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DECOMPOSING EDGE-COLOURED COMPLETE SYMMETRIC

DIGRAPHS INTO MONOCHROMATIC PATHS

CARL BÜRGER AND MAX PITZ

Abstract. Confirming and extending a conjecture by Guggiari, we show that

every countable (r+1)-edge-coloured complete symmetric digraph containing

no directed paths of edge-length ℓi for any colour i ≤ r can be covered by
∏

i≤r
ℓi pairwise disjoint monochromatic directed paths in colour r + 1.

1. Introduction

For n ∈ N we write [n] = {1, 2, . . . , n}. Let Kn be the complete undirected

graph with vertex set [n], and ~Kn be the complete symmetric digraph on [n], i.e.

the directed graph where every edge of Kn appears in both its orientations. A

tournament of order n is a complete antisymmetric digraph on [n], i.e. a directed

graph in which every edge of Kn appears in precisely one of its possible orienta-

tions. Similarly, let KN and ~KN be the complete graph and the complete symmetric

digraph on the positive integers respectively.

Let G be a digraph. A sequence v1, v2, . . . , vn of vertices such that there is an

oriented edge ~ei = (vi, vi+1) ∈ E(G) from vi to vi+1 for all i ∈ [n− 1] is a directed

path in G of length n − 1 (in this paper, the length of a path always refers to its

edge-length). A sequence v1, v2, v3, . . . satisfying the above conditions for all i ∈ N

is a one-way infinite directed path. The term directed path may refer to both finite

and one-way infinite directed paths.

The upper density of a set A ⊆ N is defined as

d(A) = lim sup
n→∞

|A ∩ [n]|
n

.

DeBiasio and McKenney [1] have recently shown that for every ε > 0, there exists

a 2-edge-colouring of ~KN such that every monochromatic directed path has upper

density less than ε. Answering a question of the above-named authors [1, Problem

8.3], Guggiari [3] constructed a 2-edge-colouring of ~KN such that every monochro-

matic path has upper density 0, but observed that if one restricts the maximal

length of directed paths in the first colour, then there must be monochromatic

paths in the second colour with non-vanishing upper density. More generally:
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Theorem 1 (Guggiari). For any edge colouring c : E( ~KN) → [r+1] for which there

are no directed paths of length ℓi in colour i for any i ∈ [r], there is a monochromatic

directed path in colour r + 1 with upper density at least
∏

i≤r ℓ
−1
i .

After establishing the upper-density result, Guggiari concludes her paper with

the following conjecture:

Conjecture 1 (Guggiari). Take any 2-edge-colouring of ~KN that does not contain

a red directed path of length ℓ. Then the vertices of ~KN can be covered by at most

ℓ vertex-disjoint blue directed paths.

Clearly, such a partition result would imply the corresponding upper density

result, for if one has a partition into at most ℓ vertex-disjoint directed paths, then

by the pigeon hole principle, one of the paths must have upper density at least 1/ℓ.

The purpose of this note is to confirm Guggiari’s conjecture, and furthermore to

extend it to all finite edge-colourings of ~KN, with possibly more than two colours.

Theorem 2. Let G be a complete symmetric digraph, either finite or countably

infinite. Then for every (r+1)-edge-colouring for which there is no monochromatic

directed path of edge-length ℓi in colour i for any i ∈ [r], the vertex set of G can be

covered by
∏

i≤r ℓi pairwise disjoint monochromatic directed paths in colour r + 1.

Our proof contains three new ideas. First, following a proof strategy of Loh [5],

we show in Section 2 that edge-coloured tournaments without long monochromatic

paths are somewhat small. Second, in Section 3, we show that for a finitely edge-

coloured ~Kn, the number k of monochromatic paths in the last colour needed to

cover the vertex set gives rise to a subtournament of ~Kn of order k where the last

colour does not occur.

These two observations will then be used as follows: In Section 4, following the

proof strategy by Guggiari [3], we construct a well-behaved finite partition U of N

such that each partition classes can be covered by a monochromatic path in the last

colour. The third and final new piece is in Section 5 to construct a subtournament

of ~KN not using the last colour which (almost) spans U — allowing us to apply

observations one and two to bound the number of partition classes in U , giving rise

to a decomposition into few monochromatic paths in the last colour.

We remark that for the infinite case ~KN, the upper bound of
∏

i≤r ℓi in Theorem 2

is best possible by the example in [3, Figure 5]. It would be interesting to know

whether in the finite case the bound can be improved.

2. Monochromatic paths in finite edge-coloured tournaments

Before investigating complete symmetric digraphs, we begin our discussion with

a result on longest monochromatic paths in finitely edge-coloured tournaments.

One of the main results in a recent paper by Loh [5] is that every r-edge coloured

tournament of order n contains a monochromatic directed path of length at least
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r
√
n− 1.1 The same proof method as in [5, Theorem 1.1], with only minor modifi-

cations, also implies the following imbalanced version of this result:

Theorem 3. Let T be a finite tournament and c : E(T ) → [r] an edge-colouring.

Moreover, assume that there is no directed path of length ℓi in colour i for i ∈ [r].

Then T has order at most
∏

i≤r ℓi.

The proof relies on the following theorem, which, as noted in [5], has been

independently discovered in [2, 4, 6, 7].

Theorem 4 (Gallai-Hasse-Roy-Vitaver). Let G be an undirected graph with chro-

matic number k. No matter how its edges are oriented, the resulting directed graph

contains a directed path of length at least k − 1. �

Proof of Theorem 3. Let T be a tournament of order n, and consider an arbitrary

edge-colouring c : E(T ) → [r] of T such that there is no directed path of length ℓi
in colour i for any i ∈ [r].

This colouring induces an edge-coloring of the underlying undirected complete

graph Kn, which partitions Kn into r edge-disjoint subgraphs G1, G2, . . . , Gr, each

corresponding to a color class in the tournament. If χ(G) denotes the chromatic

number of a graphG, then Theorem 4 and our assumptions on the various monochro-

matic path lengths imply that χ(Gi) ≤ ℓi for all i. By considering the product

colouring on Kn, it follows that

n = χ(Kn) ≤
∏

i≤r

χ(Gi) ≤
∏

i≤r

ℓi. �

3. Decomposing finite symmetric complete digraphs

In this section, we use Theorem 3 to prove our main decomposition theorem in

the finite case. As a corollary to its proof, we make the useful structural observation

that the number k of monochromatic paths in the last colour needed to cover the

vertex set gives rise to a subtournament of ~Kn of order k where the last colour

does not occur—an observation which will be crucial further below in the proof our

main result for the infinite case.

Theorem 5. For any edge-colouring c : E( ~Kn) → [r + 1] such that there is no

directed path of edge-length ℓi in colour i for i ∈ [r], the vertex set of ~Kn can be

covered by
∏

i≤r ℓi pairwise disjoint monochromatic directed paths in colour r + 1.

Proof. Let k be the smallest integer such that the vertex set of ~Kn can be covered by

monochromatic pairwise disjoint directed paths in colour (r+1). Choose a sequence

P := (P1, . . . , Pk) of such monochromatic paths satisfying that (|P1|, . . . , |Pk|) is

minimal with respect to the lexicographical order of Nk. Let us write vi for the

first vertex on Pi for i ≤ k. Then (vi, vj) has some colour ≤ r, whenever i < j.

Otherwise, the path system

(P1, . . . , v̊iPi, . . . , viPj , . . . , Pk)

1Loh defines the length of a path to be its vertex-length, and so we have to add an additional

‘−1’ in our statements, translating between edge- and vertex-length.
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would contradict the minimality of P . Hence, the set {(vi, vj) : i < j} defines a

tournament T on {v1, . . . , vk} with edge colours in [r]. By Theorem 3, we have

k ≤ ∏
i≤r ℓi, completing the proof. �

As a consequence to the proof of Theorem 5 we obtain the following corollary:

Corollary 6. Let c : E( ~Kn) → [r + 1] be an edge-colouring of ~Kn. If k is the

smallest number of pairwise disjoint monochromatic directed paths in colour r + 1

needed to cover the vertex set of ~Kn, then ~Kn contains a tournament of order k

with edge-colours in [r] as a subgraph. �

4. A partition result

A non-trivial digraph G is said to be strongly <ℵ0-connected if for every two

vertices v and w of G, there are infinitely many independent directed v −w paths,

and also infinitely many independent directed w − v paths (equivalently: after

deleting any finite number of vertices from G − {v, w}, the vertices v and w lie in

the same strongly connected component).

In this section we gather two technical results. The first can be extracted from

the proof of [3, Theorem 1.3].

Lemma 7. Every countable strongly <ℵ0-connected digraph can be covered by a

single one-way infinite directed path. �

The second of our technical results is inspired by the techniques used in the

proofs of [3, Theorem 1.3 & 1.5], but requires some modifications, and therefore we

give the complete proof.

Lemma 8. For every edge-colouring c : E( ~KN) → [r + 1] of ~KN such that there is

no directed path of edge-length ℓi in colour i for i ∈ [r], there is a finite partition U
of N such that the edges coloured with colour r+1 induce a strongly <ℵ0-connected

subgraph on every non-singleton partition class of U .
Proof. For k = 1, 2, . . . , r + 1 we will recursively define finite partitions Uk of N

such that

(1) Uk refines Uk−1,

(2) for every U ∈ Uk and every vertex u ∈ U , the set {u′ ∈ U : c(u′, u) < k}
has cardinality at most

∑
j<k ℓj,

(3) for every non-singleton partition class U ∈ Uk, all vertices u ∈ U satisfy

that {u′ ∈ U : c(u, u′) ≥ k} is infinite.

Before we describe the recursive construction, let us see that U := Ur+1 is as

desired. Let U ∈ U be a non-singleton partition class, and let v 6= w ∈ U . To see

that U is <ℵ0-connected, let us write N+
r+1(v) and N−

r+1(v) for the out- and in-

neighbourhood of v in colour r+1 respectively. By property (3), we haveN+
r+1(v)∩U

is infinite, and by property (2), N−
r+1(w) ∩ U is cofinite in U . Therefore,

N+
r+1(v) ∩N−

r+1(w) ∩ U

is infinite, and so there are infinitely many independent monochromatic directed

v − w-paths in U (each of length 2) in colour r + 1.
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We now proceed with the recursive construction of the Uk. For k = 1, properties

(1) − (3) are trivially satisfied for U1 := {N}. Now, assume that Uk has already

been defined. For 0 ≤ i < ℓk let Ai consist of those vertices a ∈ N such that the

longest k-coloured directed path in ~KN with first vertex a has length i. Then define

A := {Ai : 0 ≤ i < ℓk}\{∅}.
Claim 1. A is a finite partition of N and for every partition class A ∈ A and every

vertex a ∈ A we have {a′ ∈ A : c(a′, a) = k} has cardinality at most ℓk.

Proof of Claim 1. Cf. [3, Theorem 1.3, Claim 1]. Since ~KN contains no directed

monochromatic path in colour k of length ℓk or bigger, it is clear that A is indeed a

finite partition. Suppose for some a ∈ A ∈ A we have |N−
k (a) ∩ A| > ℓk. Consider

a longest monochromatic path P in ~KN in colour k with first vertex a. Then

(N−
k (a) ∩A) \ P 6= ∅, and so for any a′ ∈ (N−

k (a) ∩ A) \ P , the path P ′ = a′P is a

strictly longer monochromatic path in colour k starting at an element in the same

partition class A ∈ A, contradicting the definition of A. ♦

Now consider the smallest common refinement V := {U ∩ A : U ∈ Uk, A ∈ A}.
Claim 2. For every V ∈ V and every vertex v ∈ V , the set {v′ ∈ V : c(v′, v) < k+1}
has cardinality at most

∑
j<k+1 ℓj .

Proof of Claim 2. Fix v ∈ V ∈ V . Then V = U ∩ A for some U ∈ Uk and A ∈ A.

By property (2), we have {u′ ∈ U : c(u′, v) < k} has cardinality at most
∑

j<k ℓj,

and by Claim 1 we have {a′ ∈ A : c(a′, v) = k} has cardinality at most ℓk. Hence,

{v′ ∈ U ∩ A : c(v′, v) < k + 1} has cardinality at most
∑

j<k+1 ℓj. ♦

For V ∈ V , let us define X(V ) = {v ∈ V : |{v′ ∈ V : c(v, v′) ≥ k + 1}| is finite}.
Claim 3. For every infinite partition class of V ∈ V the set X(V ) has cardinality

at most
∑

j<k+1 ℓj.

Proof of Claim 3. Cf. [3, Theorem 1.3, Claim 2]. Indeed, consider some infinite

V ∈ V and suppose for a contradiction that there is a finite subset X ⊆ X(V ) with

|X | > ∑
j<k+1 ℓj. Because V is infinite, there is a vertex:

w ∈ V \
⋃

x∈X

{v′ ∈ V : c(x, v′) ≥ k + 1}.

Then c(x,w) < k + 1 for all x ∈ X , and so it follows from Claim 2 applied to the

vertex w ∈ V that
∑

j<k+1

ℓj < |X | ≤ |{v′ ∈ V : c(v′, w) < k + 1}| ≤
∑

j<k+1

ℓj ,

a contradiction. ♦

Finally, let S be the collection of singletons of the form {v} for which v is either

part of a finite partition class of V , or is contained in a set X(V ) for some V ∈ V .
By induction assumption and Claim 3, we know that S is finite.

Claim 4. Uk+1 := S ∪ {V \X(V ) : V ∈ V is infinite} satisfies properties (1)− (3).
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Proof of Claim 4. By construction, Uk+1 is a finite partition of N such that every

non-singleton partition class is infinite. Property (1) for Uk+1 is obvious. Prop-

erty (2) follows from Claim 2, as Uk+1 is a refinement of V . Finally, for property (3)

consider some infinite U ∈ Uk+1. Then U = V \X(V ) for some infinite V ∈ V . By
definition of X(V ), it follows that for all u ∈ U the

{v ∈ V : c(u, v) ≥ k + 1}

is infinite, and therefore, as X(V ) is finite by Claim 3, we also have that

{v ∈ V \X(V ) : c(u, v) ≥ k + 1}

is infinite, which verifies property (3) for the partition class U ∈ Uk+1. ♦

Thus, we see that Uk+1 is as required, completing the recursive construction. �

5. Decomposing countably infinite symmetric complete digraphs

Theorem 9. For every edge-colouring c : E( ~KN) → [r + 1] of ~KN for which there

is no directed path of length ℓi in colour i for any i ∈ [r], the vertex set N can be

covered by
∏

i≤r ℓi pairwise disjoint monochromatic directed paths in colour r + 1.

Proof. By Lemma 8 there exists a finite partition U of the vertex set N such that

every partition class is either a singleton or strongly <ℵ0-connected in colour r+1.

Choose such a U with minimal cardinality.

Claim 1. Let U,U ′ ∈ U be infinite partition classes. Moreover, suppose that M is

a maximal directed U −U ′ matching in colour r+ 1 and M ′ is a maximal directed

U ′ − U matching in colour r + 1. Then M or M ′ is finite.

Proof of Claim 1. Suppose for a contradiction that U,U ′ ∈ U are both infinite

partition classes such that there exist infinite directed matchings M and M ′ as in

Claim 1. We aim to show that U ∪ U ′ is strongly <ℵ0-connected in colour r + 1,

contradicting the minimal choice of U .
Towards this, fix vertices v ∈ U and w ∈ U ′. Since U is <ℵ0-connected in

colour r + 1 we find a directed v − A fan in colour r + 1 for some infinite A ⊆
{u ∈ U : (u, u′) ∈ M}. Let B = {u′ ∈ U ′ : u ∈ A, (u, u′) ∈ M}. Similarly, since

U ′ is <ℵ0-connected in colour r + 1, there also exists a directed B′ − w fan for

some infinite B′ ⊂ B. Combining these two fans with suitable edges from M shows

that there are infinitely many independent monochromatic directed v−w-paths in

colour r + 1 in U ∪ U ′.

Applying the same argument to the matching M ′, one also finds infinitely many

independent monochromatic directed w − v-paths in colour r + 1 in U ∪ U ′. ♦

Recall that we write N+
r+1(v) and N−

r+1(v) for the out- and in-neighbourhood

respectively of a vertex v ∈ N in colour r + 1.

Claim 2. Let U,U ′ ∈ U be partition classes such that U = {u} is a singleton and

U ′ is infinite. Then N+
r+1(u) ∩ U ′ or N−

r+1(u) ∩ U ′ is finite.
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Proof of Claim 2. Suppose for a contradiction that there are partition classes U,U ′ ∈
U with U = {u} and U ′ infinite such that there are infinite sets ~E and ~E′ of directed

u− U ′ and U ′ − u edges respectively in colour r + 1. Again, we claim that U ∪ U ′

is strongly <ℵ0-connected in colour r + 1, contradicting the minimal choice of U .
Towards this, fix a vertex w ∈ U ′. Let A = {u′ ∈ U ′ : (u, u′) ∈ ~E}. Since U ′

is strongly <ℵ0-connected in colour r + 1, there is a directed A′ − w fan in colour

r+1 for some infinite A′ ⊆ A. Combining the fan with suitable edges from ~E shows

that there are infinitely many independent monochromatic directed u−w-paths in

colour r + 1 in U ∪ U ′.

Applying the same argument to set ~E′ of edges, one also finds infinitely many

independent monochromatic directed w − u-paths in colour r + 1 in U ∪ U ′. ♦

Let S be the set of singletons in U and S :=
⋃S. Furthermore, let k be the

smallest number of pairwise disjoint monochromatic directed paths in colour r+ 1

needed, to cover S in ~KN[S] with regard to the colouring induced by c. By Corol-

lary 6, there exists a sub-tournament T ′ of order k in ~KN[S] with edge-colours in

[r]. Let S ′ := {{v} : v ∈ V (T ′)}.
We now define a digraph H with vertex set S ′ ∪ (U\S), where we insert a direct

edge ~e = (U,U ′) ∈ E(H) and define a finite set W~e ⊂ N for every such edge, if

(†1) both U and U ′ are infinite and there exists a maximal finite directed U−U ′

matching M~e in colour r + 1. In this case, define W~e := V [M~e] to be the

set of vertices covered by M~e.

(†2) If U = {u} is a singleton, U ′ is infinite and W~e := N+
r+1(u) ∩ U ′ is finite.

(†3) If U is infinite, U ′ = {u′} is a singleton and W~e := N−
r+1(u

′) ∩ U is finite.

(†4) Or if U = {u} and U ′ = {u′} are both singletons and (u, u′) ∈ E(T ′). In

this case, we put W~e := ∅.
Then we define

W =
⋃

~e∈E(H)

W~e

which by construction is a finite subset of the vertex set N of ~KN.

Choose a vertex xU ∈ U \W for every partition class U ∈ S ′ ∪ (U\S) and write

X = {xU : U ∈ S ′ ∪ (U\S)}. Since W is finite, and by construction has non-trivial

intersection only with the infinite partition classes in U\S, this is always possible.
Claim 3. The digraph ~KN[X ] induced by the vertices of X contains a spanning

sub-tournament T with edge colours in [r].

Proof of Claim 3. We show that for every pair of vertices x, x′ ∈ X , one of the

directed edges (x, x′) or (x′, x) has a colour in [r]. Suppose x ∈ U ∈ U and

x′ ∈ U ′ ∈ U . Since T ′ is a tournament with edge colours in [r], we may assume that

one of U and U ′ infinite, and so it follows from Claim 1 and 2 that (U,U ′) or (U ′, U)

is a directed edge of H . By symmetry, let us assume that ~e := (U,U ′) ∈ E(H).

• If U and U ′ are both infinite, then (x, x′) has a colour in [r] because oth-

erwise, as x, x′ /∈ W , the directed matching M~e ∪ {(x, x′)} contradicts the

maximality of M~e in (†1).
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• If U = {u} is a singleton and U ′ is infinite, then (x, x′) has a colour in [r]

because otherwise, x′ ∈ N+
r+1(u) ∩ U ′ ⊆ W by (†2).

• If U is infinite and U ′ = {u′} is a singleton, then (x, x′) has a colour in [r]

because otherwise, x ∈ N−
r+1(u

′) ∩ U ⊆ W by (†3). ♦

Let T be a tournament as in Claim 3. Since c induces an r-edge colouring of T

such that there are no directed paths of length ℓi for any i ∈ [r], it follows from

Theorem 3 that |S ′| + |U\S| = |T | ≤ ∏
i≤r ℓi. But now we have k = |S ′| pairwise

disjoint monochromatic directed paths in colour r+1 in ~KN[S] covering S and—by

Lemma 7—we can cover each infinite partition class U ∈ U\S with a single one-way

infinite monochromatic directed paths in colour r + 1. Thus, we have covered the

vertex set of ~KN by k + |U \ S| ≤ ∏
i≤r ℓi many monochromatic directed paths in

colour r + 1, completing the proof of the theorem. �
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