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ON THE REAL LOCUS IN THE KATO-NAKAYAMA SPACE OF

LOGARITHMIC SPACES WITH A VIEW TOWARD TORIC

DEGENERATIONS

HÜLYA ARGÜZ AND BERND SIEBERT

Abstract. We study the real loci of toric degenerations of complex varieties with

reducible central fibre, as introduced in the joint work of the second author with Mark

Gross on mirror symmetry. The topology of such degenerations can be explicitly

described via the Kato-Nakayama space of the central fibre as a log space. The

paper provides generalities of real structures in log geometry and their lift to Kato-

Nakayama spaces, the description of the Kato-Nakayama space of a toric degeneration

and its real locus, as bundles determined by tropical data. Examples include real toric

degenerations of K3-surfaces.
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2 HÜLYA ARGÜZ AND BERND SIEBERT

Introduction.

We study real structures in the toric degenerations introduced by Gross and the

second author in the context of mirror symmetry [GS1], [GS3]. A toric degeneration

in this sense is a degeneration of algebraic varieties δ : X → T = SpecR with R a

discrete valuation ring and with central fibre X0 = δ−1(0) a union of toric varieties,

glued pairwise along toric divisors. Here 0 ∈ SpecR is the closed point. We also require

that δ is toroidal at the zero-dimensional toric strata, that is, étale locally near these

points, δ is given by a monomial equation in an affine toric variety. For an introductory

survey of toric degenerations see [GS4].

Probably the most remarkable aspect of toric degenerations is that they can be

produced canonically from the central fibre X0 and some residual information on the

family X, captured by what is called a log structure. While the reconstruction is done

by an inductive procedure involving a wall structure [GS3], and is typically impossible

to carry through in practice, many features of the family are already contained in

the log structure. A simple characterization of the nature of the log structure in the

present situation has been given in [GS1], Theorem 3.27. It says that if at a general

point of the singular locus of X0 where two irreducible components meet, X is given as

xy = f · te with t ∈ R generating the maximal ideal, the log structure captures e ∈ N

and the restriction of f to x = y = 0.

An important feature of the log structure for the present paper is that the topology of

the degeneration can be read off canonically. Indeed, just as for any logarithmic space

over the complex numbers, to X0 there is a canonically and functorially associated

topological space XKN
0 , its Kato-Nakayama space or Betti realization [KN]. It comes

with a continuous map to the analytic space Xan
0 associated to X0. Moreover, in the

present case, there is a map XKN
0 → S1, coming from functoriality and the fact that

the closed point in T as a divisor also comes with a log structure, with S1 its Kato-

Nakayama space. Now it follows from the main result of [NO] that the map XKN
0 → S1

is homeomorphic to the preimage under δ of a small circle about 0 in T . See the

discussion at the beginning of §4.2 for details. In particular, by restricting to the fibre

over, say 1 ∈ S1, we obtain a topological space XKN
0 (1) homeomorphic to a general

fiber Xt of an analytic model X of the degeneration X.

Our primary interest in this paper are real structures in X0 and their lift to XKN
0 .

The main reason for being interested in real structures in this context is that the real

locus produces natural Lagrangian submanifolds on any complex projective manifold

defined over R. Thus assuming the analytic model X is defined over R, it comes with

a natural family of degenerating Lagrangian submanifolds. Again we can study these

Lagrangians by means of their analogues in XKN
0 . Note that if X0 is defined over R
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and the functions f on the double locus defining the log structure are as well, then the

canonical family X is already defined over R, see [GS3], Theorem 5.2.

Once we have a real Lagrangian L ⊂ Xt, a holomorphic disc with boundary on L

glues with its complex conjugate to a rational curve C ⊂ Xt with a real involution.

Real rational curves are amenable to techniques of algebraic geometry and notably of

log Gromov-Witten theory of the central fibre X0. Thus real Lagrangians provide an

algebraic-geometric path to open Gromov-Witten invariants and the Fukaya category.

See [So],[PSW] and [FOOO] for previous work in this direction without degenerations.

In Section 1 we introduce the straightforward notion of a real structure on a log space

along with basic properties. Our main example is the central fibre of a degeneration

defined over R, with its natural log structure. In Section 2 we recall the definition of

the Kato-Nakayama space XKN over a log scheme X as a topological space along with

some properties needed in later sections. We then show that the real involution on

a real log scheme lifts canonically to its Kato-Nakayama space (Section 3). Section 4

is devoted to the toric degeneration setup. We describe the Kato-Nakayama space

as glued from standard pieces, torus bundles over the momentum polytopes of the

irreducible components of the central fibre X0 ⊂ X, and in terms of global monodromy

data. Under the presence of a real structure we give a similar description for the real

locus. For real structures inducing the standard real structure on each toric irreducible

component of X0, the real locus in the Kato-Nakayama space of X0 is a branched cover

of the union B of momentum polyhedra, the integral affine manifold of half the real

dimension of a general fibre governing the inductive construction of X. For a concrete

example we study the case of a toric degeneration of quartic K3 surfaces, reproducing

a result of Castaño-Bernard and Matessi [CBM] on the topology of the real locus of an

SYZ-fibration with compatible real involution in our setup.

Conventions. We work in the category of log schemes of finite type over C with

log structures in the étale topology, but use the analytic topology from Section 2 on.

Similar discussions are of course possible in the categories of algebraic log stacks over C

or of complex analytic log spaces. Throughout this paper we assume basic familiarity

with log geometry at the level of [Kf]. For more details we encourage the reader to also

look at [Kk], [O]. The structure homomorphism of a log space (X,MX) is denoted

αX : MX → OX , or just α if X is understood. The standard log point (SpecC,N⊕C×)

is denoted by O†.

For a = reiϕ ∈ C \ {0} we denote by arg(a) = ϕ ∈ R/2πiZ and by Arg(a) = eiϕ =

a/|a|.
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1. Real structures in log geometry

Recall that for a scheme X̄ defined over R the Galois group G(C/R) = Z/2Z acts

on the assoicated complex scheme X = X̄ ×SpecR SpecC by means of the universal

property of the cartesian product

X −−−→ X̄y
y

SpecC −−−→ SpecR.

The generator of the Galois action thus acts on X as an involution of schemes over R

making the following diagram commutative

(1.1)

X
ι

−−−→ Xy
y

SpecC
conj

−−−→ SpecC.

Here conj denotes the R-linear automorphism of SpecC defined by complex conjuga-

tion.

Conversely, a real structure on a complex scheme X is an involution ι : X → X of

schemes over R fitting into the commutative diagram (1.1). It is not hard to see that

if X is separated then X is defined over R with ι the generator of the Galois action

([Hr], II Ex.4.7). A pair (X, ι) is called a real scheme. By abuse of notation we usually

omit ι when talking about real schemes.

Definition 1.1. Let (X,MX) be a log scheme over C with a real structure ιX : X →

X on the underlying scheme. Then a real structure on (X,MX) (lifting ιX) is an

involution

ι̃X = (ιX , ι
♭
X) : (X,MX) −→ (X,MX)

of log schemes over R with underlying scheme-theoretic morphism ιX . The data con-

sisting of (X,MX) and the involutions ιX , ι
♭
X is called a real log scheme.

In talking about real log schemes the involutions ιX , ι
♭
X are usually omitted from the

notation. We also sometimes use the notation ιX for the involution of the log space

(X,MX) and in this case write ιX if we want to emphasize we mean the underlying

morphism of schemes.
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Definition 1.2. Let (X,MX) and (Y,MY ) be real log schemes. A morphism f :

(X,MX) → (Y,MY ) of real log schemes is called real if the following diagram is

commutative.

f−1ι−1
Y MY

f−1ι♭Y−−−→ f−1MY

ι−1
X f♭

y
yf♭

ι−1
X MX

ι♭X−−−→ MX .

Here the left-hand vertical arrow uses the identification ιY ◦ f = f ◦ ιX .

Remark 1.3. For a real morphism of real log schemes f : (X,MX) → (Y,MY ) the

following diagram commutes.

f−1ι−1
Y OY

//

��

f−1OY

��

f−1ι−1
Y MY

//

��

??
⑧
⑧
⑧
⑧

f−1MY

��

??
⑧
⑧
⑧
⑧

ι−1
X OX

// OX

ι−1
X MX

//

??
⑧
⑧
⑧
⑧

MX

??
⑧
⑧
⑧
⑧
⑧

In fact, commutativity on the (1) bottom, (2) top, (3) right (4) left (5) back and

(6) front faces follows from the assumptions that (1) (X,MX) is a real log scheme,

(2) (Y,MY ) is a real log scheme, (3) f is a morphism of log schemes, (4) ι−1
X applied

to the right face plus the identity f ◦ ιX = ιY ◦ f , (5) f induces a real morphism on

the underlying schemes and (6) f is a real morphism of real log structures.

Given a real log scheme (X,MX) with α : MX → OX the structure homomorphism,

for any geometric point x̄→ X we have a commutative diagram

MX,x̄
ι♭

−−−→ MX,ι(x̄)
ι♭

−−−→ MX,x̄

αx̄

y αι(x̄)

y αx̄

y

OX,x̄
ι♯

−−−→ OX,ι(x̄)
ι♯

−−−→ OX,x̄.

The compositions of the maps in the two horizontal sequences are the identity on MX,x̄

and on OX,x̄, respectively. For the next result recall that if X is a pure-dimensional

scheme and D ⊂ X is a closed subset of codimension one, then the subsheaf M(X,D) ⊂

OX of regular functions with zeros contained in D defines the divisorial log structure

on X associated to D.

Proposition 1.4. Let X be a pure-dimensional scheme, D ⊂ X a closed subset of

codimension one and let MX = M(X,D) be the associated divisorial log structure. Then
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a real structure ι on X lifts to MX iff ι(D) = D. Moreover, in this case the lift ι♭ is

uniquely determined as the restriction of ι♯ to M(X,D) ⊂ OX .

Proof. Let ι : X → X be a real structure on X with ι(D) = D. Then ι(X \D) = X \D

and hence ι♯ restricts to an isomorphism ϕ : ι−1O×
X\D → O×

X\D. By definition of

M(X,D), ϕ induces an isomorphism ι♭ : ι−1M(X,D) → M(X,D). Hence we get a real

structure (ι, ι♭) : (X,M(X,D)) → (X,M(X,D)) on (X,M(X,D)) lifting ι.

Conversely, let the real structure ι : X → X lift to (ι, ι♭) : (X,M(X,D)) −→

(X,M(X,D)). In other words, there exists a morphism ι♭ : ι−1M(X,D) −→ M(X,D)

making the following diagram commute.

(1.2)

ι−1M(X,D)
ι−1α
−−−→ ι−1OX

ι♭

y
yι♯

M(X,D)
α

−−−→ OX

Let D =
⋃
µDµ be the decomposition into irreducible components. Since ι2 = idX it

suffices to show ι(D) ⊂ D, or ι(Dµ) ⊂ D for every µ. Fix µ and let U ⊂ X be an

affine open subscheme with U ∩Dµ 6= ∅. Let f ∈ OX(U) \ {0} be such that D ⊂ V (f).

Then U ∩Dµ ⊂ U ∩D ⊂ V (f). Write V (f) = (Dµ ∩U)∪E with E ⊂ V (f) the union

of the irreducible components of V (f) different from Dµ. Replacing U by U \ E we

may assume V (f) = U ∩Dµ. Note that U may not be affine anymore, but this is not

important from now on.

Taking sections of Diagram (1.2) over ι−1(U) shows that f ◦ ι = ι♯(f) lies in

M(X,D)

(
ι−1(U)

)
⊂ OX

(
ι−1(U)

)
. By the definition of M(X,D) this implies V (f ◦ι) ⊂ D.

But also

V (f ◦ ι) = ι−1
(
V (f)

)
= ι−1(U ∩Dµ) = ι(U ∩Dµ).

Taken together this shows that ι(U ∩Dµ) ⊂ D. Since U is open with U ∩Dµ 6= ∅ we

obtain the desired inclusion ι(Dµ) ⊂ D. �

Proposition 1.5. Let f : (X,MX) → (Y,MY ) be strict and assume that the morphism

f of the underlying schemes is compatible with real structures ιX on X and ιY on Y .

Then for any real structure ι♭Y on MY lifting ιY there exists a unique real structure ι♭X
on MX lifting ιX and compatible with f .

Proof. By strictness we can assume the log structure MX on X is the pull-back log

structure f ∗MY = f−1MY ⊕f−1O×
Y
O×
X . Hence,

ι−1
X MX = ι−1

X f−1MY ⊕ι−1
X f−1O×

Y
ι−1
X O×

X = f−1ι−1
Y MY ⊕f−1ι−1

Y O×
Y
ι−1
X O×

X .
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Now for a lift ι♭X : ι−1
X MX → MX of ι♯X compatible with f , the composition

ϕ : f−1ι−1
Y MY −→ ι−1

X MX

ι♭X−→ MX = f ∗MY

factors over f−1ι♭Y : f−1ι−1
Y MY → f−1MY and is hence determined by f and ι♭Y .

Similarly, the composition

ψ : ι−1
X O×

X −→ ι−1
X MX

ι♭X−→ MX = f ∗MY

factors over ι♯X : ι−1
X O×

X → O×
X and thus is known by assumption. Since f is a real

morphism of real schemes, ϕ and ψ agree on f−1ι−1
Y O×

Y . Hence the unique existence

of ι♭X with the requested properties follows from the universal property of the fibered

sum. �

Explicit computations are most easily done in charts adapted to the real structure.

For simplicity we provide the following statements for log structures in the Zariski

topology, the case sufficient for our main application to toric degenerations. Analogous

statements hold in the étale or analytic topology.

Definition 1.6. Let (X,MX) be a log scheme with a real structure (ιX , ι
♭
X). A chart

β : P → Γ(U,MX) for (X,MX) is called a real chart if (1) ιX(U) = U and (2) there

exists an involution ιP : P → P such that for all p ∈ P it holds β
(
ιP (p)

)
= ι♭X

(
β(p)

)
.

Example 1.7. An involution ιP of a toric monoid P induces an antiholomorphic invo-

lution on C[P ] by mapping
∑

p apz
p to

∑
p apz

ιP (p). The induced real structure on the

toric variety XP = SpecC[P ] permutes the irreducible components of the toric divisor

DP ⊂ XP and hence, by Proposition 1.4 induces a real structure on (XP ,M(XP ,DP )).

We claim the canonical toric chart

β : P −→ Γ(XP ,M(XP ,DP )), p 7−→ zp

is a real chart. Indeed, for any p ∈ P we have β(ιP (p)) = zι(p) = ι♯XP
(zp) = ι♭XP

(zp),

the last equality due to Proposition 1.4.

Real charts may not exist, a necessary condition being that X has a cover by affine

open sets that are invariant under the real involution ιX . This is the only obstruction:

Lemma 1.8. Let (X,MX) be a real log scheme with involution ιX . Let U ⊂ X be a

ιX-invariant open set supporting a chart β : P → Γ(U,MX). Then there also exists a

real chart β ′ : P ′ → Γ(U,MX) for MX on U .

Proof. We claim that

β̃ : P ⊕ P −→ Γ(U,X), β̃(p, p′) = β(p) · ι♭X
(
β(p′)

)
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is a real chart. Since β̃ restricts to β on the first summand of P̃ , this is still a chart

for MX on U . For the involution on the monoid P̃ = P ⊕P we take ιP̃ (p, p
′) = (p′, p).

Then indeed for any (p, p′) ∈ P̃ we have

β̃
(
ιP̃ (p, p

′)
)
= β̃(p′, p) = β(p′) · ι♭X(β(p)) = ι♭X

(
ι♭X(β(p

′)) · β(p)
)
= ι♭X

(
β̃(p, p′)

)
,

verifying the condition for a real chart. �

Note that if X is a separated scheme, real charts always exist at any point x in the

fixed locus of ιX . In fact, take any chart defined in a neighbourhood U of X , restrict

to U ∩ ιX(U), still an affine open set by separatedness, and apply Lemma 1.8.

Proposition 1.9. Cartesian products exist in the category of real log schemes.

Proof. Let (X,MX), (S,MS), (T,MT ) be real log schemes endowed with morphisms

f : (X,MX) → (T,MT ) and g : (S,MS) → (T,MT ). Then the fibre product in the

category of log schemes (S ×T X,MS×TX) fits into the following cartesian diagram.

(S ×T X,MS×TX)
pX

//

pS
��

(X,MX)

f
��

(S,MS)
g

// (T,MT )

(1.3)

The log structure on the fiber product S ×T X is given by MS×TX = p∗XMX ⊕p∗TMT

p∗SMS. By the universal property of the fibered coproduct the existence of real struc-

tures on (X,MX), (S,MS) and (T,MT ) ensures the existence of a real structure on

(S ×T X,MS×TX). �

Note that in general the amalgamated sum of fine log structures p∗XMX⊕p∗TMT
p∗YMY

is only coherent, but not even integral. To take the fibred product in the category of fine

log schemes requires the further step of integralizing (S×TX,MS×TX). Given a monoid

P with integralization Pint and a chart U → SpecZ[P ] for a log scheme (U,MU), the

integralization of (U,MU) is the closed subscheme U×Spec Z[P ]SpecZ[P
int] of U with the

log structure defined by the chart U → SpecZ[P ] → SpecZ[P int]. A similar additional

step is needed for staying in the category of saturated log schemes. Fortunately, we

are only interested in the case that g is strict, and in this case the fibre product in all

categories agree. See [O], Ch.III, §2.2.1, for details.

Example 1.10. Let S be the spectrum of a discrete valuation ring with residue field C

and δ : X → S be a flat morphism. Let 0 ∈ S be the closed point, X0 = δ−1(0) and con-

sider δ as a morphism of log schemes with divisorial log structures δ : (X,M(X,X0)) →

(S,M(S,0)). If δ commutes with real structures on X and S, then by Proposition 1.4,
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the morphism δ is naturally a real morphism of real log schemes. Taking the base

change by the strict morphism (SpecC,N⊕ C×) → (S,M(S,0)), Proposition 1.9 leads

to a real log scheme (X0,MX0) over the standard log point O† = (SpecC,N⊕ C×).

2. The Kato-Nakayama space of a log space

2.1. Generalities on Kato-Nakayama spaces. For the rest of the paper we work

in the analytic topology. If R is a finitely generated C-algebra we write SpecanR for

the analytic space associated to the complex scheme SpecR.

To any log scheme (X,MX) over C, Kato and Nakayama in [KN] have introduced

a topological space (X,MX)
KN, its Kato-Nakayama space or Betti-realization. We

review this definition and its basic properties first before discussing the additional

properties coming from a real structure. Denote by Π† = (SpecanC,MΠ) the polar log

point, with log structure

αΠ : MΠ,0 = R≥0 × U(1) −→ C, (r, eiϕ) 7−→ r · eiϕ.

There is an obvious map Π† → SpecanC making Π† into a log space over C. Note

MΠ,0 = U(1), so this log structure is not fine. As a set define

(X,MX)
KN := Hom

(
Π†, (X,MX)

)
,

the set of morphisms of complex analytic log spaces Π† → (X,MX). Note that a log

morphism f : Π† → (X,MX) is given by its set-theoretic image, a point x = ϕ(0) ∈ X ,

and a monoid homomorphism f ♭ : MX,x → R≥0 × U(1). Forgetting the monoid

homomorphism thus defines a map

(2.1) π : (X,MX)
KN −→ X.

We endow (X,MX)
KN with the following topology. A local section σ ∈ Γ(U,Mgp

X ),

U ⊂ X open, defines a map

(2.2) evσ : π−1(U) −→ R≥0 × U(1), f 7−→ f ♭ ◦ σ.

As a subbasis of open sets on (X,MX)
KN we take ev−1

σ (V ), for any U ⊂ X open,

σ ∈ Γ(U,Mgp
X ) and V ⊂ R≥0 × U(1) open. The forgetful map π is then clearly

continuous.

If the log structure is understood, we sometimes write XKN instead of (X,MX)
KN

for brevity.

Remark 2.1. The following more explicit set-theoretic description of (X,MX)
KN is

sometimes useful. A log morphism f : Π† → (X,MX) with f(0) = x is equivalent to
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a choice of monoid homomorphism f ♭ fitting into the commutative diagram

MX,x
f♭=(ρ,θ)
−−−−−→ R≥0 × U(1)

αX,x

y
yαΠ

OX,x −−−→
evx

C

Here αX,x is the stalk of the structure morphism αX : MX → OX of X and evx takes

the value of a function at the point x. This diagram implies that the first component

ρ of f ♭ is determined by x and the structure homomorphism by

ρ(σ) =
∣∣(αX,x(σ)

)
(x)
∣∣.

Thus giving f is equivalent to selecting the point x ∈ X and a homomorphism θ :

MX,x → U(1) with the property that for any σ ∈ MX,x it holds

(αX,x(σ))(x) =
∣∣(αX,x(σ))(x)

∣∣ · θ(σ).

Since both sides vanish unless σ ∈ O×
X,x ⊂ MX,x, this last property needs to be checked

only on invertible elements. Note also that a homomorphism MX,x → U(1) extends to

Mgp
X,x since U(1) is an abelian group. Summarizing, we have a canonical identification

(2.3) (X,MX)
KN =

{
(x, θ) ∈

∏
xHom(Mgp

X,x, U(1))
∣∣∣∀h ∈ O×

X,x : θ(h) =
h(x)
|h(x)|

}

In this description we adopt the occasional abuse of notation of viewing O×
X,x as a

submonoid of MX,x by means of the structure homomorphism MX,x → OX,x. From

(2.3), for s ∈ MX,x any point f ∈ XKN over x ∈ X defines an element θ(s) ∈ U(1).

We refer to this element of U(1) as the phase of s at f . If s ∈ O×
X,x then the phase of

any point of XKN over x agrees with Arg(s) = ei arg(s).

Next we give an explicit description of (X,MX)
KN assuming the log structure has a

chart with a fine monoid. For a fine monoid P , we have P gp ≃ T ⊕ Zr with T finite.

Thus the set Hom(P gp, U(1)) is in bijection with |T | copies of the real torus U(1)r by

means of choosing generators. This identification is compatible with the topology on

Hom(P gp, U(1)) defined by the subbasis of topology consisting of the sets

(2.4) Vp :=
{
ϕ ∈ Hom(P gp, U(1))

∣∣ϕ(p) ∈ V
}
,

for all V ⊂ U(1) open and p ∈ P gp.

Proposition 2.2. Let P be a fine monoid and let X be an analytic space endowed with

the log structure defined by a holomorphic map g : X → SpecanC[P ]. Then there is a

canonical closed embedding of (X,MX)
KN into X × Hom(P gp, U(1)) with image

{
(x, λ) ∈ X ×Hom(P gp, U(1))

∣∣∣ ∀p ∈ P : g♯(zp)x ∈ O×
X,x ⇒ λ(p) = Arg(g♯(zp)(x))

}
.
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Proof. Denote by β : P → Γ(X,MX) the chart given by g and by βx : P → MX,x

the induced map to the stalk at x ∈ X . Recall the description (2.3) of (X,MX)
KN

by pairs (x, θ) with x ∈ X and θ : Mgp
X,x → U(1) a group homomorphism extending

h 7→ h(x)/|h(x)| for h ∈ O×
X,x. With this description, the canonical map in the

statement is

Ψ : (X,MX)
KN −→ X ×Hom(P gp, U(1)), (x, θ) 7−→

(
x, θ ◦ βgp

x

)
.

Here βgp
x : P gp → Mgp

X,x is the map induced by βx on the associated groups.

To prove continuity of Ψ, let p ∈ P gp and V ⊂ U(1) be open. Then Ψ−1 of X × Vp

with Vp ⊂ Hom(P gp, U(1)) the basic open set from (2.4), equals ev−1
βgp(p)(R≥0×V ), with

evσ defined in (2.2). By the definition of the topology, Ψ−1(X × Vp) ⊂ (X,MX)
KN

is thus open. Continuity of the first factor π of Ψ being trivial, this shows that Ψ is

continuous.

We next check that im(Ψ) is contained in the closed subset of X × Hom(P gp, U(1))

stated in the assertion. Let (x, θ) ∈ (X,MX)
KN. For p ∈ P the required equation

g♯(zp)(x) = λ(p) ·
∣∣g♯(zp)(x)

∣∣ for λ = θ ◦ βgp
x is non-trivial only if h := g♯(zp) ∈ O×

X,x.

In this case, βx(p) maps to h under the structure homomorphism MX,x → OX,x and

hence
(
θ ◦ βx(p)

)
(x) =

h(x)∣∣h(x)
∣∣ =

g♯(zp)(x)∣∣g♯(zp)(x)
∣∣ ,

verifying the required equality.

Conversely, assume (x, λ) ∈ X ×Hom(P gp, U(1)) fulfills

(2.5) g♯(zp)(x) = λ(p) ·
∣∣g♯(zp)(x)

∣∣.

Denote by α : MX → OX the structure homomorphism. Then MX,x fits into the

cocartesian diagram of monoids

β−1
x (O×

X,x)
//

αx◦βx
��

P

βx

��
O×
X,x

// MX,x

.

Consider the pair of homomorphisms Arg ◦ evx : O×
X,x → U(1), and λ : P → U(1),

with evx evaluation at x. In view of (α ◦ β)(p) = g♯(zp), Equation (2.5) says precisely

that the compositions of these two maps with the maps from β−1
x (O×

X,x) agree. By the

universal property of fibred sums we thus obtain a homorphism MX,x → U(1). Define

θ : Mgp
X,x → U(1) as the induced map on associated groups. For h ∈ O×

X,x it holds

θ(h) = h(x)/|h(x)| and hence (x, θ) ∈ (X,MX)
KN. It is now not hard to see that the

map (x, λ) 7→ (x, θ) is inverse to Ψ and continuous as well. �
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2.2. Examples of Kato-Nakayama spaces. We next discuss a few examples of

Kato-Nakayama spaces, geared towards toric degenerations. Unless otherwise stated,

N denotes a finitely generated free abelian group, M = Hom(N,Z) its dual and NR,

MR are the associated real vector spaces. If σ ⊂ NR is a cone then the set of monoid

homomorphisms σ∨ = Hom(σ,R≥0) ⊂ MR denotes its dual cone. A lattice polyhedron

is the intersection of rational half-spaces in MR with an integral point on each minimal

face.

The basic example is a canonical description of the Kato-Nakayama space of a toric

variety defined by a momentum polytope. We use a rather liberal definition of a

momentum map, not making any reference to a symplectic structure. Let Ξ ⊂ MR

be a full-dimensional, convex lattice polyhedron. Let X be the associated complex

toric variety. A basic fact of toric geometry states that the fan of X agrees with

the normal fan ΣΞ of Ξ. From this description, X is covered by affine toric varieties

SpecanC[σ∨ ∩M ], for σ ⊂ ΣΞ. Since the patching is monomial, it preserves the real

structure of each affine patch. Hence the real locus Hom(σ∨,R) ⊂ Hom(σ∨,C) of each

affine patch glues to the real locus XR ⊂ X . Unlike in the definition of σ∨, here R and

C are multiplicative monoids. Moreover, inside the real locus of each affine patch there

is the distinguished subset

σ = Hom(σ∨,R≥0) ⊂ Hom(σ∨,R),

with “Hom” referring to homomorphisms of monoid. These also patch via monomial

maps to give the positive real locus X≥0 ⊂ XR.

Having introduced the positive real locus X≥0 ⊂ XR we are in position to define

abstract momentum maps.

Definition 2.3. Let X be the complex toric variety defined by a full-dimensional

lattice polyhedron Ξ ⊂MR. Then a continuous map

µ : X −→ Ξ

is called an (abstract) momentum map if the following holds.

(1) µ is invariant under the action of Hom(M,U(1)) on X .

(2) The restriction of µ maps X≥0 homeomorphically to Ξ, thus defining a section

s0 : Ξ → X of µ with image X≥0.

(3) The map

(2.6) Hom(M,U(1))× Ξ −→ X, (λ, x) 7−→ λ · s0(x)

induces a homeomorphism Hom(M,U(1)) × Int(Ξ) ≃ X \D, where D ⊂ X is

the toric boundary divisor.
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Projective toric varieties have a momentum map, see e.g. [Fu], §4.2. For an affine

toric variety SpecanC[P ], momentum maps also exist. One natural construction dis-

cussed in detail in [NO], §1, is a simple formula in terms of generators of the toric

monoid P ([NO], Definition 1.2). Some work is however needed to show that if

P = σ∨ ∩ M , then the image of this momentum map is the cone σ∨ spanned by

P . We give here another, easier but somewhat ad hoc construction of a momentum

map.

Proposition 2.4. An affine toric variety X = SpecanC[σ∨ ∩M ] has a momentum

map with image the defining rational polyhedral cone σ∨ ⊂ MR.

Proof. If the minimal toric stratum Z ⊂ X is of dimension r > 0, we can decom-

pose σ∨ ≃ C + Rr and acordingly X ≃ X × (C∗)r with X a toric variety with a

zero-dimensional toric stratum. The product of a momentum map X → C with the

momentum map

(C∗)r −→ R
r, (z1, . . . , zr) 7−→

(
log |z1|, . . . , log |zr|

)

is then a momentum map for X . We may therefore assume that X has a zero-

dimensional toric stratum, or equivalently that σ∨ is strictly convex.

Now embed X into a projective toric variety X̃ and let µ : X̃ → Ξ be a momentum

map mapping the zero-dimensional toric stratum of X to the origin. Then the cone in

MR spanned by Ξ equals σ∨. By replacing Ξ with its intersection with an appropriate

affine hyperplane we may assume that Ξ is the convex hull of 0 and a disjoint facet

ω ⊂ Ξ. Then X = µ−1(Ξ \ ω). To construct a momentum map for X with image σ∨

let q :MR → R be the quotient by Tω. Then q(Ξ) is an interval [0, a] with a > 0. Now

f(x) = x/(a− x) maps the half-open interval [0, a) to R≥0. A momentum map for X

with image σ∨ is then defined by

z 7−→ (f ◦ q)
(
µ(z)

)
· µ(z).

�

Our next result concerns the announced canonical description of the Kato-Nakayama

space of a toric variety with a momentum map.

Proposition 2.5. Let X be a complex toric variety with a momentum map µ : X →

Ξ ⊂ MR and let MX be the toric log structure on X. Then the map (2.6) factors

through a canonical homeomorphism

Ξ× Hom(M,U(1)) −→ (X,MX)
KN.
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Proof. The toric variety X is covered by open affine sets of the form SpecanC[P ] with

P gp =M , and these are charts for the log structure. Thus the local description of XKN

in Proposition 2.2 as a closed subset globalizes to define a closed embedding

ι : XKN −→ X × Hom(M,U(1)).

With s0 : Ξ → X the section of µ with image X≥0 ⊂ X , consider the continuous map

Φ : Ξ× Hom(M,U(1)) −→ X × Hom(M,U(1)), (a, λ) 7−→
(
λ · s0(a), λ).

Here λ ∈ Hom(M,U(1)) acts on X as an element of the algebraic torus Hom(M,C×).

The map Φ has the continuous left-inverse π × id. Thus to finish the proof it remains

to show im(Φ) = im(ι).

Indeed, according to Proposition 2.2, (x, λ) ∈ X × Hom(M,U(1)) lies in ι(XKN) iff

for all m ∈M with zm defined at x it holds zm(x) = λ(m) · |zm(x)|. But this equation

holds if and only if x = λ · σ(a) for a = µ(x) since σ(a) ∈ X≥0 implies

zm(λ · σ(a)) = λ(m) · zm(σ(a)) = λ(m) · |zm(x)|.

Thus (x, λ) ∈ XKN iff (x, λ) = (λ · σ(µ(x)), λ), that is, iff (x, λ) ∈ im(Φ). �

Remark 2.6. The left-hand side in the statement of Proposition 2.5 can also be written

T ∗
Ξ/Λ̌ where Λ̌ ⊂ TΞ is the local system of integral cotangent vectors. Indeed, for any

y ∈ Ξ we have the sequence of canonical isomorphisms

T ∗
Ξ,y/Λ̌y −→ Hom(M,R)/Hom(M,Z) = Hom(M,R/Z) = Hom(M,U(1)).

Example 2.7. Let X = A1 = SpecanC[N] be endowed with the divisorial log struc-

ture M(X,{0}). By Proposition 2.4 there exists a momentum map µ : X → R≥0.

Explicitly, in the present case one may simply take µ(z) = |z| where z is the toric

coordinate. According to Proposition 2.5, XKN ∼= R≥0 × S1 canonically. The map

π : XKN → X is a homeomorphism onto the image over A1 \ {0} and has fibre

S1 = Hom(M(X,{0}), U(1)) = Hom(N, U(1)) over 0. Thus XKN is homeomorphic to

the oriented real blow up of A1 at 0.

Example 2.8. More generally, Let (X,M(X,D)) be the divisorial log structure on a

complex scheme X with a normal crossings divisor D ⊂ X . Then the Kato-Nakayama

space XKN of X can be identified with the oriented real blow up of X along D. At

a point x ∈ X the map XKN → X has fibre (S1)k with k the number of irreducible

components of D containing x.

Example 2.9. Let X = P2 with the toric log structure. There exists a momentum

map µ : P2 → Ξ with Ξ = conv{(0, 0), (1, 0), (0, 1)} ⊂ MR the 2-simplex and M = Z2.

The momentum map exhibits the algebraic torus (C×)2 ⊂ P2 as a trivial (S1)2-bundle
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over Int Ξ. Intrinsically, the 2-torus fibres of µ over Int(Ξ) are Hom(M,U(1)). Over a

face τ ⊂ Ξ, the 2-torus fibre collapses via the quotient map given by restriction,

Hom(M,U(1)) −→ Hom(M ∩ Tτ , U(1)),

where Tτ ⊂ MR is the tangent space of τ . The quotient yields an S1 over the interior

of an edge of Ξ and a point over a vertex.

Now going over to the Kato-Nakayama space simply restores the collapsed directions,

thus yielding the trivial product Ξ× (S1)2. The fibre of XKN → X over the interior of

a toric stratum given by the face τ ⊂ Ξ are the fibres of Hom(M,U(1)) → Hom(M ∩

Tτ , U(1)).

An analogous discussion holds for all toric varieties with a momentum map.

We finish this section with an instructive non-toric example that features a non-fine

log structure. It discusses the most simple non-toric example of a toric degeneration,

the subject of Section 4.

Example 2.10. Let X = SpecanC[x, y, w±1, t]/(xy − t(w + 1)), considered as a holo-

morphic family of complex surfaces δ : X → C via projection by t. For fixed t 6= 0

we can eliminate w to arrive at δ−1(t) ≃ C2. For t = 0 we have π−1(0) = C2 ∐C C2,

two copies of the affine plane with coordinates x, w and y, w, respectively, glued semi-

normally along the line x = y = 0. Denote X0 = δ−1(0), let MX = M(X,X0) be the

log structure defined by the family and MX0 its restriction to the fibre over 0. Then

(X0,MX0) comes with a log morphism f to the standard log point O† = (pt,C× ⊕N).

We want to discuss the Kato-Nakayama space of (X0,MX0) together with the map to

S1, the Kato-Nakayama space of O†.

First note that X has an A1-singularity at the point p0 with coordinates x = y = t =

0, w = −1. Any Cartier divisor at p0 with support contained inX0 is defined by a power

of t. Hence MX0,p0 = N, while at a general point p of the double locus (X0)sing ≃ C,

the central fibre is a normal crossings divisor in a smooth space and MX0,p = N2. In

particular, MX0 is not a fine sheaf at p0. On the other hand (X0,MX0) is a typical

example of Ogus’ notion of relative coherence. In this category, the main result of [NO]

still says that XKN is homeomorphic relative (C,MC)
KN = S1 × R≥0 to XKN

0 × R≥0.

In particular, the fibre of fKN : XKN
0 → S1 = (O†)KN over eiφ ∈ S1 is homeomorphic

to C2. We want to verify this statement explicitly.

As a matter of notation we write sx, sy, st for the sections of MX or of MX0 defined

by the monomial functions indicated in the subscripts. We also use st to denote the

generator of the log structure MO† of O†.
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Since st generates MX0,p0 as a log structure, according to (2.3) the fibre of π :

XKN
0 → X0 over p0 is a copy of U(1), by mapping θ ∈ Hom(Mgp

X0,p0
, U(1)) to its value

on st. The projection to S1 = (O†)KN can then be viewed as the identity.

On the complement of p0 the log structure is fine, but there is no global chart. We

rather need two charts, defined on the open sets

U = X0 \ (x = y = 0) = Specan
(
C[x±1, w±1]× C[y±1, w±1]

)

V = X0 \ (w = −1) = SpecanC[x, y, w±1]w+1,

respectively. The charts are as follows:

ϕ : N −→ Γ(U,MX0), ϕ(1) = st.

ψ : N2 −→ Γ(V,MX0), ϕ(a, b) = sax · s
b
y.

Proposition 2.2 now exhibits UKN, V KN as closed subsets of U × U(1) and V × U(1)2,

respectively. In each case, the projections to the U(1)-factors are defined by evaluation

of θ ∈ Hom(Mgp
X0,x

, U(1)) on monomials. We write these U(1)-valued functions defined

on open subsets of XKN
0 by θt, θx, θy, θw according to the corresponding monomial.

Since f : (X0,MX0) → O† is strict over U , we have UKN = U × U(1) with fKN = θt
the projection to U(1). For V KN, over the double locus x = y = 0 the fibre of the

projection V KN → V is all of U(1)2, while for x 6= 0 the value of θx is determined by

arg x. An analogous statement holds for y 6= 0.

To patch the descriptions of XKN
0 over the two charts amounts to understanding the

map V KN → (O†)KN = U(1), the image telling the value of θ ∈ Hom(Mgp
X0,x

, U(1)) on

st. Over V = X0 \ (w = −1) we have the equation st = (w + 1)−1sxsy. Thus, say over

x 6= 0, we had the description of V KN by the value of θ ∈ Hom(Mgp
X0,x

, U(1)) on sy.

Then

(2.7) θt =
Arg(x)

Arg(w + 1)
· θy.

Thus the identification with UKN is twisted both by the phases of x and of w + 1. A

similar description holds for y 6= 0.

For t = τeiφ 6= 0 denote by XKN
0 (eiφ) the fibre over eiφ ∈ U(1) = (O†)KN and simi-

larly UKN(eiφ), V KN(eiφ). It is now not hard to construct a homeomorphism between

UKN(eiφ) ∪ V KN(eiφ) and δ−1(t) ≃ C2 \ {0}. For example, there exists a unique such

homeomorphism that on (x = 0) ⊂ UKN(eiφ) restricts to

(C∗)2 ∋ (y = seiψ, w) 7−→

(
(w + 1) · τei(φ−ψ)

s + |(w + 1)τ |1/2
, (s+ |(w + 1)τ |1/2)eiψ

)
∈ C

2,

and to a similar map with the roles of x and y swapped on (y = 0) ⊂ UKN(eiφ). This

form of the homeomorphism comes from considering the degeneration xy = (w + 1)t
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as a family of normal crossing degenerations of curves parametrized by w = const.

Details are left to the reader.

Example 2.11. An alternative and possibly more useful way to discuss the Kato-

Nakayama space of the degeneration xy = (w + 1)t in Example 2.10, is in terms of

closed strata and the momentum maps of the irreducible components Y1 = (y = 0),

Y2 = (x = 0) of X0 and of their intersection Z = Y1 ∩ Y2. Endow Y1, Y2, Z with the

log structures making the inclusions into X0 strict. Away from p0 we then have global

charts defined by st, sx for Y1, by st, sy for Y2 and by sx, sy for Z. By functoriality, the

fibre of π : XKN
0 → X0 over these closed strata Y1, Y2, Z agrees with Y KN

1 , Y KN
2 , ZKN,

respectively. Therefore, we can compute XKN
0 as the fibred sum

XKN
0 = Y KN

1 ∐ZKN Y KN
2 .

Away from the singular point p0 ∈ X0 of the log structure, Y KN
1 is the Kato-Nakayama

space of Y1 as a toric variety times an additional S1-factor coming from st, and similarly

for Y2. Since each Yi has a momentum map µi with image the half-plane R≥0 × R,

Proposition 2.5 gives a description of Y KN
i as R≥0×R×U(1)3/ ∼ with the U(1)-factors

telling the phases of w, st and of sx (for i = 1) or of sy (for i = 2), respectively. We

assume that the momentum map maps p0 to (0, 0) ∈ R≥0×R. Note that w 6= 0, so the

phase of w is already determined uniquely at any point of X0. The indicated quotient

takes care of the special point p0 by collapsing a U(1) over (x, y, w) = (0, 0,−1) as

follows. Restricting the projection

R≥0 × R× U(1)3 −→ Y1

to x = 0 yields a U(1)2-bundle over C∗, the w-plane. The two U(1)-factors record the

phases of st and sx, respectively. Now the quotient collapses the second U(1)-factor

over w = −1, reflecting the fact that only st survives in MX0,p0.

Again by functoriality, the restriction of either Y KN
i to {0} × R yields ZKN. Using

sx, sy as generators for MZ over Z \ {p0} = C∗ \ {−1} we see

ZKN = R× U(1)3/ ∼ = C
∗ × U(1)2/ ∼

Now the three U(1)-factors tell the phases θw, θx, θy of w, sx, sy. The equivalence

relation collapses the U(1)-subgroup
{
(θx, θy) ∈ U(1)2

∣∣ θx · θy = 1
}

over −1 ∈ C∗. Thus over the circle |w| = a inside the double locus x = y = 0, XKN
0

is a trivial U(1)2-bundle as long as a 6= 1, hence a 3-torus. This 3-torus fibres as a

trivial bundle of 2-tori over (O†)KN = S1. If a = 1, one of the U(1)-factors collapses to

a point over w = −1, leading to a trivial family of pinched 2-tori over S1.
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A nontrival torus fibration arises if we consider a neighbourhood of the double locus.

This is most easily understood by viewing XKN
0 as a torus fibration over R2 by taking

the union of the momentum maps

µ : X0 −→ R
2, µ|Y1 = µ1, µ|Y2 = κ ◦ µ2,

with κ(a, b) = (−a, b). Denote by XKN
0 (eiφ) the fibre of XKN

0 → (O†)KN = S1 over

eiφ ∈ S1. Write µKN = π ◦ µ : XKN
0 → R2 and µKN(eiφ) for the restriction to XKN

0 (eiφ).

For any (a, b) ∈ R2 \ {(0, 0)} the fibre (µKN)−1(a, b) is a 3-torus trivially fibred by

2-tori over (O†)KN = S1. We also have trivial torus bundles over the half-spaces

(R≥0 × R) \ {(0, 0)} and (R≤0 × R) \ {(0, 0)} as well as over R× (R \ {0}). However,

the torus bundle is non-trivial over any loop about (0, 0) ∈ R2. The reason is that the

equation xy = t(w + 1) gives the identification of torus fibrations over the two half

planes via

θy = θ−1
x · Arg(w + 1) · θt.

Now Arg(w + 1) restricted to the circle |w| = a with a < 1 is homotopic to a constant

map, while for a > 1 this restriction has winding number 1. This means that for

eiφ ∈ S1, the topological monodromy of the 2-torus fibration µKN(eiφ) : XKN
0 (eiφ) → R2

along a counterclockwise loop about (0, 0) ∈ R2 is a (negative) Dehn-twist. Thus

µKN(eiφ) is homeomorphic to a neighbourhood of an I1-singular fibre (a nodal elliptic

curve) of an elliptic fibration of complex surfaces.

3. The Kato-Nakayama space of a real log space

Let us now combine the topics of Sections 1 and 2 and consider the additional struc-

ture on the Kato-Nakayama space of a log space induced by a real structure. Through-

out this section we identify Z/2Z with the multiplicative group with two elements

±1.

The conjugation involution on C lifts to the log structure of the polar log point

MΠ = R≥0 × U(1) by putting ι♭Π(r, e
iϕ) = (r, e−iϕ).

Definition 3.1. Let (X,MX) be a real log space with (ιX , ι
♭
X) : (X,MX) → (X,MX)

its real involution. We call the map

ιKN
X : XKN −→ XKN,

(
f : Π† → (X,MX)

)
−→ ι♭X ◦ f ◦ ι♭Π.

the lifted real involution.

Proposition 3.2. The lifted real involution ιKN
X is continuous and is compatible with

the underlying real involution ιX of X under the projection π : XKN → X.

Proof. Both statements are immediate from the definitions. �
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By the definition and proposition we thus see that the real locus of X has a canonical

lift to XKN.

Definition 3.3. Let (X,MX) be a real log space and ιKN
X : XKN → XKN the lifted

real involution. We call the fixed point set of ιKN
X the real locus of XKN, denoted

XKN
R

⊂ XKN.

To describe the real locus in toric degenerations, one main interest in this paper is

the study of the real locus XKN
R

⊂ XKN. We first discuss the fibres of the restriction

πR : XKN
R

→ XR of the projection π : XKN → X . If x ∈ XR then ι♭X induces

an involution on MX,x and on the quotient MX,x = MX,x/O
×
X,x. If the involution

on MX,x is trivial, π−1
R
(x) is easy to describe. Recall from (2.3) that π−1(x) can

be identified with the set of homomorphisms θ : Mgp
X,x → U(1) given on invertible

functions h ∈ O×
X,x by θ(h) = h(x)/|h(x)|.

Proposition 3.4. Let (X,MX) be a real log space and x ∈ XR.

(1) In the description (2.3) of π−1(x), an element θ ∈ Hom(Mgp
X,x, U(1)) lies in

XKN
R

if and only if θ ◦ ι♭X,x = θ, the complex conjugation of θ.

(2) If ι♭X induces a trivial action on MX,x, then π
−1
R
(x) is canonically a torsor for

the group Hom(M
gp

X,x,Z/2Z).

Proof. 1) Let x̃ ∈ π−1(x), given by a log morphism f : Π† → (X,MX) with image x.

Then x̃ ∈ XKN
R

if and only if f ◦ ιΠ = ιX ◦ f . Now writing x̃ = (x, θ) as in (2.3), we

have f ◦ ιΠ = (x, θ) and ιX ◦ f = (x, θ ◦ ι♭X,x). Comparing the two equations yields the

statement.

2) Denote by κ : MX → MX the quotient homomorphism. We define the action of

σ ∈ Hom(M
gp

X,x,Z/2Z) on π
−1(x) by
(
σ · θ

)
(s) = σ(κx(s)) · θ(s)

for θ ∈ Hom(Mgp
X,x, U(1)). In this definition we take σ(κx(s)) ∈ O×

X,x by means of the

identifcation Z/2Z = {±1}. Now by (1) together with the additional hypotheses, θ

defines a point in XKN
R

iff θ = θ. This is the case iff θ takes values ±1. This condition

is preserved by the action of Hom(M
gp

X,x,Z/2Z). Conversely, if θ1, θ2 define elements in

π−1
R
(x) ⊂ XKN

R
then they both take values in Z/2Z ⊂ U(1) and in any case they agree

on O×
X,x. Thus θ1 ◦ θ

−1
2 factors over the quotient map κx : Mgp

X,x → M
gp

X,x to define a

homomorphism σ : M
gp

X,x → Z/2Z. Then θ1 = σ · θ2, showing that the action is simply

transitive. �

Concretely, in the fine saturated case, Proposition 3.4,(2) says that if the stalk of

M
gp

X at x ∈ XR has rank r, and ι♭x induces a trivial action on MX,x, then π−1(x)
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consists of 2r points. This seems to contradict the expected smoothness of XKN
R

in log

smooth situations, but we will see in the toric situation how this process can sometimes

merely separate sheets of a branched cover. The reason is that the real picture interacts

nicely with the momentum map description of XKN.

Proposition 3.5. Let (X,MX) be a toric variety with its toric log structure and µ :

X → Ξ ⊂MR a momentum map. Let ιX be the unique real structure on (X,MX) lifting

the standard real structure according to Proposition 1.4. Then there is a canonical

decomposition

XKN
R ≃ Ξ× Hom(M,Z/2Z),

with the projection to Ξ giving the composition µ ◦ πR : XKN
R

→ Ξ.

Proof. Recall the section σ : Ξ → X of the momentum map with image X≥0 ⊂ XR.

For x ∈ Ξ, Proposition 2.5 identifies π−1(µ−1)(x) ⊂ XKN with pairs (λ · σ(x), λ) ∈

X ×Hom(M,U(1)). The action of ιKN
X on this fibre is

(λ · σ(x), λ) 7−→ (λ · σ(x), λ).

Thus (λ · σ(x), λ) gives a point in XKN
R

if and only if λ = λ. This is the case iff λ takes

values in R ∩ U(1) = {±1}, giving the result. �

Without the assumption of a trivial action on the ghost sheaf MX,x, the fibre of

XKN
R

→ XR can be non-discrete.

Example 3.6. Let X be a complex variety with a real structure ιX and a ιX -invariant

simple normal crossings divisor D with two irreducible components D1, D2. Assume

there is a real point x ∈ D1∩D2 and ιX exchanges the two branches of D at x. Denote

by ι♭X the induced real structure on MX = M(X,D) according to Proposition 1.4. Then

P = MX,x = N2 and ι♭X,x(a, b) = (b, a). The action extends to an involution ιM of

M = P gp = Z2. In the present case there is a subspace M ′ ⊂M with M ′ ⊕ ιM (M ′) =

M , e.g. M ′ = Z · (1, 0). Then θ : M → U(1) can be prescribed arbitrarily on M ′

and extended uniquely to M by enforcing θ ◦ ιM = θ. Thus in the present case

π−1
R
(x) = Hom(Z, U(1)) = S1.

In the general case, say with MX,x a fine monoid, we can write Mgp
X,x = M ⊕ O×

X,x

with M a finitely generated abelian group and such that ι♭X,x acts by an involution ιM

on M and by ι♯X,x on O×
X,x. Then π−1(x) = Hom(M,U(1)) is a disjoint union of tori,

one copy of Hom(M/T, U(1)) for each element of the torsion subgroup T ⊂ M . The

fibres π−1
R
(x) for x ∈ XR are the preimage of the diagonal torus of the map

Hom(M,U(1)) −→ Hom(M,U(1))× Hom(M,U(1)), θ 7−→ (θ ◦ ιM , θ).
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4. The case of toric degenerations

4.1. Toric degenerations and their intersection complex. We now focus atten-

tion to toric degenerations, as first introduced in [GS1], Definition 4.1. As already

stated in the introduction, a toric degeneration in this sense is a proper flat map of

normal connected schemes δ : X → SpecR with R a discrete valuation ring and such

that the central fibre X0 is a reduced union of toric varieties; the toric irreducible

components of X0 are glued pairwise along toric strata in such a way that the dual

intersecting complex is a closed topological manifold, of the same dimension n as the

fibres of δ. In particular, the notion of toric strata of X0 makes sense. It is then

also required that near each zero-dimensional toric stratum of X0, étale locally δ is

isomorphic to a monomial map of toric varieties. Since R is a discrete valuation ring

this amounts to describing X étale locally as SpecC[P ] with P a toric monoid and f

by one monomial t = zρP , ρP ∈ P . This last formulation then holds locally outside a

closed subset Z ⊂ X0 of codimension 2 and not containing any zero-dimensional toric

strata. For the precise list of conditions we refer to [GS1], Definition 4.1. Under these

conditions it turns out that the generic fibre Xη is a Calabi-Yau variety.

We refer to [GS3], §1 for a more thorough review of toric degenerations as described

here. Various generalizations of toric degenerations have also been considered, no-

tably including dual intersection complexes that are non-compact or have non-empty

boundary [CPS], higher dimensional base spaces [GHK],[GHKS] and log singular loci

containing zero-dimensional toric strata [GHK]. While much of the following discus-

sion holds in these more general setups, to keep the presentation simple we restrict

ourselves to the original Calabi-Yau case.

Asuming that X0 is projective, let P = {σ} be the set of momentum polytopes of

the toric strata and Pmax ⊂ P the maximal elements under inclusion. For τ ∈ P

we denote by Xτ ⊂ X0 the correspoinding toric stratum. View B =
⋃
σ∈Pmax

σ as

a cell complex with attaching maps defined by the intersection patterns of the toric

strata. The barycentric subdivision of (B,P) is then canonically isomorphic to the

barycentric subdivision of the dual intersection complex of X0, as simplicial complexes.

Thus B is a topological manifold. There is a generalized momentum map µ : X0 →

B that restricts to the toric momentum map Xτ → τ on each toric stratum of X0

([RS], Proposition 3.1). Unlike in [GS1], for simplicity of notation we assume that no

irreducible component of X0 self-intersects. On the level of the cell complex (B,P)

this means that for any τ ∈ P the map τ → B is injective. We call (B,P) the

intersection complex or cone picture of the polarized central fibre X0.

The log structure MX0 on X0 induced from the degeneration can be conveniently

described as follows. At a general point of (X0)sing, exactly two irreducible components
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Xσ, Xσ′ ⊂ X0 intersect. At such a point there is a local description of X of the form

(4.1) uv = f(z1, . . . , zn−1) · t
κ,

with t a generator of the maximal ideal of R, z1, . . . , zn−1 toric coordinates for the

maximal torus of Xσ ∩ Xσ′ and u, v restricting either to 0 or to a monomial on Xσ,

Xσ′ . One of the main results of [GS1] is the statement that the restriction of the

function f is well-defined after choosing u, v and that this restriction classifies MX0.

The zero locus of f in Xρ specifies the locus where the log structure MX0 is not fine.

Thus MX0 is fine outside a closed subset Z ⊂ (X0)sing of codimension two, a union

of hypersurfaces on the irreducible components Xρ of X0, dim ρ = n − 1. Conversely,

there is a sheaf on X0 with support on (X0)sing which is an invertibe OX0-module on the

open dense subset where X0 is normal crossings, with sections classifiying log structures

arising from a local embedding into a toric degeneration (see [GS1], Theorem 3.22 and

Definition 4.21). Thus the moduli space of log structures on X0 that look like coming

from a toric degeneration can be explicitly described by an open subset of Γ((X0)sing,F)

for some coherent sheaf F on (X0)sing.

The ghost sheaf MX0 can be read off from a multivalued piecewise affine function

ϕ on P. This function is uniquely described by one integer κρ on each codimension

one cell ρ ∈ P. If uv = f · tκ is the local description of X at a general point of

Xρ, then κρ = κ. Each codimension two cell τ imposes a linear condition on the κρ

for all ρ ⊃ τ assuring the existence of a local single-valued representative of ϕ in a

neighbourhood of τ (see [GHKS], Example 1.11). Note that the local representative ϕ

is only defined up to a linear function. Thus globally ϕ can be viewed as a multi-valued

piecewise linear function, a section of the sheaf of pieceweise linear functions modulo

linear functions. We write (B,P, ϕ) for the complete tuple of discrete data associated

to a toric log Calabi-Yau space (X0,MX0), still refereed to as the intersection complex

(now polarized by ϕ).

The interpretation of the cells of P as momentum polyhedra endows B with the

structure of an integral affine manifold on the interiors of the maximal cells, that is,

a manifold with coordinate changes in Aff(Zn) = Zn ⋊ GL(n,Z). On such manifolds

it makes sense to talk about integral points as the preimage of Zn under any chart,

and they come with a local system Λ of integral tangent vectors. An important insight

is that the log structure on X0 provides a canonical extension of this affine structure

over the complement in B of the amoeba image A := µ(Z) of the log singular locus

Z ⊂ (X0)sing. In the local description at a codimension one cell ρ = σ ∩ σ′, the affine

structure of the adjacent maximal cells σ, σ′ already agree on their common face ρ.

So the extension at x ∈ Int ρ \ A only requires the identification of ξ ∈ Λσ,x with
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ξ′ ∈ Λσ′,x, each complementary to Λρ,x. In a local description uv = f · tκρ we have

u|Xσ = zm, v|Xσ′ = zm
′

by the assumption on u, v to be monomial on one of the

adjacent components Xσ, Xσ′ . One then takes ξ = m, ξ′ = −m′ +mx. Here mx ∈ Λρ

is defined by the homotopy class of f |µ−1(x), see [RS], Construction 2.2 for details. This

defines the integral affine structure on B \ A away from codimension two cells.

Lemma 4.1. The integral affine structure on the interiors of the maximal cells σ ∈ P

and on Int ρ \ A for all codimension one cells ρ extends uniquely to B \ A.

Proof. Uniqueness is clear because the extension is already given on an open and dense

subset.

At a vertex v ∈ B we have µ−1(v) = Xv, a zero-dimensional toric stratum. Let

U → SpecanC[P ] with P = K ∩ Zn+1 and t = zρP , ρP ∈ P , be a toric chart for

δ : X → SpecanR at Xv. Here K is an (n + 1)-dimensional rational polyhedral

cone, not denoted σ∨ to avoid confusion with the cells of B. There is then a local

identification of µ with the composition

µv : SpecanC[P ]
µP−→ K −→ R

n+1/R · ρP

of the momentum map for SpecanC[P ] with the projection from the cone K along

the line through ρP . Since ρP ∈ IntK, this map projects ∂K to a complete fan Σv
in Rn+1/R · ρP . The irreducible components of X0 containing Xv have affine toric

charts given by the facets of K. Thus this fan describes X0 at Xv as a gluing of

affine toric varieties. Now any momentum map µ of a toric variety provides an integral

affine structure on the image with R1µ∗Z the sheaf of integral tangent vectors on the

interior. In the present case, this argument shows first that the restriction of R1µv∗Z

to the interior of each maximal cone K ′ ∈ Σv can be canonically identified with the

sheaf of integral tangent vectors Λ on the interiors of maximal cells of B. Second, the

argument shows that R1µv∗Z restricted to IntK ′ can be identified with the (trivial)

local system coming from the integral affine structure provided by Zn+1/Z · ρP . The

fan thus provides an extension of the sheaf Λ over a neighbourhood of σ and hence also

of the integral affine structure. A possible translational part in the local monodromy

does not arise by the given gluing along lower dimensional cells.

For any τ ∈ P, the extension at the vertices of P provides also the extension on any

connected component of τ \A containing a vertex. If A∩ τ has connected components

not containing a vertex, one can in any case show the existence of a toric model with fan

∂K/R · ρP of not necessarily strictly convex rational polyhedral cones. The argument

given at a vertex then works analogously. �
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4.2. The Kato-Nakayama space of a toric degeneration. Throughout the fol-

lowing discussion we fix (X0,MX0) the central fibre of a toric degeneration with log

singular locus Z ⊂ (X0)sing, (B,P) its intersection complex and µ : X0 → B a mo-

mentum map. The main result of the section gives a canonical description of the

Kato-Nakayama space of (X0,MX0) as a torus bundle over B, away from the amoeba

image A = µ(Z) ⊂ B. We denote by

µKN : XKN
0

π
−→ X0

µ
−→ B

the composition of the projection of the Kato-Nakayama space with the momentum

map and write ZKN = π−1(Z) ⊂ XKN
0 . We also fix once and for all a generator t of

the maximal ideal of R and accordingly identify the closed point in SpecR with the

induced log structure with the standard log point O†. Thus we have a log morphism

δ : (X0,MX0) → O†, inducing a continuous map δKN : XKN
0 → (O†)KN = U(1).

Our interest in XKN
0 comes from the fact that it captures the topology of an analytic

family inducing the given log structure onX0, for a large class of spaces. This statement

is based on a result of Nakayama and Ogus, which involves the following generalization

of the notion of a fine log structure. A log space (X,MX) is relatively coherent if locally

in X the log structure MX is isomorphic to a sheaf of faces of a fine log structure.

Theorem 4.2. ([NO], Theorem 5.1) Let f : (X,MX) → (Y,MY ) be a proper, sepa-

rated, exact and relatively smooth morphism of log analytic spaces, with (Y,MY ) fine

and (X,MX) relatively coherent. Then fKN : (X,MX)
KN → (Y,MY )

KN is a topologi-

cal fibre bundle with fibres oriented manifolds with boundary.

Being a topological fibre bundle says that fKN is locally in Y homeomorphic to the

projection from a product. The technical heart of the proof is a local product decompo-

sition for maps of real cones induced by exact homomorphisms of fine monoids ([NO],

Theorem 0.2). From this result it follows easily that fKN is a topological submersion,

that is, locally in X a projection of a product ([NO], Theorem 3.7). In a final step

one applies a result of Siebenmann ([Si], Corollary 6.14) to conclude the fibre bundle

property.

We can verify the hypothesis of Theorem 4.2 for analytic smoothings of (X0,MX0) for

the case of simple singularities. The notion of simple singularities has been introduced

in [GS1] as an indecomposability condition on the local affine monodromy around

the singular locus ∆ ⊂ B of the affine structure on the dual intersection complex of

(X0,MX0). It implies local rigidity of the singular locus of the log structure as needed

in the smoothing algorithm ([GS3], Definition 1.26), but unlike local rigidity, being

simple imposes conditions in all codimensions.
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Proposition 4.3. Let (X0,MX0) be the central fibre of a troic degeneration with

simple singularities. Then (X0,MX0) → SpecO† as well as any analytic family

X → D =
{
z ∈ C

∣∣ |z| < 1
}
with X0 as central fibre and inducing the given log structure

MX0, fulfills the conditions of Theorem 4.2. In particular, δKN : (X0,MX0) → U(1)

and (X ,MX ,X0)
KN → (D,MD,0)

KN are topological fibre bundles with fibres closed man-

ifolds.

Proof. Under the assumptions of simple singularities, [GS2], Theorem 2.11 and Corol-

lary 2.17 show that δ : (X0,MX0) → O† as well as any analytic family inducing the

given log structure on X0 away from codimension three are relatively coherent. The log

structure on the parameter space being generated by one element, exactness is trivial.

Moreover, δ is vertical as a log morphism (the image of δ♭ is not contained in any proper

face), and hence the fibres have no boundary according to [NO], Theorem 5.1. �

The preceding discussion motivates the study of δKN : XKN
0 → U(1). First we show

that the log singular locus can be dealt with by taking closures, even stratawise. For

τ ∈ P denote by XKN
τ = π−1(Xτ ) ⊂ XKN

0 and by ZKN
τ = ZKN ∩XKN

τ .

Lemma 4.4. On each toric stratum Xτ ⊂ X0, the preimage ZKN
τ ⊂ XKN

τ of the log

singular locus is a nowhere dense closed subset.

Proof. It suffices to prove the statement over an irreducible componentXσ ⊂ X0, σ ⊂ B

a maximal cell. Let x ∈ Z ∩ Xσ and Xτ ⊂ Xσ the minimal toric stratum containing

x. Since Z does not contain zero-dimensional toric strata, x is not the generic point

η ∈ Xτ . We claim that the generization map χηx : MX0,x → MX0,η is injective. In

fact, MX0 is locally the divisorial log structure for a toric degeneration. Hence the

stalks of MX0 are canonically a submonoid of Nr with r the number of irreducible

components of X0 containing Xτ , say Xσ1 , . . . , Xσr . An element a ∈ Nr lies in MX0,x

iff
∑
aiXσi is locally at x a Cartier divisor, in a local description as the central fibre of

a toric degeneration. In any case, both MX0,x and MX0,η are submonoids of the same

Nr, showing the claimed injectivity of χηx.

Now take a chart MX0,η → Γ(U,MX0) with U a Zariski-open neighbourhood of

η in X0 \ Z. Then Proposition 2.2 yields a canonical homeomorphism π−1(U) =

U × Hom(M
gp

X0,η
, U(1)). By the definition of the topology on XKN

0 , the composition

U × Hom(M
gp

X0,η, U(1)) −→ Hom(M
gp

X0,η, U(1)) −→ Hom(M
gp

X0,x, U(1))

of the projection with pull-back by the generization map χ∗
ηx is continuous. By injec-

tivity of χηx this composition is surjective. Since x ∈ cl(U) we conclude that π−1(x) is

contained in the closure of π−1(U), showing the desired density. �
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For σ ∈ Pmax denote by MXσ the toric log structure for the irreducible component

Xσ ⊂ X0 and by XKN
σ its Kato-Nakayama space. By [GS1], Lemma 5.13, there is a

canonical isomorphism

(4.2) Mgp
X0
|Xσ\Z ≃ Mgp

Xσ
|Xσ\Z ⊕ Z,

the Z-factor generated by the generator t of mR chosen above.

Lemma 4.5. For σ ∈ Pmax denote by Λσ = Γ(Int σ,Λ) the group of integral tangent

vector fields on σ. Then there is a canonical continuous surjection

Φσ : σ ×Hom(Λσ ⊕ Z, U(1)) −→ (µKN)−1(σ) ⊂ XKN
0 ,

which is a homeomorphism onto the image over the complement of the log singular

locus Z ⊂ X0.

With respect to the product decomposition

σ ×Hom(Λσ ⊕ Z, U(1)) = XKN
σ × U(1),

of the domain of Φ, the restrictions of π : XKN
0 → X0 and δKN : XKN

0 → U(1) to

(µKN)−1(σ) are given by the projection to XKN
σ followed by XKN

σ → Xσ and by the

projection to U(1), respectively.

Proof. By Lemma 4.4 we may establish the result away from Z and then extend Φσ by

continuity. For any x ∈ Xσ \Z, the isomorphism (4.2) establishes a canonical bijection

Hom(Mgp
X0,x

, U(1)) −→ Hom(Mgp
Xσ,x

, U(1))× Hom(Z, U(1)).

This bijection is compatible with the fibrewise description of the Kato-Nakayama spaces

of X0 and of Xσ in (2.3), respectively, as well as with the definition of the topology.

Now varying x ∈ Xσ \ Z, Proposition 2.5 turns the first factor into the complement

of a closed, nowhere dense subset (to become Φ−1
σ (ZKN)) in σ × Hom(Λσ, U(1)). The

inverse of this description of (µKN)−1(σ) over the complement XKN
σ \ ZKN defines the

map Φσ over XKN
0 \ ZKN.

The statements in the second paragraph are immediate from the definitions. �

Proposition 4.6. Away from the amoeba image A ⊂ B of the log singular locus

Z ⊂ (X0)sing, the projection µKN : XKN
0 → B is a bundle of real (n+1)-tori. Similarly,

over B \A the restriction of µKN to a fibre of δKN : XKN
0 → (O†)KN = U(1) is a bundle

of n-tori.

Proof. For σ ∈ Pmax denote by Tσ = Hom(Λσ, U(1))× U(1) the (n+ 1)-torus fibre of

µKN over σ in the description of Lemma 4.5. For x ∈ B \ A let τ ∈ P be the unique

cell with x ∈ Int τ . Let n = dimB and k = dim τ . Then in an open contractible

neighbourhood U ⊂ B \A of x, the polyhedral decomposition P looks like the product
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of Λτ ⊗Z R with an n− k-dimensional complete fan Στ in the vector space with lattice

Λx/Λτ,x. Over each maximal cell σ containing τ , we have the canonical homeomorphism

of (µKN)−1(σ) with σ × Hom(Λσ, U(1))× U(1) provided by Lemma 4.5. Thus for any

pair of maximal cells σ, σ′ ⊃ τ we obtain a homeomorphism of torus bundles

Φσ′σ : (U ∩ σ ∩ σ′)× Tσ −→ (U ∩ σ ∩ σ′)× Tσ′ .

We only claim a fibre-preserving homeomorphism of total spaces here, Φσ,σ′ does in

general not preserve the torus actions. In any case, these homeomorphisms are com-

patible over triple intersections, hence provide homeomorphisms of torus bundes also

for maximal cells intersecting in higher codimension. This way we have described

π−1(U) as the gluing of trivial torus bundles over a decomposition of U into closed

subsets, a clutching construction.

To prove local triviality from this description of π−1(U), replace U by a smaller

neighbourhood of x that is star-like with respect to a point y ∈ Int(σ) for some maximal

cell σ ∋ x. By perturbing y slightly, we may assume that the rays emanating from y

intersect each codimension one cell ρ with ρ ∩ U 6= ∅ transversaly. To obtain a fibre-

preserving homeomorphism π−1(U) ≃ U × Tσ, connect any other point y ∈ U with x

by a straight line segment γ. Then γ passes through finitely many maximal cells σ′.

At each change of maximal cell apply the relevant Φσ′σ′′ to obtain the identification of

the fibre over y with Tσ. �

Remark 4.7. Let us describe explicitly the homeomorphism of torus bundles Φσ′σ in the

proof of Proposition 4.6, locally around some x ∈ B \ A. We restrict to the basic case

σ∩σ′ = ρ of codimension one. Let fρ be the function defining the log structure alongXρ

according to (4.1). Then there is first a strata-preserving isomorphism ofXρ ⊂ Xσ with

Xρ ⊂ Xσ′ . This isomorphism is given by (closed) gluing data, see [GS1], Definition 2.3

and Definition 2.10. In the present case, gluing data are homomorphisms Λρ → C×

fulfilling a cocyle condition in codimension two. The Kato-Nakayama space has an

additional U(1)-factor coming from the deformation parameter t. This additional factor

gets contracted in X0 along Xρ, but not in X
KN
0 . Thus over Xρ, the Kato-Nakayama

space is a U(1)2-fibration. One factor captures the phase of the deformation parameter

t, the other the phase of the monomial u (or v) describing Xρ as a divisor inXσ andXσ′ ,

respectively. In these coordinates for XKN
0 over σ and σ′, the gluing Φσ′σ is determined

by taking the argument of (4.1):

(4.3) arg(u) + arg(v) = κρ · arg(t) + arg(f).

Unless f is monomial, this equation is not compatible with the fibrewise action of

Hom
(
Λx, U(1)

)
× U(1) suggested by Lemma 4.5. In the case of nontrivial (open)
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gluing data, this definition of Φσ′σ has to be corrected by the scaling factors in C× by

which u, v differ from toric monomials in Xσ, Xσ′ , respectively.

By Proposition 4.6 we may now view the subset (µKN)−1(B \ A) ⊂ XKN
0 as a torus

bundle over B \ A. For U ⊂ B \ A any subset, we write X0|U = (µKN)−1(U), viewed

as a topological torus bundle over U . Generally, topological r-torus bundles are fibre

bundles with structure group Homeo(T r), the group of homeomorphisms of the r-torus.

There is the obvious subgroup U(1)r ⋊GL(r,Z) of homeomorphisms that lift to affine

transformations on the universal covering R
r+1 → T r = R

r/Zr. In higher dimensions

(certainly for r ≥ 5), there exist exotic homeomorphisms that are not isotopic to a linear

one ([Ht], Theorem 4.1). However, in the present situation such exotic transition maps

do not occur, and we can even find a system of local trivializations with transition

maps induced by locally constant affine transformations.

Lemma 4.8. The torus bundle XKN
0 |B\A has a distinguished atlas of local trivializations

with transition maps in U(1)n+1 ⋊GL(n + 1,Z).

Proof. It suffices to consider the attaching maps between the trivial pieces (µKN)−1(σ) =

σ×Hom(Λσ⊕Z, U(1)) of Lemma 4.5 for maximal cells σ, σ′ with ρ = σ∩σ′ of codimen-

sion one. Let V ⊂ ρ be a connected component of ρ\A. In Remark 4.7 we saw that the

transition maps over V are given by the equation arg(v) = − arg(u)+arg(f)+κρ·arg(t).

Now µKN|V factors over the Kato-Nakayama space of Xρ, which can be trivialized as

V ×Hom(Λρ, U(1))× U(1)2. The last factor is given by (Arg(u),Arg(t)), say, and the

transition map transforms this trivialization into the description with (Arg(v),Arg(t)).

Thus this transition is the identity on the first n − 1 coordinates given by Λρ and on

Arg(t), while on the last coordinate it is given by Arg(u)−1 times the phase of the alge-

braic function f · tκρ . The homotopy class of this map is given by the winding numbers

of a generating set of closed loops in π1(T
n−1×T 1) = Zn. These winding numbers define

a monomial function zm on V ×Hom(Λρ⊕Z, U(1)) with z−m ·f homotopic to a constant

map. The transition function is therefore isotopic to (idTn−1 ,Arg(zm · tκρ ·u−1), idU(1)),

fibrewise a linear transformation of T n+1 = T n × U(1) with coordinates Arg(z) for T n

and Arg(u) for U(1), respectively.

The translational factor of U(1)n+1 arises because non-trivial gluing data change the

meaning of monomials on the maximal cells by constants. See the discussion after

Corollary 4.8 below for some comments on gluing data. �

The topological classification of torus bundles with transition functions taking values

in U(1)r ⋊ GL(r,Z) works in analogy with the Lagrangian fibration case discussed in

[Du]. Let µ : X → B be such a torus bundle of relative dimension r. Then Λ = R1µ∗Z is

a local system with fibres Λx = H1(µ−1(x),Z) ≃ Zr. The torus Hom(Λx, U(1)) ≃ U(1)r



REAL LOCUS OF KATO-NAKAYAMA SPACES 29

acts fibrewise by translation on any trivialization µ−1(U) ≃ U × T r, and this action

does not depend on the trivialization. Hence X → B can be viewed as aHom(Λ, U(1))-

torsor. In particular, if µ : X → B has a section, then X ≃ Hom(Λ, U(1)) ≃ Λ̌ ⊗

U(1) is isomorphic to the trivial torsor. Here we write Λ̌ = Hom(Λ,Z) and view the

locally constant sheaf Hom(Λ, U(1)) as a topological space via its espace étalé. The

cohomology group H1(X, Λ̌⊗ U(1)) classifies isomorphism classes of Λ̌⊗ U(1)-torsors

by the usual Čech description. Moreover, from the exact sequence

0 −→ Λ̌ −→ Λ̌⊗Z R −→ Λ̌⊗Z U(1) −→ 0,

exhibiting Λ̌ ⊗Z U(1) fibrewise as a quotient of a vector space modulo a lattice, we

obtain the long exact cohomology sequence

. . . −→ H1(B, Λ̌) −→ H1(B, Λ̌⊗ R) −→ H1(B, Λ̌⊗ U(1))
δ

−→ H2(B, Λ̌) −→ . . .

The image of the class [X ] ∈ H1(B, Λ̌⊗U(1)) of X → B as a Λ̌⊗U(1)-torsor under the

connecting homomorphism, defines the obstruction δ[X ] ∈ H2(B, Λ̌) to the existence

of a continuous section of µ : X → B. The proof works as in the symplectic case

discussed in [Du], p.696f.

For a local system Λ on a topological space B with fibres Zr we write Hom(Λ, U(1))

for the associated torus bundle. As a set, Hom(Λ, U(1)) =
∐

x∈B Hom(Λx, U(1)), and

the topology is generated by sets, for m ∈ Γ(U,Λ) with U ⊂ X open and V ⊂ U(1)

open,

Vm =
{
(x, ϕ)

∣∣ x ∈ U, ϕ ∈ Hom(Λx, U(1)), ϕ(m) ∈ V
}
.

With this notation, we summarize the general discussion on torus bundles with locally

constant transition functions in the following proposition.

Proposition 4.9. Let B be a topological manifold and µ : X → B a fibre bundle

with locally constant transition functions with values in U(1)r ⋊GL(r,Z). Then up to

isomorphism, X → B is given uniquely by the local system Λ = R1µ∗Z with fibres Zr

and a class [X ] ∈ H1(B, Λ̌⊗ U(1)).

Moreover, a continuous section of µ exists if and only if δ([X ]) ∈ H2(B, Λ̌) vanishes.

In this case, X ≃ Hom(Λ, U(1)), as a torus bundle with locally constant transition

functions in U(1)r ⋊GL(r,Z). �

Remark 4.10. A torus bundle X → B with locally constant transition functions in

U(1)r ⋊GL(r,Z) as in the preceding proposition can be explicitly reconstructed from

its class [X ] ∈ H1(B, Λ̌ ⊗ U(1)) as follows. Since H1(B, Λ̌ ⊗ U(1)) = Ext1(Λ, U(1)),

any such class defines an extension

1
i

−→ U(1) −→ E
q

−→ Λ −→ 0
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of Λ by U(1). Then the set Hom0(E , U(1)) of homomorphisms ϕ : Ex → U(1), x ∈ B

with ϕ ◦ i = 1 is naturally a Λ̌⊗ U(1)-torsor by letting λ : Λ̌x → U(1) act by λ⊗ ϕ 7→

(λ◦q) ·ϕ. By the description of gluing trivial bundles via a Čech 1-cocycle it is then not

hard to construct an isomorphism of Hom0(E , U(1)) with X → B as Λ̌⊗U(1)-torsors.

For the Kato-Nakayama space XKN
0 |B\A, the governing bundle R1µ∗Z is identified as

follows. Recall that the multivalued piecewise affine function ϕ encoded in the κρ ∈ N

defines an integral affine manifold Bϕ with an integral affine action by (R,+), making

Bϕ a torsor over B = Bϕ/R ([GHKS], Construction 1.14). This torsor comes with a

canonical piecewise affine section locally representing ϕ. The pull-back of ΛBϕ under

this section defines an extension

(4.4) 0 −→ Z −→ P −→ Λ −→ 0

of Λ by the constant sheaf Z on B \ A. The extension class of this sequence equals

c1(ϕ) ∈ Ext1(Λ,Z) = H1(B \ A, Λ̌), called the first Chern class of ϕ from its mirror

dual interpretation (see [GHKS], Equation (1.5)).

For each point x ∈ B there is a chart for the log structure on X0 with monoid C[P+
x ],

where P+
x ⊂ Px is a certain submonoid of positive elements with (P+

x )
gp = Px ([GHKS],

§2.2 and [GS3], Construction 2.7). Hence from the local description of XKN
0 |B\A in

Lemma 4.5 and in Proposition 4.6, the following result is immediate:

Lemma 4.11. Writing µ̆ for the restriction of µKN : XKN
0 → B to B \ A, there exists

a canonical isomorphisms of local systems R1µ̆∗Z = P. �

Remark 4.12. Much as in the discussion of the radiance obstruction in [GS1], §1.1,

the first Chern classs c1(ϕ) can be interpreted as an element in group cohomology

H1(π1(B \ A, x), Λ̌x). Here Λ̌x ≃ Zn is a π1(B \ A, x)-module by means of parallel

transport in Λ̌ along closed loops based at some fixed x ∈ B \ A. As an element in

group cohomology, c1(ϕ) is given by a twisted homomorphism λ : π1(B \ A, x) → Λ̌x,

γ 7→ λγ, determining the monodromy of P around a closed loop γ based at x as follows:

Λx ⊕ Z −→ Λx ⊕ Z, (v, a) 7−→
(
Tγ · v, λγ · v + a

)
.

Here Tγ ∈ GL(Λx) is the monodromy of Λ along γ and we have chosen an isomorphism

Px ≃ Λx ⊕ Z. Being a twisted homomorphism means that for a composition γ1γ2 of

two loops based at x,

λγ1γ2 = λγ2 ◦ Tγ1 + λγ1 .

Here we use the convention that γ1γ2 runs through γ2 first, and hence Tγ1γ2 = Tγ2 ◦

Tγ1 . This interpretation is also compatible with the fact that under discrete Legendre

duality, the roles of c1(ϕ) and the radiance obstruction swap ([GS1], Proposition 1.50,3).
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In view of Lemma 4.11, an immediate corollary from Proposition 4.9 is a complete

topological description of XKN
0 |B\A over large open sets.

Corollary 4.13. Denote by Ã ⊂ B a closed subset containing A and such that B \ Ã

retracts to a one-dimensional cell complex. Then as a topological torus bundle, XKN
0 |B\Ã

is isomorphic to Hom(P, U(1)).

Proof. By Lemma 4.8 we can treat XKN
0 |B\Ã as a torus bundles with locally constant

transition functions in U(1)n+1 ⋊ GL(n + 1,Z). By Proposition 4.9 the obstruction

to the existence of a continuous section then lies in H2(B \ Ã,P∨). This cohomology

group vanishes by the assumption on the existence of a retraction. �

We should emphasize that in this corollary, we have first used Lemma 4.8 to re-

duce to the case of locally constant transition functions. As discussed in Remark 4.7,

the transition functions for XKN
0 |B\A → B \ A between the canonical charts coming

from toric geometry are not locally constant, and hence Corollary 4.8 makes a purely

topological statement.

The remainder of this subsection derives a more canonical description of XKN
0 over a

somewhat smaller set by controlling the gluing data. The various charts for (X0,MX0)

are related by parallel transport inside P, but the monomials may be rescaled due

to non-trivial gluing data. Gluing data have already been introduced in [GS1], but

§1.2 in [GS3] or §5.2 in [GHKS] may contain more palatable accounts. Multiples of

the deformation parameter t are well-defined on all charts, hence define a constant

subsheaf with fibres Z⊕ C×. Monomials therefore define a refinement of (4.4):

(4.5) 0 −→ Z⊕ C
× −→ P̃ −→ Λ −→ 0.

The extension class
(
c1(ϕ), s

)
∈ Ext1(Λ,Z⊕ C

×) = H1(B \ A, Λ̌)⊕H1(B \ A, Λ̌⊗ C
×)

has as second component (the restriction to B \ A of) the gluing data s, as discussed

in [GHKS], Remark 5.16.1 Furthermore, dividing out R>0 ⊂ C× defines an extension

P̂ of Λ by Z⊕ U(1) with class
(
c1(ϕ),Arg(s)

)
∈ Ext1(Λ,Z⊕ U(1)) = H1(B \ A, Λ̌)⊕H1(B \ A, Λ̌⊗ U(1)).

Taking this latter extension and the extension of Λ by Z from (4.4) as two columns,

we obtain the following commutative diagram with exact rows and columns:

1The discussion in [GHKS] is on the complement of a part ∆̃ ⊂ B of the codimension two skeleton

of the barycentric subdivision. There is a retraction of A to a subset of ∆̃. However, the discussion

on monomials works on any cell τ ∈ P not contained in A and with X → SpecR locally toroidal at

some point of Xτ .
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(4.6)

0 0y
y

1 −−−→ U(1) −−−→ Z⊕ U(1) −−−→ Z −−−→ 0

=

y
y

y
1 −−−→ U(1) −−−→ P̂ −−−→ P −−−→ 0y

y
Λ

=
−−−→ Λy

y
0 0

Note that the extension of Z by U(1) in the second row is trivial by construction. The

middle row now defines an extension of P by U(1).

We can use the extension P̂ to give a canonical description of XKN
0 on a large subset

of B \ A, assuming the open gluing data normalizes the toric log Calabi-Yau space

(X0,MX0) ([GS1], Definition 4.23). Being normalized means that if fρ,v is the slab

function describing the log structure near a zero-dimensional toric stratum x ∈ X0

along a codimension one stratum Xρ ⊂ X0 with x ∈ Xρ, then fρ,v(x) = 1. By the dis-

cussion after Definition 4.23 in [GS1], there always exist open gluing data normalizing

a given toric log Calabi-Yau space, so this assumption imposes no restriction. Note

that while previously we had viewed slab functions only as functions on (analytically)

open subsets of the big torus of Xρ, hence as Laurent polynomials, in the setup of

[GS1] or [GS3] they extend as regular functions to the zero-dimensional toric stratum

they take reference to.

Proposition 4.14. Denote by B′ =
⋃
σ∈Pmax Int σ∪

{
v ∈ P [0]

}
the subset of B covered

by the interiors of maximal cells and the vertices of P. Assume that the toric log

Calabi-Yau space (X0,MX0) is normalized with respect to open gluing data s. Denote

by P̂ the extension of Λ by Z⊕ U(1) in (4.6). Write Hom(P̂ , U(1))◦ ⊂ Hom(P̂, U(1))

for the space of fibrewise homomorphisms restricting to the identity on U(1) ⊂ P̂. Then

there is a canonical homeomorphism

Hom(P̂ , U(1))◦|B′
≃

−→ XKN
0

∣∣
B′

of topological fibre bundles over B′.
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Moreover, the class in H1(B′,P∨ ⊗ U(1)) defining XKN
0 |B′ as a topological torus

bundle with locally constant transition functions in U(1)n+1 ⋊ GL(n + 1,Z) according

to Lemma 4.8, agrees with the class of the extension P̂ of P by U(1) in (4.6).

Proof. From its origin in the bundle P̃ of monomials, we obtain a canonical description

of P̂ over B′ as follows. Over a maximal cell σ, we have a canonical isomorphism of P̂|σ
with the trivial bundle with fibre Λσ ⊕ Z⊕ U(1). Then if σ, σ′ ∈ Pmax and v ∈ σ ∩ σ′

is a vertex, the open gluing data s define a multiplicative function sv,σ : Λσ → C
×,

and similarly for σ′. Now glue the trivial bundles on σ, σ′ by means of Arg
(
sv,σ′ · s

−1
v,σ

)

on the U(1)-factor. The gluing on the discrete part Λσ ⊕ Z is governed by a local

representative of the MPL function ϕ, to yield P. Accordingly, we obtain a description

of Hom(P̂, U(1))◦ by gluing trivial pieces σ ×Hom(Λσ ⊕ Z, U(1)).

Now the point is that if f is normalized, the gluing of XKN
0 from the same canon-

ical trivial pieces in Lemma 4.5 is given by exactly the same procedure over ver-

tices. Indeed, given a codimenson one cell ρ and a vertex v ∈ ρ, in the formula

arg(u) + arg(v) = arg(fρ,v) + κρ · arg(t) the term involving fρ,v disappears due to the

normalization condition.

The statement on the extension class is immediate from Remark 4.10. �

To describe the fibres of δKN : XKN
0 → (O†)KN = U(1), we need another extension.

For φ ∈ U(1) denote by Ψφ : Z ⊕ U(1) → U(1) the homomorphism mapping (1, 1) to

φ and inducing the identity on U(1). We have a morphism of extensions

0 −−−→ Z⊕ U(1) −−−→ P̂ −−−→ Λ −−−→ 0

Ψφ

y
y

yid

0 −−−→ U(1) −−−→ P̂φ −−−→ Λ −−−→ 0,

with the lower row having extension class Ψφ(s) ∈ Ext1(Λ, U(1)) = H1(B\A, Λ̌⊗U(1)).

Corollary 4.15. With the same assumptions as in Proposition 4.14, the fibre of δKN :

XKN
0 |B′ → (SpecO†)KN = U(1) over φ ∈ U(1) is isomorphic to the n-torus bundle with

local system Λ and with extension class Ψφ(s) ∈ H1(B′, Λ̌⊗ U(1)).

Proof. By Lemma 4.5, the restriction of δKN to the canonical piece σ × Hom(Λσ ⊕

Z, U(1)) is given by composing with the inclusion Z → Λσ ⊕Z. The statement follows

by tracing through the gluing descriptions of P̂φ and of the extension class defined by

(δKN)−1(φ). �

Remark 4.16. Let us emphasize the role of the normalization condition here. The

canonical description over maximal cells in Lemma 4.5 is based on toric monomials.

To extend this description over a point x ∈ B \A in a codimension one cell ρ, we need



34 HÜLYA ARGÜZ AND BERND SIEBERT

the gluing equation (4.3) to be monomial along the fibres of the momentum map. This

condition means that the restriction of f to a fibre of the momentum map Xρ → ρ

is monomial. This is a strong condition that in case the Newton polyhedron of f

is full-dimensional fails everywhere except at the zero-dimensional toric strata of Xρ.

The normalization condition then says that the non-trivial gluing of the torus fibres

over the vertices only comes from the gluing data, hence is entirely determined by the

extension class of P̂.

4.3. Study of the real locus. We now turn to toric degenerations with a real struc-

ture, or rather to the corresponding toric log Calabi-Yau space ([GS1], Definition 4.3)

that arise as central fibre (X0,MX0) of a toric degeneration, as discussed in §4.1. We

call a toric log Calabi-Yau space (X0,MX0) standard real if it has a real structure

inducing the standard real structure on its toric irreducible components and which is

compatible with the standard real structure on the standard log point. Since the mor-

phism δ : (X0,MX0) → O† is strict at the generic points of the irreducible components

of X0, and since any section of MX0 that is supported on higher codimensional strata

is trivial (constant 1), there is at most one such real structure on (X0,MX0). This real

structure is called the standard real structure.

Standard real structures appear to be the only class of real structures on toric log-

Calabi-Yau spaces that exist in great generality. While other real structures, for exam-

ple those lifting an involution on B, should be extremely interesting in more specific

situations, we therefore restrict the following discussion to standard real structures.

Proposition 4.17. Let (X0,MX0) be a polarized toric log Calabi-Yau space ([GS1],

Definition 4.3) with intersection complex (B,P). Then there is a standard real struc-

ture on (X0,MX0) if and only if the following hold:

(1) There exist open gluing data s = (sωτ ) with X0 ≃ X0(B,P, s) such that sωτ
takes values in R× rather than in C×.

(2) The slab functions fρ,v ∈ C[Λρ] describing the log structure MX0 for gluing data

as in (1) are defined over R, that is fρ,v ∈ R[Λρ] for any ρ ∈ P of codimension

one and v ∈ ρ a vertex.

Proof. The proof is by revision of the arguments in [GS1].

1) If s = (sωτ )ω,τ are open gluing data taking values in R× ⊂ C×, the construc-

tion of X0(B,P, s) by gluing affine toric varieties in [GS1], Definition 2.28 readily

shows that the real structures on the irreducible components induce a real structure

on X0(B,P, s).

Conversely, given (X0,MX0) with a standard real structure, Theorem 4.14 in [GS1]

constructs open gluing data s and an isomorphismX0 ≃ X0(B,P, s). The construction
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has two steps. First, X0 being glued from toric varieties, there exist closed gluing data s

inducing this gluing. If X0 admits a standard real structure, s automatically takes real

values. In a second step one shows that the closed gluing data are the image of open

gluing data as in [GS1], Lemma 2.29 and Proposition 2.32,2. This step uses a chart for

the log structure at a zero-dimensional toric stratum x ∈ X0. In view of the given real

structure on (X0,MX0), this chart can be taken real (Lemma 1.8). With this choice of

chart, the construction of open gluing data in the proof of [GS1], Theorem 4.14, indeed

produces real open gluing data.

2) The relation between the slab functions fρ,v and charts for the log structure is given

in [GS1], Theorem 3.22. At a zero-dimensional toric stratum x ∈ X0 the description

in terms of open gluing data yields an isomorphism of an open affine neighbourhood

in SpecX0 with SpecC[P ]/(zρP ), with P = MX,x and ρP ∈ P corresponding to the

deformation parameter t. The facets of P are in one-to-one correspondence with the

irreducible components of X0 containing x. Now charts for the log structure on this

open subset are of the form

P −→ C[P ]/(zρP ), p 7−→ hp · z
p

with hp an invertible function on V (p), the closure of the open subset (zp 6= 0) ⊂

SpecC[P ]. The equation describing this chart in terms of functions on codimension

one strata writes the slab function as a quotient of piecewise multiplicative functions

gv defined in terms of hp. This equation, with the slab function written ξω(h) in [GS1],

shows that describing a real chart via real open gluing data yields real slab functions

fρ,v.

Conversely, given real open gluing data and real slab functions, the real structure on

SpecC[P ] induces the involution ι♭X0
defining a standard real structure on (X0,MX0).

�

In the case of positive and simple singularities, a polarized toric log Calabi-Yau space

with given intersection complex (B,P, ϕ) is defined uniquely up to isomorphism by

so-called lifted gluing data s ∈ H1(B, ι∗Λ̌ ⊗ C×) ([GS1], Theorem 5.4).2 Lifted gluing

data both contain moduli of open gluing data and moduli of the log structure given

by the slab functions. In terms of lifted gluing data the existence of a standard real

structure has a simple cohomological formulation.

Corollary 4.18. Assuming (B,P) positive and simple, then the toric log Calabi-Yau

space (X0,MX0) defined by lifted gluing data s ∈ H1(B, ι∗Λ̌ ⊗ C×) is standard real if

2The theorem makes also the converse statement using the dual intersection complexes; working

polarized as we do here, imposes a codimension one constraint, see the definition of AP in [GHKS],

§A.2.



36 HÜLYA ARGÜZ AND BERND SIEBERT

and only if s lies in the image of

H1(B, ι∗Λ̌⊗ R
×) −→ H1(B, ι∗Λ̌⊗ C

×).

Proof. This follows again by inspection of the corresponding results in [GS1], here

Theorems 5.2 and 5.4. �

Remark 4.19. It is worthwhile pointing out that real structures on (X0,MX0) are com-

patible with the smoothing algorithm of [GS3] in the following way. Assume that

(X0,MX0) is a toric log Calabi-Yau space for which the smoothing algorithm of [GS3]

works, for example with associated intersection complex (B,P) positive and simple.

Assume that (X0,MX0) has a real structure, not necessarily standard. The real involu-

tion then induces a possibly non-trivial involution on the intersection complex (B,P).

But in any case, (X0,MX0) has a description by open gluing data s = (sωτ ) and slab

functions fρ,v with the real involution lifting to an action on these data. By the strong

uniqueness of the smoothing algorithm it is then not hard to see that the real involution

extends to the constructed family X → SpecCJtK.

Note also that by Proposition 4.17, the locally rigid case with standard real structure

is already covered in [GS3], Theorem 5.2.

Let us now assume we have a standard real structure on (X0,MX0). We wish to

understand the topology of the real locus XKN
0,R ⊂ XKN

0 , the fixed locus of the lifted real

involution of XKN
0 from Definition 3.1. First, since (O†)KN

R
= {±1}, the real locus of

XKN
0,R decomposes into two parts, the preimages of ±1 under δKN : XKN

0 → (O†)KN =

U(1). Denote by XKN
0,R (±1) these two fibres.

Proposition 4.20. The restriction of µKN : XKN
0 → B to the real locus exhibits XKN

0,R

as a surjection with finite fibres. Over B \ A, this map is a topological covering map

with fibres of cardinality 2n+1.

Proof. Let σ ∈ P be a maximal cell. In the canonical identification Φσ of Lemma 4.5,

the standard real involution on (µKN)−1(σ) ⊂ XKN
0 lifts to the involution of σ ×

Hom(Λσ ⊕ Z, U(1)) that acts by the identity on σ and by multiplication by −1 in

Λσ ⊕ Z. The fixed point set of this involution over each point in σ is the set of two-

torsion points (±1, . . . ,±1) of U(1)n+1. In particular, away from A ⊂ B, the projection

XKN
0,R → B is a 2n+1-fold unbranched cover.

In any case, Φσ
(
σ×Hom(Λσ⊕Z, {±1})

)
is a closed subset in XKN

0 containing Xσ,R\Z

and projecting with fibres of cardinality at most 2n+1 to σ. The statement on finiteness

of all fibres then follows if Z is nowhere dense in XKN
0,R . This statement follows as in

Lemma 4.4 noting that the generization maps between stalks of MX0 at real points

are compatible with the real involution. �



REAL LOCUS OF KATO-NAKAYAMA SPACES 37

We thus see that XKN
0,R can be understood by studying (a) the unbranched covering

over B \A and (b) the behaviour near the log singular locus by means of the canonical

uniformization map Φσ of Lemma 4.5. Sometimes, e.g. in dimension two, the un-

branched cover together with the fact that XKN
0,R is a topological manifold, determines

XKN
0,R completely.

For the unbranched cover, Lemma 4.5 together with the gluing equation (4.3) in

Remark 4.7 provide a full description of XKN
0,R . Note also that the gluing equation

involves the term κρ · arg(t), which for κρ odd and Arg(t) = −1 leads to a difference in

the identification of branches over neighboring maximal cells.

We formulate this discussion as a proposition, omitting the obvious proof.

Proposition 4.21. Let (X0,MX0) be endowed with a standard real structure, described

by real open gluing data and real slab functions, following Proposition 4.17. Then

the description of XKN
0 in Remark 4.7 as glued from trivial pieces σ × Hom(Λσ ⊕

Z, U(1)) \ Φ−1
σ (ZKN) via Equation (4.3), exhibits the real locus XKN

0,R \ ZKN as glued

from
(
σ × Hom(Λσ ⊕ Z, {±1})

)
\ Φ−1

σ (ZKN). In particular, the sign of the function f

describing the gluing over a connected component of ρ \ A, dim ρ = n − 1, influences

the identification of branches suggested by the identification of integral tangent vectors

through affine parallel transport. �

As emphasized, in general the specific choice of slab functions changes the topology

of XKN
0,R , and hence has to be studied case by case. Assuming without loss of generality

that the toric log Calabi-Yau space (X0,MX0) is normalized by the open gluing data,

we can however give a neat global description over the large subset B′ ⊂ B considered

in Proposition 4.14. In the simple case, there is a retraction of B \ A to B′ and this

result is strong enough to understand the unbranched cover over B \A completely. In

the general case, this result can be complemented by separate studies along the interior

of codimension one cells to gain a complete understanding of the part of the real locus

covering B \ A.

As a preparation, we need to discuss the effect of the real involution on Diagram (4.6),

and in particular on the middle vertical part, the exact sequence

0 −→ Z⊕ U(1) −→ P̂ −→ Λ −→ 0.

The action on the discrete part Z and Λ is induced by the action on the cohomology

of the torus fibres, which is multiplication by −1. Similarly, we can act by multiplica-

tion with −1 on each entry of the sequence defining P, forming the next to rightmost

column in (4.6). For the extension by U(1), however, taking the pushout with com-

plex conjugation on U(1), maps the extension class s ∈ Ext1(Λ, U(1)) to its complex

conjugate s. Thus only if this class is real, reflected in a real choice of open gluing
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data (Proposition 4.17), there is an involution on P̂ inducing multiplication by −1 on

Z and Λ and the conjugation on U(1). Note also that the extension class is real if and

only if it lies in the image of Ext1(Λ,Z⊕ {±1}) under the inclusion {±1} → U(1). In

this case, the extension of Λ by Z⊕U(1) is obtained by pushout from an extension by

Z⊕ {±1}. We now assume such an involution ιP̂ of P̂ exists.

Proposition 4.22. Assume that the toric log Calabi-Yau space (X0,MX0) is given

by real open gluing data and real normalized slab functions. Then in the canonical

description of XKN
0 over B′ ⊂ B given in Proposition 4.14, the real locus is given by

Hom(P̂, {±1})0|B′ ⊂ Hom(P̂, U(1))0|B′ .

Proof. Recall the trivialization with fibres Λσ ⊕ Z ⊕ U(1) of P̂ over the interior of

a maximal σ ∈ P used in the proof of Proposition 4.14. In this trivialization, the

involution ιP̂ acts by−1 on Λσ⊕Z and by conjugation on U(1). Taking homomorphisms

to U(1) and restricting to those homomorphisms inducing the identity on the U(1)-

factor, identifies the fibres of XKN
0 over Int σ with Hom(Λσ⊕Z, U(1)). The fixed point

locus of the induced action of ιP̂ is then the set of homomorphisms to the two-torsion

points of U(1), that is, Hom(Λσ ⊕ Z, {±1}), as claimed. �

Remark 4.23. The topology of the 2n+1-fold cover of B′ can also be described in terms

of the monodromy representation as follows. Analogously to the discussion for P in

Remark 4.12, the monodromy representation of P̂ is given by viewing (c1(ϕ), s) ∈

Ext1(Λ,Z⊕ U(1)) as a pair of twisted homomorphisms,

(λ, θ) : π1(B
′, x) −→ Hom(Λx,Z⊕ U(1)).

Explicitly, for a closed loop γ at x, the action of (λ, θ)(γ) = (λγ, θγ) on the fibre of

P̂x ≃ Λx ⊕ Z⊕ U(1) is

Λx ⊕ Z⊕ U(1) ∋ (v, a, β) 7−→ (Tγ · v, λγ · v + a, θγ(v) · β).

Here Tγ ∈ GL(Λx) is from parallel transport in Λ. If the open gluing data s are real, θ

takes values in {±1} ⊂ U(1). Thus in the real case, (λ, θ) is a twisted homomorphism

with values in Hom(Λx,Z⊕ {±1}).

In view of Proposition 4.22, the monodromy representation ofXKN
0,R over B′ is given by

the induced action on Hom
(
Λx⊕Z⊕{±1}, {±1}

)◦
= Hom(Λx, {±1})⊕Hom(Z, {±1}).

Note that the last summand in Λx⊕Z⊕{±1} does not contribute to the right-hand side,

since we restricted to those homomorphisms inducing the identity on 0⊕0⊕{±1}. The

action of a closed loop γ on Hom(Λx, {±1})⊕Hom(Z, {±1}) is now readily computed

as

(4.7) (ϕ, µ) 7−→
(
ϕ ◦ Tγ + µ ◦ λγ + θγ , µ

)
,
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Figure 5.1. (B,P) for a quartic K3 surface

Here we wrote the group structure on {±1} additively. This formula gives an explicit

description of XKN
0,R over B′ in terms of a permutation representation of π1(B

′, x) on

the set Λ̌x/2Λ̌x ⊕ {±1} of cardinality 2n+1.

In this description, the map to the real part (O†)KN
R

= {±1} of the Kato-Nakayama

space U(1) of the standard log point, is induced by the inclusion Z ⊕ {±1} → Λx ⊕

Z⊕{±1}. Thus to describe the fibres over {±1} ⊂ (O†)KN in XKN
0,R simply amounts to

restricting to µ = ±1 in (4.7). In particular, c1(ϕ) only becomes relevant for the fibre

over −1. This fact can also be seen from the gluing description of (4.3), where κρ is

the only place for c1(ϕ) to enter.

5. Examples

5.1. A toric degeneration of quartic K3 surfaces. As a first application of the

general results in this paper, we look at an example of a toric degeneration of real

quartic K3 surfaces.

Consider (B,P) the polyhedral affine manifold that as an integral cell complex is

the boundary of a 3-simplex, with four focus-focus singularities on each edge and with

the complete fan at each vertex the fan of P2 (Figure 5.1). There are four maximal cells,

each isomorphic to the standard simplex in R2 with vertices (0, 0), (1, 0) and (0, 1).

The edges have integral length 1 and are identified pairwise to yield the boundary of

a tetrahedron. On each of the six edges there are four singular points of the afffine

structure, with monodromy conjugate to ( 1 0
1 1 ). We use standard (“vanilla”) gluing

data, that is, sωτ = 1 for all ω, τ ∈ P, ω ⊂ τ . Then X0 is isomorphic as a scheme

to Z0Z1Z2Z3 = 0 in P3, a union of four copies of P2. As the MPL-function defining

the ghost sheaf MX0 we take the function with kink κρ = 1 on each of the edges.

The moduli space of toric log Calabi-Yau structures on X0 with the given MX0 is

described by the space of global sections of an invertible sheaf LS on the double locus

(X0)sing. This line bundle has degree 4 on each of the six P1-components. The section
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is explicitly described by the 12 slab functions fρ,v. For each edge ρ ∈ P there are two

slab functions, related by the equation fρ,v(x) = x4fρ,v′(x
−1) for x the toric coordinate

on P1 (see e.g. [GS3], Equation 1.11). Explicitly, restricting to the normalized case,

we have fρ,v = 1 + a1x + a2x
2 + a3x

3 + x4, the highest and lowest coefficients being 1

due to the normalization condition at the two zero-dimensional toric strata of the

projective line Xρ ⊂ X0. The other coefficients ai ∈ C are free, to give a total of

6 · 3 = 18 parameters. Taking into account the additional deformation parameter t,

this number is in agreement with the 19 dimensions of projective smoothings of X0.

See the appendix of [GHKS] for a discussion of projectivity in this context.

This example does not have simple singularities, but it is locally rigid in the sense

of [GS3], Definition 1.26. Thus the smoothing algorithm of [GS3] works, yielding a

one-parameter smoothing of X0, one for each choice of slab functions. According to

Proposition 4.17 this smoothing is real if and only if all slab functions are real, that

is, all coefficients ai ∈ R. To obtain 4 focus-focus singularities on each edge of P

as drawn in Figure 5.1, we need to choose the ai in such a way that the 4 zeroes of

fρ,v = 1 + a1x + a2x
2 + a3x

3 + x4 have pairwise different absolute values. These are

then also all real. This condition is open in the Euclidean topology, but the closure is a

proper subset of R3, the space of tuples (a1, a2, a3). The precise choice does not matter

for the following discussion and we assume such a choice has been made on each edge.

Proposition 5.1. Let (X0,MX0) be the union of four copies of P2 with the real log

structure as described. Denote by A ⊂ B the pairwise different images of the 24 singular

points of the log structure (the zero loci of the slab functons).

Then the fibre XKN
0,R (1) of δKN

R
: XKN

0,R → {±1} ⊂ U(1) has two connected compo-

nents, one mapping homeomorphically to B, the other a branched covering of degree

3, unbranched over B \ A and with a simple branch point over each point of A. In

particular, the latter component is a closed orientable surface of genus 10.

Proof. In the present case of vanilla gluing data, the positive real sections σ×{1} ⊂ σ×

Hom(Λσ, {±1}) of the pieces over maximal cells (Lemma 4.5) are compatible to yield a

section of XKN
0,R (1) → B. At each point of A there are local analytic coordinates x, y, w,

defined over R, with (X0,MX0) isomorphic to the central fibre of the degeneration

xy = t(w + 1) discussed in Example 2.11. In this example, the real locus of the Kato-

Nakayama space has three connected components, with two being sections and one a

two-fold branched cover with one branch point.

To finish the proof we have to study the global monodromy representation π1(B \

A) → S4 into the permutations of a fibre and show it has at most two irreducible

subrepresentations. We compute a part of the affine monodromy representation and
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γ1

γ2γ3

Figure 5.2. Chart at a vertex of (B,P) from Figure 5.1

then use Remark 4.23 and notably Equation (4.7) to obtain the induced monodromy

representation in S4.

Figure 5.2 depicts a chart at a vertex with its three adjacent maximal cells. The

chart gives the affine coordinates in the union of the three triangles minus the dotted

lines. The locations of the 12 singular points on the outer dotted lines are irrelevant

in this chart and are hence omitted. We look at the part of the fundamental group

spanned by the three loops γ1, γ2, γ3. Each encircles one focus-focus singularities on

an edge containing the vertex and hence the affine monodromy is conjugate to ( 1 0
1 1 ).

In particular, the translational part vanishes. Concretely, in standard coordinates of

R2, the monodromy matrices Ti along γi are

(5.1) T1 =

(
1 0

1 1

)
, T2 =

(
2 −1

1 0

)
, T3 =

(
1 −1

0 1

)
.

Now while the γi are not loops inside B′ as treated in Remark 4.23, it is not hard

to see that (4.7) still applies in the present case. We have µ = 1 since we look at

XKN
0,R (1) and θγi = 1 also for the translational parts. Thus (4.7) says that the branches

transform according to the linear part of the affine monodromy. Now indeed a slab

function fρ,v changes signs locally along the real locus over an edge whenever crossing

a focus-focus singularity. For XKN
0,R (1) this means that the two branches given by

Hom(Λρ, {±1}) ⊂ Hom(Λσ, {±1}) have trivial monodromy around any focus-focus

singularity on ρ, while the two other branches swap.

It thus remains to compute the action of Ti on the two-torsion points of Z2/2Z2.

These are the four vectors

v0 =

(
0

0

)
, v1 =

(
1

0

)
, v2 =

(
0

1

)
, v3 =

(
1

1

)
.
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Here v0 is the point in the positive real locus, yielding the section of XKN
0,R (1) → B.

The permutation of the indices of the other three vectors yield the three transpositions

(12), (13), (23) for T1, T2 and T3, respectively. These transpositions act transitively on

{1, 2, 3}, showing connectedness of the cover of degree 3. This component is a genus

10 surface by the Riemann Hurwitz formula. �

5.2. Toric degenerations of K3 surfaces for simple singularities. As a second,

related family of examples we consider toric degenerations of K3 surfaces such that

the associated intersection complex (B,P) has simple singularities. In this case the

possible topologies of XKN
0,R are determined by Proposition 4.22. Interestingly, for the

fibre over 1 ∈ (O†)KN = U(1), the question becomes a purely group-theoretic one. In

fact, according to (4.7), for µ = 1 the translational part λ of the affine monodromy

representation does not enter in the computation. Moreover, by a classical result of

Livné and Moishezon, the linear part of the monodromy representation for an affine

structure on S2 with 24 focus-focus singularities is unique up to equivalence [Mo],

p.179. The result says that there exists a set of standard generators γ1, . . . , γ24 of

π1(S
2 \ 24 points, x), closed loops pairwise only intersecting at x and with composition

γ1 · . . . · γ24 homotopic to the constant loop, such that the monodromy representation

takes the form

Tγi =




T3, i odd

T1, i even,

with T1, T3 as in (5.1). As in §5.1, the corresponding monodromy of the four elements

in Λ̌x/2Λ̌x ≃ Z
2/2Z2 are (12) and (23), respectively. Thus the computation only

depends on the choice of the twisted homomorphism θ ∈ H1(B′, Λ̌⊗{±1}). Now each

θγ acts by translation on the fibre Z
2/2Z2. If θγ is nontrivial, the permutation is a

double transposition. But any double transposition together with (12) and (23) acts

transitively on the 4-element set. Thus XKN
0,R is connected as soon as θ 6= 0; otherwise

we have two connected components as in Proposition 5.1.

Proposition 5.2. Let (X0,MX0) be a toric log K3 surface with intersection com-

plex (B,P) having simple singularities and endowed with a standard real structure.

Denote by θ ∈ H1(B, Λ̌ ⊗ {±1}) be the argument of the associated lifted real gluing

data according to Corollary 4.18. Then XKN
0,R (1) has a connected component mapping

homeomorphically to B ≃ S2 if and only if θ = 0, and is otherwise connected. �

For XKN
0,R (−1), the translational part of the affine monodromy enters in (4.7). The

action is also by translation, hence lead to a double transposition if non-trivial. A

similar analysis then shows that ifXKN
0,R (−1) is not connected, one connected component

maps homeomorphically to B ≃ S2.
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