we also get an equivariant twist.

Definition 4.10 – Equivariant ribbon category, after [Tur10, VI.2.3]. A G-twist on a G-braided
monoidal category C with dualities is a family of natural isomorphisms θX : X −→ g.X for all g ∈ G and
X ∈ Cg compatible with duality and the action of G, see [MNS12, Definition 4.8]. A G-equivariant ribbon
category is a G-braided monoidal category with dualities and a G-twist.

For the construction of the G-twist we compare the identity of CZg to the equivalence φg : CZg −→ CZg . Both
are obtained by evaluation of Z on a cylinder with ingoing and outgoing circle labeled by g. But the 1-morphism
which yields the identity carries the constant homotopy while the 1-morphism giving us φg : CZg −→ CZg carries

g seen as a homotopy. More precisely, if g is represented by the loop γ : S1 −→ BG, then φg : CZg −→ CZg is

the evaluation of Z on the cylinder together with the map γ̃ : S1 × [0, 1] −→ BG with γ̃(z, t) = γ(z e2πit) for all
(z, t) ∈ S1 × I.

Consider now the Dehn twist of the cylinder, i.e. the diffeomorphism

D : S1 × I −→ S1 × I, (z, t) 7−→
(
z e2πit, t

)
keeping the boundary circles fixed, and observe that the pullback of the constant homotopy from γ to γ along
D is γ̃. Now by Remark 2.2, (c) we obtain a natural isomorphism from the identity of CZg to g : CZg −→ CZg , i.e.
natural isomorphisms

θX : X −→ g.X for all X ∈ CZg . (4.8)

Let us make two important observations:

(1) The twist in the sector of some g ∈ G represented by the loop γ (as above) can also be obtained by
evaluation of Z on the 2-cell coming from the homotopy

S1 × I × I 3 (z, t, s) 7−→ γ(z e2πist)

of maps on the cylinder S1 × I going from the constant homotopy of γ to γ̃.

(2) In geometric terms the 2-cell

=)

g g

1

g

g

g

underlying the twist can be seen as coming from a counterclockwise rotation of the ingoing circle against
the outgoing one.

Proposition 4.11. For any extended G-equivariant topological field theory Z : G-Cob(3, 2, 1) −→ 2Vect the
braided G-equivariant monoidal category CZ is equipped with a G-twist by (4.8), i.e. CZ is a complex finitely
semisimple G-ribbon category.
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4 The 3-2-1-dimensional case and the orbifold construction for modular categories

Proof. For the proof that θ is actually a G-twist we need to show that it is compatible with the already
existing structure:

(i) Compatibility with the G-action: For X ∈ CZg and h ∈ G we need to prove that the square

h.X (hgh−1).h.X

h.g.X (hg).X

θh.X

h.θX ∼=

∼=

(4.9)

is commutative, where ∼= stands for the coherence isomorphisms of CZ . But this follows from the corre-
sponding commutativity of the square

g hgh−1

h

g hgh−1 hgh−1

hgh−1h

hg

g hgh−1g g hgh−1

g h

,

in which the vertices are 1-cells and the edges are 2-cells in G-Cob(3, 2, 1), respectively. In the clockwise
path we first use the twist to add the homotopy hgh−1 : hgh−1 −→ hgh−1 and then compose and
cancel homotopies. In the counterclockwise path we use the twist to add the homotopy g : g −→ g and
compose again. Both paths are represented by homotopies of maps on the cylinder relative boundary (see
observation (1) above) and are equivalent up to higher homotopy, which proves commutativity of (4.9).

(ii) Compatibility with the braiding: For X ∈ CZg and Y ∈ CZh the isomorphism

θX⊗Y : X ⊗ Y −→ (gh).(X ⊗ Y )

is obtained by evaluation of Z on the 2-cell

g h

gh

gh

1

g h

gh

gh

gh

using the twist to add the homotopy gh : gh −→ gh in the outer ring. By observation (2) on page 21 this
is accomplished by a full counterclockwise rotation of the middle circle containing the two smaller circles
against the outer circle. The same result is obtained by first rotating the smaller circles within the middle
circle (this gives us the twists on the two tensor factors) and the rotating the middle circle against the
outer one (this gives us a double braiding by the proof of Proposition 4.9). In the graphical calculus this
means
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θX⊗Y =

θX θY

,

which is exactly the compatibility of twist and braiding.

(iii) Compatibility with duality: Since X∗ ∈ C∗g−1 for X ∈ CZg by Proposition 4.6, the twist evaluated on g.X∗

together with the coherence isomorphisms yields an isomorphism

θg.X∗ : g.X∗ −→ g−1.g.X∗ ∼= X∗. (4.10)

Here we also used the coherence isomorphisms, but by abuse of notation refrain from giving a new name
to the composite. To prove the compatibility of twist and duality, we need to show that this map is equal
to the dual

θ∗X : g.X∗ ∼= (g.X)∗ −→ X∗ (4.11)

of θX : X −→ g.X (recall that g.X∗ ∼= (g.X)∗ by Proposition 4.6). To this end, we evaluate the
commutative triangle

g g

1

1

g−1
g−1

g g

g−1 g−1

g

1

1

g−1

g−1 g−1

apply twist to lower leg

apply twist to upper leg

translate homotopy g : g ! g

on the level of bimodules, see page 17. By Corollary 4.4 we translate it to the commutative triangle

HomCZ1 (X ⊗X∗, I) HomCZ1 (g.X ⊗X∗, I)

HomCZ1 (X ⊗ g−1.X∗, I)

f 7−→ f ◦ (θ−1
X ⊗ idX∗ )

gf 7−→ f ◦ (idX ⊗θ−1
X∗ ) . (4.12)
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4 The 3-2-1-dimensional case and the orbifold construction for modular categories

Here by abuse of notation we denote by g the map induced by the functor g : CZg −→ CZg on morphism
spaces and coherence isomorphisms, i.e. the map

HomCZ1 (X ⊗ g−1.X∗, I)
g−→ HomCZ1 (g.(X ⊗ g−1.X∗), g.I) ∼= HomCZ1 (g.X ⊗X∗, I).

Since the evaluation evX : X ⊗X∗ −→ I is an element of HomCZ1 (X ⊗X∗, I) we obtain from (4.12)

g.
(
evX ◦(idX ⊗θ−1

X∗)
)

= evX ◦(θ−1
X ⊗ idX∗).

Using that g : CZg −→ CZg is a monoidal functor (Proposition 4.2) and the compatibility of twist and
G-action in (i) this implies

evg.X ◦(θX ⊗ idg.X∗) = evX ◦(idX ⊗θg.X∗).

Now a straightforward computation in the graphical calculus using the snake identities for the duality
morphisms shows that (4.10) is indeed equal to (4.11). �

Remark 4.12. By [Tur10, Theorem 3.1] non-extended two-dimensional G-equivariant topological field theories
are classified by crossed Frobenius G-algebras, see [Tur10, II.3.2] for a definition of the latter. The structure and
properties of such crossed Frobenius G-algebras arise from the evaluation of a two-dimensional G-equivariant
topological field theory on surfaces equipped with bundles, just like a G-ribbon category arises from the evalu-
ation of an extended three-dimensional G-equivariant topological field theory on surfaces. So we should be able
to trace back the occurrence of certain structures and properties to common geometric origins, where of course
the G-ribbon category lies one categorical level higher than the crossed Frobenius G-algebras. For the former
equalities hold up to coherent isomorphism; they are homotopically relaxed. Such a comparison is given in the
following table:

Geometric origin G-crossed Frobenius algebra G-quivariant ribbon category
homotopies on the
cylinder

G-action, shifting sectors by con-
jugation

G-action up to coherent isomor-
phism, shifting sectors by conju-
gation

pair of pants deco-
rated with bundles

associative and unital product
taking Ag ⊗ Ah to Agh, G-action
by algebra automorphisms

tensor product taking Cg � Ch to
Cgh, G-action by monoidal func-
tors

rotation of the pair of
pants

crossed commutativity: xy =
(g.y)x for x ∈ Ag, y ∈ Ah

G-braiding X ⊗ Y ∼= g.Y ⊗X for
X ∈ Cg and Y ∈ Ch

Dehn twist self-invariance of twisted sectors:
g.x = x for x ∈ Ag

G-twist X ∼= g.X for X ∈ Cg

4.5 Geometric versus algebraic orbifoldization

Given an extended G-equivariant topological field theory Z : G-Cob(3, 2, 1) −→ 2Vect we can evaluate the
orbifold theory Z/G : Cob(3, 2, 1) −→ 2Vect from Definition 3.2 on the circle and obtain a 2-vector space
Z/G(S1). By [BDSPV15] the topological field theory Z/G can be used to endow Z/G(S1) with the structure
of a complex finitely semisimple ribbon category. Using the explicit description of the orbifold theory Z/G in
Proposition 3.3 we will now characterize Z/G(S1) in terms of CZ = Z(S1, ?). This will allow us in Theorem 4.16
to relate the geometric orbifold construction of this article to the concept of an orbifold category appearing e.g.
in [Kir04] or [GNN09].

Lemma 4.13. For the multiplication functor M : (G × G)//G −→ G//G the homotopy fiber M−1[g] over
any g ∈ G is equivalent to the discrete groupoid with object set {(a, b) ∈ G×G | ab = g}.

Proof. The objects of the homotopy fiber M−1[g] are triples (a, b, h) ∈ G × G × G with habh−1 = g. A
morphism (a, b, h) −→ (a′, b′, h′) is a c ∈ G such that a′ = cac−1, b′ = cbc−1 and h′c = h. Hence, M−1[g] is
equivalent to its full subgroupoid of all (a, b, h) with ab = g (and therefore h ∈ Aut(g)). In this full subgroupoid

we have the isomorphisms (a, b, h)
h−1

−→ (hah−1, hbh−1, 1), which proves that M−1[g] is even equivalent to its full
subgroupoid spanned by the objects (a, b, 1) with ab = g. But this subgroupoid is discrete because a morphism
c : (a, b, 1) −→ (a′, b′, 1) needs to fulfill c = 1 and hence a = a′ and b = b′. �

Recall from Proposition 3.3 that the orbifold theory Z/G assigns to the circle the 2-vector space of parallel
sections of CZ . The data of a parallel section of CZ is an object s(g) ∈ Z(S1, g) for each g ∈ G together with
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coherent isomorphisms h.s(g) ∼= s(hgh−1) for each h ∈ G. These latter isomorphisms describe the parallelity of
to isomorphism.

Proposition 4.14. Let G be a finite group and Z : G-Cob(3, 2, 1) −→ 2Vect an extended G-equivariant
topological field theory. The value Z/G(S1) of the orbifold theory Z/G : Cob(3, 2, 1) −→ 2Vect on the circle
naturally carries in the sense of [BDSPV15] the structure of a complex finitely semisimple ribbon category. This
structure arises in the following way from the structure of CZ :

(a) For s, s′ ∈ Z/G(S1), up to natural isomorphism, the tensor product is given by

(s⊗ s′)(g) =
∐
ab=g

s(a)⊗ s′(b) for all g ∈ G.

The unit of this tensor product is the unit of CZ seen as a parallel section in the obvious way. If CZ has
a simple unit, then so has Z/G(S1).

(b) For s, s′ ∈ Z/G(S1) the braiding isomorphism s⊗ s′ ∼= s′ ⊗ s is given by the isomorphisms

(s⊗ s′)(g) =
∐
ab=g

s(a)⊗ s′(b) −→
∐
uv=g

s′(u)⊗ s(v) = (s′ ⊗ s)(g) for all g ∈ G

which map the summand (a, b) to the summand (aba−1, a) by

s(a)⊗ s′(b)
cs(a),s′(b)−−−−−−→ a.s′(b)⊗ s(a)

parallelity−−−−−−→ s′(aba−1)⊗ s(a).

(c) For s ∈ Z/G(S1) the twist is given by

s(g)
θs(g)−−−→ g.s(g)

parallelity−−−−−−→ s(ggg−1) = s(g) for all g ∈ G.

Proof.

(a) The tensor product is obtained from the pair of pants, so using the span (4.2) and the concrete unpacking
in Proposition 3.3, (b) we find

(s⊗ s′)(g) = lim
(a,b,h)∈M−1[g]

h.(s(a)⊗ s(b)).

Since G acts by tensor functors (Proposition 4.2) and s and s′ are parallel this reduces to

(s⊗ s′)(g) ∼= lim
(a,b,h)∈M−1[g]

s(hah−1)⊗ s(hbh−1).

Now Lemma 4.13 yields the assertion if we take into account that finite coproducts and finite products
in a 2-vector space coincide. The tensor unit can also be obtained by Proposition 3.3, (b). Alternatively,
we can just use that the given object is a unit for the tensor product and hence the unique one up to
isomorphism.

We need to prove the additional statement on the simplicity of units: The unit of Z/G(S1) is I with
the canonical isomorphisms φg : g.I ∼= I coming from the fact that G acts by tensor functors. So an
endomorphism of the unit of Z/G(S1) is a morphism ψ : I −→ I such that φg ◦ (g.ψ) = ψ ◦ φg for
all g ∈ G. If I is simple, then ψ = λ idI for some λ ∈ C and the requirement φg ◦ (g.ψ) = ψ ◦ φg is
automatically true since g acts as a C-linear functor. This proves that an endomorphism of the unit of
CZ is the same as an endomorphism of the unit of Z/G(S1). Hence, the unit of Z/G(S1) is simple as well.

(b) The evaluation of the stack Π(?, BG) on the 2-cell in Cob(3, 2, 1) used to produce the braiding yields the
span of spans

G//G×G//G

(G×G)//G

G//G

(G×G)//G

(G×G)//G

B M

B M
R

=

α

,
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where R : (G×G)//G −→ (G×G)//G is the functor (g, h) 7−→ (ghg−1, g) and α is the obvious natural
transformation. By Proposition 3.3, (c) the braiding isomorphism (s ⊗ s′)(g) ∼= (s′ ⊗ s)(g) is given as
follows: We start with

(s⊗ s′)(g) = lim
(a,b,h)∈M−1[g]

s(hah−1)⊗ s′(hbh−1),

apply vertex-wise the equivariant braiding, i.e. the isomorphisms

s(hah−1)⊗ s′(hbh−1) ∼= (hah−1).s′(hbh−1)⊗ s(hah−1),

use parallelity

(hah−1).s′(hbh−1)⊗ s(hah−1) ∼= s′(haba−1h−1)⊗ s(hah−1)

and push the resulting limit

lim
(a,b,h)∈M−1[g]

(hah−1).s′(hbh−1)⊗ s(hah−1) ∼= s′(haba−1h−1)⊗ s(hah−1)

along the equivalence M−1[g] ∼= M−1[g] induced by R. Using the identifications made in (a) based on
Lemma 4.13 the assertion follows.

(c) The proof of this assertion follows also from Proposition 3.3. �

In order to compare Proposition 4.14 to the concept of an orbifold category, let us recall the latter:

Proposition 4.15 – Algebraic orbifoldization of an equivariant ribbon category from [Kir04]. Let
G be a finite group and C a complex finitely semisimple G-ribbon category, then the orbifold category C/G
(the category of homotopy fixed points), i.e. the category of objects X in C together with a family of coherent
isomorphisms (χg : g.X −→ X)g∈G inherits the following structure from C:

(a) By

(X, (χg)g∈G)⊗ (Y, (λg)g∈G) := (X ⊗ Y, (χg ⊗ λg)g∈G) for all (X, (χg)g∈G), (Y, (λg)g∈G) ∈ C/G

it is made into a tensor category with the tensor unit in C seen as a homotopy fixed point as the tensor
unit. The tensor category C/G has duals.

(b) The tensor category C/G is braided and the underlying isomorphism X ⊗ Y −→ Y ⊗ X for objects(
X =

⊕
g∈GXg, (χg)g∈G

)
,
(
Y =

⊕
g∈G Yg, (λg)g∈G

)
∈ C/G is given by

Xg ⊗ Yh
cXg,Yh−−−−→ g.Yh ⊗Xg

λg⊗idXg−−−−−−→ Yh ⊗Xg for all g, h ∈ G.

(c) The braided monoidal category C/G comes with a twist which on the object
(
X =

⊕
g∈GXg, (χg)g∈G

)
arises from the equivariant twist by

Xg

θXg−−→ g.Xg
χg−→ Xg.

Proof. This follows from [Kir04, Lemma 2.3 and Theorem 3.9]. �

We can now state our comparison result:

Theorem 4.16. For any extended G-equivariant topological field theory Z : G-Cob(3, 2, 1) −→ 2Vect the
evaluation of the orbifold theory Z/G : Cob(3, 2, 1) −→ 2Vect on S1 yields

Z

G
(S1) ∼=

CZ

G
(4.13)

as 2-vector spaces. Both categories carry the structure of a complex finitely semisimple ribbon category:

• Z/G(S1) by being the value of an extended topological field theory on the circle in the sense of Proposi-
tion 4.14.

• CZ/G by Proposition 4.15.

Both structures agree, i.e. (4.13) is true on the level of complex finitely semisimple ribbon categories.
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Proof. The equivalence Z/G(S1) ∼= CZ/G of 2-vector spaces holds by definition of the orbifold construction
and the definition of the orbifold category in [Kir04]. By Proposition 4.15 the category CZ/G naturally inherits
from CZ the structure of an complex finitely semi-simple ribbon category, and by Proposition 4.14 the category
Z/G(S1) has the same type of structure. Comparing the description of this structures as given in Proposition 4.15
and Proposition 4.14 shows that both agree. �

Diagrammatically, the above Theorem means that the square

3-2-1-dimensional G-equivariant
topological field theories

complex finitely semisimple
G-ribbon categories

3-2-1-dimensional
topological field theories

complex finitely semisimple
ribbon categories

evaluation on the circle

orbifoldization ?/G orbifold category

evaluation on the circle

commutes weakly.

Corollary 4.17. For any extended G-equivariant topological field theory Z : G-Cob(3, 2, 1) −→ 2Vect the
orbifold theory Z/G : Cob(3, 2, 1) −→ 2Vect is determined up to equivalence by the orbifold category CZ/G.

Proof. This follows from Theorem 4.16 if we take into account that by [BDSPV15] any 3-2-1-dimensional
topological field theory is determined up to equivalence by the complex finitely semisimple ribbon category it
yields on the circle. �

As an application we can give a generalization of [SW17a, Theorem 5.13] concerned with the orbifoldization of
equivariant Dijkgraaf-Witten theories:

Proposition 4.18. Let Zλ : J-Cob(3, 2, 1) −→ 2Vect the extended J-equivariant Dijkgraaf-Witten theory

constructed in [MNS12] from a short exact sequence 0 −→ G −→ H
λ−→ J −→ 0 of finite groups. The orbifold

theory Zλ/J is isomorphic to the extended Dijkgraaf-Witten theory ZH for the group H, i.e.

Zλ
J
∼= ZH .

Proof. In [MNS12, Proposition 35] the orbifold category CZλ/J of CZλ is computed to be category D(G)-Mod
of finite-dimensional modules over the Drinfeld double D(G) of the group H. By Theorem 4.16 this is the
category that Zλ/J assigns to the circle. Since this category is also the value of ZH on the circle we can use
Corollary 4.17 to deduce the desired assertion. �

One should appreciate that this statement, although more general, admits a significantly simpler proof as the
corresponding statement in [SW17a, Theorem 5.13] because it can be completely played back to the categories
obtained on the circle.

In another application we will use topological field theory as a counting device: It is well-known that the
evaluation of an n-dimensional extended topological field theory on the n-dimensional torus Tn yields the
number of simple objects of the 2-vector space assigned to Tn−2. In order to combine this fact with the orbifold
construction, we recall that the groupoid of G-bundles over Tn for n ≥ 1 is equivalent to the action groupoid
Com(Gn)//G of the action of G on n-tuples of mutually commuting group elements by conjugation. Hence, a
G-bundle over Tn can be described by n group elements g1, . . . , gn ∈ G such that gigj = gjgi for all 1 ≤ i, j ≤ n.

Theorem 4.19. Let G be a finite group and Z : G-Cob(n, n−1, n−2) −→ 2Vect an extended G-equivariant
topological field theory. Then

# simple objects in
Z

G
(Tn−2) =

1

|G|
∑

(g1,...,gn)∈Com(Gn)

Z(Tn, g1, . . . , gn). (4.14)

For n = 3 we also find the formula

# simple objects in
CZ

G
=

1

|G|
∑

(g1,g2,g3)∈Com(G3)

Z(T3, g1, g2, g3) (4.15)

using the orbifold category CZ/G of the G-ribbon category CZ that Z gives rise to.
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4 The 3-2-1-dimensional case and the orbifold construction for modular categories

Proof. We only need to prove (4.14). Then (4.15) follows from Theorem 4.16. By what was explained directly
before the statement of the Theorem we find

# simple objects in
Z

G
(Tn−2) =

Z

G
(Tn).

The number Z/G(Tn) can be computed using the non-extended orbifold construction. Knowing the groupoid
of G-bundles over Tn we can use [SW17a, Proposition 3.47] to express Z/G(Tn) as the integral

Z

G
(Tn) =

ˆ
(g1,...,gn)∈Com(Gn)//G

Z(Tn, g1, . . . , gn) =
∑

[g1,...,gn]∈π0(Com(Gn)//G)

Z(Tn, g1, . . . , gn)

|Aut(g1, . . . , gn)|

with respect to groupoid cardinality. By the orbit stabilizer Theorem we obtain

|Aut(g1, . . . , gn)| = |G|
|O(g1, . . . , gn)|

,

where O(g1, . . . , gn) is the orbit of (g1, . . . , gn) in Com(Gn)//G. This implies

Z

G
(Tn) =

1

|G|
∑

(g1,...,gn)∈Com(Gn)

Z(Tn, g1, . . . , gn)

and hence the result. �

Even in the non-extended case we can read off from the above proof that

1

|G|
∑

(g1,...,gn)∈Com(Gn)

Z(Tn, g1, . . . , gn) =
Z

G
(Tn) = dim

Z

G
(Tn−1) (4.16)

is a non-negative integer. This provides constraints for manifold invariants which arise from a (not necessarily
extended) equivariant topological field theory.

Corollary 4.20. Given an invariant of closed oriented n-dimensional manifolds decorated with G-bundles for
a finite group G which yield on the torus Tn decorated with the bundle specified by commuting group elements
(g1, . . . , gn) ∈ Gn the number zg1,...,gn ∈ C. If the invariant arises from an G-equivariant topological field theory,
then

∑
(g1,...,gn)∈Com(Gn) zg1,...,gn is a non-negative integer multiple of |G|.

Example 4.21. Let G be a finite group. A two-dimensional G-equivariant topological field theory is equivalent
to a crossed Frobenius G-algebra A =

⊕
g∈G Ag by [Tur10, Theorem 3.1], see also Remark 4.12. For g, h ∈ G

with gh = hg the group element g acts as an operator g : Ah −→ Ah. The invariant of the equivariant field
theory corresponding to A for the torus decorated with (g, h) is given by the trace trAh g of this operator as can
be deduced from [SW17a, Proposition 2.10 and Example 3.30]. Now from (4.16) and [SW17a, Theorem 4.5] we
obtain

1

|G|
∑
g,h∈G
gh=hg

trAh g = dimAG,

where AG is the space of G-invariants of A. Choosing an order on G and using the self-invariance of twisted
sectors (coming from the Dehn twist action), i.e. g = idAg , we find

|G|dimAG = dimA +
∑
g<h
gh=hg

(
trAh g + trAg h

)
.

Using the trace property (reflecting modular invariance), i.e. trAg h = trAh g
−1, yields

|G|dimAG = dimA +
∑
g<h
gh=hg

trAh(g + g−1).

For G = Z2 = {0, 1} this leaves us with

2 dimAZ2 = dimA + trA1 2 idA1 = dimA + 2 dimA1,

proving that in this case A has even dimension.
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Example 4.22 – Permutation orbifolds. Let C be a modular category and Z : Cob(3, 2, 1) −→ 2Vect the
extended topological field theory giving us C upon evaluation on the circle (Z is unique up to equivalence).
Consider now a finite group, which for illustration purposes we take to be the permutation group Sn on n letters
(this is not really a restriction because any finite group embeds into a permutation group). The pullback Cov∗ Z
of Z along the cover functor Cov : Sn-Cob(3, 2, 1) −→ Cob(3, 2, 1) from Example 2.10 is a Sn-equivariant
topological field theory. Using Theorem 4.16 we see that the evaluation of the orbifold theory Cov∗ Z/Sn on
the circle is what is commonly referred to as the permutation orbifold of C and which is denoted by C o Sn in
[Ban98, Ban02]. Since a permutation orbifold is a special case of an orbifold theory, we can use Theorem 4.19
to compute the number of simple objects in C o Sn.

To this end, note that for any finite group G and mutually commuting groups elements g1, g2, g3 ∈ G we can
define the quotient Pg1,g2,g3 of R3 ×G by

(x1 + 1, x2, x3, h) ∼ (x1, x2, x3, hg1),

(x1, x2 + 1, x3, h) ∼ (x1, x2, x3, hg2),

(x1, x2, x3 + 1, h) ∼ (x1, x2, x3, hg3)

for all x1, x2, x3 ∈ R and h ∈ G. The projection R3 × G −→ R3 induces a map Pg1,g2,g3 −→ T3, which is
a G-bundle with holonomy values g1, g2 and g3 along the generators of the fundamental group of T3. The
subgroup 〈g1, g2, g3〉 ⊂ G generated by g1, g2 and g3 acts from the right on G. It is easy to see that

Pg1,g2,g3
∼=

∐
|G/〈g1,g2,g3〉|

T3

as manifolds.
Going back to G = Sn we find by Theorem 4.19

# simple objects in C o Sn =
1

n!

∑
mutually commuting

permutations
σ1,σ3,σ3

on n letters

(# simple objects in C)|Sn/〈σ1,σ2,σ3〉| .

Hence, Theorem 4.19 specializes to the formula given in [Ban02, Equation (3)]. In fact, our orbifold construction
allows for a uniform treatment of the entire theory of permutation orbifolds.

In the forthcoming paper [MW18] we will also explain how Theorem 4.19 yields the formulae for the number
of simple twisted representations of finite groups and the number of simple representations of twisted Drinfeld
doubles of finite groups found in [Wil05].

4.6 Equivariant Verlinde algebra and modularity

The evaluation of a 3-2-1-dimensional topological field theory on the circle yields a modular tensor category by
[BDSPV15] (possibly with non-simple unit, see however [BDSPV15, Lemma 5.3]). In this section we give the
equivariant version of this result. To make contact to an equivariant modularity we use the equivariant Verlinde
algebra from [Kir04] whose definition can be understood by evaluation of the modular functor corresponding to
the equivariant theory on the 2-torus T2, see [Kir04, Section 8], which is inspired by [Tur10, Section 8.6]. We
begin by working out these ideas in the language of coends and based on a strong geometric motivation.

Let Z : G-Cob(n, n − 1, n − 2) −→ 2Vect be an extended G-equivariant topological field theory. Since any
two-dimensional closed oriented manifold Σ together with a map ϕ : Σ −→ BG gives rise to a 2-linear map
Z(Σ,ϕ) : FinVect −→ FinVect and hence to a vector space, which by abuse of notation we will also denote
by Z(Σ,ϕ). The dependence on ϕ is functorial, so we get a functor

Z(Σ, ?) : Π(Σ,BG) −→ FinVect, ϕ 7−→ Z(Σ,ϕ),

i.e. a representation of (or in more geometric terms: a vector bundle over) the groupoid of G-bundles over Σ.
Obviously, this is the representation we obtain be seeing Z as a non-extended theory and applying [SW17a,
Proposition 2.10].

These vector bundles enjoy the following gluing properties which follow directly from the functoriality of Z
and (4.5):

Lemma 4.23. Let G be a finite group and Z : G-Cob(n, n−1, n−2) −→ 2Vect be an extended G-equivariant
topological field theory and Σ a closed oriented n − 1-dimensional manifold obtained by gluing the oriented
n− 1-dimensional manifolds Σ′ and Σ′′ along the n− 2-dimensional closed oriented manifold S. Then for two
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maps ϕ′ : Σ′ −→ BG and ϕ′′ : Σ′′ −→ BG with ϕ′|S = ϕ′′|S =: ξ we have

Z(Σ,ϕ′ ∪S ϕ′′) ∼=
ˆ X∈Z(S,ξ)

Z(Σ′′, ϕ′′)X ⊗HomZ(S,ξ)(X,Z(Σ′, ϕ′)C)

by a canonical isomorphism of vector spaces.

A particularly important special case arises if Σ is the 2-torus T2. By the holonomy classification of flat bundles
the goupoid of G-bundles over the torus is equivalent to the full subgroupoid of Com(Gn)//G ⊂ (G × G)//G
consisting of pairs of commuting group elements.

Proposition 4.24. Let Z : G-Cob(3, 2, 1) −→ 2Vect be an extended G-equivariant topological field theory,
then for all g, h ∈ G with gh = hg

Z(T2)(g, h) ∼=
ˆ X∈CZh

HomCZh (g.X,X)

by a canonical isomorphism of vector spaces.

Proof. We can cut the torus with bundle decoration (g, h), i.e. with a G-bundle with holonomies g and h,
respectively, along the genrators of the fundamental group, as indicated in the picture

g

h h

h−1 h−1

.

We want to apply Lemma 4.23 with

• (Σ′′, ϕ′′) given by the bent cylinder Bh as described in Example 4.5 (that is the right third of the above
picture),

• (Σ′, ϕ′) given by the same bent cylinder read backwards with two cylinders glued to it such that the lower
leg is equipped with g (that is the left and the middle third of the above picture glued together).

Hence, (S, ξ) is given by two copies of the circle with h and h−1 on it. By Example 4.5 we find for X ∈ CZh and
Y ∈ CZh−1

Z(Σ′′, ϕ′′)(X � Y ) ∼= HomCZ1 (I,X ⊗ Y )

and similarly (i.e. by means of Corollary 4.4)

HomZ(S,ξ)(X � Y,Z(Σ′, ϕ′)C) ∼= HomCZ1 (g.X ⊗ Y, I).

Now by applying Lemma 4.23 we obtain

Z(T2, (g, h)) ∼=
ˆ X�Y ∈CZh�CZ

h−1

HomCZ1 (I,X ⊗ Y )⊗HomCZ1 (g.X ⊗ Y, I).

By Fubini’s theorem for coends and HomCZ1 (I,X ⊗ Y ) ∼= HomCZh (Y ∗, X) we find

Z(T2, (g, h)) ∼=
ˆ X∈CZh ˆ Y ∈CZ

h−1

HomCZh (Y ∗, X)⊗HomCZ1 (g.X ⊗ Y, I)

=

ˆ X∈CZh ˆ Y ∈CZh
HomCZh (Y,X)⊗HomCZh (g.X, Y ),

30



Extended Homotopy Quantum Field Theories and their Orbifoldization

where in the last step we used the substitution Y 7−→ Y ∗ and HomCZ1 (g.X ⊗ Y, I) ∼= HomCZh (g.X, Y ∗). By the
coYoneda Lemma, compare to Example 4.5, we arrive at

Z(T2, (g, h)) ∼=
ˆ X∈CZh

HomCZh (g.X,X). �

If we denote by P the pair of pants, then evaluation of Z on the bordism S1×P : T2
∐

T2 −→ T2 appropriately
decorated with G-bundles yields linear maps

Z(T2)(g, h)⊗ Z(T2)(g, h′) −→ Z(T2)(g, hh′) for all g, h, h′ ∈ G,

which extend by zero to an associative multiplication on the total space⊕
g,h∈G
gh=hg

Z(T2)(g, h) ∼=
⊕
g,h∈G
gh=hg

ˆ X∈CZh
HomCZh (g.X,X). (4.17)

The vector space (4.17) together with this multiplication is called the equivariant Verlinde algebra of Z. It
helps to prove the following:

Proposition 4.25. Let G be a finite group and Z : G-Cob(3, 2, 1) −→ 2Vect an extended G-equivariant
topological field theory such that the tensor unit of CZ is simple. Then all twisted sectors CZg for g ∈ G are
non-trivial, i.e. different from the zero 2-vector space.

Proof. It is well-known that the mapping class group of the torus has an element S : T2 −→ T2 such that
the bundle (g, h) is pulls back along S to the bundle (h−1, g). Hence, the evaluation of Z on the invertible 2-
morphism in G-Cob(3, 2, 1) built from S (Remark 2.2, (c)) yields an isomorphism Z(T2)(g, h) ∼= Z(T2)(h−1, g)
for g, h ∈ G; in particular

Z(T2)(g, 1) ∼= Z(T2)(1, g) for all g ∈ G. (4.18)

Suppose now CZg = 0 for some g 6= 1. Then Z(T2)(1, g) = 0 by Proposition 4.24 and hence Z(T2)(g, 1) = 0 by

(4.18). On the other hand, if we complete the unit I ∈ CZ1 to a basis (I, (Bj)j∈J) of simple objects for CZ1 , we
find by Proposition 4.24

Z(T2)(g, 1) ∼= HomCZ1 (g.I, I)⊕
⊕
j∈J

HomCZ1 (g.Bj , Bj).

By Proposition 4.2 the element g acts as a monoidal functor, so HomCZ1 (g.I, I) ∼= HomCZ1 (I, I) ∼= C leading to

Z(T2)(g, 1) 6= 0 and hence to a contradiction. �

Example 4.26. The statement of Proposition 4.25 is false if we do not assume the simplicity of the tensor
unit: Let Z : Cob(3, 2, 1) −→ 2Vect be a non-equivariant extended topological field theory such that the unit
of CZ := Z(S1) is simple. Then by [BDSPV15] the category CZ is modular. If we push Z along the group
morphism ι : {1} −→ G for some finite group G using the pushforward construction of Section 3.3, we obtain
a G-equivariant topological field theory ι∗Z. Evaluation of ι∗Z on the circle yields the category Cι∗Z with
trivial twisted sectors and neutral sector Cι∗Z1 =

⊕
g∈G CZ . The action by h ∈ G sends the copy for g to the

copy for hg. If we denote by Ig the unit I of CZ in the copy for g ∈ G, then the unit of Cι∗Z is given by
J =

⊕
g∈G I

g, so it is not simple for |G| ≥ 2. As a semisimple braided monoidal category, Cι∗Z decomposes into
semisimple braided monoidal categories with simple unit, see [BDSPV15, Lemma 5.3], but this decomposition
is not preserved by the G-action.

The twisted sectors of Cι∗Z are allowed to be trivial because the argument given in the proof of Proposition 4.25
fails. More precisely, in contrast to the proof we find Z(T2)(g, 1) = 0 for g 6= 1 because Cι∗Z has no simple
objects invariant (up to isomorphism) under g.

We have seen in Proposition 4.25 that it is important to know whether the unit of a the equivariant monoidal
category coming from an equivariant topological field theory is simple. The situation is under control for those
theories arising from our pushforward construction:

Proposition 4.27. Let λ : G −→ H be a morphism of finite groups and Z : G-Cob(3, 2, 1) −→ 2Vect an
extended G-equivariant topological field theory such that the tensor unit I ∈ CZ is simple. The tensor unit in
the category Cλ∗Z associated to the pushforward λ∗Z : H-Cob(3, 2, 1) −→ 2Vect of Z along λ in the sense of
Definition 3.6 has the endomorphism space C|H/ imλ|. In particular, the unit of Cλ∗Z is simple if and only if λ
is surjective.
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Proof. The group morphism λ induces a functor λ∗ : G//G −→ H//H for the groupoid of G-bundles and
H-bundles over the circle, respectively. An easy computation shows that the homotopy fiber over 1 ∈ H is given
by (kerλ×H)//G, where G acts on kerλ×H by

a.(g, h) =
(
aga−1, hλ

(
a−1

))
for all a ∈ G, g ∈ kerλ, h ∈ H.

By the definition of the pushforward, Cλ∗Z1 is the 2-vector space of parallel sections of the 2-vector bundle
obtained by pullback of CZ : G//G −→ 2Vect along the projection (kerλ×H)//G −→ G//G. The evaluation
of λ∗Z on the disk decorated with the trivial H-bundle yields a map FinVect −→ Cλ∗Z1 whose image on C is
the tensor unit J of Cλ∗Z . Again, by the definition of the pushforward, this map FinVect −→ Cλ∗Z1 and its
image on C are computed as follows: The morphism λ induces the functor ?//G −→ ?//H for the G-bundles
and H-bundles over the disk, respectively. Its homotopy fiber over ? is given by ({1} ×H)//G. By restriction
to the boundary, this groupoid embeds into the homotopy fiber (kerλ×H)//G that we computed for the circle.
Denote by ι : ({1}×H)//G −→ (kerλ×H)//G the embedding. Now the monoidal unit J ∈ Cλ∗Z1 is the parallel
section given on (g, h) ∈ kerλ×H by

J(g, h) = lim
ι−1[g,h]

I.

This parallel section is supported on {1} ×H, where it has constant value I. Since H acts on Cλ∗Z by linear
functors, we see that the endomorphism space of J of is given by C|π0(({1}×H)//G)| = C|H/ imλ|. �

The right hand side of (4.17) makes sense for any G-ribbon category (regardless of whether it comes from an
equivariant topological field theory) and inspires the following definition:

Definition 4.28 – Equivariant modularity, after [Kir04]. Let G be a finite group and C a complex
finitely semisimple G-equivariant ribbon category. We define as in [Kir04, Section 8]

Ṽ(C)g,h :=

ˆ X∈Ch
HomCh(g.X,X)

and from this the equivariant Verlinde algebra

Ṽ(C) :=
⊕
g,h∈G
gh=hg

Ṽ(C)g,h.

For g, h ∈ G with gh = hg, X ∈ Ch, Y ∈ Cg and a morphism ϕ : g.X −→ X we define the morphism
s̃(ϕ) : Y −→ h.Y as

Y

X X∗

g:X

h:Y

'

.

This assignment induces a linear map

s̃ : Ṽ(C)g,h =

ˆ X∈Ch
HomCh(g.X,X) −→

ˆ Y ∈Cg
HomCg (Y, h.Y ) ∼= Ṽ(C)h−1,g.

We denote the induced map Ṽ(C) −→ Ṽ(C) also by s̃. We call the complex finitely semisimple G-equivariant

ribbon category C a G-multimodular category if the map s̃ : Ṽ(C) −→ Ṽ(C) is invertible. A G-modular category
is a G-multimodular category with simple tensor unit.
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Remarks 4.29.

(a) The name equivariant Verlinde algebra is also justified in the purely algebraic case because Ṽ(C) comes
with a multiplication, see [Kir04, Section 8], which is in accordance with the multiplication provided by
Proposition 4.24 in the case where our category comes from a topological field theory.

(b) A {1}-multimodular category is just a modular category without the requirement that the unit is simple.
However by [BDSPV15, Lemma 5.3], such a category decomposes into a sum of modular categories. For
G 6= {1} such a decomposition need not be possible, see Example 4.26, so the simplicity of the unit is an
important requirement for equivariant categories.

(c) In [TV14] a G-modular category is defined to be a a complex finitely semisimple G-equivariant ribbon
category with simple unit such that the twisted sectors are non-trivial and the neutral sector is modular.
This notion of G-modularity turns out to be equivalent to the one defined above as follows from a result
by Müger in [Tur10, Appendix 5, Theorem 4.1 (ii)] and the characterization of G-modularity as defined
above in terms of the orbifold theory given in [Kir04] and recalled as Theorem 4.30 below.

Now we can prove the main results of this subsection, namely the equivariant modularity of the category CZ
that a 3-2-1-dimensional G-equivariant topological field theory Z yields on the circle. We will have two versions
of the result depending on whether the unit in CZ is simple. The proofs will be totally independent.

If the unit of CZ is simple, then we will prove that CZ is G-modular. The method of proof demonstrates that
the geometric orbifold construction provides a link between the purely algebraic understanding of equivariant
modular categories in [Kir04] to the topological results of [BDSPV15]. To this end, we use that the notion
of equivariant modularity is completely governed by the following strong algebraic result from [Kir04] that we
slightly rephrase:

Theorem 4.30 – [Kir04, Theorem 10.5]. Let G be a finite group. For any complex finitely semisimple
G-equivariant ribbon category C the orbifold category C/G naturally inherits by Proposition 4.15 the structure
of a complex finitely semisimple ribbon category and

C is G-modular ⇐⇒ C/G is modular.

Theorem 4.31. Let G be a finite group. For any extended G-equivariant topological field theory Z :
G-Cob(3, 2, 1) −→ 2Vect the category CZ is G-modular if its tensor unit is simple.

Proof. If the unit of CZ is simple, the tensor unit of Z/G(S1) is simple as well by Proposition 4.14. Now
Theorem 4.16 yields an equivalence

Z

G
(S1) ∼=

CZ

G

of complex finitely semisimple ribbon categories. But by [BDSPV15] the category Z/G(S1) is even modular,
hence so is CZ/G. Finally, Theorem 4.30 implies that CZ is G-modular. �

Remark 4.32. We can give another proof of Theorem 4.31: By Remark 4.29, (c) it suffices to show the following
two things:

• The neutral sector of CZ is modular: This follows from the fact that we can pull Z back along the
symmetric monoidal functor Cob(3, 2, 1) −→ G-Cob(3, 2, 1) equipping all manifolds with the trivial G-
bundle. This yields an ordinary extended topological field theory whose value on the circle is CZ1 , which
is a modular category by [BDSPV15].

• The twisted sectors of CZ are non-trivial: This was proven directly in Proposition 4.25 based on modular
invariance.

In case that the unit of CZ is not necessarily simple, we prove the following result:

Theorem 4.33. Let G be a finite group. For any extended G-equivariant topological field theory Z :
G-Cob(3, 2, 1) −→ 2Vect the category CZ is G-multimodular.

Proof. By Proposition 4.11 we only have to show that the operator s̃ : Ṽ(CZ) −→ Ṽ(CZ) is invertible. In the
non-equivariant case this follows from the fact that s̃ is obtained by evaluation on Z on an invertible 2-morphism
T2 =⇒ T2 in the bordism bicategory, see [BDSPV15, Section 5.3] for a detailed discussion. A straightforward
generalization to the equivariant case yields an invertible 2-morphism from T2 with bundle decoration (g, h)
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for g, h ∈ G with gh = hg to T2 with bundle decoration (h−1, g), compare to the proof of Proposition 4.25.

By evaluation of Z on the 2-morphism we see that the map s̃ : Ṽ(C)g,h −→ Ṽ(C)h−1,g is invertible. But then

s̃ : Ṽ(CZ) −→ Ṽ(CZ) is also invertible. �

Note that Theorem 4.33 generalizes Theorem 4.31 if we take the statement in Proposition 4.14 on the simplicity
of the units into account.
Remark 4.34. For a finite group G there are two main constructions for three-dimensional G-equivariant
topological field theories due to Turaev and Virelizier:

• The homotopy Turaev-Viro construction [TV12] takes as an input a spherical G-fusion category S and
yields the G-equivariant Turaev-Viro theory TVG

S ,

• The homotopy Reshetikhin-Turaev construction [TV14] takes as an input a G-modular category C and
yields the G-equivariant Reshetikhin-Turaev theory RTGC .

Both constructions are equivariant generalizations of the famous non-equivariant constructions, but so far only
cover the non-extended case. However, it is likely that both types of theories admit extensions to 3-2-1-theories.
For the following considerations in this remark we will assume that

• the homotopy Reshetikhin-Turaev construction can be generalized to give extended homotopy quantum
field theories in the sense of this article such that the value of RTGC on the circle in C,

• the homotopy Turaev-Viro construction can also be generalized to give extended homotopy quantum field
theories and the evaluation of TVG

S on the circle will be given by the G-center ZG(S) of S according to
the conjecture

TVG
S
∼= RTGZG(S) (4.19)

made in [TV12] (as a generalization of the non-equivariant case) that we would also have to be able to
interpret on the level of extended field theories.

Under these assumptions we can compute the orbifold theories of RTGC and TVG
S for a G-modular category C

and a G-fusion category S: By Theorem 4.16 the orbifold theory RTGC /G : Cob(3, 2, 1) −→ 2Vect of RTGC is
the Reshitikhin-Turaev theory for the orbifold category C/G, i.e.

RTGC
G
∼= RTC/G . (4.20)

For TVG
S we find

TVG
S

G
(S1)

(4.19)∼=
RTGZG(S)

G
(S1)

(4.20)∼=
ZG(S)

G
∼= Z(S)

as modular categories, where in the last step we used [GNN09, Theorem 3.5]. Hence, the orbifold theory
TVG
S /G just the non-equivariant Turaev-Viro theory for S seen as spherical fusion category (recall that a G-

fusion category is fusion if and only if G is finite, see [TV12, Section 4.2]). Hence, on the level of spherical
fusion categories, orbifoldization amounts to forgetting equivariance.

Furthermore, we remark that a generalization of RTG? taking G-multimodular categories as input should
provide a weak inverse to the functor from G-equivariant 3-2-1-dimensional topological field theories to G-
multimodular categories by evaluation on the circle, see Theorem 4.33. Hence, G-equivariant 3-2-1-dimensional
topological field theories should be classified by G-multimodular categories.
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