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Abstract

We analyze quantum field theories on spacetimes M with timelike boundary from a model-
independent perspective. We construct an adjunction which describes a universal extension
to the whole spacetime M of theories defined only on the interior intM . The unit of this
adjunction is a natural isomorphism, which implies that our universal extension satisfies Kay’s
F-locality property. Our main result is the following characterization theorem: Every quantum
field theory on M that is additive from the interior (i.e. generated by observables localized in
the interior) admits a presentation by a quantum field theory on the interior intM and an ideal
of its universal extension that is trivial on the interior. We shall illustrate our constructions
by applying them to the free Klein-Gordon field.
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1 Introduction and summary

Algebraic quantum field theory is a powerful and far developed framework to address model-
independent aspects of quantum field theories on Minkowski spacetime [HK64] and more generally
on globally hyperbolic spacetimes [BFV03]. In addition to establishing the axiomatic foundations
for quantum field theory, the algebraic approach has provided a variety of mathematically rigorous
constructions of non-interacting models, see e.g. the reviews [BD15, BDH13, BGP07], and more
interestingly also perturbatively interacting quantum field theories, see e.g. the recent monograph
[Rej16]. It is worth emphasizing that many of the techniques involved in such constructions, e.g.
existence and uniqueness of Green’s operators and the singular structure of propagators, crucially
rely on the hypothesis that the spacetime is globally hyperbolic and has empty boundary.

Even though globally hyperbolic spacetimes have plenty of applications to physics, there
exist also important and interesting situations which require non-globally hyperbolic spacetimes,
possibly with a non-trivial boundary. On the one hand, recent developments in high energy
physics and string theory are strongly focused on anti-de Sitter spacetime, which is not globally
hyperbolic and has a (conformal) timelike boundary. On the other hand, experimental setups for
studying the Casimir effect confine quantum field theories between several metal plates (or other
shapes), which may be modeled theoretically by introducing timelike boundaries to the system.
This immediately prompts the question whether the rigorous framework of algebraic quantum
field theory admits a generalization to cover such scenarios.

Most existing works on algebraic quantum field theory on spacetimes with a timelike bound-
ary focus on the construction of concrete examples, such as the free Klein-Gordon field on simple
classes of spacetimes. The basic strategy employed in such constructions is to analyze the initial
value problem on a given spacetime with timelike boundary, which has to be supplemented by
suitable boundary conditions. Different choices of boundary conditions lead to different Green’s
operators for the equation of motion, which is in sharp contrast to the well-known existence and
uniqueness results on globally hyperbolic spacetimes with empty boundary. Recent works ad-
dressing this problem are [Zah15] and [IW03, IW04], the latter extending the analysis of [Wal80].
For specific choices of boundary conditions, there exist successful constructions of algebraic quan-
tum field theories on spacetimes with timelike boundary, see e.g. [DNP16, DF16, DF18, BDFK17].
The main message of these works is that the algebraic approach is versatile enough to account
also for these models, although some key structures, such as for example the notion of Hadamard
states [DF18, Wro17], should be modified accordingly.

Unfortunately, model-independent results on algebraic quantum field theory on spacetimes
with timelike boundary are more scarce. There are, however, some notable and very interesting
works in this direction: On the one hand, Rehren’s proposal for algebraic holography [Reh00]
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initiated the rigorous study of quantum field theories on the anti-de Sitter spacetime. This has
been further elaborated in [DR03] and extended to asymptotically AdS spacetimes in [Rib07].
On the other hand, inspired by Fredenhagen’s universal algebra [Fre90, Fre93, FRS92], a very
interesting construction and analysis of global algebras of observables on spacetimes with timelike
boundaries has been performed in [Som06]. The most notable outcome is the existence of a
relationship between maximal ideals of this algebra and boundary conditions, a result which has
been of inspiration for this work.

In the present paper we shall analyze quantum field theories on spacetimes with timelike
boundary from a model-independent perspective. We are mainly interested in understanding and
proving structural results for whole categories of quantum field theories, in contrast to focusing
on particular theories. Such questions can be naturally addressed by using techniques from the
recently developed operadic approach to algebraic quantum field theory [BSW17]. Let us describe
rather informally the basic idea of our construction and its implications: Given a spacetime M
with timelike boundary, an algebraic quantum field theory on M is a functor B : RM → Alg

assigning algebras of observables to suitable regions U ⊆M (possibly intersecting the boundary),
which satisfies the causality and time-slice axioms. We denote by QFT(M) the category of
algebraic quantum field theories on M . Denoting the full subcategory of regions in the interior of
M by RintM ⊆ RM , we may restrict any theory B ∈ QFT(M) to a theory resB ∈ QFT(intM)
defined only on the interior regions. Notice that it is in practice much easier to analyze and
construct theories on intM as opposed to theories on the whole spacetime M . This is because
the former are postulated to be insensitive to the boundary by Kay’s F-locality principle [Kay92].
As a first result we shall construct a left adjoint of the restriction functor res : QFT(M) →
QFT(intM), which we call the universal extension functor ext : QFT(intM) → QFT(M).
This means that given any theory A ∈ QFT(intM) that is defined only on the interior regions
in M , we obtain a universal extension extA ∈ QFT(M) to all regions in M , including those
that intersect the boundary. It is worth to emphasize that the adjective universal above refers
to the categorical concept of universal properties. Below we explain in which sense ext is also
“universal” in a more physical meaning of the word.

It is crucial to emphasize that our universal extension extA ∈ QFT(M) is always a bona fide
algebraic quantum field theory in the sense that it satisfies the causality and time-slice axioms.
This is granted by the operadic approach to algebraic quantum field theory of [BSW17]. In
particular, the ext ⊣ res adjunction investigated in the present paper is one concrete instance of a
whole family of adjunctions between categories of algebraic quantum field theories that naturally
arise within the theory of colored operads and algebras over them.

A far reaching implication of the above mentioned ext ⊣ res adjunction is a characterization
theorem that we shall establish for quantum field theories on spacetimes with timelike boundary.
Given any theory B ∈ QFT(M) on a spacetime M with timelike boundary, we can restrict
and universally extend to obtain another such theory ext resB ∈ QFT(M). The adjunction
also provides us with a natural comparison map between these theories, namely the counit ǫB :
ext resB→ B of the adjunction. Our result in Theorem 5.6 and Corollary 5.7 is that ǫB induces
an isomorphism ext resB/ ker ǫB ∼= B of quantum field theories if and only if B is additive from
the interior as formalized in Definition 5.5. The latter condition axiomatises the heuristic idea
that the theory B has no degrees of freedom that are localized on the boundary of M , i.e. all
its observables may be generated by observables supported in the interior of M . Notice that the
results in Theorem 5.6 and Corollary 5.7 give the adjective universal also a physical meaning in
the sense that the extensions are sufficiently large such that any additive theory can be recovered
by a quotient. We strengthen this result in Theorem 5.10 by constructing an equivalence between
the category of additive quantum field theories on M and a category of pairs (A,I) consisting of
a theory A ∈ QFT(intM) on the interior and an ideal I ⊆ extA of the universal extension that
is trivial on the interior. More concretely, this means that every additive theory B ∈ QFT(M)
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may be naturally decomposed into two distinct pieces of data: (1) A theory A ∈ QFT(intM)
on the interior, which is insensitive to the boundary as postulated by F-locality, and (2) an
ideal I ⊆ extA of its universal extension that is trivial on the interior, i.e. that is only sensitive
to the boundary. Specific examples of such ideals arise from imposing boundary conditions.
We shall illustrate this fact by using the free Klein-Gordon theory as an example. Thus, our
results also provide a bridge between the ideas of [Som06] and the concrete constructions in
[DNP16, DF16, DF18, BDFK17].

The remainder of this paper is structured as follows: In Section 2 we recall some basic
definitions and results about the causal structure of spacetimes with timelike boundaries, see
also [CGS09, Sol06]. In Section 3 we provide a precise definition of the categories QFT(M) and
QFT(intM) by using the ideas of [BSW17]. Our universal boundary extension is developed in
Section 4, where we also provide an explicit model in terms of left Kan extension. Our main
results on the characterization of additive quantum field theories on M are proven in Section
5. Section 6 illustrates our construction by focusing on the simple example of the free Klein-
Gordon theory, where more explicit formulas can be developed. It is in this context that we
provide examples of ideals implementing boundary conditions and relate to analytic results, e.g.
[DNP16]. We included Appendix A to state some basic definitions and results of category theory
which will be used in our work.

2 Spacetimes with timelike boundary

We collect some basic facts about spacetimes with timelike boundary, following [Sol06, Section
3.1] and [CGS09, Section 2.2]. For a general introduction to Lorentzian geometry we refer to
[BEE96, ONe83], see also [BGP07, Sections 1.3 and A.5] for a concise presentation.

We use the term manifold with boundary to refer to a Hausdorff, second countable, m-
dimensional smooth manifold M with boundary, see e.g. [Lee13]. This definition subsumes
ordinary manifolds as manifolds with empty boundary ∂M = ∅. We denote by intM ⊆ M
the submanifold without the boundary. Every open subset U ⊆ M carries the structure of a
manifold with (possibly empty) boundary and one has intU = U ∩ intM .

Definition 2.1. A Lorentzian manifold with boundary is a manifold with boundary that is
equipped with a Lorentzian metric.

Definition 2.2. Let M be a time-oriented Lorentzian manifold with boundary. The Cauchy
development D(S) ⊆M of a subset S ⊆M is the set of points p ∈M such that every inextensible
(piecewise smooth) future directed causal curve stemming from p meets S.

The following properties follow easily from the definition of Cauchy development.

Proposition 2.3. Let S, S′ ⊆ M be subsets of a time-oriented Lorentzian manifold M with
boundary. Then the following holds true:

(a) S ⊆ S′ implies D(S) ⊆ D(S′);

(b) S ⊆ D(S) = D(D(S));

(c) D(D(S) ∩D(S′)) = D(S) ∩D(S′).

We denote by J±
M (S) ⊆ M the causal future/past of a subset S ⊆ M , i.e. the set of points

that can be reached by a future/past directed causal curve stemming from S. Furthermore, we
denote by I±M (S) ⊆M the chronological future/past of a subset S ⊆M , i.e. the set of points that
can be reached by a future/past directed timelike curve stemming from S.
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Definition 2.4. Let M be a time-oriented Lorentzian manifold with boundary. We say that a
subset S ⊆M is causally convex in M if J+

M (S)∩J−
M (S) ⊆ S. We say that two subsets S, S′ ⊆M

are causally disjoint in M if (J+
M (S) ∪ J−

M (S)) ∩ S′ = ∅.

The following properties are simple consequences of these definitions.

Proposition 2.5. Let S, S′ ⊆M be two subsets of a time-oriented Lorentzian manifold M with
boundary. Then the following holds true:

(a) D(S) and D(S′) are causally disjoint if and only if S and S′ are causally disjoint;

(b) Suppose S and S′ are causally disjoint. Then the disjoint union S ⊔ S′ ⊆ M is causally
convex if and only if both S and S′ are causally convex.

The following two definitions play an essential role in our work.

Definition 2.6. A spacetime with timelike boundary is an oriented and time-oriented Lorentzian
manifold M with boundary, such that the pullback of the Lorentzian metric along the boundary
inclusion ∂M →֒M defines a Lorentzian metric on the boundary ∂M .

Definition 2.7. Let M be a spacetime with timelike boundary.

(i) RM denotes the category whose objects are causally convex open subsets U ⊆M and whose
morphisms i : U → U ′ are inclusions U ⊆ U ′ ⊆M . We call it the category of regions in M .

(ii) CM ⊆ MorRM is the subset of Cauchy morphisms in RM , i.e. inclusions i : U → U ′ such
that D(U) = D(U ′).

(iii) RintM ⊆ RM is the full subcategory whose objects are contained in the interior intM . We
denote by CintM ⊆ CM the Cauchy morphisms between objects of RintM .

Proposition 2.8. Let M be a spacetime with timelike boundary. For each subset S ⊆ M and
each object U ∈ RM , i.e. a causally convex open subset U ⊆M , the following holds true:

(a) I±M (S) is the largest open subset of J±
M (S);

(b) J±
M (I±M (S)) = I±M (S) = I±M (J±

M (S));

(c) S ⊆ intM implies D(S) ⊆ intM ;

(d) D(U) ⊆M is causally convex and open, i.e. D(U) ∈ RM .

Proof. (a) & (b): These are standard results in the case of empty boundary, see e.g. [BEE96,
ONe83, BGP07]. The extension to spacetimes with non-empty timelike boundary can be found
in [Sol06, Section 3.1.1].

(c): We show that if D(S) contains a boundary point, so does S: Suppose p ∈ D(S) belongs to
the boundary of M . By Definition 2.6, the boundary ∂M of M can be regarded as a time-oriented
Lorentzian manifold with empty boundary, hence we can consider a future directed inextensible
causal curve γ in ∂M stemming from p. Since ∂M is a closed subset of M , γ must be inextensible
also as a causal curve in M , hence γ meets S because it stems from p ∈ D(S). Since γ lies in
∂M by construction, we conclude that S contains a boundary point of M .

(d): D(U) ⊆M is causally convex by the definition of Cauchy development and by the causal
convexity of U ⊆ M . To check that D(U) ⊆ M is open, we use quasi-limits as in [ONe83,
Definition 14.7 and Proposition 14.8]: First, observe that I±M (U) ⊆M is open by (a). Hence, it is
the same to check whether a subset of I := I+M (U)∪I−M (U) is open in M or in I (with the induced
topology). Indeed, U ⊆ D(U) ⊆ I because U is open in M . From now on, in place of M , let
us therefore consider I, equipped with the induced metric, orientation and time-orientation. By
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contradiction, assume that there exists p ∈ D(U) \U such that all of its neighborhoods intersect
the complement of D(U). Then there exists a sequence {αn} of inextensible causal curves in I
never meeting U such that {αn(0)} converges to p. We fix a convex cover of I refining the open
cover {I+M (U), I−M (U)}. Relative to the fixed convex cover, the construction of quasi-limits allows
us to obtain from {αn} an inextensible causal curve λ through p ∈ D(U). Hence, λ meets U , say
in q. By the construction of a quasi-limit, q lies on a causal geodesic segment between pk and
pk+1, two successive limit points for {αn} contained in some element of the fixed convex cover.
It follows that either pk or pk+1 belongs to J+

I (U) ∩ J−
I (U), which is contained in U by causal

convexity. Hence, we found a subsequence {αnj} of {αn} and a sequence of parameters {sj}
such that {αnj (sj)} converges to a point of U (either pk or pk+1). By construction the sequence
{αnj (sj)} is contained in I \ U , however its limit lies in U . This contradicts the hypothesis that
U is open in I.

The causal structure of a spacetime M with timelike boundary can be affected by several
pathologies, such as the presence of closed future directed causal curves. It is crucial to avoid
these issues in order to obtain concrete examples of our constructions in Section 6. The following
definition is due to [CGS09, Section 2.2] and [Sol06, Section 3.1.2].

Definition 2.9. A spacetime M with timelike boundary is called globally hyperbolic if the fol-
lowing two properties hold true:

(i) Strong causality: Every open neighborhood of each point p ∈M contains a causally convex
open neighborhood of p.

(ii) Compact double-cones: J+
M (p) ∩ J−

M (q) is compact for all p, q ∈M .

Remark 2.10. In the case of empty boundary, this definition agrees with the usual one in
[BEE96, ONe83, BGP07]. Simple examples of globally hyperbolic spacetimes with non-empty
timelike boundary are the half space {xm−1 ≥ 0} ⊆ R

m, the spatial slab {0 ≤ xm−1 ≤ 1} ⊆ R
m

and the cylinder {(x1)2 + . . . + (xm−1)2 ≤ 1} ⊆ R
m in Minkowski spacetime R

m, for m ≥ 2, as
well as all causally convex open subsets thereof. △

The following results follow immediately from Definition 2.9 and Proposition 2.8.

Proposition 2.11. Let M be a globally hyperbolic spacetime with timelike boundary.

(a) M admits a cover by causally convex open subsets.

(b) For each U ∈ RM , i.e. a causally convex open subset U ⊆ M , both U and D(U) are
globally hyperbolic spacetimes with (possibly empty) boundary when equipped with the metric,
orientation and time-orientation induced by M . If moreover U ⊆ intM is contained in the
interior, then both U and D(U) have empty boundary.

3 Categories of algebraic quantum field theories

Let M be a spacetime with timelike boundary. (In this section we do not have to assume that M
is globally hyperbolic in the sense of Definition 2.9.) Recall the category RM of open and causally
convex regions in M and the subset CM of Cauchy morphisms (cf. Definition 2.7). Together with
our notion of causal disjointness from Definition 2.4, these data provide the geometrical input for
the traditional definition of algebraic quantum field theories on M .

Definition 3.1. An algebraic quantum field theory on M is a functor

A : RM −→ Alg (3.1)

with values in the category Alg of associative and unital ∗-algebras over C, which satisfies the
following properties:

6



(i) Causality axiom: For all causally disjoint inclusions i1 : U1 → U ← U2 : i2, the induced
commutator

[
A(i1)(−),A(i2)(−)

]
A(U)

: A(U1)⊗ A(U2) −→ A(U) (3.2)

is zero.

(ii) Time-slice axiom: For all Cauchy morphisms (i : U → U ′) ∈ CM , the map

A(i) : A(U) −→ A(U ′) (3.3)

is an Alg-isomorphism.

We denote by qft(M) ⊆ AlgRM the full subcategory of the category of functors from RM to Alg

whose objects are all algebraic quantum field theories on M , i.e. functors fulfilling the causality
and time-slice axioms. (Morphisms in this category are all natural transformations.)

We shall now show that there exists an alternative, but equivalent, description of the category
qft(M) which will be more convenient for the technical constructions in our paper. Following
[BSW17, Section 4.1], we observe that the time-slice axiom in Definition 3.1 (ii) is equivalent to
considering functors B : RM [C−1

M ] → Alg that are defined on the localization of the category
RM at the set of Cauchy morphisms CM . See Definition A.4 for the definition of localizations of
categories. By abstract arguments as in [BSW17, Section 4.6], one observes that the universal
property of localizations implies that the category qft(M) is equivalent to the full subcategory of

the functor category AlgRM [C−1
M ] whose objects are all functors B : RM [C−1

M ]→ Alg that satisfy
the causality axiom for the pushforward orthogonality relation on RM [C−1

M ]. Loosely speaking,
this means that the time-slice axiom in Definition 3.1 (ii) can be hard-coded by working on the
localized category RM [C−1

M ] instead of using the usual category RM of regions in M .

The aim of the remainder of this section is to provide an explicit model for the localiza-
tion functor RM → RM [C−1

M ]. With this model it will become particularly easy to verify the
equivalence between the two alternative descriptions of the category qft(M). Let us denote by

RM [C−1
M ] ⊆ RM (3.4a)

the full subcategory of RM whose objects V ⊆ M are stable under Cauchy development, i.e.
D(V ) = V where D(V ) ⊆ M denotes the Cauchy development (cf. Definition 2.2). In the
following we shall always use letters like U ⊆M for generic regions in RM and V ⊆M for regions
that are stable under Cauchy development, i.e. objects in RM [C−1

M ]. Recall from Definition 2.7
that each object U ∈ RM is a causally convex open subset U ⊆M , hence the Cauchy development
D(U) ⊆M is a causally convex open subset by Proposition 2.8 (d), which is stable under Cauchy
development by Proposition 2.3 (b). This shows thatD(U) is an object ofRM [C−1

M ]. Furthermore,
a morphism i : U → U ′ in RM is an inclusion U ⊆ U ′, which induces an inclusion D(U) ⊆ D(U ′)
by Proposition 2.3 (a) and hence a morphism D(i) : D(U) → D(U ′) in RM [C−1

M ]. We define a
functor

D : RM −→ RM [C−1
M ] (3.4b)

by setting on objects and morphisms

U 7−→ D(U) , (i : U → U ′) 7−→
(
D(i) : D(U)→ D(U ′)

)
. (3.4c)

Furthermore, let us write

I : RM [C−1
M ] −→ RM (3.5)

for the full subcategory embedding.
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Lemma 3.2. D and I form an adjunction (cf. Definition A.1)

D : RM
// RM [C−1

M ] : I ,oo (3.6)

whose counit is a natural isomorphism (in fact, the identity), hence RM [C−1
M ] is a full reflective

subcategory of RM . Furthermore, the components of the unit are Cauchy morphisms.

Proof. For U ∈ RM , the U -component of the unit

η : idRM
−→ I D (3.7)

is given by the inclusion U ⊆ D(U) of U into its Cauchy development, which is a Cauchy
morphism, see Proposition 2.3 (b) and Definition 2.7 (ii). For V ∈ RM [C−1

M ], the V -component
of the counit

ǫ : D I −→ idRM [C−1
M ] (3.8)

is given by the identity of the object D(V ) = V . The triangle identities hold trivially.

Proposition 3.3. The category RM [C−1
M ] and the functor D : RM → RM [C−1

M ] defined in (3.4)
provide a model for the localization of RM at CM .

Proof. We have to check all the requirements listed in Definition A.4.

(a) By Definition 2.7, for each Cauchy morphism i : U → U ′ one has D(U) = D(U ′) and hence
D(i) = idD(U) is an isomorphism in RM [C−1

M ].

(b) Let F : RM → D be any functor to a category D that sends morphisms in CM to D-
isomorphisms. Using Lemma 3.2, we define FW := F I : RM [C−1

M ]→ D and consider the natural
transformation Fη : F → F I D = FW D obtained by the unit of the adjunction D ⊣ I. Because
all components of η are Cauchy morphisms (cf. Lemma 3.2), Fη is a natural isomorphism.

(c) Let G,H : RM [C−1
M ]→ D be two functors. We have to show that the map

Hom
D

RM [C−1
M

]

(
G,H

)
−→ HomDRM

(
GD,HD

)
(3.9)

is a bijection. Let us first prove injectivity: Let ξ, ξ̃ : G → H be two natural transformations
such that ξD = ξ̃D. Using Lemma 3.2, we obtain commutative diagrams

GDI

Gǫ
��

ξDI
// HDI

Hǫ
��

G
ξ

// H

GDI

Gǫ
��

ξ̃DI
// HDI

Hǫ
��

G
ξ̃

// H

(3.10)

where the vertical arrows are natural isomorphisms because the counit ǫ is an isomorphism.
Recalling that by hypothesis ξD = ξ̃D, it follows that ξ = ξ̃. Hence, the map (3.9) is injective.

It remains to prove that (3.9) is also surjective. Let χ : GD → HD be any natural transfor-
mation. Using Lemma 3.2, we obtain a commutative diagram

GD

GDη
��

χ
// HD

HDη
��

GDID
χID

// HDID

(3.11)
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where the vertical arrows are natural isomorphisms because the components of the unit η are
Cauchy morphisms and D assigns isomorphisms to them. Let us define a natural transformation
ξ : G→ H by the commutative diagram

G

Gǫ−1

��

ξ
// H

GDI
χI

// HDI

Hǫ

OO (3.12)

where we use that ǫ is a natural isomorphism (cf. Lemma 3.2). Combining the last two diagrams,
one easily computes that ξD = χ by using also the triangle identities of the adjunction D ⊣ I.
Hence, the map (3.9) is surjective.

We note that there exist two (a priori different) options to define an orthogonality relation on
the localized category RM [C−1

M ], both of which are provided by [BSW17, Lemma 4.29]: (1) The
pullback orthogonality relation along the full subcategory embedding I : RM [C−1

M ] → RM and
(2) the pushforward orthogonality relation along the localization functor D : RM →RM [C−1

M ]. In
our present scenario, both constructions coincide and one concludes that twoRM [C−1

M ]-morphisms
are orthogonal precisely when they are orthogonal in RM . Summing up, we obtain

Lemma 3.4. We say that two morphisms in the full subcategory RM [C−1
M ] ⊆ RM are orthogonal

precisely when they are orthogonal in RM (i.e. causally disjoint, cf. Definition 2.4). Then both
functors D : RM →RM [C−1

M ] and I : RM [C−1
M ]→RM preserve (and also detect) the orthogonality

relations.

Proof. For I this holds trivially, while for D see Proposition 2.5 (a).

With these preparations we may now define our alternative description of the category of
algebraic quantum field theories.

Definition 3.5. We denote by QFT(M) ⊆ AlgRM [C−1
M ] the full subcategory whose objects are

all functors B : RM [C−1
M ]→ Alg that satisfy the following version of the causality axiom: For all

causally disjoint inclusions i1 : V1 → V ← V2 : i2 in RM [C−1
M ], i.e. V , V1 and V2 are stable under

Cauchy development, the induced commutator

[
B(i1)(−),B(i2)(−)

]
B(V )

: B(V1)⊗B(V2) −→ B(V ) (3.13)

is zero.

Theorem 3.6. By pullback, the adjunction D ⊣ I of Lemma 3.2 induces an adjoint equivalence
(cf. Definition A.2)

I∗ : qft(M) ∼
//
QFT(M) : D∗

oo . (3.14)

In particular, the two categories qft(M) of Definition 3.1 and QFT(M) of Definition 3.5 are
equivalent.

Proof. It is trivial to check that the adjunction D : RM ⇄ RM [C−1
M ] : I induces an adjunction

I∗ : AlgRM //
AlgRM [C−1

M ] : D∗
oo (3.15)

between functor categories. Explicitly, the unit η̃ : idAlgRM → D∗ I∗ has components

η̃A := Aη : A −→ D∗(I∗(A)) = AID , (3.16)
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where A : RM → Alg is any functor and η : idRM
→ I D denotes the unit of D ⊣ I. The counit

ǫ̃ : I∗ D∗ → id
Alg

RM [C−1
M

] has components

ǫ̃B := Bǫ : I∗(D∗(B)) = BDI −→ B , (3.17)

where B : RM [C−1
M ] → Alg is any functor and ǫ : D I → idRM [C−1

M ] denotes the counit of D ⊣ I.

The triangle identities for I∗ ⊣ D∗ follow directly from those of D ⊣ I.

Next, we have to prove that this adjunction restricts to the claimed source and target cate-
gories in (3.14). Given A ∈ qft(M) ⊆ AlgRM , the functor I∗(A) = A I : RM [C−1

M ]→ Alg satisfies
the causality axiom of Definition 3.5 because of Lemma 3.4. Hence, I∗(A) ∈ QFT(M). Vice

versa, given B ∈ QFT(M) ⊆ AlgRM [C−1
M ], the functor D∗(B) = BD : RM → Alg satisfies the

causality axiom of Definition 3.5 because of Lemma 3.4 and the time-slice axiom of Definition 3.5
because D sends by construction morphisms in CM to isomorphisms. Hence, D∗(B) ∈ qft(M).

Using Lemma 3.2, we obtain that the counit ǫ̃ of the restricted adjunction (3.14) is an iso-
morphism. Furthermore, all components of η are Cauchy morphisms, hence η̃

A
= Aη is an

isomorphism for all A ∈ qft(M), i.e. the unit η̃ is an isomorphism. This completes the proof that
(3.14) is an adjoint equivalence.

Remark 3.7. Theorem 3.6 provides us with a constructive prescription of how to change between
the two equivalent formulations of algebraic quantum field theories given in Definitions 3.1 and 3.5.
Concretely, given any A ∈ qft(M), i.e. a functor A : RM → Alg satisfying the causality and time-
slice axioms as in Definition 3.1, the corresponding quantum field theory I∗(A) ∈ QFT(M) in
the sense of Definition 3.5 reads as follows: It is the functor I∗(A) = A I : RM [C−1

M ]→ Alg on the
category of regions V ⊆M that are stable under Cauchy development, which assigns to V ⊆M
the algebra A(V ) ∈ Alg and to an inclusion i : V → V ′ the algebra map A(i) : A(V ) → A(V ′).
More interestingly, given B ∈ QFT(M), i.e. a functor B : RM [C−1

M ] → Alg satisfying the
causality axiom as in Definition 3.5, the corresponding quantum field theory D∗(B) ∈ qft(M)
in the sense of Definition 3.1 reads as follows: It is the functor D∗(B) = BD : RM → Alg

defined on the category of (not necessarily Cauchy development stable) regions U ⊆ M , which
assigns to U ⊆ M the algebra B(D(U)) corresponding to the Cauchy development of U and to
an inclusion i : U → U ′ the algebra map B(D(i)) : B(D(U)) → B(D(U ′)) associated to the
inclusion D(i) : D(U)→ D(U ′) of Cauchy developments. △

Remark 3.8. It is straightforward to check that the results of this section still hold true when
one replaces RM with its full subcategory RintM of regions contained in the interior of M and CM
with CintM (cf. Definition 2.7). This follows from the observation that the Cauchy development
of a subset of the interior of M is also contained in intM , as shown in Proposition 2.8 (c). We
denote by

QFT(intM) ⊆ AlgRintM [C−1
intM ] (3.18)

the category of algebraic quantum field theories in the sense of Definition 3.5 on the interior
regions of M . Concretely, an object A ∈ QFT(intM) is a functor A : RintM [C−1

intM ]→ Alg that
satisfies the causality axiom of Definition 3.5 for causally disjoint interior regions. △

4 Universal boundary extension

The goal of this section is to develop a universal construction to extend quantum field theories
from the interior of a spacetime M with timelike boundary to the whole spacetime. (Again, we
do not have to assume that M is globally hyperbolic in the sense of Definition 2.9.) Loosely
speaking, our extended quantum field theory will have the following pleasant properties: (1) It
describes precisely those observables that are generated from the original theory on the interior,
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(2) it does not require a choice of boundary conditions, (3) specific choices of boundary conditions
correspond to ideals of our extended quantum field theory. We also refer to Section 5 for more
details on the properties (1) and (3).

The starting point for this construction is the full subcategory inclusion RintM ⊆ RM defined
by selecting only the regions of RM that lie in the interior of M (cf. Definition 2.7). We denote
the corresponding embedding functor by

j : RintM −→ RM (4.1)

and notice that j preserves (and also detects) causally disjoint inclusions, i.e. j is a full orthogonal
subcategory embedding in the terminology of [BSW17]. Making use of Proposition 3.3, Lemma
3.2 and Remark 3.8, we define a functor J : RintM [C−1

intM ]→ RM [C−1
M ] on the localized categories

via the commutative diagram

RintM [C−1
intM ]

I
��

J // RM [C−1
M ]

RintM j
// RM

D

OO
(4.2a)

Notice that J is simply an embedding functor, which acts on objects and morphisms as

V ⊆ intM 7−→ V ⊆M , (i : V → V ′) 7−→ (i : V → V ′) . (4.2b)

From this explicit description it is clear that J preserves (and also detects) causally disjoint
inclusions, i.e. it is a full orthogonal subcategory embedding. The constructions in [BSW17,
Section 5.3] (see also [BSW18] for details how to treat ∗-algebras) then imply that J induces an
adjunction

ext : QFT(intM) //
QFT(M) : resoo (4.3)

between the category of quantum field theories on the interior intM (cf. Remark 3.8) and the
category of quantum field theories on the whole spacetime M . The right adjoint res := J∗ :
QFT(M) → QFT(intM) is the pullback along J : RintM [C−1

intM ] → RM [C−1
M ], i.e. it restricts

quantum field theories defined on M to the interior intM . The left adjoint ext : QFT(intM)→
QFT(M) should be regarded as a universal extension functor which extends quantum field the-
ories on the interior intM to the whole spacetime M . The goal of this section is to analyze
the properties of this extension functor and to develop an explicit model that allows us to do
computations in the sections below.

An important structural result, whose physical relevance is explained in Remark 4.2 below,
is the following proposition.

Proposition 4.1. The unit

η : idQFT(intM) −→ res ext (4.4)

of the adjunction (4.3) is a natural isomorphism.

Proof. This is a direct consequence of the fact that the functor J given in (4.2) is a full orthogonal
subcategory embedding and the general result in [BSW17, Proposition 5.6].

Remark 4.2. The physical interpretation of this result is as follows: Let A ∈ QFT(intM) be
a quantum field theory defined only on the interior intM of M and let B := ext A ∈ QFT(M)
denote its universal extension to the whole spacetime M . The A-component

ηA : A −→ res ext A (4.5)

11



of the unit of the adjunction (4.3) allows us to compare A with the restriction res B of its
extension B = ext A. Since ηA is an isomorphism by Proposition 4.1, restricting the extension
B recovers our original theory A up to isomorphism. This allows us to interpret the left adjoint
ext : QFT(intM)→ QFT(M) as a genuine extension prescription. Notice that this also proves
that the universal extension ext A ∈ QFT(M) of any theory A ∈ QFT(intM) on the interior
satisfies F-locality [Kay92]. △

We next address the question how to compute the extension functor ext : QFT(intM) →
QFT(M) explicitly. A crucial step towards reaching this goal is to notice that ext may be
computed by a left Kan extension.

Proposition 4.3. Consider the adjunction

LanJ : AlgRintM [C−1
intM ] //

AlgRM [C−1
M ] : J∗

oo , (4.6)

corresponding to left Kan extension along the functor J : RintM [C−1
intM ] → RM [C−1

M ]. Then the
restriction of LanJ to QFT(intM) induces a functor

LanJ : QFT(intM) −→ QFT(M) (4.7)

that is left adjoint to the restriction functor res : QFT(M) → QFT(intM) in (4.3). Due
to uniqueness (up to unique natural isomorphism) of adjoint functors (cf. Proposition A.3), it
follows that ext ∼= LanJ , i.e. (4.7) is a model for the extension functor ext in (4.3).

Proof. A general version of this problem has been addressed in [BSW17, Section 6]. Using in
particular [BSW17, Corollary 6.5], we observe that we can prove this proposition by showing that
every object V ∈ RM [C−1

M ] is J-closed in the sense of [BSW17, Definition 6.3]. In our present
scenario, this amounts to proving that for all causally disjoint inclusions i1 : V1 → V ← V2 : i2
with V1, V2 ∈ RintM [C−1

intM ] in the interior and V ∈ RM [C−1
M ] not necessarily in the interior, there

exists a factorization of both i1 and i2 through a common interior region. Let us consider the
Cauchy development D(V1 ⊔ V2) of the disjoint union and the canonical inclusions j1 : V1 →
D(V1 ⊔ V2)← V2 : j2. As we explain below, D(V1 ⊔ V2) ∈ RintM [C−1

intM ] is an interior region and
j1, j2 provide the desired factorization: Since the open set V1 ⊔ V2 ⊆ intM is causally convex by
Proposition 2.5 (b), D(V1 ⊔ V2) is causally convex, open and contained in the interior intM by
Proposition 2.8 (c-d). It is, moreover, stable under Cauchy development by Proposition 2.3 (b),
which also provides the inclusion Vk ⊆ V1 ⊔ V2 ⊆ D(V1 ⊔ V2) inducing jk, for k = 1, 2. Consider
now the chain of inclusions Vk ⊆ V1 ⊔ V2 ⊆ V corresponding to ik, for k = 1, 2. From the
stability under Cauchy development of V1, V2 and V , we obtain also the chain of inclusions
Vk ⊆ D(V1 ⊔ V2) ⊆ V , for k = 1, 2, that exhibits the desired factorization

V

V1

i1
00

j1
//❴❴❴ D(V1 ⊔ V2)

D(i1⊔i2)

OO✤

✤

✤

V2j2
oo❴ ❴ ❴

i2
nn (4.8)

which completes the proof.

We shall now briefly review a concrete model for left Kan extension along full subcategory
embeddings that was developed in [BSW17, Section 6]. This model is obtained by means of
abstract operadic techniques, but it admits an intuitive graphical interpretation that we explain
in Remark 4.4 below. It allows us to compute quite explicitly the extension extA = LanJ A ∈
QFT(M) of a quantum field theory A ∈ QFT(intM) defined on the interior intM to the whole
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spacetime M . The functor extA : RM [C−1
M ]→ Alg describing the extended quantum field theory

reads as follows: To V ∈ RM [C−1
M ] it assigns a quotient algebra

extA(V ) =
⊕

i:V→V

A(V )

/
∼ (4.9)

that we will describe now in detail. The direct sum (of vector spaces) in (4.9) runs over all tuples
i : V → V of morphisms in RM [C−1

M ], i.e. i = (i1 : V1 → V, · · · , in : Vn → V ) for some n ∈ Z≥0,
with the requirement that all sources Vk ∈ RintM [C−1

intM ] are interior regions. (Notice that the
regions Vk are not assumed to be causally disjoint and that the empty tuple, i.e. n = 0, is also
allowed.) The vector space A(V ) is defined by the tensor product of vector spaces

A(V ) :=

|V |⊗

k=1

A(Vk) , (4.10)

where |V | is the length of the tuple. (For the empty tuple, we set A(∅) = C.) This means that
the (homogeneous) elements

(i, a) ∈
⊕

i:V→V

A(V ) (4.11)

are given by pairs consisting of a tuple of morphisms i : V → V (with all Vk in the interior) and
an element a ∈ A(V ) of the corresponding tensor product vector space (4.10). The product on
(4.11) is given on homogeneous elements by

(i, a) (i′, a′) :=
(
(i, i′), a⊗ a′

)
, (4.12)

where (i, i′) = (i1, . . . , in, i
′
1, . . . , i

′
m) is the concatenation of tuples. The unit element in (4.11) is

1 := (∅, 1), where ∅ is the empty tuple and 1 ∈ C, and the ∗-involution is defined by

(
(i1, . . . , in), a1 ⊗ · · · ⊗ an

)∗
:=

(
(in, . . . , i1), a

∗
n ⊗ · · · ⊗ a∗1

)
(4.13)

and C-antilinear extension. Finally, the quotient in (4.9) is by the two-sided ∗-ideal of the algebra
(4.11) that is generated by

(
i
(
i1, . . . , in

)
, a1 ⊗ · · · ⊗ an

)
−

(
i,A(i1)

(
a1
)
⊗ · · · ⊗ A(in)

(
an

))
∈

⊕

i:V→V

A(V ) , (4.14)

for all tuples i : V → V of length |V | = n ≥ 1 (with all Vk in the interior), all tuples ik : V k → Vk

of RintM [C−1
intM ]-morphisms (possibly of length zero), for k = 1, . . . , n, and all ak ∈ A(V k), for

k = 1, . . . , n. The tuple in the first term of (4.14) is defined by composition

i
(
i1, . . . , in

)
:=

(
i1 i11, . . . , i1 i1|V 1|

, . . . , in in1, . . . , in in|V n|

)
(4.15a)

and the expressions A(i)
(
a
)
in the second term are determined by

A(i) : A(V ) −→ A(V ) , a1 ⊗ · · · ⊗ an 7−→ A(i1)
(
a1
)
· · · A(in)

(
an

)
, (4.15b)

where multiplication in A(V ) is denoted by juxtaposition. To a morphism i′ : V → V ′ inRM [C−1
M ],

the functor extA : RM [C−1
M ]→ Alg assigns the algebra map

extA(i′) : extA(V ) −→ extA(V ′) , [i, a] 7−→
[
i′(i), a

]
, (4.16)

where we used square brackets to indicate equivalence classes in (4.9).
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Remark 4.4. The construction of the algebra extA(V ) above admits an intuitive graphical
interpretation: We shall visualize the (homogeneous) elements (i, a) in (4.11) by decorated trees

V

a1 an
· · ·

(4.17)

where ak ∈ A(Vk) is an element of the algebra A(Vk) associated to the interior region Vk ⊆ V ,
for all k = 1, . . . , n. We interpret such a decorated tree as a formal product of the formal
pushforward along i : V → V of the family of observables ak ∈ A(Vk). The product (4.12) is
given by concatenation of the inputs of the individual decorated trees, i.e.

V

a1 an
· · ·

V

a′
1

a′m

· · ·

V

a1 a′m

· · ·
=·

(4.18)

where the decorated tree on the right-hand side has n+m inputs. The ∗-involution (4.13) may be
visualized by reversing the input profile and applying ∗ to each element ak ∈ A(Vk). Finally, the
∗-ideal in (4.14) implements the following relations: Assume that (i, a) is such that the sub-family
of embeddings (ik, ik+1, . . . , il) : (Vk, Vk+1, . . . , Vl)→ V factorizes through some common interior
region, say V ′ ⊆ V . Using the original functor A ∈ QFT(intM), we may form the product
A(ik)(ak) · · · A(il)(al) in the algebra A(V ′), which we denote for simplicity by ak · · · al ∈ A(V ′).
We then have the relation

V

a1 ak al an
· · · · · · · · ·

V

a1 ak · · · al an
· · · · · ·

∼

(4.19)

which we interpret as follows: Whenever (ik, ik+1, . . . , il) : (Vk, Vk+1, . . . , Vl)→ V is a sub-family
of embeddings that factorizes through a common interior region V ′ ⊆ V , then the formal product
of the formal pushforward of observables is identified with the formal pushforward of the actual
product of observables on V ′. △

5 Characterization of boundary quantum field theories

In the previous section we established a universal construction that allows us to extend quantum
field theories A ∈ QFT(intM) that are defined only on the interior intM of a spacetime M with
timelike boundary to the whole spacetime. The extension extA ∈ QFT(M) is characterized
abstractly by the ext ⊣ res adjunction in (4.3). We now shall reverse the question and ask which
quantum field theories B ∈ QFT(M) on M admit a description in terms of (quotients of) our
universal extensions.

Given any quantum field theory B ∈ QFT(M) on the whole spacetime M , we can use the
right adjoint in (4.3) in order to restrict it to a theory resB ∈ QFT(intM) on the interior of
M . Applying now the extension functor, we obtain another quantum field theory ext resB ∈
QFT(M) on the whole spacetime M , which we would like to compare to our original theory

14



B ∈ QFT(M). A natural comparison map is given by the B-component of the counit ǫ :
ext res→ idQFT(M) of the adjunction (4.3), i.e. the canonical QFT(M)-morphism

ǫB : ext resB −→ B . (5.1a)

Using our model for the extension functor given in (4.9) (and the formulas following this equation),
the RM [C−1

M ] ∋ V -component of ǫ
B

explicitly reads as

(ǫB)V :
⊕

i:V→V

B(V )

/
∼ −→ B(V ) , [i, b] 7−→ B(i)

(
b
)

. (5.1b)

In order to establish positive comparison results, we have to introduce the concept of ideals of
quantum field theories.

Definition 5.1. An ideal I ⊆ B of a quantum field theory B ∈ QFT(M) is a functor I :
RM [C−1

M ]→ Vec to the category of complex vector spaces, which satisfies the following properties:

(i) For all V ∈ RM [C−1
M ], I(V ) ⊆ B(V ) is a two-sided ∗-ideal of the unital ∗-algebra B(V ).

(ii) For allRM [C−1
M ]-morphisms i : V → V ′, the linear map I(i) : I(V )→ I(V ′) is the restriction

of B(i) : B(V )→ B(V ′) to the two-sided ∗-ideals I(V (′)) ⊆ B(V (′)).

Lemma 5.2. Let B ∈ QFT(M) and I ⊆ B any ideal. Let us define B/I(V ) := B(V )/I(V )
to be the quotient algebra, for all V ∈ RM [C−1

M ], and B/I(i) : B/I(V ) → B/I(V ′) to be the
Alg-morphism induced by B(i) : B(V )→ B(V ′), for all RM [C−1

M ]-morphisms i : V → V ′. Then
B/I ∈ QFT(M) is a quantum field theory on M which we call the quotient of B by I.

Proof. The requirements listed in Definition 5.1 ensure that B/I : RM [C−1
M ] → Alg is an Alg-

valued functor. It satisfies the causality axiom of Definition 3.5 because this property is inherited
from B ∈ QFT(M) by taking quotients.

Lemma 5.3. Let κ : B → B
′ be any QFT(M)-morphism. Define the vector space kerκ(V ) :=

ker
(
κV : B(V ) → B

′(V )
)
⊆ B(V ), for all V ∈ RM [C−1

M ], and ker κ(i) : ker κ(V ) → ker κ(V ′)
to be the linear map induced by B(i) : B(V ) → B(V ′), for all RM [C−1

M ]-morphisms i : V → V ′.
Then ker κ : RM [C−1

M ]→ Vec is an ideal of B ∈ QFT(M), which we call the kernel of κ.

Proof. The fact that ker κ defines a functor follows from naturality of κ. Property (ii) in Definition
5.1 holds true by construction. Property (i) is a consequence of the fact that kernels of unital
∗-algebra morphisms κV : B(V )→ B(V ′) are two-sided ∗-ideals.

Remark 5.4. Using the concept of ideals, we may canonically factorize (5.1) according to the
diagram

ext resB

π
B

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗

ǫ
B // B

ext resB
/
ker ǫ

B

λ
B

88♣♣♣♣♣♣♣♣♣♣♣

(5.2)

where both the projection π
B

and the inclusion λ
B

are QFT(M)-morphisms. △

As a last ingredient for our comparison result, we have to introduce a suitable notion of
additivity for quantum field theories on spacetimes with timelike boundary. We refer to [Few13,
Definition 2.3] for a notion of additivity on globally hyperbolic spacetimes.

15



Definition 5.5. A quantum field theoryB ∈ QFT(M) on a spacetimeM with timelike boundary
is called additive (from the interior) at the object V ∈ RM [C−1

M ] if the algebra B(V ) is generated
by the images of the Alg-morphisms B(iint) : B(Vint)→ B(V ), for all RM [C−1

M ]-morphism iint :
Vint → V whose source Vint ∈ RintM [C−1

intM ] is in the interior intM of M . We call B ∈ QFT(M)
additive (from the interior) if it is additive at every object V ∈ RM [C−1

M ]. The full subcategory
of additive quantum field theories on M is denoted by QFTadd(M) ⊆ QFT(M).

We can now prove our first characterization theorem for boundary quantum field theories.

Theorem 5.6. Let B ∈ QFT(M) be any quantum field theory on a (not necessarily globally
hyperbolic) spacetime M with timelike boundary and let V ∈ RM [C−1

M ]. Then the following are
equivalent:

(1) The V -component

(λB)V : ext resB(V )
/
ker ǫB(V ) −→ B(V ) (5.3)

of the canonical inclusion in (5.2) is an Alg-isomorphism.

(2) B is additive at the object V ∈ RM [C−1
M ].

Proof. Let iint : Vint → V be any RM [C−1
M ]-morphism whose source Vint ∈ RintM [C−1

intM ] is in the
interior intM of M . Using our model for the extension functor given in (4.9) (and the formulas
following this equation), we obtain an Alg-morphism

[iint,−] : B(Vint) −→ ext resB(V ) , b 7−→ [iint, b] . (5.4)

Composing this morphism with the V -component of ǫ
B

given in (5.1), we obtain a commutative
diagram

ext resB(V )
(ǫ

B
)V // B(V )

B(Vint)

[iint,−]

gg◆◆◆◆◆◆◆◆◆◆◆ B(iint)

::ttttttttt

(5.5)

for all iint : Vint → V with Vint in the interior.

Next we observe that the images of the Alg-morphisms (5.4), for all iint : Vint → V with
Vint in the interior, generate ext resB(V ). Combining this property with (5.5), we conclude that
(ǫ

B
)V is a surjective map if and only if B is additive at V . Hence, (λ

B
)V given by (5.2), which

is injective by construction, is an Alg-isomorphism if and only if B is additive at V .

Corollary 5.7. λ
B

: ext resB
/
ker ǫ

B
→ B given by (5.2) is a QFT(M)-isomorphism if and

only if B ∈ QFTadd(M) ⊆ QFT(M) is additive in the sense of Definition 5.5.

We shall now refine this characterization theorem by showing that QFTadd(M) is equivalent,
as a category, to a category describing quantum field theories on the interior of M together with
suitable ideals of their universal extensions. The precise definitions are as follows.

Definition 5.8. Let B ∈ QFT(M). An ideal I ⊆ B is called trivial on the interior if its
restriction to RintM [C−1

intM ] is the functor assigning zero vector spaces, i.e. I(Vint) = 0 for all
Vint ∈ RintM [C−1

intM ] in the interior intM of M .

Definition 5.9. LetM be a spacetime with timelike boundary. We define the category IQFT(M)
as follows:
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• Objects are pairs (A,I) consisting of a quantum field theory A ∈ QFT(intM) on the
interior intM of M and an ideal I ⊆ extA of its universal extension extA ∈ QFT(M) that
is trivial on the interior.

• Morphisms κ : (A,I) → (A′,I′) are QFT(M)-morphisms κ : extA → extA′ between the
universal extensions that preserve the ideals, i.e. κ restricts to a natural transformation
from I ⊆ extA to I

′ ⊆ extA′.

There exists an obvious functor

Q : IQFT(M) −→ QFTadd(M) , (5.6a)

which assigns to (A,I) ∈ IQFT(M) the quotient

Q(A,I) := extA
/
I ∈ QFTadd(M) . (5.6b)

Notice that additivity of extA
/
I follows from that of the universal extension extA (cf. the

arguments in the proof of Theorem 5.6) and the fact that quotients preserve the additivity
property. There exists also a functor

S : QFTadd(M) −→ IQFT(M) , (5.7a)

which ‘extracts’ from a quantum field theory on M the relevant ideal. Explicitly, it assigns to
B ∈ QFTadd(M) the pair

SB :=
(
resB, ker ǫB

)
. (5.7b)

Notice that the ideal ker ǫ
B
⊆ ext resB is trivial on the interior: Applying the restriction functor

(4.3) to ǫ
B

we obtain a QFT(intM)-morphism

res ǫB : res ext resB −→ resB . (5.8)

Proposition 4.1 together with the triangle identities for the adjunction ext ⊣ res in (4.3) then
imply that (5.8) is an isomorphism with inverse given by ηresB : resB → res ext resB. In
particular, res ǫ

B
has a trivial kernel and hence ker ǫ

B
⊆ ext resB is trivial on the interior (cf.

Definition 5.8). Our refined characterization theorem for boundary quantum field theories is as
follows.

Theorem 5.10. The functors Q and S defined in (5.6) and (5.7) exhibit an equivalence of
categories

QFTadd(M) ∼= IQFT(M) . (5.9)

Proof. We first consider the composition of functors QS : QFTadd(M) → QFTadd(M). To
B ∈ QFTadd(M), it assigns

QSB = ext resB
/
ker ǫB . (5.10)

The QFT(M)-morphisms λ
B
: ext resB/ ker ǫ

B
→ B given by (5.2) define a natural transforma-

tion λ : QS → idQFTadd(M), which is a natural isomorphism due to Corollary 5.7.

Let us now consider the composition of functors S Q : IQFT(M)→ IQFT(M). To (A,I) ∈
IQFT(M), it assigns

SQ(A,I) =
(
res

(
extA

/
I
)
, ker ǫextA/I

)
=

(
res extA, ker ǫextA/I

)
, (5.11)
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where we also used that res
(
extA

/
I
)
= res extA because I is by hypothesis trivial on the

interior. Using further the QFT(intM)-isomorphism ηA : A → res extA from Proposition 4.1,
we define a QFT(M)-morphism q(A,I) via the diagram

extA

∼=ext η
A

��

q(A,I)
// extA

/
I

ext res extA ext res
(
extA

/
I
)

ǫ
extA/I

OO
(5.12)

Using the explicit expression for ǫextA/I given in (5.1) and the explicit expression for η
A
given by

(ηA)Vint
: A(Vint) −→ res extA(Vint) =

⊕

i:V→Vint

A(V )

/
∼ , a 7−→ [idVint

, a] , (5.13)

for all Vint ∈ RintM [C−1
intM ], one computes from the diagram (5.12) that q(A,I) is the canonical

projection π : extA→ extA/I. Hence, the QFT(M)-isomorphisms ext η
A
: extA→ ext res extA

induce IQFT(M)-isomorphisms

ext ηA : (A,I) −→ SQ(A,I) , (5.14)

which are natural in (A,I), i.e. they define a natural isomorphism ext η : idIQFT(M) → S Q.

Remark 5.11. The physical interpretation of this result is as follows: Every additive quantum
field theory B ∈ QFTadd(M) on a (not necessarily globally hyperbolic) spacetime M with
timelike boundary admits an equivalent description in terms of a pair (A,I) ∈ IQFT(M). Notice
that the roles of A and I are completely different: On the one hand, A ∈ QFT(intM) is a
quantum field theory on the interior intM of M and as such it is independent of the detailed
aspects of the boundary. On the other hand, I ⊆ extA is an ideal of the universal extension
of A that is trivial on the interior, i.e. it only captures the physics that happens directly at
the boundary. Examples of such ideals I arise by imposing specific boundary conditions on the
universal extension extA ∈ QFT(M), i.e. the quotient extA/I describes a quantum field theory
on M that satisfies specific boundary conditions encoded in I. We shall illustrate this assertion
in Section 6 below using the explicit example given by the free Klein-Gordon field.

Let us also note that there is a reason why our universal extension captures only the class of
additive quantum field theories on M . Recall that extA ∈ QFT(M) takes as an input a quantum
field theory A ∈ QFT(intM) on the interior intM of M . As a consequence, the extension extA
can only have knowledge of the ‘degrees of freedom’ that are generated in some way out of the
interior regions. Additive theories in the sense of Definition 5.5 are precisely the theories whose
‘degrees of freedom’ are generated out of those localized in the interior regions. △

6 Example: Free Klein-Gordon theory

In order to illustrate and make more explicit our abstract constructions developed in the previous
sections, we shall consider the simple example given by the free Klein-Gordon field. From now
on M will be a globally hyperbolic spacetime with timelike boundary, see Definition 2.9. This
assumption implies that all interior regions RintM are globally hyperbolic spacetimes with empty
boundary, see Proposition 2.11. This allows us to use the standard techniques of [BGP07, Section
3] on such regions.
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Definition on RintM [C−1
intM ]:

Let M be a globally hyperbolic spacetime with timelike boundary, see Definition 2.9. The free
Klein-Gordon theory on RintM [C−1

intM ] is given by the following standard construction, see e.g.
[BD15, BDH13] for expository reviews. On the interior intM , we consider the Klein-Gordon
operator

P := �+m2 : C∞(intM) −→ C∞(intM) , (6.1)

where � is the d’Alembert operator and m ≥ 0 is a mass parameter. When restricting P to
regions V ∈ RintM [C−1

intM ], we shall write

PV : C∞(V ) −→ C∞(V ) . (6.2)

It follows from [BGP07] that there exists a unique retarded/advanced Green’s operator

G±
V : C∞

c (V ) −→ C∞(V ) (6.3)

for PV because every V ∈ RintM [C−1
intM ] is a globally hyperbolic spacetime with empty boundary,

cf. Proposition 2.11.

The Klein-Gordon theory K ∈ QFT(intM) is the functor K : RintM [C−1
intM ] → Alg given

by the following assignment: To any V ∈ RintM [C−1
intM ] it assigns the associative and unital ∗-

algebra K(V ) that is freely generated by ΦV (f), for all f ∈ C∞
c (V ), modulo the two-sided ∗-ideal

generated by the following relations:

• Linearity: ΦV (α f + β g) = αΦV (f) + β ΦV (g), for all α, β ∈ R and f, g ∈ C∞
c (V );

• Hermiticity: ΦV (f)
∗ = ΦV (f), for all f ∈ C∞

c (V );

• Equation of motion: ΦV (PV f) = 0, for all f ∈ C∞
c (V );

• Canonical commutation relations (CCR): ΦV (f)ΦV (g) − ΦV (g)ΦV (f) = i τV (f, g) 1, for
all f, g ∈ C∞

c (V ), where

τV (f, g) :=

∫

V
f GV (g) volV (6.4)

with GV := G+
V − G−

V the causal propagator and volV the canonical volume form on V .
(Note that τV is antisymmetric, see e.g. [BGP07, Lemma 4.3.5].)

To a morphism i : V → V ′ in RintM [C−1
intM ], the functor K : RintM [C−1

intM ] → Alg assigns the
algebra map that is specified on the generators by pushforward along i (which we shall suppress)

K(i) : K(V ) −→ K(V ′) , ΦV (f) 7−→ ΦV ′(f) . (6.5)

The naturality of τ (i.e. naturality of the causal propagator, cf. e.g. [BGP07, Section 4.3]) entails
that the assignment K defines a quantum field theory in the sense of Definition 3.5.

Universal extension:

Using the techniques developed in Section 4, we may now extend the Klein-Gordon theory K ∈
QFT(intM) from the interior intM to the whole spacetime M . In particular, using (4.9) (and
the formulas following this equation), one could directly compute the universal extension extK ∈
QFT(M). The resulting expressions, however, can be considerably simplified. We therefore
prefer to provide a more convenient model for the universal extension extK ∈ QFT(M) by
adopting the following strategy: We first make an ‘educated guess’ for a theory K

ext ∈ QFT(M)
which we expect to be the universal extension of K ∈ QFT(intM). (This was inspired by

19



partially simplifying the direct computation of the universal extension.) After this we shall
prove that Kext ∈ QFT(M) satisfies the universal property that characterizes extK ∈ QFT(M).
Hence, there exists a (unique) isomorphism extK ∼= K

ext in QFT(M), which means that our
K
ext ∈ QFT(M) is a model for the universal extension extK.

Let us define the functor Kext : RM [C−1
M ]→ Alg by the following assignment: To any region

V ∈ RM [C−1
M ], which may intersect the boundary, we assign the associative and unital ∗-algebra

K
ext(V ) that is freely generated by ΦV (f), for all f ∈ C∞

c (intV ) in the interior intV of V , modulo
the two-sided ideal generated by the following relations:

• Linearity: ΦV (α f + β g) = αΦV (f) + β ΦV (g), for all α, β ∈ R and f, g ∈ C∞
c (intV );

• Hermiticity: ΦV (f)
∗ = ΦV (f), for all f ∈ C∞

c (intV );

• Equation of motion: ΦV (Pint V f) = 0, for all f ∈ C∞
c (intV );

• Partially-defined CCR: ΦV (f)ΦV (g)−ΦV (g)ΦV (f) = i τVint
(f, g) 1, for all interior regions

Vint ∈ RintM [C−1
intM ] with Vint ⊆ intV and f, g ∈ C∞

c (intV ) with supp(f) ∪ supp(g) ⊆ Vint.

Remark 6.1. We note that our partially-defined CCR are consistent in the following sense:

Consider Vint, V
′
int ∈ RintM [C−1

intM ] with V
(′)
int ⊆ intV and f, g ∈ C∞

c (int V ) with the property that

supp(f) ∪ supp(g) ⊆ V
(′)
int . Using the partially-defined CCR for both Vint and V ′

int, we obtain the
equality i τVint

(f, g) 1 = i τV ′
int
(f, g) 1 in K

ext(V ). To ensure that Kext(V ) is not the zero-algebra,
we have to show that τVint

(f, g) = τV ′
int
(f, g). This holds true due to the following argument:

Consider the subset Vint ∩ V ′
int ⊆ intM . This is open, causally convex and by Proposition

2.3 (c) also stable under Cauchy development, hence Vint ∩ V ′
int ∈ RintM [C−1

intM ]. Furthermore,

the inclusions Vint ∩ V ′
int → V

(′)
int are morphisms in RintM [C−1

intM ]. It follows by construction that
supp(f) ∪ supp(g) ⊆ Vint ∩ V ′

int and hence due to naturality of the τ ’s we obtain

τVint
(f, g) = τVint∩V

′
int
(f, g) = τV ′

int
(f, g) . (6.6)

Hence, for any fixed pair f, g ∈ C∞
c (intV ), the partially-defined CCR are independent of the

choice of Vint (if one exists). △

To a morphism i : V → V ′ in RM [C−1
M ], the functor Kext : RM [C−1

M ]→ Alg assigns the algebra
map that is specified on the generators by the pushforward along i (which we shall suppress)

K
ext(i) : Kext(V ) −→ K

ext(V ′) , ΦV (f) 7−→ ΦV ′(f) . (6.7)

Compatibility of the map (6.7) with the relations in K
ext is a straightforward check.

Recalling the embedding functor J : RintM [C−1
intM ]→RM [C−1

M ] given in (4.2), we observe that
the diagram of functors

RintM [C−1
intM ]

J
''◆

◆◆
◆◆

◆◆
◆◆

◆◆

K //

γ

��

Alg

RM [C−1
M ]

Kext

::✈✈✈✈✈✈✈✈✈

(6.8)

commutes via the natural transformation γ : K → K
ext J with components specified on the

generators by the identity maps

γVint
: K(Vint) −→ K

ext(Vint) , ΦVint
(f) 7−→ ΦVint

(f) , (6.9)

for all Vint ∈ RintM [C−1
intM ]. Notice that γ is a natural isomorphism because intVint = Vint and

the partially-defined CCR on any interior region Vint coincides with the CCR.
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Theorem 6.2. (6.8) is a left Kan extension of K : RintM [C−1
intM ]→ Alg along J : RintM [C−1

intM ]→
RM [C−1

M ]. As a consequence of uniqueness (up to unique natural isomorphism) of left Kan exten-
sions and Proposition 4.3, it follows that Kext ∼= extK, i.e. Kext ∈ QFT(M) is a model for our
universal extension extK ∈ QFT(M) of the Klein-Gordon theory K ∈ QFT(intM).

Proof. We have to prove that (6.8) satisfies the universal property of left Kan extensions: Given
any functor B : RM [C−1

M ]→ Alg and natural transformation ρ : K→ BJ , we have to show that
there exists a unique natural transformation ζ : Kext → B such that the diagram

K

γ
""❊

❊❊
❊❊

❊❊
❊

ρ
// BJ

K
ext J

ζJ

::✈✈✈✈✈✈✈✈✈

(6.10)

commutes. Because γ is a natural isomorphism, it immediately follows that ζJ is uniquely fixed
by this diagram. Concretely, this means that the components ζVint

corresponding to interior
regions Vint ∈ RintM [C−1

intM ] are uniquely fixed by

ζVint
:= ρVint

γ−1
Vint

: Kext(Vint) −→ B(Vint) . (6.11)

It remains to determine the components

ζV : Kext(V ) −→ B(V ) (6.12)

for generic regions V ∈ RM [C−1
M ]. Consider any generator ΦV (f) of K

ext(V ), where f ∈ C∞
c (int V ),

and choose a finite cover {Vα ⊆ intV } of supp(f) by interior regions Vα ∈ RintM [C−1
intM ], together

with a partition of unity {χα} subordinate to this cover. (The existence of such a cover is guar-
anteed by the assumption that M is a globally hyperbolic spacetime with timelike boundary, see
Proposition 2.11.) We define

ζV
(
ΦV (f)

)
:=

∑

α

B(iα)
(
ζVα

(
ΦVα(χαf)

))
, (6.13)

where iα : Vα → V is the inclusion. Our definition (6.13) is independent of the choice of cover
and partition of unity: For any other {V ′

β ⊆ intV } and {χ′
β}, we obtain

∑

β

B(iβ)
(
ζV ′

β

(
ΦV ′

β
(χ′

βf)
))

=
∑

α,β

B(iαβ)
(
ζVα∩V ′

β

(
ΦVα∩V ′

β
(χαχ

′
βf)

))

=
∑

α

B(iα)
(
ζVα

(
ΦVα(χαf)

))
, (6.14)

where iβ : V ′
β → V and iαβ : Vα ∩ V ′

β → V are the inclusions. In particular, this implies that
(6.13) coincides with (6.11) on interior regions V = Vint. (Hint: Choose the cover given by the
single region Vint together with its partition of unity.)

We have to check that (6.13) preserves the relations in K
ext(V ). Preservation of linearity and

Hermiticity is obvious. The equation of motion relations are preserved because

ζV
(
ΦV (Pint V f)

)
=

∑

α

B(iα)
(
ζVα

(
ΦVα(χαPVα

f)
))

=
∑

α,β

B(iαβ)
(
ζVα∩Vβ

(
ΦVα∩Vβ

(χαPVα∩Vβ
χβf)

))

=
∑

β

B(iβ)
(
ζVβ

(
ΦVβ

(PVβ
χβf)

))
= 0 . (6.15)
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Regarding the partially-defined CCR, let Vint ∈ RintM [C−1
intM ] with Vint ⊆ intV and f, g ∈

C∞
c (int V ) with supp(f) ∪ supp(g) ⊆ Vint. We may choose the cover given by the single region

i : Vint → V together with its partition of unity. We obtain for the commutator

[
ζV

(
ΦV (f)

)
, ζV

(
ΦV (g)

)]
=

[
B(i)

(
ζVint

(
ΦVint

(f)
))
,B(i)

(
ζVint

(
ΦVint

(g)
))]

= i τVint
(f, g)1 ,

(6.16)

which implies that the partially-defined CCR are preserved.

Naturality of the components (6.13) is easily verified. Uniqueness of the resulting natural
transformation ζ : Kext → B is a consequence of uniqueness of ζJ and of the fact that the Alg-
morphisms K

ext(iint) : Kext(Vint) ∼= K(Vint) → K
ext(V ), for all interior regions iint : Vint → V ,

generate K
ext(V ), for all V ∈ RM [C−1

M ]. This completes the proof.

Ideals from Green’s operator extensions:

The Klein-Gordon theory K ∈ QFT(intM) on the interior intM of the globally hyperbolic
spacetime M with timelike boundary and its universal extension K

ext ∈ QFT(M) depend on
the local retarded and advanced Green’s operators G±

Vint
: C∞

c (Vint) → C∞(Vint) on all interior

regions Vint ∈ RintM [C−1
intM ] in M . For constructing concrete examples of quantum field theories

on globally hyperbolic spacetimes with timelike boundary as in [DNP16], one typically imposes
suitable boundary conditions for the field equation in order to obtain also global retarded and
advanced Green’s operators on M . Inspired by such examples, we shall now show that any choice
of an adjoint-related pair (G+, G−) consisting of a retarded and an advanced Green’s operator
for P on M (see Definition 6.3 below) defines an ideal IG± ⊆ K

ext ∈ QFT(M) that is trivial on
the interior (cf. Definition 5.8). The corresponding quotient Kext

/
IG± ∈ QFT(M) then may be

interpreted as the Klein-Gordon theory on M , subject to a specific choice of boundary conditions
that is encoded in G±.

Definition 6.3. A retarded/advanced Green’s operator for the Klein-Gordon operator P on M
is a linear map G± : C∞

c (intM) → C∞(intM) which satisfies the following properties, for all
f ∈ C∞

c (intM):

(i) P G±(f) = f ,

(ii) G±(Pf) = f , and

(iii) supp(G±(f)) ⊆ J±
M (supp(f)).

A pair (G+, G−) consisting of a retarded and an advanced Green’s operator for P on M is called
adjoint-related if G+ is the formal adjoint of G−, i.e.

∫

M
G+(f) g volM =

∫

M
f G−(g) volM , (6.17)

for all f, g ∈ C∞
c (intM).

Remark 6.4. In contrast to the situation where M is a globally hyperbolic spacetime with empty
boundary [BGP07], existence, uniqueness and adjoint-relatedness of retarded/advanced Green’s
operators for the Klein-Gordon operator P is in general not to be expected on spacetimes with
timelike boundary. Positive results seem to be more likely on globally hyperbolic spacetimes with
non-empty timelike boundary, although the general theory has not been developed yet to the best
of our knowledge. Simple examples of adjoint-related pairs of Green’s operators were constructed
e.g. in [DNP16]. △
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Given any region V ∈ RM [C−1
M ] in M , which may intersect the boundary, we use the canonical

inclusion i : V →M to define local retarded/advanced Green’s operators

C∞
c (intV )

i∗
��

G±

V // C∞(intV )

C∞
c (intM)

G±

// C∞(intM)

i∗

OO
(6.18)

where i∗ denotes the pushforward of compactly supported functions (i.e. extension by zero) and
i∗ the pullback of functions (i.e. restriction). Since V ⊆ M is causally convex, it follows that
J±
M (p) ∩ V = J±

V (p) for all p ∈ V . Therefore G±
V satisfies the axioms of a retarded/advanced

Green’s operator for PV on V . (Here we regard V as a globally hyperbolic spacetime with time-
like boundary, see Proposition 2.11. J±

V (p) denotes the causal future/past of p in the spacetime
V .) In particular, for all interior regions Vint ∈ RintM [C−1

intM ] in M , by combining Proposition
2.11 and [BGP07, Corollary 3.4.3] we obtain that G±

Vint
as defined in (6.18) is the unique re-

tarded/advanced Green’s operator for the restricted Klein-Gordon operator PVint
on the globally

hyperbolic spacetime Vint with empty boundary.

Consider any adjoint-related pair (G+, G−) of Green’s operator for P on M . For all V ∈
RM [C−1

M ], we set IG±(V ) ⊆ K
ext(V ) to be the two-sided ∗-ideal generated by the following

relations:

• G±-CCR: ΦV (f)ΦV (g)− ΦV (g)ΦV (f) = i τV (f, g) 1, for all f, g ∈ C∞
c (intV ), where

τV (f, g) :=

∫

V
f GV (g) volV (6.19)

with GV := G+
V −G−

V the causal propagator and volV the canonical volume form on V .

The fact that the pair (G+, G−) is adjoint-related (cf. Definition 6.3) implies that for all V ∈
RM [C−1

M ] the causal propagator GV is formally skew-adjoint, hence τV is antisymmetric.

Proposition 6.5. IG± ⊆ K
ext is an ideal that is trivial on the interior (cf. Definition 5.8).

Proof. Functoriality of IG± : RM [C−1
M ] → Vec is a consequence of (6.18), hence IG± ⊆ K

ext is
an ideal in the sense of Definition 5.1. It is trivial on the interior because for all interior regions
Vint ∈ RintM [C−1

intM ], the Green’s operators defined by (6.18) are the unique retarded/advanced
Green’s operators for PVint

and hence the relations imposed by IG±(Vint) automatically hold true
in K

ext(Vint) on account of the (partially-defined) CCR.

Remark 6.6. We note that the results of this section still hold true if we slightly weaken the
hypotheses of Definition 2.9 by assuming the strong causality and the compact double-cones
property only for points in the interior intM of M . In fact, intM can still be covered by
causally convex open subsets and any causally convex open subset U ⊆ intM becomes a globally
hyperbolic spacetime with empty boundary once equipped with the induced metric, orientation
and time-orientation. △

Example 6.7. Consider the sub-spacetimeM := R
m−1×[0, π] ⊆ R

m ofm-dimensional Minkowski
spacetime, which has a timelike boundary ∂M = R

m−1 × {0, π}. The constructions in [DNP16]
define an adjoint-related pair (G+, G−) of Green’s operators for P on M that corresponds to
Dirichlet boundary conditions. Using this as an input for our construction above, we obtain a
quantum field theory K

ext
/
IG± ∈ QFT(M) that may be interpreted as the Klein-Gordon theory

on M with Dirichlet boundary conditions. It is worth to emphasize that our theory in general
does not coincide with the one constructed in [DNP16]. To provide a simple argument, let us
focus on the case of m = 2 dimensions, i.e. M = R × [0, π], and compare our global algebra
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A
BDS(M) := K

ext
/
IG±(M) with the global algebra A

DNP(M) constructed in [DNP16]. Both al-
gebras are CCR-algebras, however the underlying symplectic vector spaces differ: The symplectic
vector space underlying our global algebra A

BDS(M) is C∞
c (intM)

/
PC∞

c (intM) with the sym-
plectic structure (6.19). Using that the spatial slices of M = R× [0, π] are compact, we observe
that the symplectic vector space underlying A

DNP(M) is given by the space SolDir(M) of all so-
lutions with Dirichlet boundary condition on M (equipped with the usual symplectic structure).
The causal propagator defines a symplectic map G : C∞

c (intM)
/
PC∞

c (intM) → SolDir(M),
which however is not surjective for the following reason: Any ϕ ∈ C∞

c (intM) has by definition
compact support in the interior of M , hence the support of Gϕ ∈ SolDir(M) is schematically as
follows

x = 0 x = π

suppϕ

suppGϕ

(6.20)

The usual mode functions Φk(t, x) = cos(
√
k2 +m2 t) sin(kx) ∈ SolDir(M), for k ≥ 1, are clearly

not of this form, hence G : C∞
c (intM)

/
PC∞

c (intM) → SolDir(M) cannot be surjective. As a
consequence, the models constructed in [DNP16] are in general not additive from the interior
and our construction K

ext
/
IG± should be interpreted as the maximal additive subtheory of these

examples. It is interesting to note that there exists a case where both constructions coincide:
Consider the sub-spacetime M := R

m−1× [0,∞) ⊆ R
m of Minkowski spacetime with m ≥ 4 even

and take a massless real scalar field with Dirichlet boundary conditions. Using Huygens’ principle
and the support properties of the Green’s operators one may show that our algebra A

BDS(M) is
isomorphic to the construction in [DNP16]. ▽
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A Some concepts from category theory

Adjunctions:

This is a standard concept, which is treated in any category theory textbook, e.g. [Rie16].
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Definition A.1. An adjunction consists of a pair of functors

F : C //
D : G ,oo (A.1)

together with natural transformations η : idC → GF (called unit) and ǫ : FG → idD (called
counit) that satisfy the triangle identities

F

idF ""❋
❋❋

❋❋
❋❋

❋❋

Fη
// FGF

ǫF
��

F

G

idG ""❋
❋❋

❋❋
❋❋

❋❋

ηG
// GFG

Gǫ
��

G

(A.2)

We call F the left adjoint of G and G the right adjoint of F , and write F ⊣ G.

Definition A.2. An adjoint equivalence is an adjunction

F : C ∼
//
D : Goo (A.3)

for which both the unit η and the counit ǫ are natural isomorphisms. Existence of an adjoint
equivalence in particular implies that C ∼= D are equivalent as categories.

Proposition A.3. If a functor G : D → C admits a left adjoint F : C → D, then F is unique
up to a unique natural isomorphism. Vice versa, if a functor F : C→ D admits a right adjoint
G : D→ C, then G is unique up to a unique natural isomorphism.

Localizations:

Localizations of categories are treated for example in [KS06, Section 7.1]. In our paper we restrict
ourselves to small categories.

Definition A.4. Let C be a small category and W ⊆ MorC a subset of the set of morphisms.
A localization of C at W is a small category C[W−1] together with a functor L : C → C[W−1]
satisfying the following properties:

(a) For all (f : c→ c′) ∈W , L(f) : L(c)→ L(c′) is an isomorphism in C[W−1].

(b) For any category D and any functor F : C→ D that sends morphisms inW to isomorphisms
in D, there exists a functor FW : C[W−1]→ D and a natural isomorphism F ∼= FW L.

(c) For all objects G,H ∈ DC[W−1] in the functor category, the map

Hom
DC[W−1]

(
G,H

)
−→ HomDC

(
GL,H L

)
(A.4)

is a bijection of Hom-sets.

Proposition A.5. If C[W−1] exists, it is unique up to equivalence of categories.
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[DR03] M. Dütsch and K.-H. Rehren, “Generalized free fields and the AdS-CFT correspondence,”
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[hep-th/9905179].

[Rej16] K. Rejzner, Perturbative Algebraic Quantum Field Theory: An Introduction for Mathe-
maticians, Springer-Verlag, Heidelberg (2016).

[Rib07] P. L. Ribeiro, “Structural and dynamical aspects of the AdS/CFT correspondence: A
Rigorous approach,” PhD thesis, University of Sao Paulo (2007) [arXiv:0712.0401 [math-ph]].

[Rie16] E. Riehl, Category Theory in Context, Dover Publications Inc. (2016).

[Sol06] D. A. Solis, Global properties of asymptotically de Sitter and
anti de Sitter spacetimes, PhD thesis, University of Miami (2006).
https://scholarlyrepository.miami.edu/dissertations/2414/

[Som06] C. Sommer, “Algebraische Charakterisierung von Randbedingungen in der
Quantenfeldtheorie,” Diploma Thesis in German, University of Hamburg (2006).
http://www.desy.de/uni-th/lqp/psfiles/dipl-sommer.ps.gz

[Wal80] R. M. Wald, “Dynamics in nonglobally hyperbolic, static space-times,” J. Math. Phys.
21 (1980) 2802.

[Wro17] M. Wrochna, “The holographic Hadamard condition on asymptotically anti-de Sitter
spacetimes,” Lett. Math. Phys. 107 (2017) 2291 [arXiv:1612.01203 [math-ph]].

[Zah15] J. Zahn, “Generalized Wentzell boundary conditions and quantum field theory,” to appear
in Annales Henri Poincaré [arXiv:1512.05512 [math-ph]].

27

http://arxiv.org/abs/hep-th/0402184
http://arxiv.org/abs/hep-th/9905179
http://arxiv.org/abs/0712.0401
https://scholarlyrepository.miami.edu/dissertations/2414/
http://www.desy.de/uni-th/lqp/psfiles/dipl-sommer.ps.gz
http://arxiv.org/abs/1612.01203
http://arxiv.org/abs/1512.05512

	1 Introduction and summary
	2 Spacetimes with timelike boundary
	3 Categories of algebraic quantum field theories
	4 Universal boundary extension
	5 Characterization of boundary quantum field theories
	6 Example: Free Klein-Gordon theory
	A Some concepts from category theory

