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Local mirror symmetry in the tropics

Mark Gross and Bernd Siebert ∗

Abstract. We discuss how the reconstruction theorem of [GrSi3] applies to local mirror

symmetry [CKYZ]. This theorem associates to certain combinatorial data a degeneration

of (log) Calabi-Yau varieties. While in this case most of the subtleties of the construc-

tion are absent, an important normalization condition already introduces rich geometry.

This condition guarantees the parameters of the construction are canonical coordinates

in the sense of mirror symmetry. The normalization condition is also related to a count

of holomorphic disks and cylinders, as conjectured in [GrSi3] and partially proved in

[CLL],[CLT],[CCLT]. We sketch a possible alternative proof of these counts via logarith-

mic Gromov-Witten theory.

There is also a surprisingly simple interpretation via rooted trees marked by mono-

mials, which points to an underlying rich algebraic structure both in the relevant period

integrals and the counting of holomorphic disks.

1. Introduction

In [GrSi1], [GrSi3], we proposed a mirror construction as follows. We begin with a

polarized degenerating flat family X → T = SpecR of n-dimensional Calabi-Yau

varieties where R is a complete local ring. We consider only degenerations of a

special sort which we term toric degenerations, see [GrSi1], Def. 4.1. Roughly, these

are degenerations for which the central fibre is a union of toric varieties glued along

toric strata, and such that the map X → T is locally given by a monomial near the

zero-dimensional strata of the central fibre X0. Associated to this degeneration we

construct the dual intersection complex (B,P, ϕ), where

(a) B is an n-dimensional integral affine manifold with singularities (possibly

with boundary). In other words, B is a topological manifold with an open subsetB0

with ∆ := B\B0 of codimension≥ 2, such that B0 has an atlas of coordinate charts

whose transition maps lie in Aff(Zn), the group of integral affine transformations.

(b) P is a decomposition of B into convex lattice polyhedra (possibly un-

bounded). The singular locus ∆ is typically the union of codimension two cells of

the first barycentric subdivision of P not intersecting the interior of a maximal
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cell of P nor containing a vertex of P. There is a one-to-one inclusion reversing

correspondence between elements of P and toric strata of X0. The local structure

of P near a vertex is determined by the fan defining the corresponding irreducible

component. The maximal cells of P are determined by the toric structure of the

map X → T near the corresponding zero-dimensional strata of X0.

(c) ϕ is a multi-valued piecewise affine function. This is a collection {(Ui, ϕi)}

of R-valued functions ϕi on an open cover {Ui} of B, with each ϕi piecewise affine

linear with respect to the polyhedral decomposition P, and ϕi − ϕj being affine

linear on Ui ∩ Uj . We assume the slopes of the ϕi on cells of P to be integral. In

this case, ϕ is determined by the polarization on X , with local representatives near

vertices given by a piecewise linear function defined by restricting the polarization

to the corresponding irreducible component.

Given this data, we obtain the mirror to the degenerationX → T by reinterpret-

ing (B,P, ϕ) as the intersection complex of another polarized toric degeneration

Y → Spec kJtK (in the projective case). This time, there is a one-to-one inclusion

preserving correspondence between cells of P and toric strata of X0, the central

fibre of this new degeneration. The cells of P are the Newton polytopes for the

polarization restricted to the various strata of X0, and ϕ is determined by the local

toric structure of the map near zero-dimensional strata.

The prime difficulty in the program lies in reconstructing Y → Spec kJtK from

the data (B,P, ϕ). The main result of [GrSi3] gives an algorithm for constructing

a structure S of walls which tell us how to construct the degeneration.

More recently [GHKS] has considered families constructed using the technology

of [GrSi3] over higher dimensional base schemes. This represents a modification

of the above procedure. In the typical example, instead of choosing a fixed po-

larization on Y, one chooses a monoid P of polarizations. Let Q = Hom(P,N)

be the dual monoid. Then this data determines a multi-valued piecewise linear

function ϕ taking values in Qgp
R

:= Qgp ⊗Z R. If m is the maximal monomial ideal

of k[Q], and k̂[Q] denotes the completion of k[Q] with respect to this ideal, then

the construction gives a family Y → Spec k̂[Q].

The history of the problem of associating a geometric object (complex mani-

fold, non-Archimedean space, toric degeneration...) to an integral affine manifold

with singularities began with work of Fukaya [Fuk]. Fukaya gave a heuristic sug-

gesting that one should be able to construct the mirror to a K3 surface using

objects that look like structures in two dimensions (in two dimensions, we can

think of a structure as just consisting of a possibly infinite number of unbounded

rays). Fukaya observed that holomorphic disks with boundary on fibres of an

SYZ fibration ([SYZ]) gave similar pictures of structures on the mirror side. In
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2004, Kontsevich and Soibelman in [KS] gave the first construction of a structure,

showing how given a two-dimensional affine sphere with singularities one could

construct a consistent structure and from this structure a non-Archimedean K3

surface. We combined the picture of toric degenerations we had been developing

independently of the above-mentioned authors with some ideas from [KS], allowing

us to construct degenerations from structures in all dimensions in [GrSi3].

In the first two sections of this paper, we shall illustrate the program by carry-

ing it out completely for toric Calabi-Yau manifolds, a case usually referred to as

local mirror symmetry [CKYZ]. This particular case can be viewed as being com-

plementary to the case that the ideas of [KS] was able to handle. In the remaining

sections, we shall analyze enumerative meaning and a tropical interpretation of

this construction.

Acknowledgements : We would like to thank all people who influenced our way

of thinking about various aspects of our program. Special thanks go to Mohammed

Abouzaid, Paul Hacking, Sean Keel, Diego Matessi and Rahul Pandharipande.

2. Degenerations of toric Calabi-Yau varieties

Our running example is the construction of the mirror of what is called “local

P2”, the total space X of the canonical bundle KP2 over P2. Since X itself is a

toric variety, its anti-canonical divisor −KX is linearly equivalent to the sum of

toric divisors. There are four toric divisors, the zero section S ⊂ X , which is

the maximal compact subvariety of X , and the preimages F0, F1, F2 of the three

coordinate lines in P2 under the bundle projection X → P2. Toric methods show

that S + F0 + F1 + F2 ∼ 0 and hence X is a non-compact Calabi-Yau threefold.

The normal bundle NS|X = OP2(−3) is determined by the adjunction formula from

the Calabi-Yau condition and it is the dual of an ample line bundle. Hence, by a

result of Grauert [Gt], any embedded P
2 in a Calabi-Yau threefold has an analytic

neighbourhood biholomorphic to an analytic neighbourhood of S in X .

For the general description, fix throughout M = Zn, MR = M ⊗Z R, N =

HomZ(M,Z).1 Let σ ⊆ MR be a compact lattice polytope, and assume 0 ∈ σ.

Define

C(σ) = {(rm, r) |m ∈ σ, r ∈ R≥0} ⊆MR ⊕ R.

The cone C(σ) viewed as a fan defines an affine toric variety Xσ. A polyhedral

decomposition P of σ into standard simplices leads to a fan Σ = {C(τ) | τ ∈ P}

1Since M,N will eventually be treated as data for the mirror side our conventions in this

section are opposite to the usual ones in toric geometry.
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which is a refinement of C(σ). This yields a toric resolution of singularities XΣ →

Xσ. Assume also that the fan Σ supports at least one strictly convex piecewise

linear function.

For the case of local P2 take n = 2 and σ = Conv{(1, 0), (0, 1), (−1,−1)}, where

Conv(S) denotes the convex hull of the set S. Then the dual cone C(σ)∨ is C(σ∗),

the cone over the polar polytope σ∗ with vertices (−1,−1), (2,−1), (−1, 2). It turns

out that Xσ = Spec(C[C(σ)∨ ∩ Z
3]) is the cyclic quotient A

2/Z3 with Z3 acting

diagonally on the coordinates by multiplication with third roots of unity. Taking

the polyhedral decomposition as shown in Figure 2.1 yields for XΣ the blowing

up of the origin of Xσ. One can show that XΣ is the total space of KP2 and the

map to Xσ is the contraction of the zero section. Note also that the projection

C(σ) → MR defines a map from Σ to the fan of P2, which indeed corresponds to

the bundle projection XΣ → P2.

In general, the map XΣ → Xσ has a reducible exceptional locus, with one com-

ponent for each vertex of P that is not a vertex of σ, and the explicit description

of the geometry is more complicated.

It turns out that constructing a mirror toXΣ does not fit well with our program.

The reason is that XΣ does not seem to possess a fibration by Lagrangian tori of

the kind expected by mirror symmetry [Gr1]. Rather, such a fibration will exist

only after removal of a hypersurface in XΣ that is disjoint from the exceptional

fibre of XΣ → Xσ. To run our program we could give an ad hoc construction

of an affine manifold with singularities derived from the fan Σ or write down a

toric degeneration of XΣ. The local P2 case has been discussed from the former

point of view in [GrSi4], Examples 5.1 and 5.2. Since it can be done easily in the

present case we follow the latter method here. This method is motivated by the

construction of toric degenerations of hypersurfaces in toric varieties in [Gr2].

To exhibit XΣ as an anticanonical hypersurface in a toric variety we embed the

fan Σ in MR⊕R as a subfan of a fan Σ̃ in MR⊕R2. For each maximal cone C ∈ Σ

the fan Σ̃ has two maximal cones

C1 = C × 0 + R≥0 · (0, 1,−1), C2 = C × 0 + R≥0 · (0, 0, 1).

Then Σ is the subfan of Σ̃ consisting of cones lying in the hyperplaneMR⊕R⊕0 ⊂

MR⊕R2. The fan Σ̃ only has two rays not contained in Σ, with generators (0, 0, 1)

and (0, 1,−1). The inclusion MR ⊕ R⊕ 0 ⊂ MR ⊕ R2 induces a map of fans from

Σ to Σ̃, hence an embedding j : XΣ →֒ XΣ̃ identifying XΣ with the closure of

the orbit of the subtorus defined by this inclusion through the distinguished point

(the unit of the toric variety). Note that the projection to R2 maps Σ̃ to the fan

Σ
Â2 of the toric blowing up Â

2 of A2, with rays generated by (0, 1), (1, 0), (1,−1).
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Under this map the subfan Σ ⊂ Σ̃ maps to the interior ray R≥0 · (1, 0). Viewing

this interior ray as giving a map of fans, from the one-dimensional fan defining A
1

to the two-dimensional fan defining Â2, we obtain an embedding i : A1 →֒ Â2.

We thus obtain a cartesian diagram of toric morphisms

XΣ
j

−−−−→ XΣ̃

p

y
yq

A1 i
−−−−→ Â2

The left vertical arrow is induced by the projection MR ⊕ R → R, hence is given

by the pull-back to XΣ of the distinguished monomial x on Xσ defining the toric

boundary as a reduced subscheme.

Explicitly, write x, y for the toric coordinates on A2 and Â2 = (xu− yv = 0) ⊂

A2 × P1 for the blowing up. Then im(i) is the strict transform of the diagonal

x = y. Dehomogenizing u = 1 or v = 1 we obtain the usual two coordinate

patches with coordinates y, v and x, u respectively with the transitions v = u−1

and x = yv or y = xu. We use the same notation for the pull-back of x, y, u, v to

the corresponding two types of affine patches with u 6= 0 or v 6= 0 of XΣ̃.

To describe XΣ̃ let C ∈ Σ be a maximal cone. Then if (m, a) ∈ N ⊕ Z defines

a facet C′ ⊂ C, that is, (m, a) generates an extremal ray of C∨, the element

(m, a, a) ∈ N ⊕ Z2 defines the facet C′ + R≥0(0, 1,−1) of C1. There is only one

more facet of C1, namely C itself, defined by (0, 0,−1), and hence

C∨
1 = {(m, a, a) | (m, a) ∈ C∨}+ R≥0 · (0, 0,−1).

The rays of C∨
2 are generated by (m, a, 0) for (m, a) an extremal ray of C∨, and by

(0, 0, 1), so C∨
2 = C∨ × 0 + R≥0(0, 0, 1). In either case, we have an identification

Spec k[C∨
i ∩ (N ⊕ Z

2)] = Spec k[C∨ ∩N ]× A
1 ⊂ XΣ × A

1.

The toric coordinate for A1 is v = z(0,0,−1) for C1 and u = z(0,0,1) for C2. From

this description it is clear that the embedding of XΣ in XΣ̃ is given by u = 1 in

affine patches with v 6= 0 and by v = 1 in the affine patches with u 6= 0.

To write down a degeneration of XΣ to the toric boundary ∂XΣ̃ ⊂ XΣ̃ view

u, v as sections of the line bundle q∗O(−E) where E ⊂ Â2 is the exceptional curve.

Then XΣ is the zero locus of s := u − v. On the other hand, xu = yv defines a

section s0 of q∗O(−E) with zero locus ∂XΣ̃. Thus the hypersurface X ⊂ XΣ̃ ×A1

with equation

ts+ s0 = 0
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defines a pencil in XΣ̃ with members XΣ at t = ∞ and with the toric boundary

∂XΣ̃ at t = 0. Note this pencil is the preimage of the pencil on Â
2 defined by the

same equations. In particular, by direct computation Xt is completely contained

in either type of coordinate patch for t 6= 0. Working in a patch with v 6= 0 we

have s = u− 1, s0 = xu and the equation

0 = ts+ s0 = t(u− 1) + xu = u(t+ x)− t

shows u(t + x) = t 6= 0. Thus t + x 6= 0 and u can be eliminated. In other

words, Xt ≃ XΣ \ Zt with Zt ⊂ XΣ the hypersurface x = −t. Note also that our

notation is consistent in that x indeed descends to the defining equation of the

toric boundary of Xσ.

It is not difficult to show that X → A1 is a toric degeneration. Indeed, we have

already checked that X0 is the toric boundary of XΣ̃. Some harder work shows

that locally near the zero-dimensional strata of X0, the projection X → A
1 is toric.

We omit the details, but this can be done similarly to arguments given in [Gr2].

The dual intersection complex is then easily described along the lines given in

[Gr2], where, for a Calabi-Yau hypersurface in a toric variety, B was described as

the boundary of a reflexive polytope, with the cones over the faces of the polytope

yielding the fan defining the ambient toric variety. Topologically, we can write

B ⊆MR ⊕ R2 as

B = σ̃1 ∪ σ̃2

where

σ̃1 = Conv
(
(0, 1,−1) ∪ (σ × {(1, 0)})

)
,

σ̃2 = Conv
(
(0, 0, 1) ∪ (σ × {(1, 0)})

)
.

Note that the support of the fan Σ̃ above is the cone over σ̃1 ∪ σ̃2. We then take

P = {C ∩B |C ∈ Σ̃}.

Finally, the affine structure on B is defined as follows. Identify σ with σ ×

{(1, 0)} ⊆ B, and take the discriminant locus ∆ to be the union of cells of the

first barycentric subdivision of P not containing vertices of P, see Figure 2.1. We

then define affine charts as follows. First, we define affine charts ιi : σ̃i \ σ →֒ Ai

as the inclusions, where Ai denotes the affine hyperplane in MR ⊕ R2 spanned by

σ̃i. Second, for each vertex v ∈ P, choose a neighbourhood Uv of (v, 1, 0) ∈ B.

These neighbourhoods can be chosen so that Uv ∩ Uv′ = ∅ if v 6= v′ and the

two sets σ̃i \ σ along with the open sets Uv cover B \∆. Define a chart ιv : Uv →

(MR⊕R2)/R(v, 1, 0) via the inclusion followed by the projection. It is easy to check

that these charts give an integral affine structure. This again precisely follows the
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B(σ, P̄)

Figure 2.1. On the left is the initial polytope with its decomposition. We take the vertices

of σ to be (1, 0), (0, 1) and (−1,−1). On the right is the resulting B with its discriminant

locus ∆, indicated by the dotted line.

procedure for Calabi-Yau hypersurfaces in toric varieties considered in [Gr2]. This

gives rise to the pair (B,P).

In general, a pair (B,P) can be described by specifying the lattice polytopes

in P and specifying a fan structure at each vertex v, that is, the identification of

a neighbourhood of each vertex with the neighbourhood of 0 in a fan Σv. This

identification gives a one-to-one inclusion preserving correspondence between cells

of P containing v and cones of Σv, along with integral affine identifications of the

tangent wedges of each cell τ ∈ P containing v with the corresponding cone of Σv.

These identifications patch together to give an affine chart in a neighbourhood of

the vertex v.

In our example, it is worth describing the fan structure at a vertex v ∈ σ. Since

the fan structure at a vertex must be the fan yielding the corresponding irreducible

component of X0, toric geometry tells us this fan structure must be given as the

quotient fan obtained from Σ̃ by dividing out by the ray generated by this vertex.

Explicitly, we use the chart

ιv : Uv → (MR ⊕ R
2)/R · (v, 1, 0) ∼=MR ⊕ R, (2.1)

the latter isomorphism given by (m, r1, r2) 7→ (m− r1v, r2). The fan Σv can then

be described as the fan of tangent wedges to images of cells τ ∈ P containing v.

The set of maximal cones of this fan, described as subsets of MR ⊕ R, is

{Tvτ + R≥0(−v,−1) | v ∈ τ ∈ Pmax} ∪ {Tvτ + R≥0(0, 1) | v ∈ τ ∈ Pmax}, (2.2)

where Tvτ denotes the tangent wedge to v ∈ τ in MR ⊕ 0. Figure 2.2 shows some

of the fan structures when σ is an interval [−1, 1] of length two.

One can understand the nature of the singularities of B by studying the lo-

cal system Λ of integral vector fields on B0. Given integral affine coordinates
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(B,P)

Figure 2.2.

y1, . . . , yn, Λ is locally the family of lattices in the tangent bundle of B0 generated

by ∂/∂y1, . . . , ∂/∂yn. If v, v′ ∈ P are adjacent vertices, consider a path γ pass-

ing from v through σ̃1 to v′ and then through σ̃2 back to v. To identify Λv, we

can use the chart (2.1), which gives an identification of Λv with M ⊕ Z. It is an

easy exercise to check that parallel transport in Λ around γ yields a monodromy

transformation

Tvv′ : Λv → Λv

(m, r) 7→ (m+ r(v − v′), r)
(2.3)

The final piece of data for the dual intersection complex (B,P, ϕ) of X →

A1 is a multi-valued piecewise linear function ϕ describing aspects of the Kähler

geometry of the situation.

In the next section, we will build the mirror family over some base scheme. The

natural choice for this base is related to the Kähler cone ofXΣ, or the Picard group.

By toric geometry, Pic(XΣ) equals piecewise linear functions on Σ modulo linear

functions. It will thus be convenient to normalize the piecewise linear functions

as follows. Choose a maximal cell τ ∈ Pmax which has 0 as a vertex. Let P be

the monoid of integral convex piecewise linear functions on the fan Σ which take

the value 0 on the cone C(τ). Note that P gp ∼= PicXΣ. Setting Q := Hom(P,N),

there is a universal piecewise linear function ψ : |Σ| → Qgp
R
, with

ψ(x) = (P ∋ ϕ 7→ ϕ(x)).

This function is strictly convex in the sense of [GHK], Definition 1.12. In the local

P2 case normalized piecewise linear functions are determined by the value at the

one remaining vertex of σ not contained in τ and hence Q = N.

The multi-valued piecewise linear function ϕ comes from the universal piecewise

linear function ψ on |Σ| by descent to a quotient fan, or rather from a choice of

extension of this function to Σ̃. This choice can be made by choosing an element



Local mirror symmetry in the tropics 9

q ∈ Q \ {0}. While the choice of q affects the family of polarizations on XΣ̃, it

does not affect the family after restriction to Xt for t 6= 0. However, it does affect

the polarization on X , and hence will play some role in the mirror, seen explicitly

in (3.7). We take ψ̃ to be the Qgp
R
-valued piecewise linear extension of ψ which

takes the value 0 at (0, 1,−1) and the value q at (0, 0, 1). One can check that this

function is strictly convex in the sense of [GHK], Definition 1.12.

We can then construct ϕ from ψ̃ as follows. For each C ∈ Σ̃, let τ = C ∩B be

the corresponding cell of P. The function ψ̃ induces a function on the quotient

fan of Σ̃ along C (this quotient fan determining the fan structure of B along τ) as

follows. Let ψ̃τ ∈ Hom(M ⊕ Z2, Q) be a linear extension of ψ̃|C . Then ψ̃ − ψ̃τ is

a piecewise affine function on Σ̃ vanishing on C, hence descending to the quotient

fan of Σ̃ along C. We take (ψ̃ − ψ̃τ )|B as a representative of ϕ on a small open

neighbourhood of Int(τ) in B; this is clearly the pull-back of the corresponding

function on the quotient fan of Σ̃ along C under the projection to (MR ⊕R2)/RC.

3. The mirror degeneration and slab functions

Having described (B,P, ϕ) in our example as the dual intersection complex of a

degeneration of the local Calabi-Yau XΣ, we turn to the construction of the mirror,

which shall be a family Y → Spec k̂[Q] over a generally higher-dimensional base.

This family is constructed by constructing families Yk → Spec k[Q]/mk+1 to

each order k, giving rise to a formal scheme Ŷ → Spf k̂[Q]. As the case at hand

will be projective, the Grothendieck existence theorem gives rise to the desired

family. Alternatively, Y can be constructed using a graded ring of theta functions,

following [GHKS].

Here is a brief summary of the construction. The central fibre Y0 can be

described as

Y0 =
⋃

σ∈Pmax

Pσ

where Pmax denotes the maximal cells of P and Pσ is the toric variety (projective

if σ is compact) determined by the polyhedron σ. These toric varieties are glued

together in a manner reflecting the combinatorics of P: if σ1 ∩ σ2 = τ , then the

strata Pτ ⊆ Pσ1 , Pτ ⊆ Pσ2 are identified.

Local models for the kth order deformation of Y0 are determined by the function

ϕ. A key point of the construction involves an invariant description for the local

models, which we explain here. The function ϕ, defined on an open cover {Ui} by

single-valued functions ϕi : Ui → Qgp
R
, determines an extension of Λ by Qgp, the
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constant sheaf with coefficients in Qgp. Indeed, on Ui∩B0, this extension will split

as Λ|Ui
⊕ Qgp, and on the overlap, (m, r) as a section of Λ|Ui

⊕ Qgp is identified

on Ui ∩ Uj with (m, r + d(ϕj − ϕi)(m)) as a section of Λ|Uj
⊕ Qgp, interpreting

d(ϕj − ϕi) ∈ Hom(Λ|Ui
, Qgp). We then have an exact sequence

0 → Qgp → P → Λ → 0 (3.1)

on B0. We write the map P → Λ as m 7→ m̄. After choosing a representative ϕi of

ϕ in a neighbourhood of a point x ∈ B0, the stalk Px is identified with Λx ⊕Qgp.

There is a fan Σx = {Txσ |x ∈ σ ∈ P} (of not-necessarily strictly convex cones),

where Txσ denotes the tangent wedge to σ at x. This allows us to define a convex

PL function ϕx : |Σx| → Qgp
R

whose slope on Txσ coincides with the slope of ϕi|σ.

We then set

Px := {(m, q) |m ∈ Λx ∩ |Σx|, q ∈ Qgp, q − ϕx(m) ∈ Q} ⊆ Px (3.2)

While this definition as described inside of Λx ⊕ Q depends on the choice of rep-

resentative, in fact it is independent of this choice when viewed as a submonoid of

Px.

Note that Q acts naturally on Px, giving k[Px] a k[Q]-algebra structure. For

a vertex v, we can now view Spec k[Pv]/m
k+1 as a local model for the kth order

deformation of Y0 in a neighbourhood of the stratum of Y0 corresponding to v.

In addition, the local system P gives a method of defining parallel transport of

monomials.

Let us describe certain aspects of this construction for our local mirror symme-

try example. Using the fan structure given by (2.2), we can describe the monoid

Pv ⊆ Pv as {(m, r, s) | s− ϕv(m, r) ∈ Q} ⊆M ⊕ Z⊕Qgp using the identifications

Pv ∼= Λv ⊕Qgp ∼=M ⊕ Z⊕Qgp (3.3)

induced first by the representative ϕv at v and second by the affine coordinate chart

on Uv. In particular, for the purposes of the discussion below, we can describe

the most relevant part of Pv as follows. First, we choose the representative ϕv

by choosing the linear function ψ̃v to be (0, ψ̄(v), 0) ∈ (N ⊕ Z2) ⊗Z Q
gp, with

ψ̄ = ψ|σ×{1}. Let P̄v ⊆ Pv be the submonoid consisting of m ∈ Pv with m̄ tangent

to σ. Then P̄v is naturally described in terms of ψ̄. Indeed, consider the convex

hull of the graph of ψ̄,

Ξψ̄ := {(m, 0, s) |m ∈ σ, s− ψ̄(m) ∈ Q} ⊆MR ⊕ R⊕Qgp
R
,

an unbounded polyhedron with vertices mapping to vertices of P under the pro-

jection MR ⊕R⊕Qgp
R

→MR. Then we can identify P̄v with the integral points in

the tangent wedge of Ξψ̄ at (v, 0, ψ̄(v)).
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We also note that under the identification (3.3) of Pv, the monodromy of Λ

described in (2.3) lifts to a monodromy transformation of Pv given by

Tvv′ : Pv → Pv

(m, r, q) → (m+ r(v − v′), r, q + r(ψ̄(v)− ψ̄(v′)))
(3.4)

The key additional (and usually most complex) ingredient for constructing Yk

is a structure S . A structure encodes data about how certain forms of these local

models are glued together. We will explain this structure in our example, but not

go into too much detail. A more detailed explanation for how this works is given

in the expository paper [GrSi4].

The structure takes a particularly simple form here. In general, a structure is

a collection of walls, polyhedral cells in B of codimension one each contained in a

cell of P carrying the additional data of certain formal power series. In [GrSi3]

we distinguish a special sort of wall, namely those contained in codimension one

cells, and call them slabs. They tend to have a different behaviour. In the case at

hand, only slabs appear, and these cover σ. The functions attached to the slabs

are determined from the monodromy around the discriminant locus ∆.

In this example, the slabs are the sets τ × {(1, 0)} for τ ∈ Pmax. For a slab

b, associated to any point x ∈ b \∆ is a formal power series fb,x =
∑
m∈Px

cmz
m.

This should only depend on the connected component of b \ ∆ containing x, so

there is in fact one such expression for each vertex v of τ , and we can write

fb,v =
∑
m∈Pv

cmz
m. Furthermore, cm 6= 0 implies m̄ is tangent to b, so in fact

the sum is over m ∈ P̄v.

The series fb,v are completely determined by a number of simple properties.

This follows in the case under consideration from having chosen P to consist of

standard simplices. In what follows we will want to compare fb,v with fb,v′ for

different vertices v, v′ of b. To do so, we use parallel transport in P from v to v′.

Given the identification Pv with M ⊕ Z⊕Qgp used to give the formula (3.4) and

noting that only monomials of the form z(m,0,p) can appear in fb,v, we see that the

particular path chosen between v and v′ is irrelevant.

We can now state the conditions determining the fb,v:

1. The constant term of each fb,v is 1.

2. If v and v′ are adjacent vertices of b, then the corresponding slab functions

are related by

fb,v′ = z(v−v
′,0,ψ̄(v)−ψ̄(v′))fb,v. (3.5)

Here the equality makes sense after parallel transport of the exponents from
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v to v′ in the local system P , and (v − v′, 0, ψ̄(v) − ψ̄(v′)) ∈ Pv′ using the

identification of Pv′ given by (3.3).

3. log fv contains no terms of the form zq for q ∈ Q\{0}. Here we view Q ⊆ Pv

via the natural inclusion Qgp ⊆ Pv.

4. If v lies in slabs b, b′, then fb,v = fb′,v.

Item 1 is a normalization which originated in [GrSi1], Def. 4.23. However, we

shall see its enumerative importance in §4. Item 2 is the crucial point of slabs: they

allow us to define parallel transport of monomials through slabs in a way which

cancels the effects of monodromy. We shall say more about this shortly. The

condition 3 is interpreted by writing fv = 1 + · · · and using the Taylor expansion

for log(1 + x) =
∑∞

i=1(−1)i+1xi/i. This can be interpreted inside some suitably

completed ring. After expanding out each expression (· · · )i, one demands that

no monomials of the form zq appear for any q ∈ Q \ {0}. Finally, 4 tells us how

expressions propagate across σ × {1}.

To see the significance of the second condition, let w ∈ Int(σ̃1), w
′ ∈ Int(σ̃2).

Suppose we want to compare monomials defined at w (that is, monomials with

exponent in Pw) with monomials defined at w′ (that is, monomials with exponent

in Pw′). If we parallel transport from Pw to Pw′ , the result depends on the path.

For example, let v, v′ be adjacent vertices of τ ∈ Pmax. Let Tv, Tv′ denote parallel

transport in Λ from w to w′ via the vertices v and v′ respectively. Then from (3.4),

it follows that for (m, r, q) ∈ Pw =M ⊕ Z⊕Q,

Tv′(m, r, q)− Tv(m, r, q) =
(
r(v − v′), 0, r(ψ̄(v) − ψ̄(v′)

)
.

For convenience, we can identify Pw and Pw′ with Pv so that Tv is the identity. This

difference between Tv and Tv′ creates problems for comparing the rings k[Pw ] and

k[Pw′ ]. However, we can follow the rule that if we wish to transport a monomial

z(m,r,q) along a path between w and w′ which crosses a slab b in a connected

component of b \∆ containing a vertex v, we apply an automorphism

z(m,r,q) 7→ z(m,r,q)f−r
b,v . (3.6)

Here r represents the result of projecting (m, r, q) = (m, r) via the projection

π : Λv → Z obtained by dividing out by the tangent space to the slab. If instead

we pass through the slab b via the connected component of b\∆ containing v′, we

get

z(m,r,q) 7−→ z(m+r(v−v′),r,q+r(ψ̄(v)−ψ̄(v′))f−r
v′ = z(m,r,q)f−r

v ,
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coinciding with (3.6). Here we use the above expression for Tv − Tv′ and (3.5).

Hence we see that the ambiguity produced by monodromy is resolved by the slab

functions.

Examples 3.1. In the following examples, we express the various functions fb,v

as formal power series with exponents appearing in P̄v, using the representation of

P̄v as the integral points of the tangent wedge of Ξψ̄ at (v, 0, ψ̄(v)).

(1) Take σ to be the interval [−1, 1] as in Figure 2.2, with P as given there.

The monoid of convex piecewise linear functions on Σ is generated by the function

which takes the values 0, 0 and 1 respectively at (−1, 1), (0, 1) and (1, 1). Thus we

have Q = N, and the universal piecewise linear function ψ coincides with the above

generator. For a vertex v, with P̄v ⊆ M ⊕ 0⊕Qgp, write x = z(1,0,0), t = z(0,0,1),

t being the generator of k[Q]. Then we have

f[−1,0],−1 = 1 + x+ x2t+ xt,

f[−1,0],0 = f[0,1],0 = 1 + x−1 + xt+ t,

f[0,1],1 = 1 + x−1t−1 + x−2t−1 + x−1.

Note that log f[−1,0],−1, log f[0,1],1 are clearly devoid of pure powers of t as any

power, say, of x + x2t + xt clearly produces only terms with positive powers of

x. On the other hand, f[−1,0],0 = (1 + x−1)(1 + xt), and taking logs we get

log(1 + x−1) + log(1+ xt) which will again involve no pure t power. The t term in

f[0,1],0 was necessary to achieve this.

(2) Take σ to be as in Figure 2.1. Again, the monoid of convex piecewise linear

functions on the fan Σ is generated by, say, the function taking the values 0 at

(0, 0, 1), (1, 0, 1) and (0, 1, 1) and the value 1 at (−1,−1, 1). So again Q = N,

with the universal function ψ agreeing with this generator. Writing x = z(1,0,0,0),

y = z(0,1,0,0), t = z(0,0,0,1), it is easy to see that the terms of the slab function

fb,(0,0) (independent of b by the fourth condition) required by conditions 1 and

2 are 1 + x + y + tx−1y−1. The normalization condition forces us to add some

additional terms:

fb,(0,0) = 1 + x+ y + tx−1y−1 +
∑

k≥1

akt
k,

where the ak are uniquely determined by the requirement that

∞∑

i=1

(−1)i+1
(x+ y + tx−1y−1 +

∑
k≥1 akt

k)i

i

contains no pure powers of t. This series in t begins as

−2t+ 5t2 − 32t3 + 286t4 − 3038t5 + · · · .
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(3) Let σ be the convex hull of the points (±1, 0), (0,±1) and take P to

be the star subdivision at the origin. Now the monoid P of convex piecewise

linear functions which are 0 on (0, 0, 1), (1, 0, 1) and (0, 1, 1) is isomorphic to N2,

determined by the values α1, α2 of the function at generators of the other two rays.

Thus we can write Q = N2, t1 = z(1,0) ∈ k[Q], t2 = z(0,1) ∈ k[Q]. Using x, y as

defined in the previous example, one can check that for any slab b,

fb,0 := 1 + x+ y + t1x
−1 + t2y

−1 + t1 + t2 + 3t1t2 + 5t21t2 + 5t1t
2
2 + · · · .

The additional terms represented by · · · give a power series in t1, t2.

We now describe the degeneration Y → Spec k̂[Q] produced by the above data.

In fact, it is not difficult to do this in terms of equations, as follows. First, define

C(Ξψ̄) := {((um, 0, uq, u) | (m, 0, q) ∈ Ξψ̄, u ∈ R≥0} ⊆MR ⊕ R⊕Qgp
R

⊕ R.

Here the closure is necessary because Ξψ̄ is unbounded. We then obtain a graded

ring

Sψ̄ := k[C(Ξψ̄) ∩ (M ⊕ Z⊕Qgp ⊕ Z)]

where the grading is given by the projection fromM⊕Z⊕Qgp⊕Z onto the last copy

of Z. Note the closure in the definition of cone adds the cone {0}×{0}×R≥0Q×{0}

to the set, so we see the degree 0 part of Sψ̄ is k[Q]. We can then complete, with

Ŝψ̄ := Sψ̄ ⊗k[Q] k̂[Q].

It is then natural to think of the slab functions as being given by a single degree

1 element of Ŝψ̄. Indeed, given a vertex v ∈ P, we obtain from fb,v an element of

degree 1 by multiplying all monomials of fb,v by z(v,0,ψ̄(v),1). It follows from (3.5)

that this is independent of the choice of v and gives an element F ∈ Ŝψ̄ of degree

1. One can then show that

Y = Proj Ŝψ̄[U,W ]/(UW − zqV0F ). (3.7)

Here U,W are of degree 1, V0 ∈ Ŝψ̄ is the element corresponding to (0, 0, 0, 1)

(which lies in Ξψ̄ by the assumption that 0 ∈ σ and ψ has been chosen so that

ψ̄(0) = 0). The element q ∈ Q is the element chosen in the definition of ψ̃ at the

end of §2. This can be shown in much the way the special case discussed in [GrSi4],

Example 5.2, being the case of Examples 3.1, (2). Note that after localizing at zq,

this family does not depend on the choice of q up to isomorphism, just as the choice

of q did not affect the polarization on the general fibres of X → A
1.
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The homogeneous coordinate ring of Y is generated in degree 1 by theta func-

tions, as explored in [GHKS]. Each point of B(Z) (the set of points of B with inte-

gral coordinates) corresponds to a generator of this ring as a k̂[Q]-algebra. Explic-

itly, the integral points in this example are the integral points of σ and the apexes

of the pyramids σ̃1 and σ̃2. If v is an integral point of σ, then z(v,0,ψ̄(v),1) ∈ Ŝψ̄
is the corresponding theta function. On the other hand, the monomials U and W

correspond to the two apexes.

This description of Y can be related to the more traditional mirror to XΣ as

described in [CKYZ]. Here Y can be decompactified by setting V0 = 1, obtaining

an open subset Yo. Passing to the generic fibre Yoη of Yo → Spec k̂[Q], we obtain

a variety defined over the field of fractions K of k̂[Q]. We can describe Yo as a

subvariety of A2 × (N ⊗Z Gm) over the field K given by the equation

uw = zqfb,0, (3.8)

where b is any slab containing 0 ∈ σ. Here u,w are coordinates on A2. Without

the normalization condition, we could take fb,0 =
∑

m∈σ∩M z(m,ψ̄(m)), which would

lead to the mirror of XΣ being precisely that given in [CKYZ].

Remark 3.2. The crucial feature of the mirror family we have just described, as

opposed to the one given in [CKYZ], is that the monomial coordinates on the

base Spec k̂[Q] are canonical in the sense of mirror symmetry. To describe this

briefly, we work over the field k = C, and assume that the power series f := fb,0

is convergent in some analytic neighbourhood U of the zero-dimensional stratum

in SpecC[Q]. Let U∗ = U \ ∂ SpecC[Q], the complement of the union of toric

divisors. Thus we can view Yo as giving an analytic family Yo → U∗. We write

Yot for the fibre over t ∈ U∗. On such a fibre, one has the holomorphic volume

form on the fibres of Yo → Spec k̂[Q] given by

Ω = (2πi)−n−1d log u ∧ d log x1 ∧ · · · ∧ d log xn

One then finds that there is a monodromy invariant cycle α0 ∈ Hn+1(Yot ,Z) such

that
∫
α0

Ω = 1, so that Ω is a normalized holomorphic form in the sense of mirror

symmetry. Further, if q1, . . . , qr ∈ Qgp are a basis for Qgp, one can find (multi-

valued) flat families of (n+1)-cycles α1, . . . , αr with
∫
αi

Ω = log zqi . The key point

of this calculation is to take the logarithmic derivative of these period integrals and

reduce the resulting integral to an integral on the hypersurface fb,v = 0 inN⊗ZGm.

Via residues, this is translated into an integral of the derivative of log fb,0 over

various tori in N ⊗Z Gm. The fact that these integrals are then constant follows

precisely from the normalization condition on fb,0.
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4. Enumerative predictions

So far we have seen two interpretations of the slab functions and the normalization

condition. The first came from the desire to write down a correction to the patching

of the naive toric models for the mirror degeneration Y → Spec k̂[Q] in a way

consistent with local monodromy of the affine structure on B. We discussed in

§2 how this condition along with the normalization condition determines the slab

functions uniquely. Then in Remark 3.2 we saw that the normalization condition is

responsible for making our families canonically parametrized in the sense of mirror

symmetry. Both of these arguments concern the complex geometry of the mirror

degeneration Y → Spec k̂[Q].

In the following two sections we will give two related interpretations of normal-

ized slab functions related to the symplectic geometry of the degeneration X → A1

of the local Calabi-Yau variety XΣ we started with. The interpretation supports

the view that the degenerations constructed by structures are indeed the ones

expected from homological mirror symmetry and open-closed string theory.

Since the completion of [GrSi3], a clearer idea emerged as to the precise meaning

of structures. This picture has arisen from several converging points of view: (1)

The heuristic correspondence between tropical Morse trees and Floer homology

emerging in discussions between us and Mohammed Abouzaid. Some of these

ideas were discussed in [Clay] and [GrSi5]. (2) Auroux’s work [Au] on T -duality

on complements of anti-canonical divisors, describing the complex structure on

the SYZ dual of a Lagrangian fibration using counts of Maslov index two disks.

This has inspired quite a bit of work, which is realising Fukaya’s original dream

of correcting the complex structure of the mirror via counts of holomorphic disks.

(3) [GPS] made explicit the enumerative content of the key part of the algorithm

of [KS] (or the two-dimensional version of [GrSi3]). In particular, this established

an enumerative meaning for functions attached to walls of a structure.

Heuristically, one expects the following interpretation in the SYZ picture of

mirror symmetry. Suppose given a (special) Lagrangian fibration f : X → B

from a Calabi-Yau X , with the general fibre being a torus. Consider Maslov index

zero holomorphic disks with boundary a fibre of f . For dimensional reasons the

expectation is that the set of points in x ∈ B such that f−1(x) bounds a Maslov

index zero holomorphic disk is real codimension one in B, forming a collection of

walls. These walls should determine the structure necessary to build the mirror

to X , but one needs to attach functions to the walls. Again, heuristically, these
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functions are expected to take the shape, at a point x ∈ B with L = f−1(x),

exp




∑

β∈π2(X,L)
∂β 6=0

kβnβz
β


 . (4.1)

Here the sum is over all relative homotopy classes β such that ∂β ∈ π1(L) is non-

zero, kβ is the index of ∂β ∈ π1(L) and nβ is some count of Maslov index zero

disks with boundary on L. This series should be defined as a formal power series

in some suitable ring. One can note that as x ∈ B varies, the groups π2(X,L)

vary forming a local system on B0 (where B0 = {x ∈ B | f−1(x) is non-singular}).

This local system is analogous to the sheaf P of §2, with the exact sequence of

homotopy groups

π2(L) = 0 → π2(X) → π2(X,L) → π1(L) → π1(X)

being analogous to the exact sequence (3.1).

It is difficult to give exact definitions for the numbers nβ. There have been

several approaches to dealing with this. For example, Auroux [Au] pioneered, in

the case of an effective anti-canonical divisor, the use of counts of Maslov index

two disks to define holomorphic coordinates which are then transformed by wall-

crossing automorphisms as we cross walls in B over which Maslov index zero disks

live.

A different approach, using log geometry, originates in [GPS]. There, working

with Pandharipande, we used relative Gromov-Witten invariants to make sense of

the formula (4.1). The situation there was effectively that of a rational surface

with an anti-canonical divisor D, and the nβ of (4.1) are replaced with counts of

curves meeting the divisor D in one point. This was used for a general mirror

symmetry construction for such surfaces in [GHK].

It is interesting to note how these two points of view apply to the case of

local mirror symmetry considered in this paper. Auroux’s point of view was used

effectively in a sequence of papers [CLL], [CLT], [CCLT] to study the same local

mirror symmetry situation as discussed in this paper. Wall-crossing formulas for

counts of Maslov index two disks are used to obtain what should be the same

slab functions as discussed in this paper. The count of Maslov index two disks is

reduced to a closed Gromov-Witten invariant on a toric variety, which can then be

calculated via known mirror symmetry results. This allows one to show show that

the slab functions defined using their counts give rise to canonical coordinates just

as our slab functions do.

On the other hand, generalising the idea of replacing holomorphic disks with

relative curves, one should be able to work with a certain kind of logarithmic curve
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called a punctured curve, the theory of which is currently being developed in a joint

project with Abramovich and Chen [ACGS]. These curves will live in the central

fibre of the toric degeneration Y → A1 constructed in §2, and can be viewed as a

substitute for holomorphic curves with boundary in an algebro-geometric context.

Then (4.1) can be used to define slab functions, where now nβ is a count of genus

0 logarithmic curves with one puncture.

We do not propose calculating the slab functions in this way. Rather, we

should be able to show that the slab functions defined in this way satisfy the

same determining properties that the slab functions of §2 did. This is done by

probing slabs by broken lines (see [CPS], [GHK], [GHKS]) and interpreting these

enumeratively using a different type of punctured curve, roughly corresponding to

cylinders. These punctured curves play the same role that Maslov index two disks

play in the analysis of slab functions of [CLL], [CLT], [CCLT]. Crucially, we need

to use the gluing formula of [ACGS] to relate broken lines and punctured curves.

While the details of this approach will be given elsewhere, let us demonstrate

this using the simple example from Examples 3.1, (1). We depict in Figure 4.1

the central fibre of the degeneration X → A1 constructed in §2 in this case. The

total space X has two ordinary double points, situated on the singular locus of

X0, where the map X → A1 is not normal crossings. The inclusion X0 ⊆ X

induces a log structure on X0, but the log structure is not well-behaved at the

two points (not fine in the sense of log geometry). In particular, the theory of

log Gromov-Witten invariants as developed in [GrSi6], [AC], [Ch] cannot be used

directly. While a theory of invariants which can deal directly with this poorly

behaved log structure is under development, for the moment we will deal with it

via a small resolution of the ordinary double points. There are four choices of such

resolutions, one of which is shown on the right in Figure 4.1. These choices can be

thought of in terms of the affine geometry of the dual intersection complex B, with

the resolutions corresponding to sliding the two singularities of the affine structure

along σ to various choices of vertices.

We have different slab functions fb,v for the vertices v = −1, 0, 1. To identify

the slab function at a vertex v as a generating function, we choose a small resolu-

tion X̃ → X so that the irreducible component indexed by v remains toric. This

effectively slides the singularities away from the vertex. The resolution in Figure

4.1 is used for the vertex v = 0. The slab function is given by (4.1) where nβ is a

count of log curves of genus 0 with one puncture mapping to the boundary of the

component Xv indexed by v. In Figure 4.2 we show the two obvious such curves

for v = 0. However, multiple covers of these curves totally ramified at the punc-

ture points are also possible, and a d-fold cover will contribute with multiplicity
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Y0Y−1 Y1

Figure 4.1. The left-hand figure shows the five irreducible components of X0, with the

three labelled components indexed by the vertices of σ. Here X0
∼= P

1
× P

1 and X−1, X1

are isomorphic to the blow-up of A2 at a point.

Figure 4.2. The two punctured curves corresponding to holomorphic disks. The curves

include the exceptional divisors of the small resolution, and the punctures are represented

by the white circles.

(−1)d+1/d2. The slab function is then, following (4.1),

(1 + x−1)(1 + xt) = exp

(
∞∑

d=1

d ·
(−1)d+1

d2
x−d +

∞∑

d=1

d ·
(−1)d+1

d2
(tx)d

)
,

with the monomials x−1 and tx and their powers playing the role of zβ.

To prove this formula without a direct calculation, we show the slab functions

defined by these counts satisfy conditions 1-4 of §3. Conditions 1 and 3 are obvi-

ous from (4.1), as the statement that only monomials zβ with ∂β 6= 0 appear is

analogous to the statement that no terms of the form zq for q ∈ Q \ {0} appear

inside the exponential. Condition 4 is automatic because in this situation the slab

function only depends on the vertex. It remains to show condition 2, and we use

broken lines for this, which can be reviewed in [GrSi5]. A broken line is a piecewise

linear path with monomials cLz
mL attached to each domain of linearity, and the

derivative of the line in the domain L is −m̄L. When the broken line crosses a

wall, we may change the monomial by applying the wall-crossing automorphism

(3.6) to the monomial and choosing a new monomial being one of the terms in the

expression obtained after applying this automorphism. In Figure 4.3, we consider
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Q

Q′

Figure 4.3. There are four broken lines with endpoints Q on the left, two of which don’t

bend. All have initial monomial zm with m̄ = (0,−1). Once the broken line crosses the

slab, there are four possible attached monomials: zm, tzm, x−1zm, xtzm. The right-hand

picture shows a different choice of basepoint Q′, and there are again four broken lines.

germs of broken lines which come vertically from below with initial monomial zm

with m̄ = (0,−1) ∈ MR ⊕ R. We define LiftQ(m) to be the sum over all broken

lines ending at a basepoint Q of the final attached monomials. Note that if Q is

near a vertex v of σ, then in fact LiftQ(m) = zmfb,v. It is then not difficult to

show that (3.5) holds for all pairs of adjacent vertices if and only if LiftQ(m) is

independent of Q chosen above the slabs as in Figure 4.3.

Broken lines can be viewed as a purely combinatorial (tropical) way to count

holomorphic cylinders. But we can actually count logarithmic curves of genus

0 with two punctures to emulate cylinders, and there will be a correspondence

between such twice-punctured logarithmic curves and broken lines. Varying the

basepoint can be achieved by varying a point constraint for one of the punctures.

The key point is that various ways of degenerating the point constraint can lead

to different broken lines with different endpoints. However, the count of these

punctured curves will be independent of the constraint.

To see this explicitly, let’s look at the example of the straight line in the left-

hand diagram in Figure 4.3 with attached monomial zm. To understand what

happens when we move this broken line through the singularity, it is helpful to move

the singularity to the vertex 0 by using the small resolution depicted in Figure 4.4.

Consider the family of twice-punctured curves given by the vertical fibres of X0,

the blowup of P1 × P1. Any curve in this family has a tropicalization (see [GrSi6],

§3). The tropicalization of a general curve in this family is just the vertical line

through the singularity on the right-hand side of Figure 4.4. Combinatorially, this

just indicates that the curve intersects the upper and lower boundary divisors ofX0.
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Figure 4.4.

However, the family has two special members which are degenerate with respect to

the log structure on the central fibre. The tropicalization of the punctured curve

when it falls into X0 ∩ X1 is the straight broken line depicted in Figure 4.4 to

the right of the vertex. If on the other hand we move the punctured curve to

the left, it becomes reducible, the union of X−1 ∩ X0 and the exceptional curve

of the small resolution. This curve tropicalizes to the tropical curve depicted on

the left, now with two vertices corresponding to the two components. The bend

is a consequence of gluing the once-punctured curve with support the exceptional

curve to the thrice-punctured curve with support X0 ∩ X−1. The broken line is

then a subset of this tropical curve.

The point is that the two broken lines make the same contribution to LiftQ(m)

as Q varies because they can both be viewed as counting the number of curves in

the one-parameter family described passing through some point in X0. The point

can degenerate into X−1 ∩ X0 or X0 ∩ X1, giving the two types of broken line

behaviour. Thus the invariance of LiftQ(m) can be viewed as the fact that these

lifts are generating functions for counts of certain types of punctured curves.

The key point for the argument is then to prove that broken lines really calculate

Gromov-Witten invariants of punctured curves. This shall be shown using a general

gluing formula [ACGS].

Note so far we have not actually calculated the Gromov-Witten invariants of

XΣ. These should be extracted in the B-model from some additional period inte-

grals past the ones discussed in Remark 3.2. A significant challenge remaining is to

give a tropical description for these period integrals and Gromov-Witten invariants.
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5. Tropical disks and slab functions

The picture of counting holomorphic disks and cylinders from §4 suggests an in-

terpretation of the slab functions in terms of tropical curves. In this section we

give a surprisingly simple interpretation of this sort. The arguments are by alge-

braic manipulations of the slab functions. We are thus lead to the challenge of

interpreting the tropical counts in terms of the counting of holomorphic disks on

XΣ.

We study the collection of slab functions at a vertex v ∈ P with v ∈ Intσ.

By Condition (4) of slab functions all the fb,v for slabs b containing v agree.

Dehomogenizing (3.7) at v we are thus left with the local model uw − ft = 0 for

the mirror degeneration for some f ∈ k̂[P ]. Here P = P̄v is a toric submonoid of

M ⊕ Qgp with P× = {0} and the completion is with respect to P \ {0}. Recall

also the projection

M ⊕Qgp −→M, m 7−→ m̄.

For example, for the mirror of local P2 we had Q = N, P ⊂ N3 generated by

(1, 0, 0), (0, 1, 0), (−1,−1, 1), hence k̂[P ] = k[x, y, z]JtK/(xyz − t), and

f = 1 + x+ y + z − 2t+ 5t2 − 32t3 + 286t4 − 3038t5 + · · · .

In general we assume f = 1 +
∑r

i=1 z
mi + g with m̄i 6= 0 for all i and

g =
∑

q bq · z
q ∈ k̂[Q] taking care of the normalization condition.2 Under this

assumption we are going to give an infinite product expansion

f =
∏

{m | m̄ 6=0}

(1 + amz
m)

in k̂[P ], with each am having an interpretation in terms of tropical disks in MR

with root weight m. Moreover, each coefficient bq of g has an interpretation in

terms of pointed tropical curves of genus zero.3

To this end consider the following definition of the type of a tropical disk. A

rooted tree is a partially ordered finite set with a unique maximal element, called

the root vertex, which is connected and without cycles when viewed as a graph. The

predecessors of a vertex v are the adjacent vertices that are smaller than v. The

minimal elements of a tree are called its leaves, so these are the elements without

2Note that by the universal nature of Q the sum over zmi implicitly comprises a universal

choice of coefficients.
3If σ has several interior integral points the change of vertex formula (3.4) provides a non-trivial

identity between expressions labelled by different sets of tropical trees. It would be interesting

to give an interpretation of this formula within the following discussion.
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predecessors. We require that there are no elements with only one predecessor. In

graph theory language this means that the interior vertices are at least trivalent

and the leaves are the unique univalent vertices.

We now define types of tropical trees weighted by elements of P . Note that Q

can be identified with the submonoid {m ∈ P | m̄ = 0} of P .

Definition 5.1. The type of a P -labelled tropical disk is a rooted tree Γ with sets

VΓ of vertices and EΓ of edges along with a vertex-labeling map

w : VΓ −→ P \Q, v 7−→ mv

fulfilling the following conditions:

1. For any non-leaf vertex v ∈ VΓ with predecessors v1, . . . , vℓ the balancing

condition

mv = mv1 + · · ·+mvℓ

holds.

2. For any vertex v the weights m1, . . . ,mℓ of the adjacent predecessor vertices

are pairwise distinct.

By abuse of notation we suppress the labelling function in the notation and write

just Γ for the type of a tropical disk. The set of non-leaf vertices is denoted V̂Γ.

If we take the weight mΓ of the root vertex in Q rather than in P \ Q and

otherwise leave the definition unchanged we arrive at the notion of type of P -

labelled pointed rational tropical curve.

Each type of tropical disk or rational tropical curve determines an isotopy class

of traditional tropical curves in MR with edges labelled by lifts of the direction

vector (an element of M) to P , the labelling of the predecessor vertex. In the disk

case one may add another edge to force the balancing condition at the root vertex.

The balancing condition for a tropical disk implies that the labelling function

is uniquely determined by its values on the leaf vertices v1, . . . , vℓ. In particular,

for the weight of the root vertex we have

mΓ = mv1 + · · ·+mvℓ .

Let now S = {m1, . . . ,mr} be the set of exponentsm occuring in f with m̄ 6= 0.

For m ∈ P with m̄ 6= 0 denote by Tm(S) the set of types of P -labelled tropical

disks Γ with mΓ = m and with leaf labels in S. Similarly Rq(S) denotes the set

of types of P -labelled pointed rational tropical curves with leaf labels in S and

mΓ = q.
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Proposition 5.2. For f = 1+
∑
m∈S z

m+g with g =
∑

q 6=0 bqz
q as above it holds

f =
∏

{m | m̄ 6=0}

(1 + amz
m) (5.1)

with

am =
∑

Γ∈Tm(S)

(−1)|V̂Γ| and bq =
∑

Γ̃∈Rq(S)

(−1)|VΓ̃|−1.

Proof. Expanding the infinite product in the statement and gathering according

to monomials yields

∏

{m | m̄ 6=0}

(1 + amz
m) =

∑

m∈P

( ∞∑

ℓ=1

∑

m=m1+···+mℓ
Γi∈Tmi

(S)

(−1)|V̂Γ1 | · · · (−1)|V̂Γℓ
|

)
zm. (5.2)

In this expansion ℓ is the number of am-terms in the infinite product to be mul-

tiplied. Thus the third sum on the right-hand side is over all decompositions

m = m1 + · · ·+mℓ of m into ℓ pairwise distinct summands in P . Recall that V̂Γ

is the set of non-leaf vertices. Fix m with m̄ 6= 0 now and consider the coefficient

of zm. Then for ℓ ≥ 2 any collection Γ1, . . . ,Γℓ of types of tropical disks with

m = mΓ1 + · · ·+mΓℓ
can be merged into a new type of tropical disk Γ ∈ Tm(S)

by connecting the root vertex of each Γi by one edge to the root vertex v0 ∈ VΓ.

Thus the root vertex of Γ is ℓ-valent with adjacent predecessor trees Γ1, . . . ,Γℓ.

Now this merged tree Γ contributes to the coefficient of zm as one term for ℓ = 1.

Since the vertices of Γ other than the root vertex are in bijection with the vertices

of Γ1, . . . ,Γℓ it holds

(−1)|V̂Γ| = −(−1)|V̂Γ1 | · · · (−1)|V̂Γℓ
|.

Thus each term with ℓ ≥ 2 in the sum of the right-hand side of (5.2) cancels with

one term for ℓ = 1. Conversely, if the root vertex of the type of a tropical disk Γ

has valency ℓ ≥ 2 then Γ is obtained by this merging procedure. On the right-hand

side of (5.2) we are thus left only with those m with m̄ = 0 and in addition with

those trees with only one vertex. The latter condition means that the root vertex

is also a leaf vertex. These terms yield the sum
∑

m∈S z
m. The terms with m̄ = 0

define a power series 1 + h ∈ k̂[Q]. We have thus shown

∏

{m | m̄ 6=0}

(1 + amz
m) = 1 +

r∑

i=1

zmi + h,

with h ∈ k̂[Q]. Since the left-hand side of this equation is clearly normalized we

see that h = g. Tropically, the coefficient of zq in g is the weighted sum of types
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x y x y x x yy y x y x

Figure 5.1.

of P -labelled pointed rational tropical curves, with the marked point (of valency

ℓ ≥ 2) the merging point of ℓ tropical trees Γ1, . . . ,Γℓ. The balancing condition of

an underlying tropical curve at the marked point is the statement

m̄Γ1 + · · ·+ m̄Γℓ
= m̄ = 0.

For f = 1 + x+ y + z + g the expansion up to order 4 is

(1 + x)(1 + y)(1 + z)(1− xy)(1 − yz)(1− xz)(1 + x2y)

·(1 + xy2) . . . (1 + yz2)(1− x2y2)(1 − y2z2)(1 − x2z2)

·(1− x2yz)(1− xy2z)(1− xyz2)(1 − xz3) . . . (1− yz3)

Figure 5.1 shows the tropical trees contributing to the coefficient −1 = (−1)3 +

(−1)3+(−1)2 of x2y2. Note that many labelled trees with four leaves are ruled out

because of the third condition in Definition 5.1 that no two predecessor subtrees

at some vertex be isomorphic.

We finish this section with two remarks on a possible enumerative interpretation

of the expansion in terms of tropical disks and trees. First, according to (4.1) we

should write the product expansion (5.1) in exponential form. Indeed, we can also

write

f = exp


 ∑

{m | m̄ 6=0}

∑

Γ∈T̃m(S)

(−1)|V̂Γ|

|Aut(Γ)|
zm


 .

Here the sum is over the space T̃m(S) of tropical disks with the stability condition

Definition 5.1,2 dropped. Expanding exp in a Taylor series the proof is largely the

same as the one given, with extra care taken concerning automorphisms.

Second, in log Gromov-Witten theory the log structure on the moduli space

only depends on the type of tropical curve associated to a stable log map [GrSi6].

It is tempting to believe in a formulation of the counting problem by a symmetric

obstruction theory [BeFa] on a moduli space with a log structure stratified by types

of tropical disks, with each stratum contributing (−1)|V̂Γ|/|Aut(Γ)|.
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