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Rolling Schedules with Capacitated Lot-Sizing and
Service Level Constraints

Malte Meistering and Hartmut Stadtler
Hamburg Business School, University of Hamburg, Von-Melle-Park 5, 20146 Hamburg, malte.meistering@uni-hamburg.de,

hartmut.stadtler@uni-hamburg.de

In practice deterministic multi-period planning models are implemented in rolling schedules since they allow

to revise decisions beyond the frozen horizon and thus to take into account realizations and updated fore-

casts of uncertain data (e.g., customer demands). For this it is common to hold additional safety stocks to

ensure given service levels. As we will show, this approach, implemented in rolling schedules, often results in

increased setup and holding costs while (over-)accomplishing given service levels. A well-known alternative

to deterministic planning models are stochastic, static, multi-period planning models, which results in fea-

sible and stable plans. However, one problem of these models is the missing flexibility to react to realization

of uncertain data. Consequently, the variance of costs and service levels is very high. We propose a new

strategy, named stabilized cycle, which combines and enlarges ideas from literature for minimizing setup and

holding costs in rolling schedules while controlling actual product-specific service levels by given upper and

lower control limits for a given evaluation interval. A computational study with the big bucket production

planning model CLSP demonstrates that this new strategy yields a good compromise between costs and

downside deviations from given β service levels.

Key words : rolling schedules, capacitated lot-sizing, demand uncertainty, service level, stabilized cycle

1. Introduction

A major issue for manufacturing companies in a make-to-stock production environment are demand

uncertainties (e.g., forecast errors), even when the distribution and its parameters are known. It

becomes even more challenging, if production plans have to be made for multi-items and limited

capacities. In situations of uncertain demand actual demand will be lower than expected with a

probability of 0.5. As a result inventory increases, which leads to higher inventory holding costs.

If demand is higher than expected, it might not be fulfilled directly from stock and the unfulfilled

demand is assumed to be backordered. Backorders have to be fulfilled with the next goods receipt.

1
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Since backorder costs are hard to define a more common approach to handle demand uncertainty

is the use of service level constraints. In practice service levels are usually controlled over an eval-

uation interval, which consists of a pre-specified number of periods and is in general defined either

internally (e.g., reviewed managerial performance) or externally (e.g., key customer). However,

actual service levels are random variables and it is almost impossible to reach exactly the given

service levels (Thomas 2005). Therefore, the given service levels are usually interpreted as a lower

bound, which have at least be reached per product by the end of the evaluation interval. In case of

lot size production, costs for setting-up the resource(s) have to be considered by production plan-

ning as well. Thus, the aim is minimizing setup and inventory holding costs while simultaneously

ensuring given product-specific service levels at the end of the evaluation interval. Practice-oriented

strategies are needed to solve such production planning problems with suitable trade-offs between

inventory holding costs, setup costs, schedule stability, and service levels.

A common approach for creating Master Production Schedules (MPS) in light of demand uncer-

tainty is to use a deterministic, capacitated lot-sizing model with additional safety stocks in rolling

schedules. This strategy usually has the benefit to (over-)accomplish given service levels. However,

it often leads to high setup and inventory holding costs as well as high schedule instability. This is

caused by frequently revised setup decisions in the first period of the planning interval.

An alternative is the static uncertainty strategy of Bookbinder and Tan (1988). Within this

strategy stochastic, capacitated lot-sizing models are used to determine setup and lot size decisions.

In this strategy setup and lot size decisions are fixed in advance for all periods of the planning

interval without the possibility of modification at a later time. Obviously, this strategy leads to

total schedule stability. On the downside, it needs relatively high average inventories - especially

in later periods of the planning interval - in order to ensure given service levels. Therefore, this

approach often comes along with high inventory holding costs and high deviations of the actual

service levels from the given service levels by the end of the evaluation interval.

To the authors best knowledge there does not exist a production planning strategy for an evalu-

ation interval with demand uncertainty and limited capacities, which provides a practical trade-off
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between inventory holding costs, setup costs, schedule stability, and service levels. To generate

a low-cost stable production plan while simultaneously yielding rather small product-specific βj

service level (fill rate) variations, we propose the stabilized cycle strategy. This strategy is designed

for big bucket deterministic lot-sizing models with service level constraints embedded in rolling

schedules. It will be demonstrated by an extended capacitated lot-sizing problem (CLSP ).

The paper is structured as follows. Section 2 contains a literature review of production planning

with demand uncertainty. In Section 3 a model formulation of the deterministic CLSP as well as

three new model extensions to cope with demand uncertainty in rolling schedules are proposed.

The stabilized cycle strategy is introduced in Section 4. A computational study of rolling schedules

is presented in Section 5. Finally, Section 6 summarizes the findings and presents an outlook on

future research.

2. Literature review

According to Bookbinder and Tan (1988) there exist three production planning strategies to deal

with demand uncertainty. First, the static uncertainty strategy, in which setup and lot size decisions

are made in advance for a planning interval. Meaning, once the decisions are made they cannot

be revised during the planning interval regardless of the actual demands. This strategy uses a

stochastic version of the CLSP (S-CLSP ) to consider demand uncertainty. In contrast to the

CLSP the S-CLSP tries to control the demand uncertainty either by backorder costs or by service

level constraints. To control backorder costs or to satisfy the service level constraints safety stocks

are used. One heuristic approach to solve an uncapacitated version of the S-CLSP (S-LSP ) was

developed by Silver (1978). The heuristic starts with the determination of reorder periods. Next,

production cycle lengths, which are subject to the reorder points, are obtained by the Silver-

Meal heuristic. Finally, lot sizes are calculated by considering the reorder periods, the production

cycle lengths and the uncertain demands within the production cycles. Askin (1981) improved the

heuristic of Silver (1978) by a simultaneous determination of production cycle length and lot size.

Second, Bookbinder and Tan (1988) introduced the static-dynamic uncertainty strategy, in which

only setup periods are fixed in advance. Hence, lot sizes are adjusted by considering the actual
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inventory level and the period-specific order-up-to-level at the beginning of the setup periods.

Furthermore, Bookbinder and Tan (1988) propose a solution approach for the static-dynamic uncer-

tainty strategy. The approach starts with the determination of setup periods within the planning

interval by using a deterministic or stochastic lot-sizing model formulation with a period orientated

αp service level constraints. In a further step the order-up-to-level is calculated for every setup

period. The order-up-to-level calculation takes the demand uncertainty of the periods between two

consecutive setup periods - time-between-order (TBO) - into consideration and uses safety stocks

to satisfy the service level constraints. Since setup and lot size decisions are made consecutively the

approach of Bookbinder and Tan (1988) is a heuristic (Tarim and Kingsman 2004). For the optimal

solution of the static-dynamic uncertainty strategy Tarim and Kingsman (2004) introduce a mixed

integer programming (MIP) model formulation for the S-LSP with αp service level constraints.

By using the MIP model formulation the consecutive procedure is replaced by a simultaneous

determination of TBO and lot size. In Tarim and Kingsman (2006) the MIP model formulation

of Tarim and Kingsman (2004) is enhanced by a backorder cost term in the objective function

replacing the αp service level constraints. Furthermore, Tempelmeier (2007) varies the MIP model

formulation of Tarim and Kingsman (2004) such that the long-run average of either an αp service

level, a production cycle orientated αpc service level or a βpc service level can be ensured. Note,

Tarim and Kingsman (2004) assume that expected average backorders are extremely low for a high

αpc service level. Under this assumption the determination of inventory holding costs is sufficiently

accurate. However, for a rather lower service level (e.g., βpc = 0.8), backorders cannot be neglected

any more and the MIP model formulation of Tarim and Kingsman (2004) might lead to suboptimal

solutions (Tempelmeier 2007). Consequently, the MIP model formulation of Tempelmeier (2007)

contains the expected inventory level for every period, making it possible to determine setup and

lot size decisions while considering expected inventory holding costs.

In Tempelmeier and Herpers (2011) the MIP model formulation of Tempelmeier (2007) for the

S-LSP is adapted to the static uncertainty strategy. Moreover, they present an exact solution
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algorithm for the Shortest-Path-Formulation of the S-LSP . In Tempelmeier and Herpers (2010)

the authors present a MIP model formulation of the multi-item S-CLSP for the application in

the static uncertainty strategy. Since setup and lot size decisions for the planning interval are

fixed in advance, the static uncertainty strategy is suitable for capacitated production planning

problems. Such problems are normally used in a MPS-driven production planning (Tempelmeier

2011). In the absence of an exact solution algorithm, Tempelmeier and Herpers (2010) propose

an ABCβ heuristic, which is an extension of the ABC heuristic of Maes and van Wassenhove

(1986). A further extension of the ABCβ heuristic is proposed in Tempelmeier (2011). Here, the

author uses a Set-Partitioning-Model formulation of the S-CLSP as well as a Column Generation

(CG) method combined with the ABCβ heuristic. In a computational study Tempelmeier (2011)

shows that on average, the CG ABCβ heuristic dominates the ABCβ heuristic. Another solution

approach for the S-CLSP is presented in Tempelmeier and Hilger (2015). There the authors

introduce MIP model formulations to approximate the non-linear functions of expected backorders

and expected inventories. A variant of the Fix-and-Optimize (F&O) heuristic is used to solve the

models. In a computational study Tempelmeier and Hilger (2015) show, that models solved by the

F&O heuristic are superior to the CG ABCβ heuristic as well as to the ABCβ heuristic. As an

alternative, Helber et al. (2013) propose a MIP model formulation of the S-CLSP and recommend

backorder-oriented δ service levels. Unfortunately, considering δ service levels lead to a non-linear

model formulation. To overcome this problem two approximate linear models are presented and

evaluated in a computational study.

The dynamic uncertainty strategy is the third strategy proposed by Bookbinder and Tan (1988)

to deal with demand uncertainty. Here, decisions are only made for the next period once information

that become available at a later point (e.g., the actual demand of the prior period) are known.

However, according to the authors the dynamic uncertainty strategy is unsuitable for practical

usage, since the planning interval length of one period would lead to a production in almost every

period. Therefore, this strategy would generate production plans which are far away from the
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optimum in situations with a high ratio of setup and inventory holding costs (Bookbinder and Tan

1988).

When using the dynamic uncertainty strategy in rolling schedules, it can be interpreted as a

special case of a rolling schedule strategy with a planning interval and a frozen horizon of one

period. In contrast, if the static uncertainty strategy is applied in rolling schedules, the re-planning

interval, the frozen horizon and the planning interval are all of the same length, which is also a

special case. However, since the dynamic uncertainty strategy is unsuitable for practical usage, we

omit it in the further course of the paper. A visualization of a general scheme of rolling schedules

is shown in Figure 1. According to Stadtler and Fleischmann (2012) in rolling schedules a plan is

time axis

s + 1 s + 2 s + 3

s + 2 s + 3 s + 4

s + 3 s + 4 s + 5

…

…

…

s + T 1 s + T

s + T s + T + 1

s + T + 1 s + T + 2

start of

plan

planning interval

planning

horizon

frozen horizon

re planning

interval

Figure 1 Rolling schedules with a planning interval of T periods (Stadtler and Fleischmann 2012)

created for a number of periods (planning interval), but only the first period(s) decision(s) (frozen

horizon) are implemented. Whereas, decisions of later periods might be revised in subsequent

schedules. After the periods of the re-planning interval have elapsed, all information is updated

and a new plan (re-plan) is generated for the upcoming periods of the planning interval. Thus,

rolling schedules with a multi-period deterministic MIP model (e.g., CLSP ) are common to cope

with data uncertainties in real world situations and often used within a Material Requirements

Planning (MRP) driven production planning (Stadtler and Fleischmann 2012, Fleischmann et al.
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2015). In case a deterministic, multi-period model is applied, it is common to make use of safety

stocks to meet given service levels. The performance of a planning system using rolling schedules

depends on the chosen parameters for the re-planning interval, the frozen horizon as well as the

planning interval length. According to Federgruen and Tzur (1994) one of the main problems of

rolling schedules is the truncate horizon effect, which occurs when the planning interval is too

short to obtain optimal decisions for periods within the frozen horizon. To handle this, Stadtler

(2000) proposes the looking beyond the planning horizon approach for a single-item uncapacitated

lot-sizing model and enhances it for a multi-item capacitated lot-sizing model in Stadtler (2003).

In a computational study Stadtler (2000) shows that extending a lot-sizing model by the looking

beyond the planning horizon approach and solving it with an exact algorithm leads to at least the

same results as well-known heuristics in rolling schedules. Moreover, lot-sizing models extended

by the looking beyond the planning horizon approach are insensitive to the chosen length of the

planning interval (Stadtler 2000).

Schedule instability is another major issue of rolling schedules and is specified by changes in

consecutive production plans in rolling schedules. The schedule instability is mainly caused by the

uncertain demand. For a better understanding of schedule instability Sridharan and Berry (1990)

study an uncapacitated single-item MPS with demand uncertainty in rolling schedules with differ-

ent parameter combinations. The parameter combinations of the rolling schedules are generated

by different order-based and period-based frozen horizons, different replanning periodicity, and dif-

ferent length of the planning interval. Safety stocks are used to handle demand uncertainty and to

meet a given β service level. In a computational study they compare the parameter combinations

with respect to costs and schedule instability. The results show that an order-based frozen hori-

zon leads to beneficial effects subject to costs and schedule instability. The use of an order-based

frozen horizon can be seen as a special implementation of the static-dynamic uncertainty strategy

in rolling schedules. Sridharan and LaForge (1994) present more detailed simulations to clarify

the impact of different parameter combinations of rolling schedules on the β service level. They
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show that an increased frozen horizon leads in general to an increasing average inventory level,

but not to a major decrease of the β service level. Zhao and Lee (1993) extend the research of

Sridharan and Berry (1990) to a multi-level MRP system. They confirm the finding of Sridharan

and Berry (1990), that an order-based frozen horizon results in lower costs than a period-based

frozen horizon in most cases and observe that less frequent replanning is beneficial regarding costs,

schedule instability, and service levels. In Zhao et al. (1995), the study of Zhao and Lee (1993) is

extended by analysing the impact of the lot-sizing rule on the costs, schedule instability and the

actual service level. In Xie et al. (2003) the research of Sridharan and Berry (1990) is extended to

a multi-item single-level MPS with limited capacity. The purpose of this article is to investigate

the impact of different parameter combinations on the performance of capacitated production sys-

tems. They find out that all parameters have a significant impact on costs, schedule stability, and

actual service levels. Moreover, they discover that the impact of the planning interval length and

the freezing proportion on the performance is significantly influenced by the capacity constraints.

The authors sum up, that a planning strategy is needed, which obtains a trade-off between costs,

schedule instability and service levels.

As our literature review shows, the majority of research has been done to solve lot-sizing problems

under demand uncertainty either with a static, stochastic lot-sizing model or with a deterministic

lot-sizing model and additional static safety stocks within rolling schedules. To the authors best

knowledge, little research has been done on the intersection of the stochastic lot-sizing in rolling

schedules, especially when capacity is constrained. Two articles in which the static uncertainty and

the static-dynamic uncertainty strategy is applied to rolling schedules are Bookbinder and H’ng

(1986) and Bookbinder and Tan (1988). In the articles the parameter of the frozen horizon length

is dynamically determined subject to an αpc service level. According to Bookbinder and Tan (1988)

all advantages the static-dynamic uncertainty strategy has over the static uncertainty strategy

only come into existence in static, uncapacitated planning situations. Moreover, the static-dynamic

uncertainty strategy might be unsuitable for capacitated lot-sizing problems (Tempelmeier 2013).
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This paper fills the gap between static, stochastic lot-sizing models in a static uncertainty strategy

and deterministic lot-sizing models in rolling schedules by presenting the stabilized cycle strategy

for rolling schedules. The aim of the stabilized cycle strategy is to reach cost minimal and stable

production plans by simultaneously taking into account lower and upper control limits for βj service

levels. Therefore, the stabilized cycle strategy is a new β service level based method consisting of

dynamic product-specific frozen horizons and rules that keep βj service levels within given control

limits at the end of an evaluation interval. Within the stabilized cycle strategy a deterministic

CLSP extended by dynamic TBO-dependent safety stocks (TBO-SS ) and the looking beyond the

planning horizon approach is used. The extended MIP formulation is presented in Section 3. The

benefit of such a MIP model formulation is that it can easily be implemented in APS or as an

add-on for MRP systems, which are often used in practice. The concept of the stabilized cycle

strategy is described in Section 4.

3. Model formulation for the CLSP and extensions

In this section we present the well-known CLSP model formulation of Billington et al. (1983) as

well as stepwise extensions for an implementation in rolling schedules with demand uncertainty.

The following notation is used below:

Sets

J = {j|j = 1, .., j̄} set of products

T = {t|t= 1, .., t̄} set of periods

Data

bt production capacity in period t

dj,t expected demand of product j in period t

hcj inventory holding costs per period t and product unit j

κj production coefficient of product j

scj setup costs of product j

Variables
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Ij,t inventory of product j at the end of period t

Xj,t lot size of product j in period t

Yj,t 1, if a setup for product j takes place in period t, 0 otherwise

ZCLSP total inventory holding and setup costs

minZCLSP =

j̄
∑

j=1

t̄∑

t=1

hcj · Ij,t +

j̄
∑

j=1

t̄∑

t=1

scj ·Yj,t (1)

subject to

Ij,t−1 +Xj,t − Ij,t = dj,t ∀j ∈ J, t∈ T (2)

Xj,t −M ·Yj,t ≤ 0 ∀j ∈ J, t∈ T (3)

j̄
∑

j=1

κj ·Xj,t ≤ bt ∀t∈ T (4)

Yj,t ∈ {0,1} ∀j ∈ J, t∈ T (5)

Xj,t ≥ 0 ∀j ∈ J, t∈ T (6)

Ij,t ≥ 0 ∀j ∈ J, t∈ T (7)

The objective function (1) of the CLSP minimizes setup and inventory holding costs under the

assumption of deterministic demands. Equations (2) balance the inventory levels and lot sizes

while ensuring demand fulfilment for every product j and period t. Constraints (3) ensure that the

machine is setup for product j in period t, if a production is scheduled for product j in period t.

Constraints (4) restrict the cumulated production times in each period to the available capacities

bt. Constraints (5)-(7) define the domains of the decision variables Yj,t, Xj,t, and Ij,t.

To ensure feasibility, the CLSP is further extended by soft capacity constraints (9). Since the

use of an additional capacity unit Ct (10) is related to (high) costs (pct), the model will only choose

this option, if capacity bt is insufficient. Thus, Ct must be considered in an extended objective

function ZCLSP soft

(8) as well as in the soft capacity constraints (9), which replace constraints (4).
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minZCLSP soft

=ZCLSP +
t̄∑

t=1

pct ·Ct (8)

j̄
∑

j=1

κj ·Xj,t ≤ bt +Ct ∀t∈ T (9)

Ct ∈ {0}∪ [1,∞] ∀t∈ T (10)

In the following, three extensions for the CLSP are proposed. One for incorporating TBO-SS

(Subsection 3.1), a second for overcoming the truncate horizon effect (Subsection 3.2), and a third

for accelerating the solution process by introducing valid inequalities (Subsection 3.3).

3.1. First extension: TBO-dependent safety stocks

To cope with demand uncertainties, safety stocks are proposed. But in contrast to the commonly

used static safety stocks (e.g., subject to the demand within the static optimal TBO), we rec-

ommend dynamic TBO-SS. Thus, the safety stocks are chosen subject to the actual production

cycle length, which can vary within the planning interval. We will present a model formulation of

TBO-SS extending common lot-sizing models, like the CLSP (Billington et al. 1983) or the CLSP

with linked lot sizes (CLSP -L) (Suerie and Stadtler 2003). In the extended model formulation

we introduce a new binary variable Vj,t,t+τ . It is set to 1, if a setup for product j is scheduled in

period t while the next setup is scheduled in period t+ τ . In all other cases Vj,t,t+τ is set to 0.

Here, τ represents the TBO. Moreover, the parameter ssj,t,t+τ indicates the safety stocks for a

production cycle which begins in period t and has a length of τ periods. Furthermore, τmax
j is an

externally given product-specific upper bound for the TBO. During phases of high machine utiliza-

tion, production cycles might have non-integer period lengths. Therefore, this model formulation

is an integer approximation of TBO-SS. In case a TBO has a non-integer length, our model will

round the actual TBO down to the next smallest integer. Since a smaller TBO leads to higher

safety stocks (Tempelmeier and Herpers 2011), our model formulation might result in (slightly)

overestimated safety stocks for non-integer production cycles.

Ij,t−1 ≥ ssj,lj ,t ·Vj,lj ,t
︸ ︷︷ ︸

if t≤lj+τmax
j

∧ ssj,lj ,t
≥0

+

min(τmax
j ,t−1)
∑

τ=1
︸ ︷︷ ︸
if ssj,t−τ,t≥0

ssj,t−τ,t ·Vj,t−τ,t ∀j ∈ J, t= 2, .., t̄+1 (11)
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Ij,t̄ ≥
t̄∑

t=1
︸︷︷︸

if t+τmax
j

≥t̄+2

τmax
j∑

τ=t̄−t+2

ssj,t,t+τ ·Vj,t,t+τ ∀j ∈ J (12)

τmax
j∑

τ=1
︸︷︷︸

if (t−τ)∈T∪{lj}

Vj,t−τ,t = Yj,t ∀j ∈ J, t∈ T (13)

τmax
j∑

τ=1
︸︷︷︸

if (t−τ)∈T∪{lj}

Vj,t−τ,t =
t̄−t+1∑

τ=1
︸︷︷︸

if τ≤τmax
j

Vj,t,t+τ ∀j ∈ J, t∈ T (14)

τmax
j∑

τ=−lj+1

Vj,lj ,lj+τ = 1 ∀j ∈ J (15)

t̄∑

t=1
︸︷︷︸

if t+τmax
j

≥t̄+1

Vj,t,t̄+1 = 1 ∀j ∈ J (16)

Vj,t,t+τ ∈ {0,1} ∀j ∈ J, t∈ T ∪{lj}, τ = 1, .., τmax
j (17)

The intention is to set a lower bound for the inventory level at the end of the last period of

a production cycle. The lower bound is defined by the required safety stocks corresponding to

the production cycle length. Assuming that t and t+ τ are adjacent setup periods for product

j, then Vj,t,t+τ will be set to 1. Hence, Vj,t,t+τ activates the safety stocks ssj,t,t+τ , which become

the lower bound for the inventory of product j at the end of period t+ τ − 1. This is ensured

by constraints (11) and (12) in which lj represents the last setup period of product j prior the

planning interval. Equations (13) require that each setup period defines the end of a production

cycle. Furthermore, equations (14) are the common flow constraints, meaning that, if a production

cycle ends in period t− 1, the next production cycle will start in period t. Constraints (15) set

the start of the first production cycle of every product j to lj . Equations (16) define that the last

setup period of every product j is scheduled in the first period beyond the planning horizon. Since

ssj,t−τ,t might yield negative values, the model formulation has to allow backorders. Therefore, we

introduce the variables BOj,t, which represent the backorders of product j at the end of period t.
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BOj,t are bounded by ssj,t−τ,t due to constraints (18) and (19).

BOj,t−1 ≤ −ssj,lj ,t ·Vj,lj ,t
︸ ︷︷ ︸

if t≤lj+τmax
j

∧ ssj,lj ,t
<0

+

min(τmax
j ,t−1)
∑

τ=1
︸ ︷︷ ︸
if ssj,t−τ,t<0

−ssj,t−τ,t ·Vj,t−τ,t ∀j ∈ J, t= 2, .., t̄+1 (18)

BOj,t ≥ 0 ∀j ∈ J, t∈ T (19)

Ij,t−1 +Xj,t −BOj,t−1 − Ij,t = dj,t −BOj,t ∀j ∈ J, t∈ T (20)

In case ssj,t−τ,t yields a positive value, BOj,t−1 is bounded to 0 by constraints (18) and (19). If

ssj,t−τ,t is negative, BOj,t−1 will be limited to the absolute value of ssj,t−τ,t by constraints (18).

Hence, the original inventory balance constraints of the CLSP (2) have to be extended by BOj,t.

Therefore, constraints (20) replace constraints (2). By expanding a common lot size model, like

the CLSP , by constraints (11)-(20) it can simultaneously determine lot sizes and TBO-SS.

To provide TBO-SS for the model, they have to be calculated in advance for every product j ∈ J ,

period t∈ T , and TBO (τ = 1, .., τmax
j ) by the optimization model of Tempelmeier (2011).

minXj,t,t+τ (21)

s.t. 1−
E{

∑t+τ−1

s=t
BOj,s(Xj,t,t+τ )}

E{
∑t+τ−1

s=t
dj,s)}

≥ βss
j (22)

The model yields the minimum lot size (21), which ensures the βss
j service level constraints (22)

for the related production cycle starting in period t and ending in period t+τ−1. The optimization

model is solved by the binary search heuristic of Manna and Waldinger (1987). Since we are not

interested in the minimum lot size for every product, period, and TBO (τ = 1, .., τmax
j ) but in the

safety stocks, we subtract the cumulated expected period demands in the production cycle (23).

ssj,t,t+τ =Xj,t,t+τ −

t+τ−1∑

s=t

E{dj,s} (23)

3.2. Second extension: looking beyond the planning horizon

In general only periods within the planning interval are considered for decision-making, if rolling

schedules are used. However, there exist further periods beyond the planning horizon, which might
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have an impact on decisions within the planning interval. According to Stadtler (2000), the so called

truncate horizon effect, even occurs in situations with deterministic demands. This section contains

a model formulation extending a CLSP by the looking beyond the planning horizon approach of

Stadtler (2003) to avoid this effect. Hence, we expand the objective function ZCLSP soft

(8) to

ZCLSP soft-PH (24) by adding (negative) bonus payments bonusj,t,t+τ for the last production cycle

of every product j.

minZCLSP soft-PH =ZCLSP soft

+

j̄
∑

j=1

t̄∑

t=1
︸︷︷︸

if t+τ
µ
j,t

≥t̄+2

τ
µ
j,t∑

τ=t̄−t+2

bonusj,t,t+τ ·Vj,t,t+τ (24)

subject to (3),(5)-(7),(9),(10) (11),(13),(15),(17)-(20) and

Ij,t̄ ≥
t̄∑

t=1
︸︷︷︸

if t+τ
µ
j,t

≥t̄+2

τ
µ
j,t∑

τ=t̄−t+2

(ssj,t,t+τ +
t+τ−1∑

s=t̄+1

dj,s) ·Vj,t,t+τ ∀j ∈ J (25)

τmax
j∑

τ=1
︸︷︷︸

if (t−τ)∈T∪{lj}

Vj,t−τ,t =
t̄−t+1∑

τ=1
︸︷︷︸

if τ≤τmax
j

Vj,t,t+τ +

τ
µ
j,t∑

τ=t̄−t+2

Vj,t,t+τ ∀j ∈ J, t∈ T (26)

t̄∑

t=1
︸︷︷︸

if t+τmax
j

≥t̄+1

Vj,t,t̄+1 +
t̄∑

t=1
︸︷︷︸

if t+τ
µ
j,t

≥t̄+2

τ
µ
j,t∑

τ=t̄−t+2

Vj,t,t+τ = 1 ∀j ∈ J (27)

To activate the bonus payments bonusj,t,t+τ we use variables Vj,t,t+τ introduced in Section 3.1.

Since the idea of this approach is to produce units within the planning interval intended to satisfy

demands beyond the planning horizon, the final inventory level Ij,t̄ has to be linked to the last

scheduled production cycle with a length of τ . Hence, constraints (12) are extended to (25) by

adding the expected demands beyond the planning horizon, which belong to the periods of the last

production cycle, to the safety stocks. Here, τµ
j,t presents the static optimal TBO. The expected

demands beyond the planning horizon are calculated by a simple moving average approach. Further,

we have to adjust constraints (14) and (16) to allow that production cycles may end in periods

beyond the horizon. Therefore, constraints (26) substitute constraints (14) and constraints (27)

replace constraints (16), if both extensions are used simultaneously.
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bonusj,t,t+τ are calculated in advance for every product j, period t, and TBO (τ = 1, .., τµ
j,t) by

equation (28) for every potential production cycle beginning in period t and ending in a period

beyond the planning horizon. As proposed in Stadtler (2000) τµ
j,t is determined for every product

j and period t by Groff‘s heuristic.

bonusj,t,t+τ := (29)− (30) (28)

In (29) the partial costs of a potential last production cycle, which begins in period t, for the

periods inside the planning interval are considered (Stadtler 2003, p.491).

t̄− t+1

τ
· [scj +

t+τ−1∑

s=t

hcj · (s− t) · dj,s] (29)

Note, the objective function ZCLSP soft

(8) already contains setup costs scj and inventory holding

costs relating to the last lot size within the planning horizon (30).

scj +
t̄∑

s=t

hcj · (s− t) · dj,s +hcj · (t̄− t+1) ·
t+τ−1∑

s=t̄+1

dj,s (30)

Now, bonusj,t,t+τ are calculated in (28) as the difference of (29) and (30) and added to the objective

function ZCLSP soft

(8). Thus, the new objective function ZCLSP soft-PH (24) only considers the term

(29), which is the correct proportion of lot size costs for the last production cycle belonging to the

planning interval.

3.3. Third extension: valid inequalities

In order to accelerate the solving process we introduce additional valid inequalities (31) to the

model formulation. The intention of these valid inequalities is to set lower bounds for the inventory

levels at the end of every setup period by adding the period demands beyond the setup period and

the safety stocks of the related production cycle. The first term of (31) sets the minimal inventory

level at the end of every setup period which production cycle ends within the planning interval. The

second term defines the minimal inventory level for the last setup period of the planning interval

if the production cycle ends beyond the planning horizon. Hence, the second term of (31) is equal

to constraints (25). Thus, constraints (25) are redundant.

Ij,t ≥

min{t̄−t+1,τmax
j }

∑

τ=1

(ssj,t,t+τ +
t+τ−1∑

s=t+1

dj,s) ·Vj,t,t+τ +

τ
µ
j,t∑

τ=t̄−t+2

(ssj,t,t+τ +
t+τ−1∑

s=t+1

dj,s) ·Vj,t,t+τ ∀j ∈ J, t∈ T

(31)
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To summarize, the extended CLSP creates production plans, which include appropriate

TBO-SS as well as final inventory levels for the expected demands beyond the planning horizon.

This should help to deal with demand uncertainty, to reduce the truncate horizon effect, and to

yield decisions, which are insensitive to the length of the planning interval (Stadtler 2000).

4. Stabilized cycle strategy

The stabilized cycle strategy is designed to cope with demand uncertainty for deterministic models

in rolling schedules. The strategy considers given βj service levels for an evaluation interval and

simultaneously tends to minimize setup and inventory holding costs. Note that optimal solutions in

a planning interval become heuristic in rolling schedules. Before every re-plan the values that have

been observed in the past are refreshed. In case a current βj service level is out of given control

limits (e.g., given βj service level (βtar
j ) ± 0.X), appropriate control mechanisms are used to push

the βj service level back into its control limits. As a result, we “fix” product-specific decisions of

the current production cycle (i.e., a production cycle started in ’the past’ and to be finished in

the current planning interval) to decrease plan instability as long as the current βj service level

stays within given control limits. Otherwise, decisions relating to a product’s current production

cycle might be revised. In this sense the current production cycle is not “frozen” but “stabilized”.

With the current production cycle being stabilized there is a good chance that also subsequent

production cycles in the re-plan will remain as before, i.e. will be stabilized.

Once the current βj service level is higher than the product-specific upper control limit (UCLj)

a reduction of safety stocks is used as an upper control mechanism (UCM) (Section 4.2). To

counteract βj service levels falling below product-specific lower control limits (LCLj) a service

level based lower control mechanism (LCM) is applied (Section 4.3). The interaction of the UCM

and the LCM as well as a numerical example of the resulting βj service levels in rolling schedules

are examined in Section 4.4. Within the stabilized cycle strategy we use the extended deterministic

MIP model formulation of the CLSP as presented in Section 3.
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4.1. Control parameter: β∅EI
j

The aim of the extended CLSP is to minimize setup and inventory holding costs while simulta-

neously meeting βj service levels for an evaluation interval in rolling schedules. Here, we use the

current average βj service levels (β∅EI
j ) over the past EI periods as control parameters (32). In

(32) d̂j,s is the directly fulfilled demand of product j in the past period s, while dj,s represents the

actual period demand.

β∅EI
j =

∑t−1

s=t−EI
d̂j,s

∑t−1

s=t−EI
dj,s

(32)

Either real historical data or artificial data for the past periods can be used (see Figure 2). Figure

2 shows six iterations and five re-plans of a rolling schedule with a re-planning interval of one period

and an evaluation interval of five periods. Assuming that a verification of achieving βtar
j is sufficient

at the end of the evaluation interval, artificial data are applied at the start of rolling schedules

(e.g., with period demands equal to the mean). Thus, the system is more flexible in the beginning

of rolling schedules. This flexibility leads to less interventions of the control mechanisms, which in

turn stabilizes the plans and decreases setup and inventory holding costs. Once EI re-plans have

been executed, β∅EI
j no longer includes artificial demands.

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

real data upcoming period

t= 0−EI EI

previous evaluation interval current evaluation interval

(a) With historical data

artificial data real data upcoming period

t= 0−EI EI

previous evaluation interval current evaluation interval

(b) With artificial data

Figure 2 Chronological sequence of the β∅EI
j calculation in rolling schedules with an EI = 5

Due to demand uncertainty β∅EI
j might deviate from βtar

j . If the actual demand during a pro-

duction cycle is lower than the expected demand β∅EI
j increases, and vice versa. In an evaluation
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interval with an infinite length the lower and the upper demand deviations offset each other. For

the S-CLSP Tempelmeier (2007) has shown that the long-run average service level (β∅∞
j ) will

reach βtar
j . However, in reality contracts between partners within a supply chain are not made for

infinite evaluation intervals, but for finite ones. Hence, we propose two control mechanisms to keep

β∅EI
j within given LCLj and UCLj in a finite evaluation interval.

4.2. Dynamic TBO-dependent safety stocks as an upper control mechanism

To ensure βtar
j service levels, we use TBO-SS. According to Tempelmeier (2011) βtar

j has a high

influence on the safety stocks calculation (see constraint (22) in Section 3.1 with βss
j = βtar

j ) and is

usually fixed for the evaluation interval. But due to demand uncertainty, production cycles might

occur with lower demands than expected, resulting in larger production cycle service levels (βpc
j )

than βtar
j . Also, a prematurely aborted TBO due to the inability to reach the required βtar

j in a

production cycle will lead to a βpc
j >βtar

j in most cases. In rolling schedules, a prematurely aborted

TBO occurs in a situation, in which demand in earlier periods of the current production cycle is

higher than expected. However, until that period normally all demands have been fulfilled directly

from stock such that βpc
j = 1. This is due to a violation of the inventory balance constraints ((2)

or (20)).

According to Tempelmeier (2011) the calculated safety stocks ensure βtar
j by the end of every

production cycle under a given probability assumption. Assuming that βtar
j has to be ensured by

the end of the evaluation interval, which normally contains several production cycles, we are not

forced to ensure βtar
j in every production cycle.

Due to the fact, that there are production cycles with βpc
j > βtar

j , we can also allow some pro-

duction cycles with βpc
j <βtar

j as long as βtar
j can be achieved by the end of the evaluation interval.

Therefore, we recommend to use a dynamic calculation of the TBO-SS by implementing a modifica-

tion of βss
j in constraint (22) in Section 3.1. For the βss

j modification, we calculate a minimal service

level (βmin
j ), see equation (33). There, dj,t stands for the demand of product j in the past periods

(t= 2−EI, ..,0), while d̂j,t is the directly fulfilled demand and E{dj,1} the expected demand for
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the next period. Thus βmin
j can be interpreted as the minimal βj service level for the upcoming

period which will ensure βtar
j in the next period, if dj,1 = E{dj,1}. Hence, it should be used to

calculate the required safety stocks for the next production cycle.

βmin
j =

βtar
j · (

∑0

t=2−EI
dj,t +E{dj,1})−

∑0

t=2−EI
d̂j,t

E{dj,1}
(33)

In case of β∅EI
j > βtar

j , βmin
j decreases. As a result safety stocks decrease, which in turn results

in lower inventory holding costs. However, safety stocks will increase in situations of β∅EI
j < βtar

j ,

resulting in higher inventory holding costs. Therefore, βss
j will only be set to βmin

j in situations in

which β∅EI
j exceeds βtar

j and a setup for product j is planned in the first period aiming to reduce

β∅EI
j within the next production cycle, see equation (34).

βss
j =







βmin
j , if β∅EI

j >βtar
j

βtar
j , else

(34)

4.3. Lower control mechanism

As mentioned before, in principal decisions within the frozen horizon are fixed and decisions for

periods beyond the frozen horizon are subject to revision of subsequent re-plans (Stadtler et al.

2012). Obviously, a short frozen horizon enables more flexibility to handle uncertainty than a

long one. To yield a high planning flexibility in rolling schedules, the frozen horizon is usually

determined as short as possible (e.g., just the first period). However, in case of demand uncertainty,

demand in the frozen horizon may be higher than expected and no feasible re-plan might exist

unless the current production cycle is aborted prematurely. In case of lower demand, previous

plans will be adjusted with respect to the lot sizes, while the previous scheduled production cycles

stay stable. Therefore, the length of the frozen horizon has a direct impact on the performance of

the production planning system in rolling schedules. While the static period-based or order-based

frozen horizons of Sridharan and Berry (1990) omit given service levels, we propose a dynamic βj

service level based method to determine product-specific frozen horizons.

This method prematurely aborts a current production cycle of a product j and enforces a setup

in period t= 1 of the current planning interval, if the expected βj service level (β
exp
j ) is smaller than
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βmin
j . βexp

j is determined according to Tempelmeier (2011). Hence, we calculate βexp
j based on the

expected backorders E{Fn,t=1(Ij,t=0)} and the expected demand of the next period, see equation

(35).

βexp
j = 1−

E{Fj,1(Ij,0)}

E{dj,1}
(35)

The expected backorders for the next period can be calculated by equation (36), in which G1
Y (I) =

∫∞

I
(y − I) · fy(y) · dy is the first-order-loss function with the random demand Y and the current

inventory I (Tempelmeier 2011). Moreover, BOj,0 represents the currently existing backorders of

product j.

E{Fj,1(Ij,0)}=G1
Y 1
j
(Ij,0)−BOj,0 (36)

Note that, βexp
j < βmin

j would result in β∅EI
j < βtar

j at the end of the next period. Therefore, the

method can be seen as a service level based LCM . In case βexp
j ≥ βmin

j , decisions of the previous

production plan subject to the current production cycle of product j stay stable (e.g., Yj,t = 0 ∀t=

1, .., PCEnd
j ). Here, PCEnd

j represents the last period of the current production cycle of product j.

Note that, PCEnd
j is set to 0 and Yj,1 is set to 1, if the current production cycle of product j is

prematurely aborted by the LCM . Considering the result of the LCM within the extended MIP

model formulation, the formerly defined ranges of constraints (11) and (18) t= 2, .., t̄+1 have to

be adjusted to t= PCEnd
j +2, .., t̄+1.

4.4. Simultaneous use of upper and lower control mechanisms

Since demand uncertainty in rolling schedules most often results in β∅EI
j deviating from βtar

j , a

goal-driven controlling of β∅EI
j is needed. However, if βtar

j is used as an aspiration level in the

control mechanisms, the mechanisms would be too sensitive. Meaning, one control mechanism -

either the lower or the upper - would influence the production plans in almost every period. Hence,

we recommend the use of an UCLj (β
UCL
j ) and a LCLj (β

LCL
j ) (e.g., βtar

j ±0.005) to control β∅EI
j .
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By using βUCL
j and βLCL

j instead of βtar
j as control limits for the mechanisms, a feasible range for

β∅EI
j is defined and equation (37) replaces (34).

βss
j =







βmin
j , if β∅EI

j >βUCL
j

βtar , else

(37)

Similarly, βmin
j , which is previously determined by equations (33), is now calculated by (38) for

determining TBO-SS and by (39) for the decisions whether to revise the current production cycle

or not. In equation (38), ǫ represents a small number (e.g., 0.00001), so that βmin
j < βUCL

j , which

is feasible with respect to the control limits.

βmin
j =

(βUCL
j − ǫ) · (

∑0

t=2−EI
dj,t +E{dj,1})−

∑0

t=2−EI
d̂j,t

E{dj,1}
(38)

βmin
j =

βLCL
j · (

∑0

t=2−EI
dj,t +E{dj,1})−

∑0

t=2−EI
d̂j,t

E{dj,1}
(39)

The procedure for setting up the stabilized cycle strategy is shown in Algorithm 1. It is repeated

in every periodof the evaluation interval. Subsequent to the initialisation of the common input

data of a CLSP , the parameters (e.g., βexp
j , βmin

j ,..) for the current planning interval (T ) regarding

RIj , the looking beyond the planning horizon approach, and the TBO-SS have to be calculated.

Finally, the extended CLSP is solved by a commercial solver and the first period(s) decisions are

implemented. Decisions for later periods are temporary and can be revised at a later time.

The impact of the control mechanisms on rolling schedules is explained by a numerical example,

which is visualized in Figure 3. For simplifying we assume uncapacitated rolling schedules for

an arbitrary product j with demand uncertainty. The period demand is assumed to be normally

distributed and occurs at the end of each period t. Product j is characterized by a optimal TBOj

of 2 periods and a βtar
j = 0.95. Moreover, the control limits are βLCL

j = 0.94 and βUCL
j = 0.96. The

evaluation interval is set to 10 periods and the re-planning interval equals the length of one period.

Furthermore, we use an artificial dataset for the periods of the previous evaluation interval each

with a β service level of 95%. Therefore, the control parameter β∅EI
j is initialised to βtar

j at the

beginning of the current evaluation interval.
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Algorithm 1: Rolling schedules with the stabilized cycle strategy for the current period t

(re-plan)

initialize input data (e.g., number of products, available capacities, inventory levels,...);

forall the j ∈ J do

calculate β∅EI
j by equation (32), βexp

j by equation (35) and βmin
j by equation (39);

determine whether to fix or to free the product’s current production cycle;

forall the t∈ T do

calculate optimal TBO τµ
j,t (e.g., by Groff’s heuristic (Stadtler 2000, p.320));

for τ = 1, .., τµ
j,t ,if t+ τ − 1> t̄ do

calculate bonus payments bonusj,t,t+τ by equation (28);

end

recalculate βmin
j by equation (38) and calculate βss

j by equation (37);

for τ = 1, .., τmax
j do

calculate ssj,t,t+τ by the optimization model of Tempelmeier (2011) ((21) - (23));

end

end

end

solve the extended CLSP : minZCLSP soft-PH (24) subject to (3),(5)-(7),(9),(10)

(11),(13),(15),(17)-(20),(25)-(27),(31);

Assuming, that the current inventory level Ij,0 at the end of the current period (t= 0) is insuf-

ficient to yield a βexp
j ≥ βmin

j , RIj for the first period is set to 1. Now, the first period will be a

production period for product j. Since β∅EI
j < βUCL

j , there is no need to adjust the safety stocks

calculation for the next production cycle. Regarding the TBOj, the lot size will cover the expected

demand for the next two periods (t= 1 and 2). Additionally, it is assumed that the lot size also

covers the safety stocks for TBOj = 2. Hence, the next production is then scheduled for the third

period.
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In the first re-plan - at the end of the first period - β∅EI
j is re-calculated for t= 2 (see (2)β∅EI

j in

Figure 3) on the data basis of periods t=−8, ..,0,1. Since the first period is a production period

and the produced lot size has been planned to cover the expected demand of two periods, the

actual demand of the first period, which is assumed to be lower than expected, is directly fulfilled

from stock. This leads to an increase of (2)β∅EI
j compared to (1)β∅EI

j . In a next step RIj needs to

be determined for the second period. Since the demand in the first period is lower than expected,

βexp
j >βmin

j . Thus, RIj is set to 0 and the former planned production cycle stays stable.

0.930

0.935

0.940

0.945

0.950

0.955

0.960

0.965

0 1 2 3 4 5 6 7 EI

βj

βUCL
j

βtar
j

βLCL
j

b

(1)β∅EI
j

b(2)β∅EI
j

b

(3)β∅EI
j

b(4)β∅EI
j

b(5)β∅EI
j

b(6)β∅EI
j

b

(7)β∅EI
j

Figure 3 An illustrative example of β∅EI
j resulting from rolling schedules

In the second re-plan - at the end of the second period - the re-plan procedure is repeated.

However, assuming a much higher demand than expected in the second period, not all demand

could be fulfilled directly from stock. This caused backorders of product j in the second period.

Hence, the calculation of β∅EI
j at the end of the second period, which is now based on the data of

the previous periods t=−7, ..,0,1,2, results in a decrease of (3)β∅EI
j . According to the out of stock

situation of product j in the second period, βexp
j (βexp

j = 0) < βmin
j . Thus, RIj is set to 1, which

results in a production of product j for the third period. This production decision is in line with

the former production plan. On the one hand, the lot size in the third period also has to fulfill the

backorders of the second period. On the other hand, it has to cover the expected demand of the
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next two periods (t= 3 and 4) as well as the required safety stocks of this production cycle. The

next production is then scheduled for the fifth period.

Once again, β∅EI
j is recalculated at the end of the third period. Assuming that the demand in

the third period is higher than expected but lower then the inventory level, all demand is fulfilled

directly from stock, which in turn increases (4)β∅EI
j . However, due to the high demand, βexp

j <βmin
j

for the fourth period. In this case, it cannot be ensured that β∅EI
j ≥ βLCL

j at the end of the fourth

period. Therefore, RIj is set to 1, which in turn leads to a pulled forward production in the fourth

period. Meaning, that the formerly planned production cycle is aborted prematurely due to the

LCM. Since of the TBO= 2, the next production is scheduled for the sixth period.

Again, we assume a higher actual demand than expected in the fourth period and that it is

fulfilled directly from stock. Therefore, the recalculation of β∅EI
j results in a further increase of the

control parameter, see (5)β∅EI
j = 0.965 in Figure 3. However, the high demand leads to βexp

j <βmin
j

for the fifth period. Thus, RIj is set to 1 and a pulled forward production takes place in the fifth

period. Since β∅EI
j > βUCL

j , the UCM is activated. Thus, the safety stocks, which are included in

the lot size of the fifth period, are now calculated on the basis of βmin
j instead of βtar

j . Regarding

the underlying TBO= 2 the next production is scheduled for the seventh period.

Referring to the current high β∅EI
j at the beginning of the fifth period and the produced lot

size, which will cover the expected demand of the fifth and the sixth period as well as the adjusted

safety stocks, the probability of a premature termination of the production cycle indicated by RIj

at the end of the fifth period is negligible. Hence, the production plan is assumed to be stable. Due

to the adjusted (and reduced) safety stocks of product j, we expect that β∅EI
j will be repositioned

into the control limits by the end of the current production cycle, see dashed circles in Figure

3. In addition, the reduced safety stocks decrease the inventory level, which in turn reduces the

inventory holding costs.

In this example we demonstrated the functionality of the control limits as well as the correspond-

ing control mechanisms. The UCM only has an impact on the planning process in a few re-plans.
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Whereas, the LCM has always an impact on the re-planning process to ensure that β∅EI
j ≥ βLCL

j .

Since the control limits are applied as intervention limits, it is possible that β∅EI
j can reach values

outside these limits. However, due to the control mechanisms one can expect that the parameter

β∅EI
j will be repositioned into the control limits within the next periods.

5. Computational study

We will now analyse the performance of rolling schedules (RS) with the stabilized cycle strategy in

a computational study and compare it with RS with fixed frozen horizons (FH) strategies as well

as with the static uncertainty strategy.

5.1. Test instances

We investigate test instances with six products, one capacitated production resource and an eval-

uation interval of one year, divided into 48 periods. We assume that the periods’ demand are

normally distributed and will be forecasted for the upcoming planning interval of twelve periods.

The demand forecast as well as the coefficient of variation are assumed to be constant and equal

Table 1 Parameters of the data set

Number of products, j̄ 6

Number of periods within the evaluation interval, EI 48

Number of periods within the planning interval, t̄ 12

Given β service level, βtar
j 0.95

Machine utilization (70%,85%)

Mean period demand, µ Constant (1000)

Coefficient of variation, V C Constant (0.2)

Time between order, TBO (2,3,5,2/3/5)

for all products and periods. Once, the demand forecast for a period is known, it will not be

updated at a later time. A parameter overview of the dataset can be found in Table 1. Parameter

scj represents the setup costs of a product j and is set to 1000$ for all products. We assume no

setup times. The inventory holding costs per product are calculated according to equation (40). In
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equation (40), E{dj} stands for the expected demand of a product j and is set to 1000 units for

every period and product for all test instances.

hcj = (2 · scj)/(E{dj} ·TBO2
j ) (40)

The production rate κj of a product j is calculated regarding the fixed machine capacity, the

fixed average machine utilization and the cumulated expected average demand of all products

(Seipl 2009, pp. 267). The initial inventories at the beginning of the first evaluation interval are

uniformly distributed subject to the economic order quantity for every product (Seipl 2009, pp.

265). The last setup period of a product in the previous evaluation interval is calculated based on

the initial inventory. The initial inventory of the products at the beginning of subsequent evaluation

intervals (e.g., 2,3,...) are set to the final inventory of the previous evaluation interval. A product’s

assumed TBO varies for different test instances (Table 1). By combining three different uniform

options of the TBO (2,3 and 5) as well as a mixture of the three (2/3/5) with two different machine

utilizations, eight test instances have been generated.

The number of repetitions for each test instance is set to 61 evaluation intervals. This can be seen

as a simulation of 61 consecutive years. When analysing test instances every evaluation interval is

regarded as a sample subject to its performance indicators. In general every simulation environment

has a transient phase in the beginning. To reduce the impact of the transient phase, we exclude

the first simulated evaluation interval of every test instance from the analysis.

5.2. Strategies

In the following we study two settings of the static uncertainty strategy, three settings of the RS

with fixed FH strategy and finally RS with the stabilized cycle strategy.

5.2.1. Static uncertainty strategy settings

We consider two different settings of the static uncertainty strategy as benchmarks for RS with

the stabilized cycle strategy. In both strategy settings we use the S-CLSP of Tempelmeier (2011)

to determine setup and lot size decisions.
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In the first setting of the static uncertainty strategy, the planning interval of the S-CLSP is

set to the evaluation interval (S-CLSPEI). Since the S-CLSPEI is used in a consecutive planning

process over 61 evaluation intervals, it is insufficient to plan with product-specific target inventory

levels of zero. Therefore, we set them to the initial inventory levels of the first evaluation interval.

In a second setting (S-CLSP PI), a planning interval of twelve periods is used. This is equal to

the length of the planning interval of the RS with fixed FH strategy settings. Again the target

inventory levels are set to the initial inventory levels of the first evaluation interval. Once, the

S-CLSP PI is solved, all decisions for the upcoming twelve periods are implemented regardless of

the actual period demands. Hence, based on updated information, a next plan is generated every

twelve periods for the next twelve periods.

However, when using the S-CLSP in a static uncertainty strategy within a consecutive planning,

it cannot be ensured that the actual inventory levels at the end of a planning interval enable

a feasible solution for the production plan of the next planning interval. In case a test instance

contains at least one capacity-infeasible production plan, it is excluded from the analysis.

5.2.2. Rolling schedule with fixed frozen horizons strategy settings

First, we study RS with fixed FH with period-based frozen horizons. In this setting only the first

period’s decisions of the planning interval are implemented, whereas decisions for later periods are

subject to revision. According to the findings of Xie et al. (2003) it is beneficial to set the number of

periods within the re-planning interval equal to the frozen horizon. Thus, the re-planning interval is

set to one period within this strategy. For determining setup periods and lot sizes we use the CLSP

model formulation of Billington et al. (1983) extended by static safety stocks, looking beyond the

planning horizon approach, and soft capacity constraints. The penalty costs pct are set to a relative

high constant value for each period (41). This strategy setting is subsequently called CLSP 1.PE
SSS .

pct = t̄ · j̄ · scj +1 (41)

In a second experiment, we use the same setting as in the CLSP 1.PE
SSS but now considering TBO-

SS instead of static safety stocks (CLSP 1.PE
TBO SS). With CLSP 1.PE

TBO SS we evaluate the impact of

TBO-SS on the performance of rolling schedules.
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The third experiment considers the same setting as in the CLSP 1.PE
TBO SS with the exception

of product-specific, order-based frozen horizons instead of period-based ones (CLSP 1.PC
TBO SS). The

length of the product-specific frozen horizons is equal the length of the first production cycle of each

product, if started in the first period of the planning interval. Since we consider a multi-item lot-

sizing model with product-specific frozen horizons, a re-planning interval of one period is required.

However, only decisions for products and periods beyond the frozen horizons are considered in the

re-plans. Assuming an infinite production capacity, this strategy setting can be interpreted as a

dynamic (rj,t, Sj,t) inventory policy, in which rj,t is the optimal TBOj for product j - produced

in period t - and Sj,t is the optimal product- and period-specific order-up-to-level, which is suf-

ficient to fulfill the demand subject to βtar
j and the TBOj. A comparison between a single-item

uncapacitated lot-sizing model and a dynamic (rt, St) inventory policy can be found in Herpers

(2009). However, our computational study focuses on the performance of a multi-item, capacitated,

dynamic (rj,t, Sj,t) inventory policy in rolling schedules, which - to the authors best knowledge -

has not been studied before.

5.2.3. Rolling schedules with the stabilized cycle strategy

For RS with the stabilized cycle strategy the product-specific control limits (βUCL
j and βLCL

j ) are

set to ±0.5% of βtar
j . As in the RS with fixed FH strategy settings the re-planning interval is set

to one period. Note that no fixed frozen horizon has to be determined in advance if this strategy

is used. Furthermore, the CLSP - extended by TBO-SS, looking beyond the planning horizon

approach, and soft capacity constraints - is used to determine setup periods and lot sizes in RS

with the stabilized cycle strategy (CLSPLC&UC
TBO SS).

An overview of all studied strategy settings is shown in Table 2.

5.3. Computational results

The computational study has been performed on an Intel(R) Core(TM) i7-4770 processor with a

clock speed of 3.4 GHz and 16.0 GB RAM under Windows 7 Professional. We make use of the

simulation environment of Seipl (2009), which is implemented in the programming language Java.
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Table 2 Strategy settings used within the computational study

Safety Stocks Planning Interval Frozen Horizon Re-planning Interval Strategy

S-CLSP PI TBO-dependent 12 Periods 12 Periods 12 Periods Static uncertainty

S-CLSPEI TBO-dependent 48 Periods 48 Periods 48 Periods Static uncertainty

CLSP 1.PE
SSS Static (s.t. optimal TBO) 12 Periods Period-based, first period First period RS with fixed FH

CLSP 1.PE
TBO SS TBO-dependent 12 Periods Period-based, first period First period RS with fixed FH

CLSP 1.PC
TBO SS TBO-dependent 12 Periods Order-based, first production cycle First period RS with fixed FH

CLSPLC&UC
TBO SS TBO-dependent 12 Periods Order-based with revisions, ≥ first period First period RS with the stabilized cycle

Moreover, the extended CLSP ’s, which are used to determine setup periods and lot sizes within

the RS with fixed FH strategy settings and RS with the stabilized cycle strategy, are implemented

in Xpress-IVE (Version 1.24.06) and solved by the Xpress Optimizer (Version 27.01.02). The

maximal computational time per re-plan was set to 200 seconds. However, we observe that almost

all re-plans yield an optimal solution. Thus, the mean optimality gap is negligible. For solving the

S-CLSP ’s within the static uncertainty strategy settings the CG ABCβ heuristic of Tempelmeier

(2011) is used.

To ensure a fair comparison among the six strategy settings, we exclude all evaluation intervals

from the analysis of a strategy setting in which additional capacity units are needed. However, none

of the RS with fixed FH strategy settings require additional capacity units. The same also goes

for RS with the stabilized cycle strategy. Unfortunately, it is impossible to generate 61 consecutive

capacity feasible production plans for the S-CLSPEI for test instances with a machine utilization

of 85%. Therefore, these test instances are excluded from the analysis of the S-CLSPEI . The same

applies to the S-CLSP PI for the test instance with a machine utilization of 85% and a TBO of 2.

The performance of the six strategy settings is analysed regarding two performance indicators.

First, we consider the actual mean costs per evaluation interval, which contain inventory holding

and setup costs. Second, we take the actual β∅EI
j per product and evaluation interval into consid-

eration. The actual mean costs per evaluation interval are shown in Table 3 and the actual average

β∅EI
j as well as the downside deviation (DD) of β∅EI

j from βtar
j in percentage points are presented

in Table 4.
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Table 3 Computational results of the actual mean costs

Strategy RS with fixed FH RS with the stabilized cycle Static uncertainty

TBO Machine Utilization CLSP 1.PE
SSS CLSP 1.PE

TBO SS CLSP 1.PC
TBO SS CLSPLC&UC

TBO SS S-CLSPEI S-CLSP PI

Periods ∅ ∅ [$] ∅△ [%] ∅△ [%] ∅△ [%] ∅△ [%] ∅△ [%]

2 70% 300.874 -0.32 -24.14 -20.74 14.86 -10.19

3 70% 206.077 -0.89 -20.98 -17.31 1.80 -10.09

5 70% 122.866 0.07 -15.43 -9.42 2.04 3.32

2 / 3 / 5 70% 207.631 -0.50 -20.54 -16.29 12.07 -4.74

2 85% 300.888 -0.16 -23.87 -19.00 - -

3 85% 219.695 0.46 -25.68 -19.37 - 0.06

5 85% 131.438 0.36 -20.64 -9.95 - 22.12

2 / 3 / 5 85% 213.189 0.37 -21.40 -15.32 - 11.41

Average 212.832 -0.08 -21.58 -15.93 7.69 1.70

On average the static uncertainty strategy settings yield the highest mean costs per evaluation

interval (Table 3). Within the static uncertainty strategy an increasing length of the planning

interval results in increasing costs. The RS with fixed FH strategy settings with period-based frozen

horizons (CLSP 1.PE
SSS ,CLSP 1.PE

TBO SS) yield the highest mean costs among the RS with fixed FH

strategy settings and RS with the stabilized cycle strategy. When comparing all six strategy settings

the CLSP 1.PC
TBO SS results in the least mean costs in every test instance. The same applies to the next

best strategy - the CLSPLC&UC
TBO SS - in comparison with the remaining four strategy settings. The

reason for the cost increase of the CLSPLC&UC
TBO SS is, that it aborts a formerly planned production

cycle in situations in which β∅EI
j is expected to fall below the lower control limit. Thus, the number

of setups might increase and may result in increasing mean costs compared to the CLSP 1.PC
TBO SS. A

further observation for the CLSPLC&UC
TBO SS is that the number of violations of the lower control limit

increases with higher machine utilizations.

As regards the compliance with the given service level, all studied strategy settings exceed βtar
j

on average over all products, evaluation intervals, and test instances. However, not every strategy
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Table 4 Computational results of β∅EI
j

Strategy RS with fixed FH RS with the stabilized cycle Static uncertainty

TBO Machine Utilization CLSP 1.PE
SSS CLSP 1.PE

TBO SS CLSP 1.PC
TBO SS CLSPLC&UC

TBO SS S-CLSPEI S-CLSP PI

Periods ∅ µ [%] DD [%] µ [%] DD [%] µ [%] DD [%] µ [%] DD [%] µ [%] DD [%] µ [%] DD [%]

2 70% 98.71 0.00 98.94 0.00 95.15 0.96 95.04 0.29 95.65 7.28 95.76 2.39

3 70% 99.09 0.00 99.31 0.00 95.12 1.06 95.19 0.27 95.63 6.42 95.96 1.76

5 70% 99.31 0.00 99.44 0.00 95.05 1.32 95.37 0.25 95.52 5.95 96.48 1.20

2 / 3 / 5 70% 99.17 0.00 99.27 0.00 95.02 1.32 95.23 0.23 95.51 7.09 96.03 2.03

2 85% 97.75 0.00 98.50 0.00 95.12 0.99 94.99 0.32 - - - -

3 85% 98.56 0.00 98.89 0.00 95.10 1.13 95.15 0.28 - - 96.05 2.21

5 85% 99.11 0.00 99.44 0.00 94.73 2.21 95.39 0.24 - - 97.19 0.92

2 / 3 / 5 85% 98.78 0.00 99.06 0.00 95.14 1.16 95.13 0.29 - - 96.42 1.80

Average 98.81 0.00 99.11 0.00 95.05 1.27 95.19 0.27 95.58 6.69 96.27 1.76

setting ensures β∅EI
j ≥ βtar

j for each product and every evaluation interval. As expected RS with the

stabilized cycle strategy (CLSPLC&UC
TBO SS) leads to a sharp decrease of the downside deviation of β∅EI

j

from the βtar
j (∅0.27%) in all studied test instances compared with the CLSP 1.PC

TBO SS (∅1.27%)

and the static uncertainty strategy settings (EI :∅6.69%; PI :∅1.76%) (Table 4). As mentioned

before, the production plans of the static uncertainty strategy settings are - once they have been

planned - fixed for the planning interval. This results in large β∅EI
j downside deviations for all

test instances. Meaning, that the probability of a β∅EI
j being lower than βtar

j is quite high. The

same applies to the CLSP 1.PC
TBOSS, where the first production cycle is frozen regardless of the actual

demands. In contrast, the RS with fixed FH strategy settings with a period-based frozen horizon

(CLSP 1.PE
SSS , CLSP 1.PE

TBO SS) react to the actual demand of the past period in every re-plan. This

leads to an over-accomplishment of βtar
j in every evaluation interval and no downside deviation of

β∅EI
j from βtar

j .

Moreover, the results show that the static uncertainty strategy settings have difficulties to gen-

erate capacity and service level feasible production plans. The number of plans, which result in

infeasible solutions regarding the β service level constraints of the S-CLSP are shown in Table 6
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in the Appendix A. Therefore, the static uncertainty strategy seems to be inappropriate for pro-

duction planning in industrial practice. Instead, our computational results have shown that a good

compromise between costs and downside deviation of the βj service levels can be achieved by RS

with the stabilized cycle strategy.

To study the impact of demand uncertainties and rolling schedules on costs, we compare the six

strategy settings with a deterministic CLSP (Appendix B) for the test instance with mixed TBO′s

and a high machine utilization (Table 5). Here, the deterministic CLSP is solved consecutively

with a planning interval that equals the evaluation interval of 48 weeks. As deterministic demands

actual demands that have been realized in the stochastic settings are used. Thus, the deterministic

CLSP provides a lower bound for the costs while exactly meeting given β service levels.

Table 5 Costs of uncertainty strategies in comparison with the deterministic CLSP

Strategy deterministic RS with fixed FH RS with the stabilized cycle Static uncertainty

TBO Machine Utilization CLSP deter CLSP 1.PE
SSS CLSP 1.PE

TBO SS CLSP 1.PC
TBO SS CLSPLC&UC

TBO SS S-CLSPEI S-CLSP PI

Periods ∅ ∅ [$] ∅ GAP [%] max GAP [%] ∅△ [%] ∅△ [%] ∅△ [%] ∅△ [%] ∅△ [%] ∅△ [%]

2 / 3 / 5 85% 149.609 0,86 1,77 42,50 43,03 12,01 20,66 - 58,75

For a better understanding of the trade-off between actual costs per evaluation interval and the

actual β∅EI
j per product, we plot the performance indicators in an X/Y-diagram (Figure 4). It

shows the results of all feasible strategy settings for the test instance with a machine utilization of

85% and mixed TBO′s. For every evaluation interval the actual β∅EI
j for every product together

with the corresponding actual costs are represented by a single “dot”. To provide a better overview,

the diagram contains two types of horizontal lines. The dashed lines visualise the chosen control

limits for β∅EI
j , which are used for RS with the stabilized cycle strategy (CLSPLC&UC

TBO SS), whereas

the solid lines visualise an (assumed) acceptable ±0.01 tolerance range from βtar
j .

A more detailed analysis of the results - shown in Figure 4 -, is presented in a standard graphical

box-plot analysis performed by the statistical computing language R (Version 3.1.2). The box-plot

shows the resulting distribution of the analysed 60 evaluation intervals. There is one graphical

box-plot for the β∅EI
j analysis (Figure 5) and another for the costs analysis (Figure 6).
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Figure 4 Trade-off between costs and β∅EI
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Figure 5 β∅EI
j service level box-plot analysis for mixed TBO′s and a machine utilization of 85%

6. Conclusions and future research

In classical rolling schedules involving deterministic lot-sizing models with service level constraints

about half of the production cycles are aborted prematurely because demand is higher than
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Figure 6 Cost box-plot analysis for mixed TBO′s and a machine utilization of 85%

expected. This results in unstable production plans and in higher setup and holding costs than

anticipated. On the other hand actual service levels will be (much) higher than required.

A favorable improvement over classical rolling schedules is to employ (product-specific) order-

based frozen horizons which are (re-)set to the length of a products production cycle whenever

a corresponding setup is planned in the first period of the planning interval. These order-based

frozen horizons are fixed even if service levels may be violated. This strategy yields the lowest

costs in our computational study. This is in line with the findings of Sridharan and Berry (1990)

and Zhao and Lee (1993) for uncapacitated lot-sizing problems. However, actual service levels vary

largely around the given service level with a large portion of downside deviations. This might be

counterproductive if service levels must be met in a given evaluation interval (e.g., due to periodic

audits by customers).

It turned out that the stabilized cycle strategy proposed in this paper is a good compromise.

Here, the current production cycle (i.e., the first setup in the planning interval) is kept as long as

the service level stays within given upper and lower control limits. As our computational study

demonstrates, the proposed control mechanisms are able to keep the downside deviations from

given β service levels low while there is only a moderate increase in costs compared to rolling

schedules with order-based frozen horizons. All other strategies tested have resulted in considerably

worse solutions with respect to costs and/or the downside deviations from given service levels.
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Other than most previous studies we have addressed capacitated production systems here. Due

to large computational efforts when running rolling schedules over sixty years we have created

only eight test instances with varying TBO and capacity utilization rates of 0.7 and 0.85 while

considering a β service level of 0.95 with control limits of (0.95± 0.005) and an evaluation interval

of 48 weeks. Although further tests might be desirable, the rationale of the stabilized cycle strategy

as well as our computational tests indicate that this strategy should do well also in other planning

environments. Though one should bear in mind that ”some” slack capacity is needed for the

stabilized cycle strategy to work economically in the backorder case.

The purpose of our paper has been to present general extensions for big bucket models to improve

the performance of rolling schedules. We have demonstrated our proposals by means of the CLSP

modeled along the lines of Billington et al. (1983). It may be argued that there are tighter model

formulations, like the shortest path introduced by Eppen and Martin (1987). However, these model

formulations are less commonly used in practice than the big M formulation of Billington et al.

(1983), especially in case more complex production planning problems have to be solved.

Future research should test the stabilized cycle strategy in different planning environments, like

tighter capacity utilization rates, alternative demand forecasting procedures, seasonal demand,

various capacitated lot-sizing models, and hierarchical production planning.
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Appendix A: Number of service level infeasible plans of the static uncertainty

strategy settings

Table 6 Number of service level infeasible plans of the static uncertainty strategy settings

TBO Machine Utilization S-CLSP PI S-CLSPEI

Periods ∅ number of infeasible plans

2 70% 0 of 240 0 of 60

3 70% 9 of 240 4 of 60

5 70% 23 of 240 4 of 60

2 / 3 / 5 70% 18 of 240 15 of 60

2 85% capacity infeasible capacity infeasible

3 85% 60 of 240 capacity infeasible

5 85% 96 of 240 capacity infeasible

2 / 3 / 5 85% 92 of 240 capacity infeasible

Appendix B: Deterministic CLSP with β service level constraints

Sets

J = {j|j = 1, .., j̄} set of products

T = {t|t= 1, .., t̄} set of periods

Data

bt production capacity in period t

βtar
j given β service level of product j

bocumj,0 backorders of product j at the beginning of a planning interval

bonusj,t,t+τ (negative) bonus payment for the last production cycle of product j

dj,t demand of product j in period t

hcj inventory holding costs per period t and product unit j

κj production coefficient of product j

mX
j,t Big M for lot size decisions

mBO
j,t Big M for backorder decisions

scj setup costs of product j
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t the smallest period t for a product j for which t+ τµ
j,t ≥ t̄+1 is valid

τBO
j maximal number of periods product j may be backordered (here: τBO

j = t̄)

τmax
j maximal number of periods product j may be stored (here: τmax

j = t̄)

τµ
j,t static optimal TBO of product j in period t

Variables

BOj,t backorders of product j at the end of period t

BOcum
j,t existing backorders of product j at the end of period t cumulated over past periods

Ij,t inventory of product j at the end of period t

Vj,t,t+τ 1, if a setup for product j is scheduled in period t while the next setup

is scheduled in period t+ τ , 0 otherwise

Wj,t 1, if BOcum
j,t−1 −XBj,t ≤ 0 (i.e., the backorder of j are met at the end of t), 0 otherwise

Xj,t lot size of product j in period t

XBj,t portion of Xj,t to satisfy the existing backorders cumulated over past periods

XDj,t portion of Xj,t to satisfy the demand of period t and to build up inventory

Yj,t 1, if a setup for product j takes place in period t, 0 otherwise

Zdeter total inventory holding and setup costs including bonusj,t,t+τ

minZdeter =

j̄∑

j=1

t̄∑

t=1

hcj · Ij,t +

j̄∑

j=1

t̄∑

t=1

scj ·Yj,t +

j̄∑

j=1

t̄∑

t=1
︸︷︷︸

if t+τ
µ
j,t

≥t̄+2

τ
µ
j,t∑

τ=t̄−t+2

bonusj,t,t+τ ·Vj,t,t+τ (42)

subject to

Xj,t −mX
j,t ·Yj,t ≤ 0 ∀j ∈ J, t∈ T (43)

j̄∑

j=1

κj ·Xj,t ≤ bt ∀t∈ T (44)

Ij,t−1 +XDj,t = (dj,t −BOj,t)+ Ij,t ∀j ∈ J, t∈ T (45)

BOj,t ≤ dj,t ∀j ∈ J, t∈ T (46)

BOcum
j,t−1 +BOj,t −XBj,t =BOcum

j,t ∀j ∈ J, t∈ T (47)

XDj,t +XBj,t =Xj,t ∀j ∈ J, t∈ T (48)

XDj,t ≤mX
j,t ·Wj,t ∀j ∈ J, t∈ T (49)
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BOcum
j,t−1 −XBj,t ≤mBO

j,t−1 · (1−Wj,t) ∀j ∈ J, t∈ T (50)

Wj,t ≤ Yj,t ∀j ∈ J, t∈ T (51)

Ij,0 −BOcum
j,0 +

t̄∑

t=1

Xj,t =

t̄∑

t=1

dj,t + Ij,t̄ ∀j ∈ J (52)

t̄∑

t=1

BOj,t ≤ (1−βtar
j ) ·

t̄∑

t=1

dj,t ∀j ∈ J (53)

Ij,t̄ ≥

t̄∑

t=t
︸︷︷︸

if t+τ
µ
j,t

≥t̄+2

τ
µ
j,t∑

τ=t̄−t+2

(

t+τ−1∑

s=t̄+1

dj,s) ·Vj,t,t+τ ∀j ∈ J (54)

t̄∑

t=t

τ
µ
j,t∑

τ=t̄−t+1

Vj,t,t+τ = 1 ∀j ∈ J (55)

τ
µ
j,t∑

τ=t̄−t+1

Vj,t,t+τ = Yj,t ∀j ∈ J, t= t, .., t̄ (56)

BOcum
j,t̄ = 0 ∀j ∈ J (57)

BOcum
j,0 = bocumj,0 ∀j ∈ J (58)

Yj,t,Wj,t ∈ {0,1} ∀j ∈ J, t∈ T (59)

Vj,t,t+τ ∈ {0,1} ∀j ∈ J, t= t, .., t̄, τ = 1, .., τµ
j,t (60)

BOj,t,BOcum
j,t , Ij,t,Xj,t,XBj,t,XDj,t ≥ 0 ∀j ∈ J, t∈ T (61)

with

mX
j,t =min{

bt
κj

;

min{t+τmax
j −1,t̄+τ

µ
j,t

−1}
∑

s=t

dj,s} (62)

mBO
j,t =min{(1−βtar

j ) ·
t̄∑

t=1

dj,t; bocumj,0
︸ ︷︷ ︸

if t−τBO
j

+1<1

+
t∑

s=max{1,t−τBO
j

+1}

dj,s} (63)
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Advanced Planning in Supply Chains: Illustration the Concepts Using an SAP APO Case Study .

Springer-Verlag, Berlin-Heidelberg.

Suerie, Christopher, Hartmut Stadtler. 2003. The Capacitated Lot-Sizing Problem with Linked Lot Sizes.

Management Science 49(8) 1039–1054.

Tarim, S. Armagan, Brian G. Kingsman. 2004. The stochastic dynamic production/inventory lot-sizing

problem with service-level constraints. International Journal of Production Economics 88(1) 105–119.

Tarim, S. Armagan, Brian G. Kingsman. 2006. Modelling and computing (Rn, Sn) policies for inventory

systems with non-stationary stochastic demands. European Journal of Operational Research 174(1)

581–599.



Meistering and Stadtler: Rolling Schedules with Capacitated Lot-Sizing and Service Level Constraints

41

Tempelmeier, Horst. 2007. On the stochastic uncapacitated dynamic single-item lotsizing problem with

service level constraints. European Journal of Operational Research 181(1) 184–194.

Tempelmeier, Horst. 2011. A column generation heuristic for dynamic capacitated lotsizing with random

demand under a fillrate constraint. Omega 39(6) 627–633.

Tempelmeier, Horst. 2013. Stochastic Lot Sizing Problems. J. MacGregor Smith, Baris Tan, eds., Handbook

of Stochastic Models and Analysis of Manufacturing System Operations . Springer, New York, 313–344.

Tempelmeier, Horst, Sascha Herpers. 2010. ABCβ - a heuristic for dynamic capacitated lot sizing with

random demand under a fillrate constraint. International Journal of Production Research 48(17) 5181–

5193.

Tempelmeier, Horst, Sascha Herpers. 2011. Dynamic Uncapacitated Lot Sizing with Random Demand under

a Fillrate Constraint. European Journal of Operational Research 212(3) 497–507.

Tempelmeier, Horst, Timo Hilger. 2015. Linear programming models for a stochastic dynamic capacitated

lot sizing problem. Computers & Operations Research 59 119–125.

Thomas, Douglas J. 2005. Measuring Item Fill-Rate Performance in a Finite Horizon. Manufacturing &

Service Operations Management 7(1) 74–80.

Xie, Jinxing, Xiande Zhao, T. S. Lee. 2003. Freezing the master production schedule under single resource

constraint and demand uncertainty. International Journal of Production Economics 83(1) 65–84.

Zhao, Xiande, T. S. Lee. 1993. Freezing the master production schedule in multilevel material requirements

planning systems under demand uncertainty. Journal of Operations Management 11(2) 185–205.

Zhao, Xiande, T. S. Lee, J. C. Goodale. 1995. Lot-sizing rules and freezing the master production schedule in

material requirements planning systems under demand uncertainty. International Journal of Production

Research 33(8) 2241–2276.


